1
|
Meimei C, Fei Z, Wen X, Huangwei L, Zhenqiang H, Rongjun Y, Qiang Z, Qiuyang L, Xiaozhen L, Yuan Y, Zhaoyang Y, Candong L. Taxus chinensis (Pilg.) Rehder fruit attenuates aging behaviors and neuroinflammation by inhibiting microglia activation via TLR4/NF-κB/NLRP3 pathway. JOURNAL OF ETHNOPHARMACOLOGY 2024; 337:118943. [PMID: 39413938 DOI: 10.1016/j.jep.2024.118943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/20/2024] [Accepted: 10/13/2024] [Indexed: 10/18/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE As one of the important by-products of Taxus chinensis (Pilg.) Rehder, its fruit (TCF) has a sweet taste, which is commonly used in folklore to make health care wine reputed for enhancing immune function and promoting anti-aging effects, especially popular in the longevity villages of China for a long history. Evidences had showed that Taxus chinensis fruit contained polysaccharides, flavonoids, amino acids and terpenoids, which all were free of toxic compounds, but its medicinal value has not been fully recognized. Our previous studies have found that TCF extract may reverse many biological events, including oxidative stress, inflammatory response, neuronal apoptosis, etc. by in silico methods, suggesting potential avenues for future pharmaceutical exploration in aging and age-related diseases. AIM OF THE STUDY Yet, the anti-aging properties of TCF have not been specifically studied, this study aims to fill this gap by investigating the effects of TCF extract (TCFE) in an aging mouse model, particularly focusing on its role in inhibiting microglial activation and elucidating its underlying anti-aging mechanisms. MATERIALS AND METHODS An aging mouse model was induced using D-galactose, with interventions involving high, medium, and low doses of TCFE compared to a positive control (2 mg/kg rapamycin combined with 100 mg/kg metformin). The methodology involved evaluating behavioral changes, serum oxidative and antioxidative markers, hypothalamic β-galactosidase activity, expression of the aging-related protein P63, serum inflammatory factors, and the TLR4/NF-κB/NLRP3 inflammatory pathway in hypothalamic tissues. Additionally, to strengthen our in vivo findings, we conducted in vitro experiments on LPS-stimulated BV2 microglial cells. Finally, UPLC-MS/MS for precise component analysis using compound standards, coupled with molecular docking analyses, were employed to discern and elucidate the anti-inflammatory mechanisms of TCF. RESULTS In vivo results revealed TCFE significantly ameliorated behavioral deficits, reduced oxidative stress markers (MDA) and pro-inflammatory cytokines (IL1-β, IL-6, IFNg, TNFα, IL-17), and increased in antioxidants (SOD, T-AOC) and anti-inflammatory factors (IL-10). TCFE also reduced hypothalamic senescence, improved cellular integrity, lowered p63, and inhibited microglia activation and inflammatory pathways (TLR4, NFKB, NLRP3). The overall effect of TCFE was better than that of the positive drug group (rapamycin combined with metformin). In vitro results further revealed that TCFE markedly decreased IL1-β, NFKB, and TLR4 levels in BV2 microglial cells, showing comparable efficacy to a TLR4 classic positive inhibitor C34, supporting its anti-inflammatory role. Through UPLC-MS/MS analysis coupled with compound standards, we identified ten bioactive compounds, including gallocatechin, epigallocatechin, catechin, procyanidin B2, kaempferol, quercetin, rutin, naringin, apigenin, ginkgetin. All these compounds showed strong binding affinity to TLR4, notably procyanidin B2 and rutin, potentially through hydrogen bonds, aromatic cation-π interactions, and hydrophobic interactions, suggesting a molecular basis for their anti-inflammatory action. CONCLUSION TCFE showed strong anti-aging effects by inhibiting microglia activation and lessening oxidative stress and modulating inflammatory pathways. This research supports TCF's use in anti-aging and sets a base for future drug development in the realms of neuroinflammation and aging.
Collapse
Affiliation(s)
- Chen Meimei
- College of Traditional Chinese Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, Fujian, China; Fujian Key Laboratory of TCM Health Status Identification, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, Fujian, China
| | - Zhang Fei
- College of Traditional Chinese Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, Fujian, China; Fujian Key Laboratory of TCM Health Status Identification, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, Fujian, China
| | - Xu Wen
- Science and Innovation Center, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, Fujian, China
| | - Lei Huangwei
- College of Traditional Chinese Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, Fujian, China; Fujian Key Laboratory of TCM Health Status Identification, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, Fujian, China
| | - Hong Zhenqiang
- College of Traditional Chinese Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, Fujian, China; Fujian Key Laboratory of TCM Health Status Identification, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, Fujian, China; Key Laboratory of Orthopedics & Traumatology of Traditional Chinese Medicine and Rehabilitation Ministry of Education, Fujian University of TCM, China
| | - Yu Rongjun
- College of Traditional Chinese Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, Fujian, China
| | - Zhao Qiang
- College of Traditional Chinese Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, Fujian, China; Fujian Key Laboratory of TCM Health Status Identification, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, Fujian, China
| | - Li Qiuyang
- College of Traditional Chinese Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, Fujian, China; Fujian Key Laboratory of TCM Health Status Identification, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, Fujian, China
| | - Liu Xiaozhen
- College of Traditional Chinese Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, Fujian, China; Fujian Key Laboratory of TCM Health Status Identification, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, Fujian, China
| | - Yang Yuan
- College of Traditional Chinese Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, Fujian, China; Fujian Key Laboratory of TCM Health Status Identification, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, Fujian, China
| | - Yang Zhaoyang
- College of Traditional Chinese Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, Fujian, China; Fujian Key Laboratory of TCM Health Status Identification, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, Fujian, China; Key Laboratory of Orthopedics & Traumatology of Traditional Chinese Medicine and Rehabilitation Ministry of Education, Fujian University of TCM, China.
| | - Li Candong
- College of Traditional Chinese Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, Fujian, China; Fujian Key Laboratory of TCM Health Status Identification, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, Fujian, China.
| |
Collapse
|
2
|
Sun C, Zhao S, Pan Z, Li J, Wang Y, Kuang H. The Role Played by Mitochondria in Polycystic Ovary Syndrome. DNA Cell Biol 2024; 43:158-174. [PMID: 38588493 DOI: 10.1089/dna.2023.0345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2024] Open
Abstract
Polycystic ovary syndrome (PCOS) refers to an endocrine disorder syndrome that are correlated with multiple organs and systems. PCOS has an effect on women at all stages of their lives, and it has an incidence nearly ranging from 6% to 20% worldwide. Mitochondrial dysfunctions (e.g., oxidative stress, dynamic imbalance, and abnormal quality control system) have been identified in patients and animal models of PCOS, and the above processes may play a certain role in the development of PCOS and its associated complications. However, their specific pathogenic roles should be investigated in depth. In this review, recent studies on the mechanisms of action of mitochondrial dysfunction in PCOS and its associated clinical manifestations are summarized from the perspective of tissues and organs, and some studies on the treatment of the disease by improving mitochondrial function are reviewed to highlight key role of mitochondrial dysfunction in this syndrome.
Collapse
Affiliation(s)
- Chang Sun
- Department of Gynecology, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Shanshan Zhao
- Department of Gynecology, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Zimeng Pan
- Department of Gynecology, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Jing Li
- Department of Gynecology, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Yasong Wang
- Department of Gynecology, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Hongying Kuang
- Second Department of Gynecology, The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
3
|
Peng L, Ji Y, Li Y, You Y, Zhou Y. PRDX6-iPLA2 aggravates neuroinflammation after ischemic stroke via regulating astrocytes-induced M1 microglia. Cell Commun Signal 2024; 22:76. [PMID: 38287382 PMCID: PMC10823689 DOI: 10.1186/s12964-024-01476-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 01/03/2024] [Indexed: 01/31/2024] Open
Abstract
The crosstalk between astrocytes and microglia plays a pivotal role in neuroinflammation following ischemic stroke, and phenotypic distribution of these cells can change with the progression of ischemic stroke. Peroxiredoxin (PRDX) 6 phospholipase A2 (iPLA2) activity is involved in the generation of reactive oxygen species(ROS), with ROS driving the activation of microglia and astrocytes; however, its exact function remains unexplored. MJ33, PRDX6D140A mutation was used to block PRDX6-iPLA2 activity in vitro and vivo after ischemic stroke. PRDX6T177A mutation was used to block the phosphorylation of PRDX6 in CTX-TNA2 cell lines. NAC, GSK2795039, Mdivi-1, U0126, and SB202190 were used to block the activity of ROS, NOX2, mitochondrial fission, ERK, and P38, respectively, in CTX-TNA2 cells. In ischemic stroke, PRDX6 is mainly expressed in astrocytes and PRDX6-iPLA2 is involved in the activation of astrocytes and microglia. In co-culture system, Asp140 mutation in PRDX6 of CTX-TNA2 inhibited the polarization of microglia, reduced the production of ROS, suppressed NOX2 activation, and inhibited the Drp1-dependent mitochondrial fission following OGD/R. These effects were further strengthened by the inhibition of ROS production. In subsequent experiments, U0126 and SB202190 inhibited the phosphorylation of PRDX6 at Thr177 and reduced PRDX6-iPLA2 activity. These results suggest that PRDX6-iPLA2 plays an important role in the astrocyte-induced generation of ROS and activation of microglia, which are regulated by the activation of Nox2 and Drp1-dependent mitochondrial fission pathways. Additionally, PRDX6-iPLA2 activity is regulated by MAPKs via the phosphorylation of PRDX6 at Thr177 in astrocytes.
Collapse
Affiliation(s)
- Li Peng
- Department of Pathology, College of Basic Medicine, Chongqing Medical University, Chongqing, People's Republic of China
- Molecular Medicine Diagnostic and Testing Center, Chongqing Medical University, Chongqing, People's Republic of China
- Department of Pathology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Yanyan Ji
- Department of Pathology, College of Basic Medicine, Chongqing Medical University, Chongqing, People's Republic of China
- Molecular Medicine Diagnostic and Testing Center, Chongqing Medical University, Chongqing, People's Republic of China
- Department of Pathology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Yixin Li
- The Center for Clinical Molecular Medical Detection, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Yan You
- Department of Pathology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Yang Zhou
- Department of Pathology, College of Basic Medicine, Chongqing Medical University, Chongqing, People's Republic of China.
- Molecular Medicine Diagnostic and Testing Center, Chongqing Medical University, Chongqing, People's Republic of China.
- Department of Pathology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China.
| |
Collapse
|
4
|
Chiurazzi M, De Conno B, Di Lauro M, Guida B, Nasti G, Schiano E, Stornaiuolo M, Tenore GC, Colantuoni A, Novellino E. The Effects of a Cinchona Supplementation on Satiety, Weight Loss and Body Composition in a Population of Overweight/Obese Adults: A Controlled Randomized Study. Nutrients 2023; 15:5033. [PMID: 38140292 PMCID: PMC10745730 DOI: 10.3390/nu15245033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/01/2023] [Accepted: 12/03/2023] [Indexed: 12/24/2023] Open
Abstract
Obesity is a risk factor for several diseases present worldwide. Currently, dietary changes and physical activity are considered the most effective treatment to reduce obesity and its associated comorbidities. To promote weight loss, hypocaloric diets can be supported by nutraceuticals. The aim of this study was to evaluate the effects of a hypocaloric diet associated with Cinchona succirubra supplementation on satiety, body weight and body composition in obese subjects. Fifty-nine overweight/obese adults, were recruited, randomized into two groups and treated for 2 months. The first group (32 adults) was treated with a hypocaloric diet plus cinchona supplementation (the T-group); the second one (27 adults) was treated with a hypocaloric diet plus a placebo supplementation (the P-group). Anthropometric-measurements as well as bioimpedance analysis, a Zung test and biochemical parameters were evaluated at baseline and after 60 days. T-group adults showed significant improvement in nutritional status and body composition compared to those at the baseline and in the P-group. Moreover, T-group adults did not show a reduction in Cholecystokinin serum levels compared to those of P-group adults. In conclusion, our data demonstrate that a hypocaloric diet associated with cinchona supplementation is effective in inducing more significant weight loss and the re-establishment of metabolic parameters than those obtained with a hypocaloric diet.
Collapse
Affiliation(s)
- Martina Chiurazzi
- Department of Clinical Medicine and Surgery, University of Naples “Federico II”, 80131 Naples, Italy; (M.C.); (M.D.L.); (B.G.); (G.N.); (A.C.)
- Department of Medical Oncology, AO “A. Cardarelli”, 80131 Naples, Italy
| | - Barbara De Conno
- Department of Clinical Medicine and Surgery, University of Naples “Federico II”, 80131 Naples, Italy; (M.C.); (M.D.L.); (B.G.); (G.N.); (A.C.)
- Department of Pharmacy, University of Napoli “Federico II”, 80131 Naples, Italy; (M.S.); (G.C.T.)
| | - Mariastella Di Lauro
- Department of Clinical Medicine and Surgery, University of Naples “Federico II”, 80131 Naples, Italy; (M.C.); (M.D.L.); (B.G.); (G.N.); (A.C.)
| | - Bruna Guida
- Department of Clinical Medicine and Surgery, University of Naples “Federico II”, 80131 Naples, Italy; (M.C.); (M.D.L.); (B.G.); (G.N.); (A.C.)
| | - Gilda Nasti
- Department of Clinical Medicine and Surgery, University of Naples “Federico II”, 80131 Naples, Italy; (M.C.); (M.D.L.); (B.G.); (G.N.); (A.C.)
| | - Elisabetta Schiano
- Inventia Biotech Centro Ricerche Alimentari Healthcare, 81120 Caserta, Italy; (E.S.); (E.N.)
| | - Mariano Stornaiuolo
- Department of Pharmacy, University of Napoli “Federico II”, 80131 Naples, Italy; (M.S.); (G.C.T.)
| | - Gian Carlo Tenore
- Department of Pharmacy, University of Napoli “Federico II”, 80131 Naples, Italy; (M.S.); (G.C.T.)
| | - Antonio Colantuoni
- Department of Clinical Medicine and Surgery, University of Naples “Federico II”, 80131 Naples, Italy; (M.C.); (M.D.L.); (B.G.); (G.N.); (A.C.)
| | - Ettore Novellino
- Inventia Biotech Centro Ricerche Alimentari Healthcare, 81120 Caserta, Italy; (E.S.); (E.N.)
- Department of Medicine and Surgery, Catholic University of the Sacred Heart, 00168 Rome, Italy
| |
Collapse
|
5
|
Wu Y, Hu Q, Wang X, Cheng H, Yu J, Li Y, Luo J, Zhang Q, Wu J, Zhang G. Pterostilbene attenuates microglial inflammation and brain injury after intracerebral hemorrhage in an OPA1-dependent manner. Front Immunol 2023; 14:1172334. [PMID: 37614235 PMCID: PMC10442819 DOI: 10.3389/fimmu.2023.1172334] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 07/21/2023] [Indexed: 08/25/2023] Open
Abstract
Microglial activation and subsequent inflammatory responses are critical processes in aggravating secondary brain injury after intracerebral hemorrhage (ICH). Pterostilbene (3', 5'-dimethoxy-resveratrol) features antioxidant and anti-inflammation properties and has been proven neuroprotective. In this study, we aimed to explore whether Pterostilbene could attenuate neuroinflammation after experimental ICH, as well as underlying molecular mechanisms. Here, a collagenase-induced ICH in mice was followed by intraperitoneal injection of Pterostilbene (10 mg/kg) or vehicle once daily. PTE-treated mice performed significantly better than vehicle-treated controls in the neurological behavior test after ICH. Furthermore, our results showed that Pterostilbene reduced lesion volume and neural apoptosis, and alleviated blood-brain barrier (BBB) damage and brain edema. RNA sequencing and subsequent experiments showed that ICH-induced neuroinflammation and microglial proinflammatory activities were markedly suppressed by Pterostilbene treatment. With regard to the mechanisms, we identified that the anti-inflammatory effects of Pterostilbene relied on remodeling mitochondrial dynamics in microglia. Concretely, Pterostilbene reversed the downregulation of OPA1, promoted mitochondrial fusion, restored normal mitochondrial morphology, and reduced mitochondrial fragmentation and superoxide in microglia after OxyHb treatment. Moreover, conditionally deleting microglial OPA1 in mice largely countered the effects of Pterostilbene on alleviating microglial inflammation, BBB damage, brain edema and neurological impairment following ICH. In summary, we provided the first evidence that Pterostilbene is a promising agent for alleviating neuroinflammation and brain injury after ICH in mice, and uncovered a novel regulatory relationship between Pterostilbene and OPA1-mediated mitochondrial fusion.
Collapse
Affiliation(s)
- Yang Wu
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Qing Hu
- Department of Neurosurgery, Tangdu Hospital, Air Force Medical University, Xi’an, Shaanxi, China
| | - Xiaoliang Wang
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Hongbo Cheng
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Jiegang Yu
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Yang Li
- Department of Neurosurgery, The General Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Jianing Luo
- Department of Neurosurgery, West Theater General Hospital, Chengdu, Sichuan, China
| | - Qingjiu Zhang
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Jianliang Wu
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Gengshen Zhang
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| |
Collapse
|
6
|
Ghosh D, Singh G, Mishra P, Singh A, Kumar A, Sinha N. Alteration in mitochondrial dynamics promotes the proinflammatory response of microglia and is involved in cerebellar dysfunction of young and aged mice following LPS exposure. Neurosci Lett 2023; 807:137262. [PMID: 37116576 DOI: 10.1016/j.neulet.2023.137262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/01/2023] [Accepted: 04/17/2023] [Indexed: 04/30/2023]
Abstract
Cerebellar dysfunction is implicated in impaired motor coordination and balance, thus disturbing the dynamics of sensorimotor integration. Neuroinflammation and aging could be prominent contributors to cerebellar aberration. Additionally, changes in mitochondrial dynamics may precede microglia activation in several chronic neurodegenerative diseases; however, the underlying mechanism remains largely unknown.Here using LPS (1 mg/kg i.p. for four consecutive days) stimulation in both young (3 months old) and aged (12 months old) mice, followed by molecular analysis on the 21st day, we have explored the correlation between aging and mitochondrial dynamic alteration in the backdrop of chronic neuroinflammation. Following LPS stimulation, we observed microglia activation and subsequent elevation in proinflammatory cytokines (M1; TNF-α, IFN-γ) with NLRP3 activationand a concomitant reduction in the expression of anti-inflammatory markers (M2; YM1, TGF-β1) in the cerebellar tissue of aged mice compared with the young LPS and aged controls. Remarkably, senescence (p21, p27, p53) and epigenetic (HDAC2) markers were found upregulated in the cerebellum tissue of the aged LPS group, suggesting their crucial role in LPS-induced cerebellar deficit. Further, we demonstrated alteration in the antagonistic forces of mitochondrial fusion and fission with increased expression of the mitochondrial fission-related gene [FIS1] and decreased fusion-related genes [MFN1 and MFN2]. We noted increased mtDNA copy number, microglia activation, and inflammatory response of IL1β and IFN-γ post-chronic neuroinflammation in aged LPS group. Our results suggest that the crosstalk between mitochondrial dynamics and altered microglial activation paradigm in chronic neuroinflammatory conditions may be the key to understanding the cerebellar molecular mechanism.
Collapse
Affiliation(s)
- Devlina Ghosh
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow Campus, Gomti Nagar Extension, Lucknow 226028, India; Centre of Biomedical Research, SGPGIMS-Campus, Raibareli Road, Lucknow 226014, India.
| | - Gajendra Singh
- Department of Molecular Medicine and Biotechnology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| | - Prabhaker Mishra
- Department of Biostatistics and Health Informatics, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Raebareli Road, Lucknow 226 014, Uttar Pradesh, India
| | - Aditi Singh
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow Campus, Gomti Nagar Extension, Lucknow 226028, India
| | - Alok Kumar
- Department of Molecular Medicine and Biotechnology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| | - Neeraj Sinha
- Centre of Biomedical Research, SGPGIMS-Campus, Raibareli Road, Lucknow 226014, India.
| |
Collapse
|
7
|
Wang X, Xu T, Luo D, Li S, Tang X, Ding J, Yin H, Li S. Cannabidiol Alleviates Perfluorooctanesulfonic Acid-Induced Cardiomyocyte Apoptosis by Maintaining Mitochondrial Dynamic Balance and Energy Metabolic Homeostasis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:5450-5462. [PMID: 37010249 DOI: 10.1021/acs.jafc.2c08378] [Citation(s) in RCA: 31] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Perfluorooctanesulfonic acid (PFOS), a fluorine-containing organic compound, can be widely detected in the environment and living organisms. Accumulating evidence has shown that PFOS breaks through different biological barriers resulting in cardiac toxicity, but the underlying molecular mechanisms remain unclear. Cannabidiol (CBD) is a nonpsychoactive cannabinoid without potential adverse cardiotoxicity and has antioxidant and anti-inflammatory properties that reduce multiorgan damage and dysfunction. For these reasons, the aim of this study was to research how PFOS caused heart injury and whether CBD could attenuate PFOS-induced heart injury. Mice were fed PFOS (5 mg/kg) and/or CBD (10 mg/kg) in vivo. In vitro, H9C2 cells were intervened with PFOS (200 μM) and/or CBD (10 μM). After PFOS exposure, oxidative stress levels and the mRNA and protein expression of apoptosis-related markers increased distinctly, accompanied by mitochondrial dynamic imbalance and energy metabolism disorders in mouse heart and H9C2 cells. Moreover, terminal deoxynucleotidyl transferase dUTP nick end labeling staining, acridine orange/ethidium bromide staining and Hoechst 33258 staining signaled that the number of apoptotic cells increased after exposure to PFOS. Noteworthy, CBD simultaneous treatment alleviated a series of damages caused by PFOS-mediated oxidative stress. Our results demonstrated that CBD could alleviate PFOS-induced mitochondrial dynamics imbalance and energy metabolism disorder causing cardiomyocyte apoptosis by improving the antioxidant capacity, suggesting that CBD may represent a novel cardioprotective strategy against PFOS-induced cardiotoxicity. Our findings facilitate the understanding of the cardiotoxic effects of PFOS and the important role of CBD in protecting cardiac health.
Collapse
Affiliation(s)
- Xixi Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Tong Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Dongliu Luo
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Shanshan Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Xinyu Tang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Jiayi Ding
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Hang Yin
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Shu Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China
| |
Collapse
|
8
|
Low RN, Low RJ, Akrami A. A review of cytokine-based pathophysiology of Long COVID symptoms. Front Med (Lausanne) 2023; 10:1011936. [PMID: 37064029 PMCID: PMC10103649 DOI: 10.3389/fmed.2023.1011936] [Citation(s) in RCA: 47] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 02/27/2023] [Indexed: 04/03/2023] Open
Abstract
The Long COVID/Post Acute Sequelae of COVID-19 (PASC) group includes patients with initial mild-to-moderate symptoms during the acute phase of the illness, in whom recovery is prolonged, or new symptoms are developed over months. Here, we propose a description of the pathophysiology of the Long COVID presentation based on inflammatory cytokine cascades and the p38 MAP kinase signaling pathways that regulate cytokine production. In this model, the SARS-CoV-2 viral infection is hypothesized to trigger a dysregulated peripheral immune system activation with subsequent cytokine release. Chronic low-grade inflammation leads to dysregulated brain microglia with an exaggerated release of central cytokines, producing neuroinflammation. Immunothrombosis linked to chronic inflammation with microclot formation leads to decreased tissue perfusion and ischemia. Intermittent fatigue, Post Exertional Malaise (PEM), CNS symptoms with "brain fog," arthralgias, paresthesias, dysautonomia, and GI and ophthalmic problems can consequently arise as result of the elevated peripheral and central cytokines. There are abundant similarities between symptoms in Long COVID and myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). DNA polymorphisms and viral-induced epigenetic changes to cytokine gene expression may lead to chronic inflammation in Long COVID patients, predisposing some to develop autoimmunity, which may be the gateway to ME/CFS.
Collapse
Affiliation(s)
| | - Ryan J. Low
- Gatsby Computational Neuroscience Unit, University College London, London, United Kingdom
- Sainsbury Wellcome Centre, University College London, London, United Kingdom
| | - Athena Akrami
- Sainsbury Wellcome Centre, University College London, London, United Kingdom
| |
Collapse
|
9
|
Luo P, Li L, Huang J, Mao D, Lou S, Ruan J, Chen J, Tang R, Shi Y, Zhou S, Yang H. The role of SUMOylation in the neurovascular dysfunction after acquired brain injury. Front Pharmacol 2023; 14:1125662. [PMID: 37033632 PMCID: PMC10073463 DOI: 10.3389/fphar.2023.1125662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 03/10/2023] [Indexed: 04/11/2023] Open
Abstract
Acquired brain injury (ABI) is the most common disease of the nervous system, involving complex pathological processes, which often leads to a series of nervous system disorders. The structural destruction and dysfunction of the Neurovascular Unit (NVU) are prominent features of ABI. Therefore, understanding the molecular mechanism underlying NVU destruction and its reconstruction is the key to the treatment of ABI. SUMOylation is a protein post-translational modification (PTM), which can degrade and stabilize the substrate dynamically, thus playing an important role in regulating protein expression and biological signal transduction. Understanding the regulatory mechanism of SUMOylation can clarify the molecular mechanism of the occurrence and development of neurovascular dysfunction after ABI and is expected to provide a theoretical basis for the development of potential treatment strategies. This article reviews the role of SUMOylation in vascular events related to ABI, including NVU dysfunction and vascular remodeling, and puts forward therapeutic prospects.
Collapse
Affiliation(s)
- Pengren Luo
- Department of Neuro-Oncology, Chongqing University Cancer Hospital, Chongqing, China
| | - Lin Li
- Department of Neuro-Oncology, Chongqing University Cancer Hospital, Chongqing, China
| | - Jiashang Huang
- Department of Neuro-Oncology, Chongqing University Cancer Hospital, Chongqing, China
| | - Deqiang Mao
- Department of Neuro-Oncology, Chongqing University Cancer Hospital, Chongqing, China
| | - Silong Lou
- Department of Neuro-Oncology, Chongqing University Cancer Hospital, Chongqing, China
| | - Jian Ruan
- Department of Neuro-Oncology, Chongqing University Cancer Hospital, Chongqing, China
| | - Jie Chen
- Department of Neuro-Oncology, Chongqing University Cancer Hospital, Chongqing, China
| | - Ronghua Tang
- Department of Neuro-Oncology, Chongqing University Cancer Hospital, Chongqing, China
| | - You Shi
- Department of Neuro-Oncology, Chongqing University Cancer Hospital, Chongqing, China
| | - Shuai Zhou
- Department of Neurosurgery, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
- *Correspondence: Shuai Zhou, ; Haifeng Yang,
| | - Haifeng Yang
- Department of Neuro-Oncology, Chongqing University Cancer Hospital, Chongqing, China
- *Correspondence: Shuai Zhou, ; Haifeng Yang,
| |
Collapse
|
10
|
Wen B, Zhou K, Hu C, Chen J, Xu K, Liang T, He B, Chen L, Chen J. Salidroside Ameliorates Ischemia-Induced Neuronal Injury through AMPK Dependent and Independent Pathways to Maintain Mitochondrial Quality Control. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2022; 50:1133-1153. [PMID: 35543160 DOI: 10.1142/s0192415x2250046x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Salidroside, an active ingredient in Rhodiola rosea, has potent protective activity against cerebral ischemia. However, the mechanisms underlying its pharmacological actions are poorly understood. In this study, we employed a mouse middle cerebral artery occlusion (MCAO) and cellular oxygen and glucose deprivation (OGD) models to test the hypothesis that salidroside may restore mitochondrial quality control in neurons by modulating the relevant signaling. The results indicated that salidroside mitigated almost 40% the ischemia-induced brain infarct volumes in mice and the OGD-decreased viability of neurons to ameliorate the mitochondrial functions. Furthermore, salidroside treatment alleviated the OGD- or ischemia-induced imbalance of mitochondrial fission and fusion, mitophagy and promoted mitochondrial biogenesis in neurons by attenuating the AMPK activity. Moreover, salidroside alleviated 50% the OGD-promoted mitochondrial calcium fluorescence intensity and 5% mitochondria-associated membrane (MAM) area by down-regulating GRP75 expression independent of the AMPK signaling. Finally, similar findings were achieved in primary mouse neurons. Collectively, these data indicate that salidroside effectively restores the mitochondria dynamics, facilitates mitochondrial biogenesis by attenuating the AMPK signaling, and maintains calcium homeostasis in neurons independent of the AMPK activity.
Collapse
Affiliation(s)
- Bin Wen
- Department of Neonatology, TongJi Hospital, Tongji Medical College, P. R. China.,Department of Biochemistry and Molecular Biology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan 430030, Hubei, P. R. China
| | - Keru Zhou
- Department of Neonatology, TongJi Hospital, Tongji Medical College, P. R. China
| | - Caiyin Hu
- Department of Cardiology, Wuhan Red Cross Hospital, Wuhan 430015, P. R. China
| | - Jiehui Chen
- Department of Neonatology, TongJi Hospital, Tongji Medical College, P. R. China
| | - Kai Xu
- Department of Biochemistry and Molecular Biology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan 430030, Hubei, P. R. China
| | - Tao Liang
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, P. R. China
| | - Benhong He
- Department of Cardiovascular Medicine, Lichuan People's Hospital, Lichuan 445400, Hubei, P. R. China
| | - Ling Chen
- Department of Neonatology, TongJi Hospital, Tongji Medical College, P. R. China
| | - Juan Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan 430030, Hubei, P. R. China
| |
Collapse
|
11
|
Physical and Neurological Development of a Girl Born to a Mother with Methylmalonic Acidemia and Kidney Transplantation and Review of the Literature. CHILDREN 2021; 8:children8111013. [PMID: 34828726 PMCID: PMC8619094 DOI: 10.3390/children8111013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/08/2021] [Accepted: 11/01/2021] [Indexed: 11/24/2022]
Abstract
Background: actual literature suggests that children of methylmalonic acidemia patients are mostly healthy, but data are only partial, especially regarding long-term outcome. Therefore, our aim was to evaluate the possible long-term neurological effects of fetal exposure to high levels of methylmalonic acid in a child of a renal transplant recipient. Methods: we retrospectively evaluated the clinical and neurological records of a girl whose mother is a kidney transplant recipient affected by methylmalonic acidemia. Subsequently, we compared our results with the ones already published. Results: the girl’s weight and stature were within the normal range in the first years of life but, starting from 4 years of age, she became progressively overweight. Regarding the neurodevelopment aspects, for the first time we performed a complete and seriated neuropsychological evaluation, highlighting a mild but significant weakness in the verbal domain, with a worsening trend at three-year revaluation. Conclusions: since children of MMA patients are exposed to methylmalonic acid, the efforts of the physicians caring for these children should be directed on careful evaluation of growth, prevention of obesity and regular neurological examination together with structured neuropsychological tests to achieve a better insight in possible complications of pregnancy in patients suffering from this condition.
Collapse
|
12
|
Yin Y, Shen H. Advances in Cardiotoxicity Induced by Altered Mitochondrial Dynamics and Mitophagy. Front Cardiovasc Med 2021; 8:739095. [PMID: 34616789 PMCID: PMC8488107 DOI: 10.3389/fcvm.2021.739095] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 08/27/2021] [Indexed: 11/25/2022] Open
Abstract
Mitochondria are the most abundant organelles in cardiac cells, and are essential to maintain the normal cardiac function, which requires mitochondrial dynamics and mitophagy to ensure the stability of mitochondrial quantity and quality. When mitochondria are affected by continuous injury factors, the balance between mitochondrial dynamics and mitophagy is broken. Aging and damaged mitochondria cannot be completely removed in cardiac cells, resulting in energy supply disorder and accumulation of toxic substances in cardiac cells, resulting in cardiac damage and cardiotoxicity. This paper summarizes the specific underlying mechanisms by which various adverse factors interfere with mitochondrial dynamics and mitophagy to produce cardiotoxicity and emphasizes the crucial role of oxidative stress in mitophagy. This review aims to provide fresh ideas for the prevention and treatment of cardiotoxicity induced by altered mitochondrial dynamics and mitophagy.
Collapse
Affiliation(s)
- Yiyuan Yin
- Department of Emergency Medicine, ShengJing Hospital of China Medical University, Shenyang, China
| | - Haitao Shen
- Department of Emergency Medicine, ShengJing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
13
|
Zhou X, Chen H, Wang L, Lenahan C, Lian L, Ou Y, He Y. Mitochondrial Dynamics: A Potential Therapeutic Target for Ischemic Stroke. Front Aging Neurosci 2021; 13:721428. [PMID: 34557086 PMCID: PMC8452989 DOI: 10.3389/fnagi.2021.721428] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 08/16/2021] [Indexed: 12/13/2022] Open
Abstract
Stroke is one of the leading causes of death and disability worldwide. Brain injury after ischemic stroke involves multiple pathophysiological mechanisms, such as oxidative stress, mitochondrial dysfunction, excitotoxicity, calcium overload, neuroinflammation, neuronal apoptosis, and blood-brain barrier (BBB) disruption. All of these factors are associated with dysfunctional energy metabolism after stroke. Mitochondria are organelles that provide adenosine triphosphate (ATP) to the cell through oxidative phosphorylation. Mitochondrial dynamics means that the mitochondria are constantly changing and that they maintain the normal physiological functions of the cell through continuous division and fusion. Mitochondrial dynamics are closely associated with various pathophysiological mechanisms of post-stroke brain injury. In this review, we will discuss the role of the molecular mechanisms of mitochondrial dynamics in energy metabolism after ischemic stroke, as well as new strategies to restore energy homeostasis and neural function. Through this, we hope to uncover new therapeutic targets for the treatment of ischemic stroke.
Collapse
Affiliation(s)
- Xiangyue Zhou
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hanmin Chen
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ling Wang
- Department of Operating Room, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Cameron Lenahan
- Department of Biomedical Sciences, Burrell College of Osteopathic Medicine, Las Cruces, NM, United States
| | - Lifei Lian
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yibo Ou
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yue He
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
14
|
Zhao Y, Zhang J, Zheng Y, Zhang Y, Zhang XJ, Wang H, Du Y, Guan J, Wang X, Fu J. NAD + improves cognitive function and reduces neuroinflammation by ameliorating mitochondrial damage and decreasing ROS production in chronic cerebral hypoperfusion models through Sirt1/PGC-1α pathway. J Neuroinflammation 2021; 18:207. [PMID: 34530866 PMCID: PMC8444613 DOI: 10.1186/s12974-021-02250-8] [Citation(s) in RCA: 124] [Impact Index Per Article: 41.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 08/24/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Microglial-mediated neuroinflammation plays an important role in vascular dementia, and modulating neuroinflammation has emerged as a promising treatment target. Nicotinamide adenine dinucleotide (NAD+) shows anti-inflammatory and anti-oxidant effects in many neurodegenerative disease models, but its role in the chronic cerebral hypoperfusion (CCH) is still unclear. METHODS The bilateral common carotid artery occlusion (BCCAO) was performed to establish CCH models in Sprague-Dawley rats. The rats were given daily intraperitoneal injection of NAD+ for 8 weeks. The behavioral test and markers for neuronal death and neuroinflammation were analyzed. Mitochondrial damage and ROS production in microglia were also assessed. RNA-seq was performed to investigate the mechanistic pathway changes. For in vitro studies, Sirt1 was overexpressed in BV2 microglial cells to compare with NAD+ treatment effects on mitochondrial injury and neuroinflammation. RESULTS NAD+ administration rescued cognitive deficits and inhibited neuroinflammation by protecting mitochondria and decreasing ROS production in CCH rats. Results of mechanistic pathway analysis indicated that the detrimental effects of CCH might be associated with decreased gene expression of PPAR-γ co-activator1α (PGC-1α) and its upstream transcription factor Sirt1, while NAD+ treatment markedly reversed their decrease. In vitro study confirmed that NAD+ administration had protective effects on hypoxia-induced neuroinflammation and mitochondrial damage, as well as ROS production in BV2 microglia via Sirt1/PGC-1α pathway. Sirt1 overexpression mimicked the protective effects of NAD+ treatment in BV2 microglia. CONCLUSIONS NAD+ ameliorated cognitive impairment and dampened neuroinflammation in CCH models in vivo and in vitro, and these beneficial effects were associated with mitochondrial protection and ROS inhibition via activating Sirt1/PGC-1α pathway.
Collapse
Affiliation(s)
- Yao Zhao
- Department of Neurology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai, 200233, China
| | - Jiawei Zhang
- Department of Neurology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai, 200233, China
| | - Yaling Zheng
- Department of Neurology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai, 200233, China
| | - Yaxuan Zhang
- Department of Neurology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai, 200233, China
| | - Xiao Jie Zhang
- Department of Neurology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai, 200233, China
| | - Hongmei Wang
- Department of Neurology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai, 200233, China
| | - Yu Du
- Department of Neurology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai, 200233, China
| | - Jian Guan
- Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Xiuzhe Wang
- Department of Neurology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai, 200233, China.
| | - Jianliang Fu
- Department of Neurology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai, 200233, China.
| |
Collapse
|
15
|
Impact of Genetic Variations and Epigenetic Mechanisms on the Risk of Obesity. Int J Mol Sci 2020; 21:ijms21239035. [PMID: 33261141 PMCID: PMC7729759 DOI: 10.3390/ijms21239035] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 11/23/2020] [Accepted: 11/25/2020] [Indexed: 12/12/2022] Open
Abstract
Rare genetic obesity disorders are characterized by mutations of genes strongly involved in the central or peripheral regulation of energy balance. These mutations are effective in causing the early onset of severe obesity and insatiable hunger (hyperphagia), suggesting that the genetic component can contribute to 40–70% of obesity. However, genes’ roles in the processes leading to obesity are still unclear. This review is aimed to summarize the current knowledge of the genetic causes of obesity, especially monogenic obesity, describing the role of epigenetic mechanisms in obesity and metabolic diseases. A comprehensive understanding of the underlying genetic and epigenetic mechanisms, with the metabolic processes they control, will permit adequate management and prevention of obesity.
Collapse
|
16
|
Błaszczyk JW. Energy Metabolism Decline in the Aging Brain-Pathogenesis of Neurodegenerative Disorders. Metabolites 2020; 10:metabo10110450. [PMID: 33171879 PMCID: PMC7695180 DOI: 10.3390/metabo10110450] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/31/2020] [Accepted: 11/04/2020] [Indexed: 12/14/2022] Open
Abstract
There is a growing body of evidencethat indicates that the aging of the brain results from the decline of energy metabolism. In particular, the neuronal metabolism of glucose declines steadily, resulting in a growing deficit of adenosine triphosphate (ATP) production-which, in turn, limits glucose access. This vicious circle of energy metabolism at the cellular level is evoked by a rising deficiency of nicotinamide adenine dinucleotide (NAD) in the mitochondrial salvage pathway and subsequent impairment of the Krebs cycle. A decreasing NAD level also impoverishes the activity of NAD-dependent enzymes that augments genetic errors and initiate processes of neuronal degeneration and death.This sequence of events is characteristic of several brain structures in which neurons have the highest energy metabolism. Neurons of the cerebral cortex and basal ganglia with long unmyelinated axons and these with numerous synaptic junctions are particularly prone to senescence and neurodegeneration. Unfortunately, functional deficits of neurodegeneration are initially well-compensated, therefore, clinical symptoms are recognized too late when the damages to the brain structures are already irreversible. Therefore, future treatment strategies in neurodegenerative disorders should focus on energy metabolism and compensation age-related NAD deficit in neurons. This review summarizes the complex interrelationships between metabolic processes on the systemic and cellular levels and provides directions on how to reduce the risk of neurodegeneration and protect the elderly against neurodegenerative diseases.
Collapse
Affiliation(s)
- Janusz Wiesław Błaszczyk
- Department of Human Motor Behavior, Jerzy Kukuczka Academy of Physical Education, 40-065 Katowice, Poland
| |
Collapse
|
17
|
Wang L, Hu J, Zhou H. Macrophage and Adipocyte Mitochondrial Dysfunction in Obesity-Induced Metabolic Diseases. World J Mens Health 2020; 39:606-614. [PMID: 33151047 PMCID: PMC8443980 DOI: 10.5534/wjmh.200163] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 09/28/2020] [Accepted: 10/04/2020] [Indexed: 12/11/2022] Open
Abstract
Obesity is one of major health burdens of modern society as it contributes to the growing prevalence of its related comorbidities, such as diabetes, cardiovascular diseases, and some cancers. A series of innate immune cells, especially macrophages, and adipocytes have been implicated in the pathogenesis of obesity. Mitochondrial dysfunction, which is induced by obesity, are critical mediators in initiating inflammation in macrophages and adipocytes, and subsequent systemic insulin resistance. In this review, we discuss new findings on how obesity impairs mitochondrial function in macrophages and adipocytes and how this dysfunction contributes to obesity and its comorbidities. We also summarize drugs that treat metabolic diseases by targeting mitochondrial dysfunction.
Collapse
Affiliation(s)
- Liwen Wang
- Department of Metabolism and Endocrinology, the Second Xiangya Hospital, Central South University, Hunan, China.,National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, Metabolic Syndrome Research Center, the Second Xiangya Hospital, Central South University, Hunan, China
| | - Jie Hu
- Department of Metabolism and Endocrinology, the Second Xiangya Hospital, Central South University, Hunan, China.,National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, Metabolic Syndrome Research Center, the Second Xiangya Hospital, Central South University, Hunan, China
| | - Haiyan Zhou
- Department of Metabolism and Endocrinology, the Second Xiangya Hospital, Central South University, Hunan, China.,National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, Metabolic Syndrome Research Center, the Second Xiangya Hospital, Central South University, Hunan, China.
| |
Collapse
|