1
|
Hao Q, Zhang Y, Shi R, Zhao J, Li G, Min J, Han S, Zhang Y. Characterization and inhibition of hydrogen sulfide-producing bacteria from petroleum reservoirs subjected to alkali-surfactant-polymer flooding. BIORESOURCE TECHNOLOGY 2024; 418:131961. [PMID: 39647713 DOI: 10.1016/j.biortech.2024.131961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 12/03/2024] [Accepted: 12/05/2024] [Indexed: 12/10/2024]
Abstract
Alkali-surfactant-polymer (ASP) flooding is an emerging and promising oil recovery technique. However, the methods for preventing hydrogen sulfide-producing bacteria (SPB), main culprits to microbial souring, in such alkali reservoirs remains unknown. Here, four alkaline-tolerant SPB exhibiting versatile sulfur metabolism were identified. Representative strains DS3, DS5, DS8, and DS23 were associated with Sulfurospirillum alkalitolerans, Desulfonatronovibrio hydrogenovorans, Desulfobotulus sapovorans, and Desulfovibrio alkalitolerans, respectively. Pure culture experiments showed nitrite exerted partial inhibitory effects since DS3 preferred nitrite as an electron acceptor. And nitrate inhibition was feeble, as nitrate was dissimilated to ammonium by DS3 and DS5, and DS8 preferentially utilized sulfate compared with nitrate, and DS23 ignored nitrate respiration. Glutaraldehyde effectively prevented the production of H2S in pure culture and microcosmic simulation system, demonstrating its practical application potential in alkali reservoirs. This study enhances the understanding on physiological characteristics of SPB and bridges the gap in souring management in high alkaline ASP-flooded reservoirs.
Collapse
Affiliation(s)
- Qinqin Hao
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, PR China
| | - Yuechao Zhang
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, PR China
| | - Rongjiu Shi
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, Liaoning 110016, PR China.
| | - Jinyi Zhao
- No. 2 Oil Production Company, Daqing Oilfield Limited Company, Daqing 163414, PR China
| | - Guoqiao Li
- No. 2 Oil Production Company, Daqing Oilfield Limited Company, Daqing 163414, PR China
| | - Jie Min
- No. 2 Oil Production Company, Daqing Oilfield Limited Company, Daqing 163414, PR China
| | - Siqin Han
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, Liaoning 110016, PR China
| | - Ying Zhang
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, Liaoning 110016, PR China
| |
Collapse
|
2
|
Zhang L, Tian R, Xiao J, Wang Y, Feng K, Chen G. Preliminary Study on Polymerization between Hemoglobin and Enzymes during the Preparation of PolyHb-SOD-CAT-CA. DOKL BIOCHEM BIOPHYS 2024; 518:463-474. [PMID: 39196524 DOI: 10.1134/s1607672924600477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 07/02/2024] [Accepted: 07/02/2024] [Indexed: 08/29/2024]
Abstract
The objective of this study was to explore the influence of different factors on the aggregation effect on hemoglobin (Hb) and enzymes during the preparation of Polyhemoglobin-Superoxide dismutase-Catalase-Carbonic anhydrase (PolyHb-SOD-CAT-CA). Several factors including temperatures, pH values, Glutaraldehyde (GDA) amounts and enzymes amounts were investigated systematically to study their effects on the enzymes recoveries and polymerization rates including the Superoxide dismutase (SOD), Catalase (CAT) and Carbonic anhydrase (CA), as well as their effects on the molecular weight distribution of PolyHb-SOD-CAT-CA. Then the oxygen affinity and methemoglobin (MetHb) contents of obtained PolyHb-SOD-CAT-CA were measured to evaluate the effects of enzyme crosslinking on the properties of Polyhemoglobin (PolyHb) moieties in the molecular structure of obtained PolyHb-SOD-CAT-CA conjugate. The results showed that the enzyme recoveries and polymerization rates could be decreased with the temperatures increasing and could be generally kept stable in the physiological pH conditions, but presented only slight changes among the investigated enzyme amounts ranges. Although the GDA concentration increasing could promote the enzyme polymerization rates, the enzyme recoveries decreased in whole. The polymerization rate and molecular size of PolyHb-SOD-CAT-CA conjugate increased with the elevation of temperature and the concentration of GDA. Lastly, the P50 values, Hill coefficients, and MetHb contents of PolyHb-SOD-CAT-CA conjugate with different enzyme crosslinking degrees exhibited no obvious differences with each other. In conclusion, the polymerization reactions between enzymes and Hb molecules could be remarkably affected by temperatures, pH values, and GDA amounts, and the enzyme crosslinking presented no obvious effects on the Hb properties, especially about the oxygen affinity and oxidation degrees.
Collapse
Affiliation(s)
- Lili Zhang
- School of Bioengineering, Zhuhai Campus, Zunyi Medical University, 519041, Zhuhai City, Guangdong Province, China
| | - Renci Tian
- School of Bioengineering, Zhuhai Campus, Zunyi Medical University, 519041, Zhuhai City, Guangdong Province, China
| | - Jiawei Xiao
- School of Bioengineering, Zhuhai Campus, Zunyi Medical University, 519041, Zhuhai City, Guangdong Province, China
| | - Yaoxi Wang
- Beijing Pro-heme Biotech Co.Ltd, 10010, Beijing, Changping District, China
| | - Kun Feng
- School of Bioengineering, Zhuhai Campus, Zunyi Medical University, 519041, Zhuhai City, Guangdong Province, China.
| | - Gang Chen
- School of Bioengineering, Zhuhai Campus, Zunyi Medical University, 519041, Zhuhai City, Guangdong Province, China.
- Beijing Pro-heme Biotech Co.Ltd, 10010, Beijing, Changping District, China.
| |
Collapse
|
3
|
Hernández J, Panadero-Medianero C, Arrázola MS, Ahumada M. Mimicking the Physicochemical Properties of the Cornea: A Low-Cost Approximation Using Highly Available Biopolymers. Polymers (Basel) 2024; 16:1118. [PMID: 38675037 PMCID: PMC11053614 DOI: 10.3390/polym16081118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/04/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024] Open
Abstract
Corneal diseases represent a significant global health challenge, often resulting in blindness, for which penetrating keratoplasty is the clinical gold standard. However, in cases involving compromised ocular surfaces or graft failure, osteo-odonto keratoprosthesis (OOKP) emerges as a vital yet costly and complex alternative. Thus, there is an urgent need to introduce soft biomaterials that mimic the corneal tissue, considering its translation's physicochemical, biological, and economic costs. This study introduces a cross-linked mixture of economically viable biomaterials, including gelatin, chitosan, and poly-D-lysine, that mimic corneal properties. The physicochemical evaluation of certain mixtures, specifically gelatin, chitosan, and poly-D-lysine cross-linked with 0.10% glutaraldehyde, demonstrates that properties such as swelling, optical transmittance, and thermal degradation are comparable to those of native corneas. Additionally, constructs fabricated with poly-D-lysine exhibit good cytocompatibility with fibroblasts at 72 h. These findings suggest that low-cost biopolymers, particularly those incorporating poly-D-lysine, mimic specific corneal characteristics and have the potential to foster fibroblast survival. While further studies are required to reach a final corneal-mimicking solution, this study contributes to positioning low-cost reagents as possible alternatives to develop biomaterials with physicochemical properties like those of the human cornea.
Collapse
Affiliation(s)
- Juan Hernández
- Centro de Nanotecnología Aplicada, Facultad de Ciencias, Ingeniería y Tecnología, Universidad Mayor, Camino La Pirámide 5750, Huechuraba 8580745, Santiago, Chile;
| | - Concepción Panadero-Medianero
- Centro de Biología Integrativa, Facultad de Ciencias, Ingeniería y Tecnología, Universidad Mayor, Camino La Pirámide 5750, Huechuraba 8580745, Santiago, Chile; (C.P.-M.); (M.S.A.)
| | - Macarena S. Arrázola
- Centro de Biología Integrativa, Facultad de Ciencias, Ingeniería y Tecnología, Universidad Mayor, Camino La Pirámide 5750, Huechuraba 8580745, Santiago, Chile; (C.P.-M.); (M.S.A.)
| | - Manuel Ahumada
- Centro de Nanotecnología Aplicada, Facultad de Ciencias, Ingeniería y Tecnología, Universidad Mayor, Camino La Pirámide 5750, Huechuraba 8580745, Santiago, Chile;
- Escuela de Biotecnología, Facultad de Ciencias, Ingeniería y Tecnología, Universidad Mayor, Camino La Pirámide 5750, Huechuraba 8580745, Santiago, Chile
| |
Collapse
|
4
|
Nalezinková M, Loskot J, Myslivcová Fučíková A. The use of scanning electron microscopy and fixation methods to evaluate the interaction of blood with the surfaces of medical devices. Sci Rep 2024; 14:4622. [PMID: 38409219 PMCID: PMC10897226 DOI: 10.1038/s41598-024-55136-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 02/20/2024] [Indexed: 02/28/2024] Open
Abstract
Testing the hemocompatibility of medical devices after their interaction with blood entails the need to evaluate the activation of blood elements and the degree of their coagulation and adhesion to the device surface. One possible way to achieve this is to use scanning electron microscopy (SEM). The aim was to develop a novel SEM-based method to assess the thrombogenic potential of medical devices and their adhesiveness to blood cells. As a part of this task, also find a convenient procedure of efficient and non-destructive sample fixation for SEM while reducing the use of highly toxic substances and shortening the fixation time. A polymeric surgical mesh was exposed to blood so that blood elements adhered to its surface. Such prepared samples were then chemically fixed for a subsequent SEM measurement; a number of fixation procedures were tested to find the optimal one. The fixation results were evaluated from SEM images, and the degree of blood elements' adhesion was determined from the images using ImageJ software. The best fixation was achieved with the May-Grünwald solution, which is less toxic than chemicals traditionally used. Moreover, manipulation with highly toxic osmium tetroxide can be avoided in the proposed procedure. A convenient methodology for SEM image analysis has been developed too, enabling to quantitatively evaluate the interaction of blood with the surfaces of various medical devices. Our method replaces the subjective assessment of surface coverage with a better-defined procedure, thus offering more precise and reliable results.
Collapse
Affiliation(s)
- Martina Nalezinková
- Department of Biology, Faculty of Science, University of Hradec Králové, Rokitanského 62, Hradec Králové, 500 03, Czech Republic.
| | - Jan Loskot
- Department of Physics, Faculty of Science, University of Hradec Králové, Rokitanského 62, Hradec Králové, 500 03, Czech Republic
| | - Alena Myslivcová Fučíková
- Department of Biology, Faculty of Science, University of Hradec Králové, Rokitanského 62, Hradec Králové, 500 03, Czech Republic
| |
Collapse
|
5
|
Jailani N, Jaafar NR, Rahman RA, Illias RM. Robust cross-linked cyclodextrin glucanotransferase from Bacillus lehensis G1 aggregates using an improved cross-linker and a new co-aggregant for the production of cyclodextrins. Enzyme Microb Technol 2023; 169:110283. [PMID: 37433237 DOI: 10.1016/j.enzmictec.2023.110283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 06/06/2023] [Accepted: 06/25/2023] [Indexed: 07/13/2023]
Abstract
One of the potentials of carrier-free cross-linked enzyme aggregates (CLEA) immobilization is the ability to be separated and reuse. Yet, it might be impeded by the poor mechanical stability resulting low recyclability. CLEA of CGTase from Bacillus lehensis G1 (CGTase G1-CLEA) using chitosan (CS) as a cross-linker demonstrated high activity recovery however, displayed poor reusability. Therefore, the relationship between mechanical strength and reusability is studied by enhancing the CS mechanical properties and applying a new co-aggregation approach. Herein, CS was chemically cross-linked with glutaraldehyde (GA) and GA was introduced as a co-aggregant (coGA). CGTase G1-CLEA developed using an improved synthesized chitosan-glutaraldehyde (CSGA) cross-linker and a new coGA technique showed to increase its mechanical stability which retained 63.4% and 52.2%, respectively compared to using CS that remained 33.1% of their initial activity after stirred at 500 rpm. The addition of GA impacted the morphology and interaction consequently stabilizing the CLEAs durability in production of cyclodextrins. As a result, the reusability of CGTase G1-CLEA with CSGA and coGA increased by 56.6% and 42.8%, respectively compared to previous CLEA after 5 cycles for 2 h of reaction. This verifies that the mechanical strength of immobilized enzyme influences the improvement of its operational stability.
Collapse
Affiliation(s)
- Nashriq Jailani
- Department of Bioprocess and Polymer Engineering, Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia
| | - Nardiah Rizwana Jaafar
- Department of Bioprocess and Polymer Engineering, Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia
| | - Roshanida A Rahman
- Department of Bioprocess and Polymer Engineering, Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia
| | - Rosli Md Illias
- Department of Bioprocess and Polymer Engineering, Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia.
| |
Collapse
|
6
|
Rhee CH, Lee HS, Yun HJ, Lee GH, Kim SJ, Song S, Lee MH, Her M, Jeong W. Chemical stability of active ingredients in diluted veterinary disinfectant solutions under simulated storage conditions. Front Chem 2023; 11:1204477. [PMID: 37398983 PMCID: PMC10311561 DOI: 10.3389/fchem.2023.1204477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 06/07/2023] [Indexed: 07/04/2023] Open
Abstract
Introduction: The product labels of veterinary disinfectants specify their expiration dates to prevent the use of outdated products, as these may result in disinfection and biosecurity failures during outbreak situations. However, a clear standard for the storage conditions of diluted disinfectant solutions has not yet been established, and the effects of storage conditions have scarcely been investigated. To fill this research gap, our study examined the stability of the active ingredients of diluted veterinary disinfectants based on their change in concentrations when stored at various temperatures for various time periods. Methods: Twenty veterinary disinfectants effective against either foot-and-mouth disease or avian influenza viruses were selected. The disinfectants were diluted to effective concentrations following the manufacturer's instructions. Using selective analytical techniques, the concentrations of the active ingredients of the samples that had been stored for varying intervals at different temperatures (4, 20, 30, and 45°C) were determined. These samples included soaps and detergents, acids, oxidizing agents, aldehydes, and copper compounds. The active ingredient concentrations of two of the samples were determined following freezing/thawing cycle, to establish their stability when exposed to simulated winter conditions. Results: Our results showed that most of the active ingredients had concentrations of 90% or greater of their initial concentrations, indicating ≥90% stability over a 21-day period under the experimental storage conditions. However, there were some exceptions. Glutaraldehyde, formaldehyde, and malic acid are over 90% stable at ≤ 30°C for 21 days, but their concentrations decreased to below 90% of their initial concentrations at 45°C, indicating a decline in stability when stored at 45°C for 21 days. The concentrations of potassium peroxymonosulfate and peracetic acid rapidly declined with increasing time and temperature to less than 90% of their initial concentrations. Discussion: Based on our findings, we propose that diluted disinfectant solutions should preferably be prepared daily. However, if the daily preparation of a diluted disinfectant solution is not feasible, then our results can be used as a reference, providing basic scientific data on the chemical stability of diluted disinfectant solutions commonly used in the veterinary field, thus indicating suitable storage conditions.
Collapse
Affiliation(s)
- Chae Hong Rhee
- Veterinary Drugs and Biologics Division, Animal and Plant Quarantine Agency, Gimcheon-si, Gyeongsangbuk-do, Republic of Korea
- Laboratory of Veterinary Pharmacokinetics and Pharmacodynamics, College of Veterinary Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Hye-sook Lee
- Korea Animal Health Products Association, Seongnam-si, Gyeonggi-do, Republic of Korea
| | - Hyeong-jun Yun
- Korea Animal Health Products Association, Seongnam-si, Gyeonggi-do, Republic of Korea
| | - Ga-Hee Lee
- Korea Animal Health Products Association, Seongnam-si, Gyeonggi-do, Republic of Korea
| | - Su-Jeong Kim
- Veterinary Drugs and Biologics Division, Animal and Plant Quarantine Agency, Gimcheon-si, Gyeongsangbuk-do, Republic of Korea
| | - Sok Song
- Veterinary Drugs and Biologics Division, Animal and Plant Quarantine Agency, Gimcheon-si, Gyeongsangbuk-do, Republic of Korea
| | - Myoung-Heon Lee
- Veterinary Drugs and Biologics Division, Animal and Plant Quarantine Agency, Gimcheon-si, Gyeongsangbuk-do, Republic of Korea
| | - Moon Her
- Veterinary Drugs and Biologics Division, Animal and Plant Quarantine Agency, Gimcheon-si, Gyeongsangbuk-do, Republic of Korea
| | - Wooseog Jeong
- Veterinary Drugs and Biologics Division, Animal and Plant Quarantine Agency, Gimcheon-si, Gyeongsangbuk-do, Republic of Korea
| |
Collapse
|
7
|
Pérez-Diaz O, Estrada-Wiese D, Aceves-Mijares M, González-Fernández AA. Functionalization of a Fully Integrated Electrophotonic Silicon Circuit for Biotin Sensing. BIOSENSORS 2023; 13:399. [PMID: 36979611 PMCID: PMC10046063 DOI: 10.3390/bios13030399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 03/11/2023] [Accepted: 03/15/2023] [Indexed: 06/18/2023]
Abstract
Electrophotonic (EPh) circuits are novel systems where photons and electrons can be controlled simultaneously in the same integrated circuit, attaining the development of innovative sensors for different applications. In this work, we present a complementary metal-oxide-semiconductor (CMOS)-compatible EPh circuit for biotin sensing, in which a silicon-based light source is monolithically integrated. The device is composed of an integrated light source, a waveguide, and a p-n photodiode, which are all fabricated in the same chip. The functionalization of the waveguide's surface was investigated to biotinylate the EPh system for potential biosensing applications. The modified surfaces were characterized by AFM, optical microscopy, and Raman spectroscopy, as well as by photoluminescence measurements. The changes on the waveguide's surface due to functionalization and biotinylation translated into different photocurrent intensities detected in the photodiode, demonstrating the potential uses of the EPh circuit as a biosensor.
Collapse
|
8
|
Hao J, Liu S, Guo Z, Zhang Y, Zhang W, Li C. Effects of Disinfectants on Larval Growth and Gut Microbial Communities of Black Soldier Fly Larvae. INSECTS 2023; 14:250. [PMID: 36975935 PMCID: PMC10056710 DOI: 10.3390/insects14030250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/23/2023] [Accepted: 02/28/2023] [Indexed: 06/18/2023]
Abstract
The use of the black soldier fly has been demonstrated to be effective in the treatment of swine manure. Since the outbreaks of ASFV, prevention procedures, including manure disinfection, have changed dramatically. Glutaraldehyde (GA) and potassium peroxymonosulfate (PPMS) have been shown to be effective in the prevention of this pathogen and are thus widely used in the disinfection of swine manures, etc. However, research on the effects of disinfectants in manures on the growth of BSFL and gut microbiota is scarce. The goal of this study was to determine the effects of GA and PPMS on BSFL growth, manure reduction, and gut microbiota. In triplicate, 100 larvae were inoculated in 100 g of each type of manure compound (manure containing 1% GA treatment (GT1), manure containing 0.5% GA treatment (GT2), manure containing 1% PPMS treatment (PT1), manure containing 0.5% PPMS treatment (PT2), and manure without disinfectant (control)). After calculating the larval weight and waste reduction, the larval gut was extracted and used to determine the microbial composition. According to the results, the dry weights of the larvae fed PT1-2 (PT1: 86.7 ± 4.2 mg and PT2: 85.3 ± 1.3 mg) were significantly higher than those of the larvae fed GT1-2 (GT1: 72.5 ± 2.1 mg and GT2: 70 ± 2.8 mg) and the control (64.2 ± 5.8 mg). There was a 2.8-4.03% higher waste reduction in PT1-2 than in the control, and the waste reduction in GT1-2 was 7.17-7.87% lower than that in the control. In a gut microbiota analysis, two new genera (Fluviicola and Fusobacterium) were discovered in PT1-2 when compared to GT1-2 and the control. Furthermore, the disinfectants did not reduce the diversity of the microbial community; rather, Shannon indices revealed that the diversities of GT1-2 (GT1: 1.924 ± 0.015; GT2: 1.944 ± 0.016) and PT1 (1.861 ± 0.016) were higher than those of the control (1.738 ± 0.015). Finally, it was found that both disinfectants in swine manures at concentrations of 1% and 0.5% may be beneficial to the complexity and cooperation of BSFL gut microbiota, according to an analysis of microbial interactions.
Collapse
Affiliation(s)
- Jianwei Hao
- Department of Biological Science and Technology, Jinzhong University, Jinzhong 030600, China
| | - Shuang Liu
- Institute of Loess Plateau, Shanxi University, Taiyuan 030006, China
| | - Zhixue Guo
- Institute of Loess Plateau, Shanxi University, Taiyuan 030006, China
| | - Yan Zhang
- Department of Biological Science and Technology, Jinzhong University, Jinzhong 030600, China
| | - Wuping Zhang
- Xinzhou Livestock Development Center, Xinzhou 034000, China
| | - Chujun Li
- State Key Laboratory of Biocontrol, School of Life Science, Sun Yat-sen University, Guangzhou 510006, China
| |
Collapse
|
9
|
Jaafar NR, Jailani N, Rahman RA, Öner ET, Murad AMA, Illias RM. Protein surface engineering and interaction studies of maltogenic amylase towards improved enzyme immobilisation. Int J Biol Macromol 2022; 213:70-82. [DOI: 10.1016/j.ijbiomac.2022.05.169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 05/14/2022] [Accepted: 05/24/2022] [Indexed: 11/30/2022]
|
10
|
Steffen A, Xiong Y, Georgieva R, Kalus U, Bäumler H. Bacterial safety study of the production process of hemoglobin-based oxygen carriers. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2022; 13:114-126. [PMID: 35145832 PMCID: PMC8805039 DOI: 10.3762/bjnano.13.8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 01/07/2022] [Indexed: 06/14/2023]
Abstract
Hemoglobin microparticles (HbMP) produced with a three-step procedure, including coprecipitation of hemoglobin with manganese carbonate, protein cross-linking, and dissolution of the carbonate template were shown to be suitable for application as artificial oxygen carriers. First preclinical safety investigations delivered promising results. Bacterial safety plays a decisive role during the production of HbMP. Therefore, the bioburden and endotoxin content of the starting materials (especially hemoglobin) and the final particle suspension are intensively tested. However, some bacteria may not be detected by standard tests due to low concentration. The aim of this study was to investigate how these bacteria would behave in the fabrication process. Biocidal effects are known for glutaraldehyde and for ethylenediaminetetraacetic acid, chemicals that are used in the fabrication process of HbMP. It was shown that both chemicals prevent bacterial growth at the concentrations used during HbMP fabrication. In addition, the particle production was carried out with hemoglobin solutions spiked with Escherichia coli or Staphylococcus epidermidis. No living bacteria could be detected in the final particle suspensions. Therefore, we conclude that the HbMP fabrication procedure is safe in respect of bacterial contamination.
Collapse
Affiliation(s)
- Axel Steffen
- Institute of Transfusion Medicine, Charité - Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Yu Xiong
- Institute of Transfusion Medicine, Charité - Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Radostina Georgieva
- Institute of Transfusion Medicine, Charité - Universitätsmedizin Berlin, 10117 Berlin, Germany
- Department of Medical Physics, Biophysics and Radiology, Faculty of Medicine, Trakia University, 6000 Stara Zagora, Bulgaria
| | - Ulrich Kalus
- Institute of Transfusion Medicine, Charité - Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Hans Bäumler
- Institute of Transfusion Medicine, Charité - Universitätsmedizin Berlin, 10117 Berlin, Germany
| |
Collapse
|