1
|
El-Arabey AA, Alkhalil SS, AlAfaleq NO, Al-Shouli S, Mohamed SSEM, Al-Shouli ST, Abdalla M. Wild-Type TP53 Predicts Poor Prognosis in Lower-Grade Glioma via TP53-CXCL14-GATA3 Axis. J Mol Neurosci 2025; 75:37. [PMID: 40102292 DOI: 10.1007/s12031-025-02323-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Accepted: 02/13/2025] [Indexed: 03/20/2025]
Abstract
Low-grade gliomas (LGG) are malignant brain tumors that arise from the brain's support cells (glial cells). LGG are the most common kind of central nervous system tumors in children and adolescents, accounting for around half of all cases. Tumor Protein p53 (TP53) regulates or promotes DNA damage and repair via a variety of cell cycle, apoptosis, and genomic stability pathways. However, the clinical role of TP53 status in LGG patients is still unknown. Hence, we analyzed clinical data from the Cancer Genomic Atlas (TCGA) of LGG patients to see if TP53 status affects clinical outcomes, molecular signatures of chemokines and microRNAs, and immune cell infiltrations within the tumor's microenvironment of LGG patients. According to our findings, the most common phenotype in LGG patients is wild-type TP53, which is related to poor clinical outcomes and the expression of Chemokine ligand 14 (CXCL14) in many clinical parameters such as age, gender, stage, race, and purity. Besides, in LGG patients, wild-type TP53 controls prognostic microRNAs such as has-miR-10a-3p and has-miR-155-5p. Furthermore, through activating GATA Binding Protein 3 (GATA3) and decreasing Fatty Acid Synthase (FASN), wild-type TP53 orchestrates M1 macrophage and CD8+ T cell infiltration, as well as the formation of brown adipose tissue and decreased white adipose tissue. In this regard, the TP53-CXCL14-GATA3 axis has the potential to predict poor clinical outcomes in patients with wild-type TP53 LGG.
Collapse
Affiliation(s)
- Amr Ahmed El-Arabey
- Applied College, King Khalid University, P. O. Box 9004, 61413, Abha, Saudi Arabia.
- Center of Bee Research and Its Products, King Khalid University, P. O. Box 9004, 61413, Abha, Saudi Arabia.
| | - Samia S Alkhalil
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Shaqra University, Alquwayiyah, Riyadh, Saudi Arabia
| | - Nouf Omar AlAfaleq
- Biochemistry Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Sawsan Al-Shouli
- Pharmacy Department, Security Forces Hospital, 11481, Riyadh, Saudi Arabia
| | - Samah Saif Eldin M Mohamed
- Clinical laboratory sciences department, College of Applied Medical Sciences/Alqwyiyah, Shaqra University, Riyadh, Saudi Arabia
| | - Samia T Al-Shouli
- Immunology Unit, Department of Pathology, College of Medicine, King Saud University, Riyadh, Saudi Arabia.
| | - Mohnad Abdalla
- Research Institute of Pediatrics, Children's Hospital Affiliated to Shandong University (Jinan Children's Hospital), Jinan, 250022, China
| |
Collapse
|
2
|
Mi Y, Jiang P, Luan J, Feng L, Zhang D, Gao X. Peptide‑based therapeutic strategies for glioma: Current state and prospects. Peptides 2025; 185:171354. [PMID: 39922284 DOI: 10.1016/j.peptides.2025.171354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 01/21/2025] [Accepted: 02/03/2025] [Indexed: 02/10/2025]
Abstract
Glioma is a prevalent form of primary malignant central nervous system tumor, characterized by its cellular invasiveness, rapid growth, and the presence of the blood-brain barrier (BBB)/blood-brain tumor barrier (BBTB). Current therapeutic approaches, such as chemotherapy and radiotherapy, have shown limited efficacy in achieving significant antitumor effects. Therefore, there is an urgent demand for new treatments. Therapeutic peptides represent an innovative class of pharmaceutical agents with lower immunogenicity and toxicity. They are easily modifiable via chemical means and possess deep tissue penetration capabilities which reduce side effects and drug resistance. These unique pharmacokinetic characteristics make peptides a rapidly growing class of new therapeutics that have demonstrated significant progress in glioma treatment. This review outlines the efforts and accomplishments in peptide-based therapeutic strategies for glioma. These therapeutic peptides can be classified into four types based on their anti-tumor function: tumor-homing peptides, inhibitor/antagonist peptides targeting cell surface receptors, interference peptides, and peptide vaccines. Furthermore, we briefly summarize the results from clinical trials of therapeutic peptides in glioma, which shows that peptide-based therapeutic strategies exhibit great potential as multifunctional players in glioma therapy.
Collapse
Affiliation(s)
- Yajing Mi
- Institute of Basic Medical Sciences, School of Basic Medical Science, Xi'an Medical University, Xi'an, China; Shaanxi Key Laboratory of Brain Disorders, School of Basic Medical Science, Xi'an Medical University, Xi'an, China
| | - Pengtao Jiang
- Institute of Basic Medical Sciences, School of Basic Medical Science, Xi'an Medical University, Xi'an, China
| | - Jing Luan
- Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, Shaanxi, China
| | - Lin Feng
- Institute of Basic Medical Sciences, School of Basic Medical Science, Xi'an Medical University, Xi'an, China
| | - Dian Zhang
- Institute of Basic Medical Sciences, School of Basic Medical Science, Xi'an Medical University, Xi'an, China
| | - Xingchun Gao
- Institute of Basic Medical Sciences, School of Basic Medical Science, Xi'an Medical University, Xi'an, China; Shaanxi Key Laboratory of Brain Disorders, School of Basic Medical Science, Xi'an Medical University, Xi'an, China.
| |
Collapse
|
3
|
Peng C, You C, Cao S, Cheng L, Ren J, Cao J, Wang J, Liu T. Decoding Osteosarcoma's Lactylation Gene Expression: Insights Into Prognosis, Immune Dynamics, and Treatment. Anal Cell Pathol (Amst) 2025; 2025:6517238. [PMID: 40026531 PMCID: PMC11870760 DOI: 10.1155/ancp/6517238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 06/29/2024] [Accepted: 01/04/2025] [Indexed: 03/05/2025] Open
Abstract
Osteosarcoma (OS), characterized by a complex tumor microenvironment, poses challenges in treatment, metastasis, and therapy resistance. This study examined the impact of lactylation, a posttranslational modification, on gene expression and tumor behavior in OS, particularly its influence on prognosis, immune cell infiltration, and chemotherapy response. Utilizing data from the Gene Expression Omnibus series accession number 21257 (GSE21257) and the Therapeutically Applicable Research to Generate Effective Treatments on Osteosarcoma (TARGET-OS) datasets, the investigation focused on analyzing the expression profiles of 267 lactylation modifier genes, which were selected from a total of 336 lactylation-related genes compiled from various studies in the literature. The methods included unsupervised clustering using "ConsensusClusterPlus" heatmap generation with "pheatmap" pathway analysis from several databases, and immune cell infiltration assessment using the "single-sample Gene Set Enrichment Analysis (ssGSEA)" function. The research revealed 36 significant lactylation-related genes in OS, categorizing them into two clusters with distinct survival and biological characteristics. One cluster demonstrated poor prognosis due to increased tumor cell proliferation and specific immune cell variations, also showcasing genes that enhance tumor growth and metastasis, thus indicating its aggressive nature and adverse outcomes for patients. These insights are crucial for understanding the molecular mechanisms of OS and identifying therapeutic targets. Therefore, the study elucidates the role of lactylation-related genes in the prognosis, pathogenesis, and treatment response of OS, laying the groundwork for further exploration into potential therapeutic targets and the underlying mechanisms within OS.
Collapse
Affiliation(s)
- Cheng Peng
- Department of Orthopedics, Changzheng Hospital, Naval Medical University, Shanghai 200003, China
| | - Chaoqun You
- Department of Orthopedics, Changzheng Hospital, Naval Medical University, Shanghai 200003, China
- Department of Orthopedics, Clinical Medical College, Weifang Medical University, Weifang 261053, Shandong, China
| | - Shuang Cao
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200021, China
| | - Linfei Cheng
- Department of Orthopedics, Changzheng Hospital, Naval Medical University, Shanghai 200003, China
- School of Medicine, Anhui University of Science and Technology, Huainan 232001, China
| | - Jiaji Ren
- Department of Orthopedics, Changzheng Hospital, Naval Medical University, Shanghai 200003, China
- Department of Orthopedics, Clinical Medical College, Weifang Medical University, Weifang 261053, Shandong, China
| | - Jiashi Cao
- Department of Orthopedics, Changzheng Hospital, Naval Medical University, Shanghai 200003, China
- Department of Orthopedics, No. 455 Hospital of the Chinese People's Liberation Army, The Navy Medical University, Shanghai 200052, China
| | - Jing Wang
- Department of Orthopedics, Changzheng Hospital, Naval Medical University, Shanghai 200003, China
| | - Tielong Liu
- Department of Orthopedics, Changzheng Hospital, Naval Medical University, Shanghai 200003, China
| |
Collapse
|
4
|
Wang X, Feng B, Guo HY, Yao FF, Song HN, Wang XY, Sun XC, Wang K, Ge YC, Cui R. Roles of cathepsin S expression levels on the prognosis and tumour microenvironment in clear cell renal cell carcinoma. Discov Oncol 2024; 15:690. [PMID: 39570472 PMCID: PMC11582264 DOI: 10.1007/s12672-024-01547-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 11/06/2024] [Indexed: 11/22/2024] Open
Abstract
BACKGROUND Increasing evidence suggests a link between the enzyme cathepsin S (CTSS) and tumour development. However, the potential involvement and molecular functions of CTSS in clear cell renal cell carcinoma (ccRCC) remain unclear. METHODS We downloaded original data from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases and integrated them using R. Kaplan-Meier plots of integrated expression scores were used to analyse survival outcomes. Additionally, we investigated mRNA expression, clinicopathological features, immune infiltrates, and single-cell sequencing analysis of CTSS in ccRCC. In vitro experiments were conducted with qRT-PCR and IHC staining. RESULTS CTSS transcriptomic and proteomic levels were higher in ccRCC than in para-cancerous tissues. Low CTSS expression was correlated with poor prognosis in patients with ccRCC. Our data demonstrated that the expression of CTSS was strongly correlated with immune cell infiltration levels and gene markers of immune cells, chemokines, and receptors. Single-cell sequencing analysis demonstrated that CTSS expression was detectable in monocytes/macrophages. Finally, certain chemicals were confirmed to affect CTSS expression. CONCLUSION Our findings indicate that CTSS offers promise as a prognostic biomarker and novel immune-related therapeutic target for ccRCC.
Collapse
Affiliation(s)
- Xiang Wang
- Department of Nephrology, The First People's Hospital in Jinzhou, Dalian, China
- Department of Nephrology, Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
- NHC Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, Harbin Medical University, Harbin, China
| | - Bei Feng
- Department of Nephrology, Jingzhou Central Hospital, Hubei, China
- Department of Nephrology, Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
- NHC Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, Harbin Medical University, Harbin, China
| | - Hai-Ying Guo
- Department of Nephrology, Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
- NHC Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, Harbin Medical University, Harbin, China
| | - Fei-Fei Yao
- Department of Nephrology, Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Hui-Nan Song
- Department of Nephrology, Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Xi-Yue Wang
- Department of Nephrology, Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Xiao-Chen Sun
- Department of Nephrology, Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
- NHC Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, Harbin Medical University, Harbin, China
| | - Kai Wang
- Department of Nephrology, Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
- NHC Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, Harbin Medical University, Harbin, China
| | - Yu-Chen Ge
- Department of Nephrology, Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
- NHC Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, Harbin Medical University, Harbin, China
| | - Rui Cui
- Department of Nephrology, Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China.
| |
Collapse
|
5
|
Chang J, Pan Y, Jiang F, Xu W, Wang Y, Wang L, Hu B. Mechanism of CXCL8 regulation of methionine metabolism to promote angiogenesis in gliomas. Discov Oncol 2024; 15:614. [PMID: 39488622 PMCID: PMC11531453 DOI: 10.1007/s12672-024-01467-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 10/16/2024] [Indexed: 11/04/2024] Open
Abstract
BACKGROUND Gliomas are the most common malignant brain tumors characterized by angiogenesis and invasive growth. A detailed understanding of its molecular characteristics could provide potential therapeutic targets. In the present study, we sought to explore the key gene CXCL8 in methionine metabolism in gliomas and its potential role in angiogenesis. METHODS U251 glioma cells were divided into control and methionine-restriction tolerant (constructed with 1/4 of the standard level of methionine in the culture medium) groups for transcriptome and metabolome analysis. To confirm the functions and mechanism of CXCL8 in glioma, heat map, volcano map, Go enrichment, gene set enrichment analysis (GSEA), protein-protein interaction network analysis, RT-PCR, western blotting assays, chicken embryo chorioallantoic membrane (CAM) test, chicken embryo yolk sac membrane (YSM) test and transplantation tumor nude mice model were performed. The TCGA database, CGGA database and clinical tissue samples were used to analyze CXCL8's significance on prognosis for patients with glioma. RESULTS CXCL8 expression was significantly up-regulated in methionine-restricted tolerance cells, it also activated vascular system development and triggered angiogenesis. CXCL8 expression is negatively correlated with survival prognosis in gliomas. CONCLUSIONS Glioma cells promote angiogenesis in methionine-restricted environments through the activation of CXCL8, compensating for nutrient deprivation, and possibly contributing to the failure of antiangiogenic therapy.
Collapse
Affiliation(s)
- Jie Chang
- Central Laboratory, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang, China
- Precision Diagnosis and Treatment Center, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang, China
- Key Laboratory of Nutrition and Metabolism Research for Oncology, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang, China
| | - Yi Pan
- Central Laboratory, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang, China
- Precision Diagnosis and Treatment Center, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang, China
- Key Laboratory of Nutrition and Metabolism Research for Oncology, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang, China
| | - Fengfeng Jiang
- Neurological Surgery Department, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang, China
| | - Wenxia Xu
- Central Laboratory, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang, China
- Precision Diagnosis and Treatment Center, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang, China
- Key Laboratory of Nutrition and Metabolism Research for Oncology, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang, China
| | - Yue Wang
- Dian Diagnostics Group Co. Ltd, Hangzhou, China
| | - Lude Wang
- Central Laboratory, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang, China.
- Precision Diagnosis and Treatment Center, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang, China.
- Key Laboratory of Nutrition and Metabolism Research for Oncology, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang, China.
| | - Bin Hu
- Department of Pathology, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang, China.
| |
Collapse
|
6
|
D'Uonnolo G, Isci D, Nosirov B, Kuppens A, Wantz M, Nazarov PV, Golebiewska A, Rogister B, Chevigné A, Neirinckx V, Szpakowska M. Patient-based multilevel transcriptome exploration highlights relevant chemokines and chemokine receptor axes in glioblastoma. Comput Biol Med 2024; 182:109197. [PMID: 39353298 DOI: 10.1016/j.compbiomed.2024.109197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 09/02/2024] [Accepted: 09/22/2024] [Indexed: 10/04/2024]
Abstract
Chemokines and their receptors form a complex interaction network, crucial for precise leukocyte positioning and trafficking. In cancer, they promote malignant cell proliferation and survival but are also critical for immune cell infiltration in the tumor microenvironment. Glioblastoma (GBM) is the most common and lethal brain tumor, characterized by an immunosuppressive TME, with restricted immune cell infiltration. A better understanding of chemokine-receptor interactions is therefore essential for improving tumor immunogenicity. In this study, we assessed the expression of all human chemokines in adult-type diffuse gliomas, with particular focus on GBM, based on patient-derived samples. Publicly available bulk RNA sequencing datasets allowed us to identify the chemokines most abundantly expressed in GBM, with regard to disease severity and across different tumor subregions. To gain insight into the chemokines-receptor network at the single cell resolution, we explored GBmap, a curated resource integrating multiple scRNAseq datasets from different published studies. Our study constitutes the first patient-based handbook highlighting the relevant chemokine-receptor crosstalks, which are of significant interest in the perspective of a therapeutic modulation of the TME in GBM.
Collapse
Affiliation(s)
- Giulia D'Uonnolo
- Immuno-Pharmacology and Interactomics, Department of Infection and Immunity, Luxembourg Institute of Health, Luxembourg; Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Damla Isci
- Laboratory of Nervous System Diseases and Therapy, GIGA Neuroscience, GIGA Institute, University of Liège, Belgium
| | - Bakhtiyor Nosirov
- NORLUX Neuro-Oncology Laboratory, Department of Cancer Research, Luxembourg Institute of Health, Luxembourg; Multiomics Data Science Research Group, Department of Cancer Research, Luxembourg Institute of Health, Luxembourg
| | - Amandine Kuppens
- Laboratory of Nervous System Diseases and Therapy, GIGA Neuroscience, GIGA Institute, University of Liège, Belgium
| | - May Wantz
- Immuno-Pharmacology and Interactomics, Department of Infection and Immunity, Luxembourg Institute of Health, Luxembourg
| | - Petr V Nazarov
- Multiomics Data Science Research Group, Department of Cancer Research, Luxembourg Institute of Health, Luxembourg
| | - Anna Golebiewska
- NORLUX Neuro-Oncology Laboratory, Department of Cancer Research, Luxembourg Institute of Health, Luxembourg
| | - Bernard Rogister
- Laboratory of Nervous System Diseases and Therapy, GIGA Neuroscience, GIGA Institute, University of Liège, Belgium; University Hospital, Neurology Department, University of Liège, Belgium
| | - Andy Chevigné
- Immuno-Pharmacology and Interactomics, Department of Infection and Immunity, Luxembourg Institute of Health, Luxembourg
| | - Virginie Neirinckx
- Laboratory of Nervous System Diseases and Therapy, GIGA Neuroscience, GIGA Institute, University of Liège, Belgium.
| | - Martyna Szpakowska
- Immuno-Pharmacology and Interactomics, Department of Infection and Immunity, Luxembourg Institute of Health, Luxembourg
| |
Collapse
|
7
|
Corsaro A, Tremonti B, Bajetto A, Barbieri F, Thellung S, Florio T. Chemokine signaling in tumors: potential role of CXC chemokines and their receptors as glioblastoma therapeutic targets. Expert Opin Ther Targets 2024; 28:937-952. [PMID: 39582130 DOI: 10.1080/14728222.2024.2433130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 11/19/2024] [Indexed: 11/26/2024]
Abstract
INTRODUCTION Glioblastoma is the most aggressive brain tumor, typically associated with poor prognosis. Its treatment is challenging due to the peculiar glioblastoma cell biology and its microenvironment complexity. Specifically, a small fraction of glioma stem cells within the tumor mass drives tumor growth and invasiveness by hijacking brain resident and immune cells. This process also involves modification of extracellular matrix components, such as collagen and glycoproteins, where the secretion of soluble mediators, particularly CXC chemokines, plays a significant role. AREAS COVERED We analyze the critical role of chemokines in glioblastoma tumorigenesis, proliferation, angiogenesis, tumor progression, and brain parenchyma invasiveness. Recent evidence highlights how chemokines and their receptors impact glioblastoma biology and represent potential therapeutic targets. Several studies show that chemokines modulate glioblastoma development by acting on glioma stem cell proliferation and self-renewal, promoting vasculogenic mimicry, and altering the extracellular matrix to facilitate tumor invasiveness. EXPERT OPINION There is clear evidence supporting CXC receptors (such as CXCR1, 2, 3, 4, and ACKR3/CXCR7) and their signaling pathways as promising pharmacological targets. This in-depth review of chemokine roles in glioblastoma development provides a critical evaluation of the possible clinical translation of innovative compounds targeting these ligand/receptor systems, leading to improved therapeutic outcomes for glioblastoma patients.
Collapse
Affiliation(s)
- Alessandro Corsaro
- Sezione di Farmacologia, Dipartimento di Medicina Interna, Università di Genova, Genova, Italy
| | - Beatrice Tremonti
- Sezione di Farmacologia, Dipartimento di Medicina Interna, Università di Genova, Genova, Italy
| | - Adriana Bajetto
- Sezione di Farmacologia, Dipartimento di Medicina Interna, Università di Genova, Genova, Italy
| | - Federica Barbieri
- Sezione di Farmacologia, Dipartimento di Medicina Interna, Università di Genova, Genova, Italy
- IRCCS Policlinico San Martino, Genova, Italy
| | - Stefano Thellung
- Sezione di Farmacologia, Dipartimento di Medicina Interna, Università di Genova, Genova, Italy
- IRCCS Policlinico San Martino, Genova, Italy
| | - Tullio Florio
- Sezione di Farmacologia, Dipartimento di Medicina Interna, Università di Genova, Genova, Italy
- IRCCS Policlinico San Martino, Genova, Italy
| |
Collapse
|
8
|
Yin Y, Tian N, Deng Z, Wang J, Kuang L, Tang Y, Zhu S, Dong Z, Wang Z, Wu X, Han M, Hu X, Deng Y, Yin T, Wang Y. Targeted Microglial Membrane-Coated MicroRNA Nanosponge Mediates Inhibition of Glioblastoma. ACS NANO 2024; 18:29089-29105. [PMID: 39393070 DOI: 10.1021/acsnano.4c10509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/13/2024]
Abstract
Glioblastoma (GBM) is the most prevalent primary brain tumor. Recent research emphasizes the crucial role of microRNAs (miRs) in GBM pathogenesis, and targeting miRs offers an effective approach for precise GBM therapy. However, inhibiting a single miR may not be sufficient due to the compensatory mechanisms of GBM. Herein, we developed a miR-nanosponge capable of specifically capturing multiple miRs involved in tumor growth, migration, invasion, angiogenesis, and the creation of an immunosuppressive microenvironment, thereby offering a comprehensive treatment for GBM. Coated with BV2 cell membrane (BM) for enhanced blood-brain barrier (BBB) crossing and GBM targeting, the BM@miR-nanosponge targets miR-9, miR-21, miR-215, and miR-221, significantly inhibiting GBM progression and modulating the immune system for a thorough GBM eradication. The BM@miR-nanosponge notably extended the median survival time of GBM-bearing mice and outperformed the standard treatment drug temozolomide (TMZ). This study introduces a comprehensive miR-based strategy for GBM treatment and highlights the importance of targeting multiple miRs associated with tumor survival for effective therapy.
Collapse
Affiliation(s)
- Ying Yin
- School of Medicine, Chongqing University, Chongqing 400030, China
- Department of Neurosurgery, Chongqing University Central Hospital & Chongqing Emergency Medical Center, Chongqing University, Chongqing 400014, China
| | - Nixin Tian
- School of Medicine, Chongqing University, Chongqing 400030, China
| | - Zhiqin Deng
- School of Medicine, Chongqing University, Chongqing 400030, China
| | - Jiaojiao Wang
- School of Medicine, Chongqing University, Chongqing 400030, China
| | - Lei Kuang
- School of Medicine, Chongqing University, Chongqing 400030, China
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Yuanyang Tang
- School of Medicine, Chongqing University, Chongqing 400030, China
| | - Siqing Zhu
- School of Medicine, Chongqing University, Chongqing 400030, China
| | - Zhufeng Dong
- School of Medicine, Chongqing University, Chongqing 400030, China
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Zheng Wang
- School of Medicine, Chongqing University, Chongqing 400030, China
| | - Xinxia Wu
- School of Medicine, Chongqing University, Chongqing 400030, China
| | - Mengwei Han
- School of Medicine, Chongqing University, Chongqing 400030, China
| | - Xiaoye Hu
- School of Medicine, Chongqing University, Chongqing 400030, China
| | - Yongbing Deng
- Department of Neurosurgery, Chongqing University Central Hospital & Chongqing Emergency Medical Center, Chongqing University, Chongqing 400014, China
| | - Tieying Yin
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Yazhou Wang
- School of Medicine, Chongqing University, Chongqing 400030, China
| |
Collapse
|
9
|
Zhao L, Shireman J, Probelsky S, Rigg B, Wang X, Huff WX, Kwon JH, Dey M. CCL21 Induces Plasmacytoid Dendritic Cell Migration and Activation in a Mouse Model of Glioblastoma. Cancers (Basel) 2024; 16:3459. [PMID: 39456552 PMCID: PMC11506458 DOI: 10.3390/cancers16203459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/09/2024] [Accepted: 10/11/2024] [Indexed: 10/28/2024] Open
Abstract
Dendritic cells (DCs) are professional antigen-presenting cells that are traditionally divided into two distinct subsets: myeloid DCs (mDCs) and plasmacytoid DCs (pDCs). pDCs are known for their ability to secrete large amounts of cytokine type I interferons (IFN- α). In our previous work, we have demonstrated that pDC infiltration promotes glioblastoma (GBM) tumor immunosuppression through decreased IFN-α secretion via TLR-9 signaling and increased suppressive function of regulatory T cells (Tregs) via increased IL-10 secretion, resulting in poor overall outcomes in mouse models of GBM. Further dissecting the overall mechanism of pDC-mediated GBM immunosuppression, in this study, we identified CCL21 as highly upregulated by multiple GBM cell lines, which recruit pDCs to tumor sites via CCL21-CCR7 signaling. Furthermore, pDCs are activated by CCL21 in the GBM microenvironment through intracellular signaling of β-arrestin and CIITA. Finally, we found that CCL21-treated pDCs directly suppress CD8+ T cell proliferation without affecting regulatory T cells (Tregs) differentiation, which is considered the canonical pathway of immunotolerant regulation. Taken together, our results show that pDCs play a multifaced role in GBM immunosuppression, and CCL21 could be a novel therapeutic target in GBM to overcome pDC-mediated immunosuppression.
Collapse
Affiliation(s)
- Lei Zhao
- Department of Neurosurgery, University of Wisconsin School of Medicine & Public Health, UW Carbone Cancer Center, Madison, WI 53706, USA; (L.Z.); (J.S.); (S.P.); (B.R.); (X.W.)
| | - Jack Shireman
- Department of Neurosurgery, University of Wisconsin School of Medicine & Public Health, UW Carbone Cancer Center, Madison, WI 53706, USA; (L.Z.); (J.S.); (S.P.); (B.R.); (X.W.)
| | - Samantha Probelsky
- Department of Neurosurgery, University of Wisconsin School of Medicine & Public Health, UW Carbone Cancer Center, Madison, WI 53706, USA; (L.Z.); (J.S.); (S.P.); (B.R.); (X.W.)
| | - Bailey Rigg
- Department of Neurosurgery, University of Wisconsin School of Medicine & Public Health, UW Carbone Cancer Center, Madison, WI 53706, USA; (L.Z.); (J.S.); (S.P.); (B.R.); (X.W.)
| | - Xiaohu Wang
- Department of Neurosurgery, University of Wisconsin School of Medicine & Public Health, UW Carbone Cancer Center, Madison, WI 53706, USA; (L.Z.); (J.S.); (S.P.); (B.R.); (X.W.)
| | - Wei X. Huff
- Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (W.X.H.); (J.H.K.)
| | - Jae H. Kwon
- Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (W.X.H.); (J.H.K.)
| | - Mahua Dey
- Department of Neurosurgery, University of Wisconsin School of Medicine & Public Health, UW Carbone Cancer Center, Madison, WI 53706, USA; (L.Z.); (J.S.); (S.P.); (B.R.); (X.W.)
| |
Collapse
|
10
|
Xu H, Cao Y, Ruan J, Wang F, He Y, Yang L, Yu T, Du F, Zhang N, Cao X. The effects of BMP2 and the mechanisms involved in the invasion and angiogenesis of IDH1 mutant glioma cells. J Neurooncol 2024; 170:161-171. [PMID: 39117967 PMCID: PMC11447149 DOI: 10.1007/s11060-024-04789-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 07/22/2024] [Indexed: 08/10/2024]
Abstract
PURPOSE This study investigated the effect of an isocitrate dehydrogenase 1 (IDH1) mutation (mutIDH1) on the invasion and angiogenesis of human glioma cells. METHODS Doxycycline was used to induce the expression of mutIDH1 in glioma cells. Transwell and wound healing assays were conducted to assess glioma cell migration and invasion. Western blotting and cell immunofluorescence were used to measure the expression levels of various proteins. The influence of bone morphogenetic protein 2 (BMP2) on invasion, angiogenesis-related factors, BMP2-related receptor expression, and changes in Smad signaling pathway-related proteins were evaluated after treatment with BMP2. Differential gene expression and reference transcription analysis were performed. RESULTS Successful infection with recombinant lentivirus expressing mutIDH1 was demonstrated. The IDH1 mutation promoted glioma cell migration and invasion while positively regulating the expression of vascularization-related factors and BMP2-related receptors. BMP2 exhibited a positive regulatory effect on the migration, invasion, and angiogenesis of mutIDH1-glioma cells, possibly mediated by BMP2-induced alterations in Smad signaling pathway-related factors.After BMP2 treatment, the differential genes of MutIDH1-glioma cells are closely related to the regulation of cell migration and cell adhesion, especially the regulation of Smad-related proteins. KEGG analysis confirmed that it was related to BMP signaling pathway and TGF-β signaling pathway and cell adhesion. Enrichment analysis of gene ontology and genome encyclopedia further confirmed the correlation of these pathways. CONCLUSION Mutation of isocitrate dehydrogenase 1 promotes the migration, invasion, and angiogenesis of glioma cells, through its effects on the BMP2-driven Smad signaling pathway. In addition, BMP2 altered the transcriptional patterns of mutIDH1 glioma cells, enriching different gene loci in pathways associated with invasion, migration, and angiogenesis.
Collapse
Affiliation(s)
- Hui Xu
- Department of Pathology, General Hospital of Ningxia Medical University, 804 Shengli South Street, Yinchuan, 750004, Ningxia Hui Autonomous Region, P.R. China
- Department of Pathology, The First People's Hospital of Yinchuan, Yinchuan, 750001, Ningxia, China
| | - Yu Cao
- Department of Pathology, General Hospital of Ningxia Medical University, 804 Shengli South Street, Yinchuan, 750004, Ningxia Hui Autonomous Region, P.R. China
| | - Jianqiao Ruan
- Department of Pathology, General Hospital of Ningxia Medical University, 804 Shengli South Street, Yinchuan, 750004, Ningxia Hui Autonomous Region, P.R. China
| | - Fei Wang
- Department of Pathology, The First People's Hospital of Yinchuan, Yinchuan, 750001, Ningxia, China
| | - Yuhong He
- Department of Pathology, General Hospital of Ningxia Medical University, 804 Shengli South Street, Yinchuan, 750004, Ningxia Hui Autonomous Region, P.R. China
| | - Lina Yang
- Department of Pathology, General Hospital of Ningxia Medical University, 804 Shengli South Street, Yinchuan, 750004, Ningxia Hui Autonomous Region, P.R. China
| | - Tian Yu
- Department of Pathology, General Hospital of Ningxia Medical University, 804 Shengli South Street, Yinchuan, 750004, Ningxia Hui Autonomous Region, P.R. China
| | - Fang Du
- School of Information Engineering, Ningxia University, Yinchuan, 750021, Ningxia, China
| | - Ningmei Zhang
- Department of Pathology, General Hospital of Ningxia Medical University, 804 Shengli South Street, Yinchuan, 750004, Ningxia Hui Autonomous Region, P.R. China.
| | - Xiangmei Cao
- Department of Pathology, Basic Medical School of Ningxia Medical University, 1160 Shengli South Street, Yinchuan, 750004, Ningxia, Hui Autonomous Region, P.R. China.
| |
Collapse
|
11
|
Muteeb G, Khafaga DS, El-Morsy MT, Farhan M, Aatif M, Hosney M. Targeting tumor-associated macrophages with nanocarrier-based treatment for breast cancer: A step toward developing innovative anti-cancer therapeutics. Heliyon 2024; 10:e37217. [PMID: 39309874 PMCID: PMC11415663 DOI: 10.1016/j.heliyon.2024.e37217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 08/06/2024] [Accepted: 08/29/2024] [Indexed: 09/25/2024] Open
Abstract
Tumor-associated macrophages (TAMs) promote tumor advancement in many ways, such as inducing angiogenesis and the formation of new blood vessels that provide tumors with nourishment and oxygen. TAMs also facilitate tumor invasion and metastasis by secreting enzymes that degrade the extracellular matrix and generating pro-inflammatory cytokines that enhance the migration of tumor cells. TAMs also have a role in inhibiting the immune response against malignancies. To accomplish this, they release immunosuppressive cytokines such as IL-10, and TAMs can hinder the function of T cells and natural killer cells, which play crucial roles in the immune system's ability to combat cancer. The role of TAMs in breast cancer advancement is a complex and dynamic field of research. Therefore, TAMs are a highly favorable focus for innovative breast cancer treatments. This review presents an extensive overview of the correlation between TAMs and breast cancer development as well as its role in the tumor microenvironment (TME) shedding light on their impact on tumor advancement and immune evasion mechanisms. Notably, our study provides an innovative approach to employing nanomedicine approaches for targeted TAM therapy in breast cancer, providing an in-depth overview of recent advances in this emerging field.
Collapse
Affiliation(s)
- Ghazala Muteeb
- Department of Nursing, College of Applied Medical Sciences, King Faisal University, Al-Ahsa, 31982, Saudi Arabia
| | - Doaa S.R. Khafaga
- Health Sector, Faculty of Science, Galala University, New Galala City, 43511, Suez, Egypt
| | - Manar T. El-Morsy
- Biotechnology Department, Faculty of Science, Cairo University, 12613, Giza, Egypt
| | - Mohd Farhan
- Department of Chemistry, College of Science, King Faisal University, Al Ahsa, 31982, Saudi Arabia
- Department of Basic Sciences, Preparatory Year Deanship, King Faisal University, Al Ahsa, 31982, Saudi Arabia
| | - Mohammad Aatif
- Department of Public Health, College of Applied Medical Sciences, King Faisal University, Al-Ahsa, 31982, Saudi Arabia
| | - Mohamed Hosney
- Zoology Department, Faculty of Science, Cairo University, 12613, Giza, Egypt
| |
Collapse
|
12
|
Zielniok K, Rusinek K, Słysz A, Lachota M, Bączyńska E, Wiewiórska-Krata N, Szpakowska A, Ciepielak M, Foroncewicz B, Mucha K, Zagożdżon R, Pojda Z. 3D-Bioprinted Co-Cultures of Glioblastoma Multiforme and Mesenchymal Stromal Cells Indicate a Role for Perivascular Niche Cells in Shaping Glioma Chemokine Microenvironment. Cells 2024; 13:1404. [PMID: 39272976 PMCID: PMC11393941 DOI: 10.3390/cells13171404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/14/2024] [Accepted: 08/20/2024] [Indexed: 09/15/2024] Open
Abstract
3D bioprinting has become a valuable tool for studying the biology of solid tumors, including glioblastoma multiforme (GBM). Our analysis of publicly available bulk RNA and single-cell sequencing data has allowed us to define the chemotactic profile of GBM tumors and identify the cell types that secrete particular chemokines in the GBM tumor microenvironment (TME). Our findings indicate that primary GBM tissues express multiple chemokines, whereas spherical monocultures of GBM cells significantly lose this diversity. Subsequently, the comparative analysis of GBM spherical monocultures vs. 3D-bioprinted multicultures of cells showed a restoration of chemokine profile diversity in 3D-bioprinted cultures. Furthermore, single-cell RNA-Seq analysis showed that cells of the perivascular niche (pericytes and endocytes) express multiple chemokines in the GBM TME. Next, we 3D-bioprinted cells from two glioblastoma cell lines, U-251 and DK-MG, alone and as co-cultures with mesenchymal stromal cells (representing cells of the perivascular niche) and assessed the chemokine secretome. The results clearly demonstrated that the interaction of tumors and mesenchymal cells leads to in a significant increase in the repertoire and levels of secreted chemokines under culture in 21% O2 and 1% O2. Our study indicates that cells of the perivascular niche may perform a substantial role in shaping the chemokine microenvironment in GBM tumors.
Collapse
Affiliation(s)
- Katarzyna Zielniok
- Laboratory of Cellular and Genetic Therapies, Center for Preclinical Research, Medical University of Warsaw, 02-097 Warsaw, Poland; (K.Z.); (M.L.); (N.W.-K.)
| | - Kinga Rusinek
- Department of Regenerative Medicine, Maria Skłodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland; (K.R.); (A.S.); (E.B.); (A.S.); (M.C.); (Z.P.)
| | - Anna Słysz
- Department of Regenerative Medicine, Maria Skłodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland; (K.R.); (A.S.); (E.B.); (A.S.); (M.C.); (Z.P.)
| | - Mieszko Lachota
- Laboratory of Cellular and Genetic Therapies, Center for Preclinical Research, Medical University of Warsaw, 02-097 Warsaw, Poland; (K.Z.); (M.L.); (N.W.-K.)
| | - Ewa Bączyńska
- Department of Regenerative Medicine, Maria Skłodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland; (K.R.); (A.S.); (E.B.); (A.S.); (M.C.); (Z.P.)
| | - Natalia Wiewiórska-Krata
- Laboratory of Cellular and Genetic Therapies, Center for Preclinical Research, Medical University of Warsaw, 02-097 Warsaw, Poland; (K.Z.); (M.L.); (N.W.-K.)
- Promix (ProteogenOmix in Medicine), Department of Clinical Immunology, Medical University of Warsaw, 02-006 Warsaw, Poland; (B.F.); (K.M.)
| | - Anna Szpakowska
- Department of Regenerative Medicine, Maria Skłodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland; (K.R.); (A.S.); (E.B.); (A.S.); (M.C.); (Z.P.)
| | - Martyna Ciepielak
- Department of Regenerative Medicine, Maria Skłodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland; (K.R.); (A.S.); (E.B.); (A.S.); (M.C.); (Z.P.)
| | - Bartosz Foroncewicz
- Promix (ProteogenOmix in Medicine), Department of Clinical Immunology, Medical University of Warsaw, 02-006 Warsaw, Poland; (B.F.); (K.M.)
- Department of Transplantology, Immunology, Nephrology and Internal Diseases, Medical University of Warsaw, 02-006 Warsaw, Poland
| | - Krzysztof Mucha
- Promix (ProteogenOmix in Medicine), Department of Clinical Immunology, Medical University of Warsaw, 02-006 Warsaw, Poland; (B.F.); (K.M.)
- Department of Transplantology, Immunology, Nephrology and Internal Diseases, Medical University of Warsaw, 02-006 Warsaw, Poland
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Radosław Zagożdżon
- Laboratory of Cellular and Genetic Therapies, Center for Preclinical Research, Medical University of Warsaw, 02-097 Warsaw, Poland; (K.Z.); (M.L.); (N.W.-K.)
- Department of Regenerative Medicine, Maria Skłodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland; (K.R.); (A.S.); (E.B.); (A.S.); (M.C.); (Z.P.)
| | - Zygmunt Pojda
- Department of Regenerative Medicine, Maria Skłodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland; (K.R.); (A.S.); (E.B.); (A.S.); (M.C.); (Z.P.)
| |
Collapse
|
13
|
Zhou Q, Wang Y, Zhang Q, Wei X, Yao Y, Xia L. Noninvasive prediction of CCL2 expression level in high-grade glioma patients. Cancer Med 2024; 13:e70016. [PMID: 39030882 PMCID: PMC11257997 DOI: 10.1002/cam4.70016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 06/21/2024] [Accepted: 07/05/2024] [Indexed: 07/22/2024] Open
Abstract
BACKGROUND Gliomas are recognized as the most frequent type of malignancies in the central nervous system, and efficacious prognostic indicators are essential to treat patients with gliomas and improve their clinical outcomes. The chemokine (C-C motif) ligand 2 (CCL2) is a promising predictor for glioma malignancy and progression. However, at present, the methods to evaluate CCL2 expression level are invasive and operator-dependent. OBJECTIVE It was expected to noninvasively predict CCL2 expression levels in malignant glioma tissues by magnetic resonance imaging (MRI)-based radiomics and assess the association between the developed radiomics model and prognostic indicators and related genes. METHODS MRI-based radiomics was used to predict CCL2 expression level using data obtained from The Cancer Imaging Archive (TCIA) and The Cancer Genome Atlas (TCGA) databases. A support vector machine (SVM)-based radiomics model and a logistic regression (LR)-based radiomics model were used to predict the radiomics score, and its correlation with CCL2 expression level was analyzed. RESULTS The results revealed that there was an association between CCL2 expression level and the overall survival of cases with gliomas, and bioinformatics correlation analysis showed that CCL2 expression level was highly correlated with disease-related pathways, such as mTOR signaling pathway, cGMP-PKG signaling pathway, and MAPK signaling pathway. Both SVM- and LR-based radiomics data robustly predicted CCL2 expression level, and radiomics scores could also be used to predict the overall survival of patients. Moreover, the high/low radiomics scores were highly correlated with the known glioma-related genes, including CD70, CD27, and PDCD1. CONCLUSION An MRI-based radiomics model was successfully developed, and its clinical benefits were confirmed, including the prediction of CCL2 expression level and patients' prognosis.
Collapse
Affiliation(s)
- Qingqing Zhou
- Department of NeurosurgeryThe First Affiliated Hospital of Yangtze University, Jingzhou First People's HospitalJingzhouPeople's Republic of China
| | - Yamei Wang
- Department of NeurologyThe First Affiliated Hospital of Yangtze University, Jingzhou First People's HospitalJingzhouPeople's Republic of China
| | - Qing Zhang
- Department of RadiologyThe First Affiliated Hospital of Yangtze University, Jingzhou First People's HospitalJingzhouPeople's Republic of China
| | - XiaoMing Wei
- Department of NeurosurgeryThe First Affiliated Hospital of Yangtze University, Jingzhou First People's HospitalJingzhouPeople's Republic of China
| | - Yuan Yao
- Department of NeurosurgeryThe First Affiliated Hospital of Yangtze University, Jingzhou First People's HospitalJingzhouPeople's Republic of China
| | - Liang Xia
- Department of NeurosurgeryThe Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of SciencesHangzhouPeople's Republic of China
| |
Collapse
|
14
|
Min P, Li Y, Wang C, Fan J, Liu S, Chen X, Tang Y, Han F, Zhang A, Feng L. Cyclopeptide moroidin inhibits vasculogenic mimicry formed by glioblastoma cells via regulating β-catenin activation and EMT pathways. J Biomed Res 2024; 38:322-333. [PMID: 38807414 PMCID: PMC11300521 DOI: 10.7555/jbr.38.20240015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 04/30/2024] [Accepted: 05/10/2024] [Indexed: 05/30/2024] Open
Abstract
Glioblastoma (GBM) is a highly vascularized malignant brain tumor with poor clinical outcomes. Vasculogenic mimicry (VM) formed by aggressive GBM cells is an alternative approach for tumor blood supply and contributes to the failure of anti-angiogenic therapy. To date, there is still a lack of effective drugs that target VM formation in GBM. In the present study, we evaluated the effects of the plant cyclopeptide moroidin on VM formed by GBM cells and investigated its underlying molecular mechanisms. Moroidin significantly suppressed cell migration, tube formation, and the expression levels of α-smooth muscle actin and matrix metalloproteinase-9 in human GBM cell lines at sublethal concentrations. The RNA sequencing data suggested the involvement of the epithelial-mesenchymal transition (EMT) pathway in the mechanism of moroidin. Exposure to moroidin led to a concentration-dependent decrease in the expression levels of the EMT markers N-cadherin and vimentin in GBM cells. Moreover, moroidin significantly reduced the level of phosphorylated extracellular signal-regulated protein kinase (p-ERK) and inhibited the activation of β-catenin. Finally, we demonstrated that the plant cyclopeptide moroidin inhibited VM formation by GBM cells through inhibiting the ERK/β-catenin-mediated EMT. Therefore, our study indicates a potential application of moroidin as an anti-VM agent in the treatment of GBM.
Collapse
Affiliation(s)
- Pengxiang Min
- Key Laboratory of Cardiovascular & Cerebrovascular Medicine, International Joint Laboratory for Drug Target of Critical Illnesses, School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Yingying Li
- Key Laboratory of Cardiovascular & Cerebrovascular Medicine, International Joint Laboratory for Drug Target of Critical Illnesses, School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Cuirong Wang
- Key Laboratory of Cardiovascular & Cerebrovascular Medicine, International Joint Laboratory for Drug Target of Critical Illnesses, School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Junting Fan
- Department of Pharmaceutical Analysis, School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Shangming Liu
- Key Laboratory of Cardiovascular & Cerebrovascular Medicine, International Joint Laboratory for Drug Target of Critical Illnesses, School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Xiang Chen
- Key Laboratory of Cardiovascular & Cerebrovascular Medicine, International Joint Laboratory for Drug Target of Critical Illnesses, School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Yamin Tang
- Department of Analysis and Testing Center, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Feng Han
- Key Laboratory of Cardiovascular & Cerebrovascular Medicine, International Joint Laboratory for Drug Target of Critical Illnesses, School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu 211166, China
- Institute of Brain Science, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Aixia Zhang
- Department of Clinical Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Lili Feng
- Key Laboratory of Cardiovascular & Cerebrovascular Medicine, International Joint Laboratory for Drug Target of Critical Illnesses, School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| |
Collapse
|
15
|
Kim KY, Shin KY, Chang KA. Potential Exosome Biomarkers for Parkinson's Disease Diagnosis: A Systematic Review and Meta-Analysis. Int J Mol Sci 2024; 25:5307. [PMID: 38791346 PMCID: PMC11121363 DOI: 10.3390/ijms25105307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/23/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024] Open
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disease worldwide. Given its prevalence, reliable biomarkers for early diagnosis are required. Exosomal proteins within extracellular nanovesicles are promising candidates for diagnostic, screening, prognostic, and disease monitoring purposes in neurological diseases such as PD. This review aims to evaluate the potential of extracellular vesicle proteins or miRNAs as biomarkers for PD. A comprehensive literature search until January 2024 was conducted across multiple databases, including PubMed, EMBASE, Web of Science, and Cochrane Library, to identify relevant studies reporting exosome biomarkers in blood samples from PD patients. Out of 417 articles screened, 47 studies were selected for analysis. Among exosomal protein biomarkers, α-synuclein, tau, Amyloid β 1-42, and C-X-C motif chemokine ligand 12 (CXCL12) were identified as significant markers for PD. Concerning miRNA biomarkers, miRNA-24, miR-23b-3p, miR-195-3p, miR-29c, and mir-331-5p are promising across studies. α-synuclein exhibited increased levels in PD patients compared to control groups in twenty-one studies, while a decrease was observed in three studies. Our meta-analysis revealed a significant difference in total exosomal α-synuclein levels between PD patients and healthy controls (standardized mean difference [SMD] = 1.369, 95% confidence interval [CI] = 0.893 to 1.846, p < 0.001), although these results are limited by data availability. Furthermore, α-synuclein levels significantly differ between PD patients and healthy controls (SMD = 1.471, 95% CI = 0.941 to 2.002, p < 0.001). In conclusion, certain exosomal proteins and multiple miRNAs could serve as potential biomarkers for diagnosis, prognosis prediction, and assessment of disease progression in PD.
Collapse
Affiliation(s)
- Ka Young Kim
- Department of Nursing, College of Nursing, Gachon University, Incheon 21936, Republic of Korea;
- Neuroscience Research Institute, Gachon University, Incheon 21565, Republic of Korea
| | - Ki Young Shin
- Bio-MAX Institute, Seoul National University, Seoul 08826, Republic of Korea
| | - Keun-A Chang
- Neuroscience Research Institute, Gachon University, Incheon 21565, Republic of Korea
- Department of Pharmacology, College of Medicine, Gachon University, Incheon 21999, Republic of Korea
| |
Collapse
|
16
|
Salvato I, Marchini A. Immunotherapeutic Strategies for the Treatment of Glioblastoma: Current Challenges and Future Perspectives. Cancers (Basel) 2024; 16:1276. [PMID: 38610954 PMCID: PMC11010873 DOI: 10.3390/cancers16071276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/14/2024] [Accepted: 03/21/2024] [Indexed: 04/14/2024] Open
Abstract
Despite decades of research and the best up-to-date treatments, grade 4 Glioblastoma (GBM) remains uniformly fatal with a patient median overall survival of less than 2 years. Recent advances in immunotherapy have reignited interest in utilizing immunological approaches to fight cancer. However, current immunotherapies have so far not met the anticipated expectations, achieving modest results in their journey from bench to bedside for the treatment of GBM. Understanding the intrinsic features of GBM is of crucial importance for the development of effective antitumoral strategies to improve patient life expectancy and conditions. In this review, we provide a comprehensive overview of the distinctive characteristics of GBM that significantly influence current conventional therapies and immune-based approaches. Moreover, we present an overview of the immunotherapeutic strategies currently undergoing clinical evaluation for GBM treatment, with a specific emphasis on those advancing to phase 3 clinical studies. These encompass immune checkpoint inhibitors, adoptive T cell therapies, vaccination strategies (i.e., RNA-, DNA-, and peptide-based vaccines), and virus-based approaches. Finally, we explore novel innovative strategies and future prospects in the field of immunotherapy for GBM.
Collapse
Affiliation(s)
- Ilaria Salvato
- NORLUX Neuro-Oncology Laboratory, Department of Cancer Research, Luxembourg Institute of Health (LIH), L-1210 Luxembourg, Luxembourg;
- Laboratory of Oncolytic Virus Immuno-Therapeutics (LOVIT), Department of Cancer Research, Luxembourg Institute of Health (LIH), L-1210 Luxembourg, Luxembourg
- Department of Life Sciences and Medicine, Faculty of Science, Technology and Medicine (FSTM), University of Luxembourg, L-4367 Belvaux, Luxembourg
| | - Antonio Marchini
- Laboratory of Oncolytic Virus Immuno-Therapeutics (LOVIT), Department of Cancer Research, Luxembourg Institute of Health (LIH), L-1210 Luxembourg, Luxembourg
- Laboratory of Oncolytic Virus Immuno-Therapeutics, German Cancer Research Center, 69120 Heidelberg, Germany
| |
Collapse
|
17
|
Wei R, Li J, Lin W, Pang X, Yang H, Lai S, Wei X, Jiang X, Yuan Y, Yang R. Nanoparticle-mediated blockade of CXCL12/CXCR4 signaling enhances glioblastoma immunotherapy: Monitoring early responses with MRI radiomics. Acta Biomater 2024; 177:414-430. [PMID: 38360292 DOI: 10.1016/j.actbio.2024.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/14/2024] [Accepted: 02/05/2024] [Indexed: 02/17/2024]
Abstract
The limited therapeutic efficacy of checkpoint blockade immunotherapy against glioblastoma is closely related to the blood-brain barrier (BBB) and tumor immunosuppressive microenvironment, where the latter is driven primarily by tumor-associated myeloid cells (TAMCs). Targeting the C-X-C motif chemokine ligand-12/C-X-C motif chemokine receptor-4 (CXCL12/CXCR4) signaling orchestrates the recruitment of TAMCs and has emerged as a promising approach for alleviating immunosuppression. Herein, we developed an iRGD ligand-modified polymeric nanoplatform for the co-delivery of CXCR4 antagonist AMD3100 and the small-molecule immune checkpoint inhibitor BMS-1. The iRGD peptide facilitated superior BBB crossing and tumor-targeting abilities both in vitro and in vivo. In mice bearing orthotopic GL261-Luc tumor, co-administration of AMD3100 and BMS-1 significantly inhibited tumor proliferation without adverse effects. A reprogramming of immunosuppression upon CXCL12/CXCR4 signaling blockade was observed, characterized by the reduction of TAMCs and regulatory T cells, and an increased proportion of CD8+T lymphocytes. The elevation of interferon-γ secreted from activated immune cells upregulated PD-L1 expression in tumor cells, highlighting the synergistic effect of BMS-1 in counteracting the PD-1/PD-L1 pathway. Finally, our research unveiled the ability of MRI radiomics to reveal early changes in the tumor immune microenvironment following immunotherapy, offering a powerful tool for monitoring treatment responses. STATEMENT OF SIGNIFICANCE: The insufficient BBB penetration and immunosuppressive tumor microenvironment greatly diminish the efficacy of immunotherapy for glioblastoma (GBM). In this study, we prepared iRGD-modified polymeric nanoparticles, loaded with a CXCR4 antagonist (AMD3100) and a small-molecule checkpoint inhibitor of PD-L1 (BMS-1) to overcome physical barriers and reprogram the immunosuppressive microenvironment in orthotopic GBM models. In this nanoplatform, AMD3100 converted the "cold" immune microenvironment into a "hot" one, while BMS-1 synergistically counteracted PD-L1 inhibition, enhancing GBM immunotherapy. Our findings underscore the potential of dual-blockade of CXCL12/CXCR4 and PD-1/PD-L1 pathways as a complementary approach to maximize therapeutic efficacy for GBM. Moreover, our study revealed that MRI radiomics provided a clinically translatable means to assess immunotherapeutic efficacy.
Collapse
Affiliation(s)
- Ruili Wei
- School of Medicine, South China University of Technology, Guangzhou 510006, PR China; Department of Radiology, the Second Affiliated Hospital, South China University of Technology, Guangzhou 510180, PR China
| | - Jiamin Li
- School of Medicine, South China University of Technology, Guangzhou 510006, PR China; Department of Radiology, the Second Affiliated Hospital, South China University of Technology, Guangzhou 510180, PR China
| | - Wanxian Lin
- School of Medicine, South China University of Technology, Guangzhou 510006, PR China; Department of Radiology, the Second Affiliated Hospital, South China University of Technology, Guangzhou 510180, PR China
| | - Xinrui Pang
- School of Medicine, South China University of Technology, Guangzhou 510006, PR China; Department of Radiology, the Second Affiliated Hospital, South China University of Technology, Guangzhou 510180, PR China
| | - Huikang Yang
- School of Medicine, South China University of Technology, Guangzhou 510006, PR China; Department of Radiology, the Second Affiliated Hospital, South China University of Technology, Guangzhou 510180, PR China
| | - Shengsheng Lai
- School of Medical Equipment, Guangdong Food and Drug Vocational College, Guangzhou 510520, PR China
| | - Xinhua Wei
- School of Medicine, South China University of Technology, Guangzhou 510006, PR China; Department of Radiology, the Second Affiliated Hospital, South China University of Technology, Guangzhou 510180, PR China
| | - Xinqing Jiang
- School of Medicine, South China University of Technology, Guangzhou 510006, PR China; Department of Radiology, the Second Affiliated Hospital, South China University of Technology, Guangzhou 510180, PR China
| | - Youyong Yuan
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou 511442, PR China.
| | - Ruimeng Yang
- School of Medicine, South China University of Technology, Guangzhou 510006, PR China; Department of Radiology, the Second Affiliated Hospital, South China University of Technology, Guangzhou 510180, PR China.
| |
Collapse
|
18
|
Wang H, Yang J, Li X, Zhao H. Current state of immune checkpoints therapy for glioblastoma. Heliyon 2024; 10:e24729. [PMID: 38298707 PMCID: PMC10828821 DOI: 10.1016/j.heliyon.2024.e24729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 01/12/2024] [Accepted: 01/12/2024] [Indexed: 02/02/2024] Open
Abstract
Glioblastoma (GBM), one of the most aggressive forms of brain cancer, has limited treatment options. Recent years have witnessed the remarkable success of checkpoint inhibitor immunotherapy across various cancer types. Against this backdrop, several clinical trials investigating checkpoint inhibitors for GBM are underway in multiple countries. Furthermore, the integration of immunotherapy with traditional treatment approaches is now emerging as a highly promising strategy. This review summarizes the latest advancements in checkpoint inhibitor immunotherapy for GBM treatment. We provide a concise yet comprehensive overview of current GBM immunotherapy options. Additionally, this review underscores combination strategies and potential biomarkers for predicting response and resistance in GBM immunotherapies.
Collapse
Affiliation(s)
- He Wang
- Department of Neurosurgery, the Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao, Shandong, 266005, China
| | - Jing Yang
- Department of Emergency Surgery, the Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao, Shandong, 266005, China
| | - Xiangjun Li
- School of medicine, Department of Breast surgery, the Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, Shandong, 266000, China
| | - Hai Zhao
- Department of Neurosurgery, the Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao, Shandong, 266005, China
| |
Collapse
|
19
|
Li R, Chen Y, Yang B, Li Z, Wang S, He J, Zhou Z, Li X, Li J, Sun Y, Guo X, Wang X, Wu Y, Zhang W, Guo G. Integrated bioinformatics analysis and experimental validation identified CDCA families as prognostic biomarkers and sensitive indicators for rapamycin treatment of glioma. PLoS One 2024; 19:e0295346. [PMID: 38181024 PMCID: PMC10769025 DOI: 10.1371/journal.pone.0295346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 11/21/2023] [Indexed: 01/07/2024] Open
Abstract
The cell division cycle associated (CDCA) genes regulate the cell cycle; however, their relationship with prognosis in glioma has been poorly reported in the literature. The Cancer Genome Atlas (TCGA) was utilized to probe the CDCA family in relation to the adverse clinical features of glioma. Glioma single-cell atlas reveals specific expression of CDCA3, 4, 5, 8 in malignant cells and CDCA7 in neural progenitor cells (NPC)-like malignant cells. Glioma data from TCGA, the China Glioma Genome Atlas Project (CGGA) and the gene expression omnibus (GEO) database all demonstrated that CDCA2, 3, 4, 5, 7 and 8 are prognostic markers for glioma. Further analysis identified CDCA2, 5 and 8 as independent prognostic factors for glioma. Lasso regression-based risk models for CDCA families demonstrated that high-risk patients were characterized by high tumor mutational burden (TMB), low levels of microsatellite instability (MSI), and low tumor immune dysfunction and rejection (TIDE) scores. These pointed to immunotherapy for glioma as a potentially viable treatment option Further CDCA clustering suggested that the high CDCA subtype exhibited a high macrophage phenotype and was associated with a higher antigen presentation capacity and high levels of immune escape. In addition, hsa-mir-15b-5p was predicted to be common regulator of CDCA3 and CDCA4, which was validated in U87 and U251 cells. Importantly, we found that CDCAs may indicate response to drug treatment, especially rapamycin, in glioma. In summary, our results suggest that CDCAs have potential applications in clinical diagnosis and as drug sensitivity markers in glioma.
Collapse
Affiliation(s)
- Ren Li
- Department of Neurosurgery, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yang Chen
- Department of Neurosurgery, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Biao Yang
- Department of Neurosurgery, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Ziao Li
- Department of Neurosurgery, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Shule Wang
- Department of General and Vascular Surgery, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Jianhang He
- Department of Neurosurgery, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Zihan Zhou
- Department of Neurosurgery, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Xuepeng Li
- Department of Neurosurgery, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Jiayu Li
- Department of Neurosurgery, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yanqi Sun
- Department of Emergency, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Xiaolong Guo
- Department of Neurosurgery, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Xiaogang Wang
- Department of Neurosurgery, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yongqiang Wu
- Department of Emergency, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Wenju Zhang
- Department of Neurosurgery, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Geng Guo
- Department of Emergency, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| |
Collapse
|
20
|
Liao X, Yang Y, Wang L, Kong Z, Li W. CC chemokine receptors are prognostic indicators of gastric cancer and are associated with immune infiltration. BMC Med Genomics 2024; 17:1. [PMID: 38169378 PMCID: PMC10763316 DOI: 10.1186/s12920-023-01690-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 10/05/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND CC chemokine receptors are responsible for regulating the tumor microenvironment (TME) and participating in carcinogenesis and tumor advancement. However, no functional study has investigated CC chemokine receptors in gastric cancer (GC) prognosis, risk, immunotherapy, or other treatments. METHODS We conducted a bioinformatics analysis on GC data using online databases, including the Human Protein Atlas (HPA), Kaplan-Meier (KM) plotter, GeneMANIA, MethSurv, the University of ALabama at Birmingham CANcer (UALCAN) Data Analysis Portal, Gene Set Cancer Analysis (GSCA), cBioportal, and Tumor IMmune Estimation Resource (TIMER). RESULTS We noted that CC chemokine receptor expression correlated with survival in GC. CC chemokine receptor expression was also strongly linked to different tumor-infiltrating immune cells. Additionally, CC chemokine receptors were found to be broadly drug-resistant in GC. CONCLUSION Our study identifed CC chemokine receptor expression helped in predicting the prognosis of patients diagnosed with GC. The expression level of the CC chemokine receptors was also positively related to multiple tumor-infiltrating lymphocytes (TILs). These findings provide evidence to monitor patients with GC using CC chemokine receptors, which can be used as an effective biomarker for predicting the disease prognosis and be regarded as a therapeutic target for modulating the tumor immune microenvironment.
Collapse
Affiliation(s)
- Xinghe Liao
- Department of Integrated Therapy, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Yong Yang
- Department of General Surgery, the First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi Province, China
| | - Lihuan Wang
- Department of Radiology, the First people's Hospital of Taicang City, Taicang Affiliated Hospital of Soochow University, Taicang City, 215400, Jiangsu Province, China
| | - Zhiyuan Kong
- Department of Gastrointestinal Surgery, the First people's Hospital of Taicang City, Taicang Affiliated Hospital of Soochow University, Taicang City, 215400, Jiangsu Province, China
| | - Weiping Li
- Department of Gastrointestinal Surgery, the First people's Hospital of Taicang City, Taicang Affiliated Hospital of Soochow University, Taicang City, 215400, Jiangsu Province, China.
| |
Collapse
|
21
|
Sun L, Jiang Y, Tan H, Liang R. Collagen and derivatives-based materials as substrates for the establishment of glioblastoma organoids. Int J Biol Macromol 2024; 254:128018. [PMID: 37967599 DOI: 10.1016/j.ijbiomac.2023.128018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 10/31/2023] [Accepted: 11/09/2023] [Indexed: 11/17/2023]
Abstract
Glioblastoma (GBM) is a common primary brain malignancy known for its ability to invade the brain, resistance to chemotherapy and radiotherapy, tendency to recur frequently, and unfavorable prognosis. Attempts have been undertaken to create 2D and 3D models, such as glioblastoma organoids (GBOs), to recapitulate the glioma microenvironment, explore tumor biology, and develop efficient therapies. However, these models have limitations and are unable to fully recapitulate the complex networks formed by the glioma microenvironment that promote tumor cell growth, invasion, treatment resistance, and immune escape. Therefore, it is necessary to develop advanced experimental models that could better simulate clinical physiology. Here, we review recent advances in natural biomaterials (mainly focus on collagen and its derivatives)-based GBO models, as in vitro experimental platforms to simulate GBM tumor biology and response to tested drugs. Special attention will be given to 3D models that use collagen, gelatin, further modified derivatives, and composite biomaterials (e.g., with other natural or synthetic polymers) as substrates. Application of these collagen/derivatives-constructed GBOs incorporate the physical as well as chemical characteristics of the GBM microenvironment. A perspective on future research is given in terms of current issues. Generally, natural materials based on collagen/derivatives (monomers or composites) are expected to enrich the toolbox of GBO modeling substrates and potentially help to overcome the limitations of existing models.
Collapse
Affiliation(s)
- Lu Sun
- Department of Targeting Therapy & Immunology; Department of Radiation Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yuelin Jiang
- West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Hong Tan
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
| | - Ruichao Liang
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
22
|
Zhou X, Li JJ, Li S, Liu HH, Xu DD, Chi CF, Zheng LB. Transcriptomic analysis of large yellow croaker (Larimichthys crocea) reveals the suppression of the inflammatory response from Cryptocaryon irritans infection. FISH & SHELLFISH IMMUNOLOGY 2024; 144:109258. [PMID: 38042226 DOI: 10.1016/j.fsi.2023.109258] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 11/13/2023] [Accepted: 11/24/2023] [Indexed: 12/04/2023]
Abstract
Large yellow croaker (Larimichthys crocea) is the most productive marine fish in China. Cryptocaryon irritans is an extremely destructive parasite that causes great economic losses in large yellow croaker aquaculture industry. Therefore, it is very necessary to study the immune response of large yellow croaker in response to C. irritans infection. In this study, the transcriptomic profiles of large yellow croaker were sequenced and analyzed in the brain and head kidney at 72 h after C. irritans infection. Cytokines and chemokines related terms were significantly enriched based on the GO enrichment of down-regulated differentially expressed genes (DEGs) from the head kidney. Meanwhile, cytokine-cytokine receptor interaction was significantly enriched based on the KEGG enrichment of up-regulated DEGs from the brain and down-regulated DEGs from the head kidney, respectively. Moreover, the majority of inflammation-related DEGs were significantly up-regulated in the brain, but distinctly down-regulated in the head kidney. These results showed that the brain and head kidney might play different roles against C. irritans infection, and the inflammatory response of large yellow croaker may be restrained during C. irritans infection. Taken together, the transcriptomic analyses will be helpful to more comprehensively understand the immune mechanism of teleost against C. irritans infection, and provide a theoretical basis for the prevention and treatment of Cryptosporidiosis.
Collapse
Affiliation(s)
- Xu Zhou
- National and Provincial Joint Engineering Research Centre for Marine Germplasm Resources Exploration and Utilization, School of Marine Science and Technology, Zhejiang Ocean University, 1st Haidanan Road, Changzhi Island, Lincheng, Zhoushan, 316022, China
| | - Jun-Jie Li
- National and Provincial Joint Engineering Research Centre for Marine Germplasm Resources Exploration and Utilization, School of Marine Science and Technology, Zhejiang Ocean University, 1st Haidanan Road, Changzhi Island, Lincheng, Zhoushan, 316022, China
| | - Shuang Li
- National and Provincial Joint Engineering Research Centre for Marine Germplasm Resources Exploration and Utilization, School of Marine Science and Technology, Zhejiang Ocean University, 1st Haidanan Road, Changzhi Island, Lincheng, Zhoushan, 316022, China
| | - Hui-Hui Liu
- National and Provincial Joint Engineering Research Centre for Marine Germplasm Resources Exploration and Utilization, School of Marine Science and Technology, Zhejiang Ocean University, 1st Haidanan Road, Changzhi Island, Lincheng, Zhoushan, 316022, China
| | - Dong-Dong Xu
- Marine Fishery Institute of Zhejiang Province, Key Lab of Mariculture and Enhancement of Zhejiang Province, Zhoushan, 316100, China
| | - Chang-Feng Chi
- National and Provincial Joint Engineering Research Centre for Marine Germplasm Resources Exploration and Utilization, School of Marine Science and Technology, Zhejiang Ocean University, 1st Haidanan Road, Changzhi Island, Lincheng, Zhoushan, 316022, China.
| | - Li-Bing Zheng
- National and Provincial Joint Engineering Research Centre for Marine Germplasm Resources Exploration and Utilization, School of Marine Science and Technology, Zhejiang Ocean University, 1st Haidanan Road, Changzhi Island, Lincheng, Zhoushan, 316022, China.
| |
Collapse
|
23
|
Lu Q, Lou Y, Zhang X, Yang H, Chen Y, Zhang H, Liang T, Bai X. Integrative analysis identified two subtypes and a taurine-related signature to predict the prognosis and efficacy of immunotherapy in hepatocellular carcinoma. Comput Struct Biotechnol J 2023; 21:5561-5582. [PMID: 38034399 PMCID: PMC10681958 DOI: 10.1016/j.csbj.2023.11.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 11/07/2023] [Accepted: 11/07/2023] [Indexed: 12/02/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most prevalent subtypes of primary liver cancer, with high mortality and poor prognosis. Immunotherapy has revolutionized treatment strategies for many cancers. However, only a subset of patients with HCC achieve satisfactory benefits from immunotherapy. Therefore, a reliable biomarker that could predict the prognosis and immunotherapy response in patients with HCC is urgently needed. Taurine plays an important role in many physiological processes. However, its participation in the occurrence and progression of liver cancer and regulation of the composition and function of various components of the immune microenvironment remains elusive. In this study, we identified and validated two heterogeneous subtypes of HCC with different taurine metabolic profiles, presenting distinct genomic features, clinicopathological characteristics, and immune landscapes, using multiple bulk transcriptome datasets. Subsequently, we constructed a risk model based on genes related to taurine metabolism to assess the prognosis, immune cell infiltration, immunotherapy response, and drug sensitivity of patients with HCC. The risk model was validated using several independent external cohorts and showed a robust predictive performance. In addition, we evaluated the expression patterns of taurine metabolism-related genes in the tumor microenvironment and the heterogeneity of taurine metabolism among cancer cells using a single-cell transcriptome. In conclusion, our study provides insights into the important role played by taurine metabolism in tumor progression and immune regulation. Furthermore, the risk model can serve as a biomarker to assess patient prognosis and immunotherapy response, potentially helping clinicians make more precise and personalized clinical decisions.
Collapse
Affiliation(s)
- Qingsong Lu
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Zhejiang Provincial Innovation Center for the Study of Pancreatic Diseases, Zhejiang University, Hangzhou, Zhejiang, China
- Zhejiang Provincial Clinical Research Center for the Study of Hepatobiliary & Pancreatic Diseases, Zhejiang University, Hangzhou, China
- Cancer Center, Zhejiang University, Hangzhou, China
- Research Center for Healthcare Data Science, Zhejiang Lab, Hangzhou, Zhejiang China
| | - Yu Lou
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Zhejiang Provincial Innovation Center for the Study of Pancreatic Diseases, Zhejiang University, Hangzhou, Zhejiang, China
- Zhejiang Provincial Clinical Research Center for the Study of Hepatobiliary & Pancreatic Diseases, Zhejiang University, Hangzhou, China
- Cancer Center, Zhejiang University, Hangzhou, China
- Research Center for Healthcare Data Science, Zhejiang Lab, Hangzhou, Zhejiang China
| | - Xiaozhen Zhang
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Zhejiang Provincial Innovation Center for the Study of Pancreatic Diseases, Zhejiang University, Hangzhou, Zhejiang, China
- Zhejiang Provincial Clinical Research Center for the Study of Hepatobiliary & Pancreatic Diseases, Zhejiang University, Hangzhou, China
- Cancer Center, Zhejiang University, Hangzhou, China
- Research Center for Healthcare Data Science, Zhejiang Lab, Hangzhou, Zhejiang China
| | - Hanshen Yang
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Zhejiang Provincial Innovation Center for the Study of Pancreatic Diseases, Zhejiang University, Hangzhou, Zhejiang, China
- Zhejiang Provincial Clinical Research Center for the Study of Hepatobiliary & Pancreatic Diseases, Zhejiang University, Hangzhou, China
- Cancer Center, Zhejiang University, Hangzhou, China
- Research Center for Healthcare Data Science, Zhejiang Lab, Hangzhou, Zhejiang China
| | - Yan Chen
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Zhejiang Provincial Innovation Center for the Study of Pancreatic Diseases, Zhejiang University, Hangzhou, Zhejiang, China
- Zhejiang Provincial Clinical Research Center for the Study of Hepatobiliary & Pancreatic Diseases, Zhejiang University, Hangzhou, China
- Cancer Center, Zhejiang University, Hangzhou, China
- Research Center for Healthcare Data Science, Zhejiang Lab, Hangzhou, Zhejiang China
| | - Hanjia Zhang
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Zhejiang Provincial Innovation Center for the Study of Pancreatic Diseases, Zhejiang University, Hangzhou, Zhejiang, China
- Zhejiang Provincial Clinical Research Center for the Study of Hepatobiliary & Pancreatic Diseases, Zhejiang University, Hangzhou, China
- Cancer Center, Zhejiang University, Hangzhou, China
- Research Center for Healthcare Data Science, Zhejiang Lab, Hangzhou, Zhejiang China
| | - Tingbo Liang
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Zhejiang Provincial Innovation Center for the Study of Pancreatic Diseases, Zhejiang University, Hangzhou, Zhejiang, China
- Zhejiang Provincial Clinical Research Center for the Study of Hepatobiliary & Pancreatic Diseases, Zhejiang University, Hangzhou, China
- Cancer Center, Zhejiang University, Hangzhou, China
- Research Center for Healthcare Data Science, Zhejiang Lab, Hangzhou, Zhejiang China
| | - Xueli Bai
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Zhejiang Provincial Innovation Center for the Study of Pancreatic Diseases, Zhejiang University, Hangzhou, Zhejiang, China
- Zhejiang Provincial Clinical Research Center for the Study of Hepatobiliary & Pancreatic Diseases, Zhejiang University, Hangzhou, China
- Cancer Center, Zhejiang University, Hangzhou, China
- Research Center for Healthcare Data Science, Zhejiang Lab, Hangzhou, Zhejiang China
| |
Collapse
|
24
|
Zefferino R, Conese M. A Vaccine against Cancer: Can There Be a Possible Strategy to Face the Challenge? Possible Targets and Paradoxical Effects. Vaccines (Basel) 2023; 11:1701. [PMID: 38006033 PMCID: PMC10674257 DOI: 10.3390/vaccines11111701] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/07/2023] [Accepted: 10/19/2023] [Indexed: 11/26/2023] Open
Abstract
Is it possible to have an available vaccine that eradicates cancer? Starting from this question, this article tries to verify the state of the art, proposing a different approach to the issue. The variety of cancers and different and often unknown causes of cancer impede, except in some cited cases, the creation of a classical vaccine directed at the causative agent. The efforts of the scientific community are oriented toward stimulating the immune systems of patients, thereby preventing immune evasion, and heightening chemotherapeutic agents effects against cancer. However, the results are not decisive, because without any warning signs, metastasis often occurs. The purpose of this paper is to elaborate on a vaccine that must be administered to a patient in order to prevent metastasis; metastasis is an event that leads to death, and thus, preventing it could transform cancer into a chronic disease. We underline the fact that the field has not been studied in depth, and that the complexity of metastatic processes should not be underestimated. Then, with the aim of identifying the target of a cancer vaccine, we draw attention to the presence of the paradoxical actions of different mechanisms, pathways, molecules, and immune and non-immune cells characteristic of the tumor microenvironment at the primary site and pre-metastatic niche in order to exclude possible vaccine candidates that have opposite effects/behaviors; after a meticulous evaluation, we propose possible targets to develop a metastasis-targeting vaccine. We conclude that a change in the current concept of a cancer vaccine is needed, and the efforts of the scientific community should be redirected toward a metastasis-targeting vaccine, with the increasing hope of eradicating cancer.
Collapse
Affiliation(s)
- Roberto Zefferino
- Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy
| | - Massimo Conese
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy;
| |
Collapse
|
25
|
Zhi W, Wang Y, Jiang C, Gong Y, Chen Q, Mao X, Deng W, Zhao S. PLEKHA4 is a novel prognostic biomarker that reshapes the tumor microenvironment in lower-grade glioma. Front Immunol 2023; 14:1128244. [PMID: 37818357 PMCID: PMC10560889 DOI: 10.3389/fimmu.2023.1128244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 09/11/2023] [Indexed: 10/12/2023] Open
Abstract
Background Lower-grade glioma (LGG) is a primary intracranial tumor that carry a high risk of malignant transformation and limited therapeutic options. Emerging evidence indicates that the tumor microenvironment (TME) is a superior predictor for tumor progression and therapy response. PLEKHA4 has been demonstrated to be a biomarker for LGG that correlate with immune infiltration. However, the fundamental mechanism by which PLEKHA4 contributes to LGG is still poorly understood. Methods Multiple bioinformatic tools, including Tumor Immune Estimation Resource (TIMER), Gene Expression Profiling Interactive Analysis (GEPIA2), Shiny Methylation Analysis Resource Tool (SMART), etc., were incorporated to analyze the PLEKHA4. ESTIMATE, ssGSEA, CIBERSORT, TIDE and CellMiner algorithms were employed to determine the association of PLEKHA4 with TME, immunotherapy response and drug sensitivities. Immunohistochemistry (IHC)-based tissue microarrays and M2 macrophage infiltration assay were conducted to verify their associations. Results PLEKHA4 expression was found to be dramatically upregulated and strongly associated with unfavorable overall survival (OS) and disease-specific survival (DSS) in LGG patients, as well as their poor clinicopathological characteristics. Cox regression analysis identified that PLEKHA4 was an independent prognostic factor. Methylation analysis revealed that DNA methylation correlates with PLEKHA4 expression and indicates a better outcome in LGG. Moreover, PLEKHA4 was remarkably correlated with immune responses and TME remodeling, as evidenced by its positive correlation with particular immune marker subsets and the putative infiltration of immune cells. Surprisingly, the proportion of M2 macrophages in TME was strikingly higher than others, inferring that PLEKHA4 may regulate the infiltration and polarization of M2 macrophages. Evidence provided by IHC-based tissue microarrays and M2 macrophage infiltration assay further validated our findings. Moreover, PLEKHA4 expression was found to be significantly correlated with chemokines, interleukins, and their receptors, further supporting the critical role of PLEKHA4 in reshaping the TME. Additionally, we found that PLEKHA4 expression was closely associated with drug sensitivities and immunotherapy responses, indicating that PLEKHA4 expression also had potential clinical significance in guiding immunotherapy and chemotherapy in LGG. Conclusion PLEKHA4 plays a pivotal role in reshaping the TME of LGG patients, and may serve as a potential predictor for LGG prognosis and therapy.
Collapse
Affiliation(s)
- Wenqian Zhi
- College of Life Science and Health, Wuhan University of Science and Technology, Wuhan, Hubei, China
| | - Ye Wang
- College of Life Science and Health, Wuhan University of Science and Technology, Wuhan, Hubei, China
| | - Chenyu Jiang
- College of Life Science and Health, Wuhan University of Science and Technology, Wuhan, Hubei, China
| | - Yuqin Gong
- College of Life Science and Health, Wuhan University of Science and Technology, Wuhan, Hubei, China
| | - Qiuyan Chen
- College of Life Science and Health, Wuhan University of Science and Technology, Wuhan, Hubei, China
| | - Xiang Mao
- Institute of Hygiene Toxicology, Wuhan Centre for Disease Prevention and Control, Wuhan, Hubei, China
| | - Wensheng Deng
- College of Life Science and Health, Wuhan University of Science and Technology, Wuhan, Hubei, China
| | - Shasha Zhao
- College of Life Science and Health, Wuhan University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
26
|
Yuan W, Zhang Q, Gu D, Lu C, Dixit D, Gimple RC, Gao Y, Gao J, Li D, Shan D, Hu L, Li L, Li Y, Ci S, You H, Yan L, Chen K, Zhao N, Xu C, Lan J, Liu D, Zhang J, Shi Z, Wu Q, Yang K, Zhao L, Qiu Z, Lv D, Gao W, Yang H, Lin F, Wang Q, Man J, Li C, Tao W, Agnihotri S, Qian X, Mack SC, Zhang N, You Y, Rich JN, Sun G, Wang X. Dual Role of CXCL8 in Maintaining the Mesenchymal State of Glioblastoma Stem Cells and M2-Like Tumor-Associated Macrophages. Clin Cancer Res 2023; 29:3779-3792. [PMID: 37439870 DOI: 10.1158/1078-0432.ccr-22-3273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 03/16/2023] [Accepted: 07/10/2023] [Indexed: 07/14/2023]
Abstract
PURPOSE The dynamic interplay between glioblastoma stem cells (GSC) and tumor-associated macrophages (TAM) sculpts the tumor immune microenvironment (TIME) and promotes malignant progression of glioblastoma (GBM). However, the mechanisms underlying this interaction are still incompletely understood. Here, we investigate the role of CXCL8 in the maintenance of the mesenchymal state of GSC populations and reprogramming the TIME to an immunosuppressive state. EXPERIMENTAL DESIGN We performed an integrative multi-omics analyses of RNA sequencing, GBM mRNA expression datasets, immune signatures, and epigenetic profiling to define the specific genes expressed in the mesenchymal GSC subsets. We then used patient-derived GSCs and a xenograft murine model to investigate the mechanisms of tumor-intrinsic and extrinsic factor to maintain the mesenchymal state of GSCs and induce TAM polarization. RESULTS We identified that CXCL8 was preferentially expressed and secreted by mesenchymal GSCs and activated PI3K/AKT and NF-κB signaling to maintain GSC proliferation, survival, and self-renewal through a cell-intrinsic mechanism. CXCL8 induced signaling through a CXCR2-JAK2/STAT3 axis in TAMs, which supported an M2-like TAM phenotype through a paracrine, cell-extrinsic pathway. Genetic- and small molecule-based inhibition of these dual complementary signaling cascades in GSCs and TAMs suppressed GBM tumor growth and prolonged survival of orthotopic xenograft-bearing mice. CONCLUSIONS CXCL8 plays critical roles in maintaining the mesenchymal state of GSCs and M2-like TAM polarization in GBM, highlighting an interplay between cell-autonomous and cell-extrinsic mechanisms. Targeting CXCL8 and its downstream effectors may effectively improve GBM treatment.
Collapse
Affiliation(s)
- Wei Yuan
- Department of Pathology, The Yancheng Clinical College of Xuzhou Medical University, The First people's Hospital of Yancheng, Yancheng, Jiangsu, China
- Department of Central Laboratory, Yancheng Medical Research Center of Nanjing University Medical School, Yancheng, Jiangsu, China
| | - Qian Zhang
- National Health Commission Key Laboratory of Antibody Techniques, Department of Cell Biology, Jiangsu Provincial Key Laboratory of Human Functional Genomics, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Danling Gu
- National Health Commission Key Laboratory of Antibody Techniques, Department of Cell Biology, Jiangsu Provincial Key Laboratory of Human Functional Genomics, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Chenfei Lu
- National Health Commission Key Laboratory of Antibody Techniques, Department of Cell Biology, Jiangsu Provincial Key Laboratory of Human Functional Genomics, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Deobrat Dixit
- Department of Medicine, Division of Regenerative Medicine, University of California, San Diego, La Jolla, California
| | - Ryan C Gimple
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio
| | - Yisu Gao
- Department of Neurosurgery, The Yancheng Clinical College of Xuzhou Medical University, The First people's Hospital of Yancheng, Yancheng, Jiangsu, China
| | - Jiancheng Gao
- National Health Commission Key Laboratory of Antibody Techniques, Department of Cell Biology, Jiangsu Provincial Key Laboratory of Human Functional Genomics, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Daqi Li
- National Health Commission Key Laboratory of Antibody Techniques, Department of Cell Biology, Jiangsu Provincial Key Laboratory of Human Functional Genomics, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Danyang Shan
- National Health Commission Key Laboratory of Antibody Techniques, Department of Cell Biology, Jiangsu Provincial Key Laboratory of Human Functional Genomics, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Lang Hu
- National Health Commission Key Laboratory of Antibody Techniques, Department of Cell Biology, Jiangsu Provincial Key Laboratory of Human Functional Genomics, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Lu Li
- National Health Commission Key Laboratory of Antibody Techniques, Department of Cell Biology, Jiangsu Provincial Key Laboratory of Human Functional Genomics, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yangqing Li
- Ministry of Education Key Laboratory of Model Animals for Disease Study, Model Animal Research Center and School of Medicine, Nanjing University, National Resource Center for Mutant Mice, Nanjing, Jiangsu, China
| | - Shusheng Ci
- National Health Commission Key Laboratory of Antibody Techniques, Department of Cell Biology, Jiangsu Provincial Key Laboratory of Human Functional Genomics, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Hao You
- National Health Commission Key Laboratory of Antibody Techniques, Department of Cell Biology, Jiangsu Provincial Key Laboratory of Human Functional Genomics, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Linping Yan
- National Health Commission Key Laboratory of Antibody Techniques, Department of Cell Biology, Jiangsu Provincial Key Laboratory of Human Functional Genomics, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Kexin Chen
- National Health Commission Key Laboratory of Antibody Techniques, Department of Cell Biology, Jiangsu Provincial Key Laboratory of Human Functional Genomics, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China
| | | | - Chuanhai Xu
- Department of Pathology, The Yancheng Clinical College of Xuzhou Medical University, The First people's Hospital of Yancheng, Yancheng, Jiangsu, China
| | - Jianyun Lan
- Department of Pathology, The Yancheng Clinical College of Xuzhou Medical University, The First people's Hospital of Yancheng, Yancheng, Jiangsu, China
| | - Dong Liu
- School of Life Science, Nantong Laboratory of Development and Diseases, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, China
| | - Junxia Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Zhumei Shi
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Qiulian Wu
- Department of Medicine, Division of Regenerative Medicine, University of California, San Diego, La Jolla, California
- UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania
| | - Kailin Yang
- Department of Radiation Oncology, Taussig Cancer Center, Cleveland Clinic, Cleveland, Ohio
| | - Linjie Zhao
- Department of Medicine, Division of Regenerative Medicine, University of California, San Diego, La Jolla, California
| | - Zhixin Qiu
- Institute for Translational Brain Research, Fudan University, Shanghai, China
| | - Deguan Lv
- Department of Medicine, Division of Regenerative Medicine, University of California, San Diego, La Jolla, California
| | - Wei Gao
- National Health Commission Key Laboratory of Antibody Techniques, Department of Cell Biology, Jiangsu Provincial Key Laboratory of Human Functional Genomics, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Hui Yang
- Department of Neurosurgery, Huashan Hospital, Shanghai Key laboratory of Brain Function Restoration and Neural Regeneration, Shanghai Clinical Medical Center of Neurosurgery, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institute for Translational Brain Research, Shanghai Medical College, Fudan University, Shanghai, China
| | - Fan Lin
- National Health Commission Key Laboratory of Antibody Techniques, Department of Cell Biology, Jiangsu Provincial Key Laboratory of Human Functional Genomics, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Qianghu Wang
- Institute for Brain Tumors, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Personalized Cancer Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jianghong Man
- State Key Laboratory of Proteomics, National Center of Biomedical analysis, Beijing, China
| | - Chaojun Li
- Ministry of Education Key Laboratory of Model Animals for Disease Study, Model Animal Research Center and School of Medicine, Nanjing University, National Resource Center for Mutant Mice, Nanjing, Jiangsu, China
| | - Weiwei Tao
- College of Biomedicine and Health & College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Sameer Agnihotri
- Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Xu Qian
- Institute for Brain Tumors, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Personalized Cancer Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Nutrition and Food Hygiene, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Stephen C Mack
- Division of Brain Tumor Research, Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Nu Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Sun Yat-sen University, Guangdong Provincial Key Laboratory of Brain Function and Disease, Guangdong Translational Medicine Innovation Platform, Guangzhou, Guangdong, China
| | - Yongping You
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jeremy N Rich
- Department of Medicine, Division of Regenerative Medicine, University of California, San Diego, La Jolla, California
- UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania
- Department of Neurology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Guan Sun
- Department of Central Laboratory, Yancheng Medical Research Center of Nanjing University Medical School, Yancheng, Jiangsu, China
- Department of Neurosurgery, The Yancheng Clinical College of Xuzhou Medical University, The First people's Hospital of Yancheng, Yancheng, Jiangsu, China
| | - Xiuxing Wang
- National Health Commission Key Laboratory of Antibody Techniques, Department of Cell Biology, Jiangsu Provincial Key Laboratory of Human Functional Genomics, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China
- Institute for Brain Tumors, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Personalized Cancer Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
- Jiangsu Cancer Hospital, Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
27
|
Li J, Ramzan F, Zhong G. Investigating novel biomarkers in uterine corpus endometrial carcinoma: in silico analysis and clinical specimens validation via RT-qPCR and immunohistochemistry. Am J Cancer Res 2023; 13:4376-4400. [PMID: 37818076 PMCID: PMC10560950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 08/17/2023] [Indexed: 10/12/2023] Open
Abstract
The rising incidence and mortality rate of Uterine Corpus Endometrial Carcinoma (UCEC) pose significant health concerns. CC and CXC chemokines have been linked to tumorigenesis and cancer progression. Recognizing the growing significance of CC and CXC chemokines' diagnostic and prognostic significance in diverse cancer types, our objective was to comprehensively analyze the diagnostic and prognostic values of hub genes from the CC and CXC chemokines in UCEC, utilizing both in silico and clinical samples and cell lines-based approaches. In silico analyses include STRING, Cytoscape, Cytohubba, The Cancer Genome Atlas (TCGA) datasets analysis via the UALCAN, GEPIA, OncoDB, and MuTarget, SurvivalGenie, MEXPRESS, cBioPoratal, TIMER, ENCORI, and DrugBank. Meanwhile, clinical samples and cell lines based analyses include Reverse transcription-quantitative polymerase chain reaction (RT-qPCR), targeted bisulfite sequencing (bisulfite-seq) analysis, and immunohistochemistry (IHC). Through present study, we identified CCL25 (CC motif chemokine ligand 25), CXCL10 (C-X-C motif chemokine ligand 10), CXCL12 (C-X-C motif chemokine ligand 12), and CXCL16 (C-X-C motif chemokine ligand 16) as crucial hub genes among the CC and CXC chemokines. Analyzing the expression data from TCGA, we observed a significant up-regulation of CCL25, CXCL10, and CXCL16 in UCEC samples compared to controls. In contrast, we noted a significant down-regulation of CXCL12 expression in UCEC samples. On clinical UCEC samples and cell lines analysis, the significant higher expression of CCL25, CXCL10, and CXCL16 and significant lower expression of CXCL12 were also denoted in UCEC samples than the controls via RT-qPCR and IHC analyses. Moreover, in silico analysis also confirmed the abnormal promoter methylation levels of the hub genes in TCGA UCEC samples, which was later validated by the clinical samples using targeted based bisulfite-seq analysis. In addition, various additional aspects of the CCL25, CXCL10, CXCL12, and CXCL16 have also been uncovered in UCEC during the present study. Our findings offer novel insights that contribute to the clinical utility of CCL25, CXCL10, CXCL12, and CXCL16 chemokines as potential diagnostic and prognostic biomarkers in UCEC.
Collapse
Affiliation(s)
- Jie Li
- Health Management Center, The Second Affiliated Hospital of Hainan Medical UniversityHaikou 570311, Hainan, China
| | - Faiqah Ramzan
- Gomal Center of Bio-Chemistry and Biotechnology (GCBB), Gomal UniversityDera Ismail Khan 29050, Pakistan
| | - Guiping Zhong
- Health Management Center, The Second Affiliated Hospital of Hainan Medical UniversityHaikou 570311, Hainan, China
| |
Collapse
|
28
|
Ge Z, Zhang Q, Lin W, Jiang X, Zhang Y. The role of angiogenic growth factors in the immune microenvironment of glioma. Front Oncol 2023; 13:1254694. [PMID: 37790751 PMCID: PMC10542410 DOI: 10.3389/fonc.2023.1254694] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 08/28/2023] [Indexed: 10/05/2023] Open
Abstract
Angiogenic growth factors (AGFs) are a class of secreted cytokines related to angiogenesis that mainly include vascular endothelial growth factors (VEGFs), stromal-derived factor-1 (SDF-1), platelet-derived growth factors (PDGFs), fibroblast growth factors (FGFs), transforming growth factor-beta (TGF-β) and angiopoietins (ANGs). Accumulating evidence indicates that the role of AGFs is not only limited to tumor angiogenesis but also participating in tumor progression by other mechanisms that go beyond their angiogenic role. AGFs were shown to be upregulated in the glioma microenvironment characterized by extensive angiogenesis and high immunosuppression. AGFs produced by tumor and stromal cells can exert an immunomodulatory role in the glioma microenvironment by interacting with immune cells. This review aims to sum up the interactions among AGFs, immune cells and cancer cells with a particular emphasis on glioma and tries to provide new perspectives for understanding the glioma immune microenvironment and in-depth explorations for anti-glioma therapy.
Collapse
Affiliation(s)
| | | | | | - Xiaofan Jiang
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Yanyu Zhang
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| |
Collapse
|
29
|
Linares CA, Varghese A, Ghose A, Shinde SD, Adeleke S, Sanchez E, Sheriff M, Chargari C, Rassy E, Boussios S. Hallmarks of the Tumour Microenvironment of Gliomas and Its Interaction with Emerging Immunotherapy Modalities. Int J Mol Sci 2023; 24:13215. [PMID: 37686020 PMCID: PMC10487469 DOI: 10.3390/ijms241713215] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 08/18/2023] [Accepted: 08/21/2023] [Indexed: 09/10/2023] Open
Abstract
Gliomas are aggressive, primary central nervous system tumours arising from glial cells. Glioblastomas are the most malignant. They are known for their poor prognosis or median overall survival. The current standard of care is overwhelmed by the heterogeneous, immunosuppressive tumour microenvironment promoting immune evasion and tumour proliferation. The advent of immunotherapy with its various modalities-immune checkpoint inhibitors, cancer vaccines, oncolytic viruses and chimeric antigen receptor T cells and NK cells-has shown promise. Clinical trials incorporating combination immunotherapies have overcome the microenvironment resistance and yielded promising survival and prognostic benefits. Rolling these new therapies out in the real-world scenario in a low-cost, high-throughput manner is the unmet need of the hour. These will have practice-changing implications to the glioma treatment landscape. Here, we review the immunobiological hallmarks of the TME of gliomas, how the TME evades immunotherapies and the work that is being conducted to overcome this interplay.
Collapse
Affiliation(s)
- Christian A. Linares
- Guy’s Cancer Centre, Guy’s and St Thomas’ NHS Foundation Trust, London SE1 9RT, UK; (C.A.L.); (S.A.)
| | - Anjana Varghese
- Kent Oncology Centre, Maidstone and Tunbridge Wells NHS Trust, Hermitage Lane, Maidstone, Kent ME16 9QQ, UK;
| | - Aruni Ghose
- Department of Medical Oncology, Medway NHS Foundation Trust, Gillingham ME7 5NY, UK; (A.G.); (E.S.); (M.S.)
- Barts Cancer Centre, Barts Health NHS Trust, London EC1A 7BE, UK
- Mount Vernon Cancer Centre, East and North Hertfordshire NHS Trust, Northwood HA6 2RN, UK
- Immuno-Oncology Clinical Network, UK
| | - Sayali D. Shinde
- Centre for Tumour Biology, Barts Cancer Institute, Cancer Research UK Barts Centre, Queen Mary University of London, London EC1M 6BQ, UK;
| | - Sola Adeleke
- Guy’s Cancer Centre, Guy’s and St Thomas’ NHS Foundation Trust, London SE1 9RT, UK; (C.A.L.); (S.A.)
- Faculty of Life Sciences & Medicine, School of Cancer & Pharmaceutical Sciences, King’s College London, Strand, London WC2R 2LS, UK
| | - Elisabet Sanchez
- Department of Medical Oncology, Medway NHS Foundation Trust, Gillingham ME7 5NY, UK; (A.G.); (E.S.); (M.S.)
| | - Matin Sheriff
- Department of Medical Oncology, Medway NHS Foundation Trust, Gillingham ME7 5NY, UK; (A.G.); (E.S.); (M.S.)
| | - Cyrus Chargari
- Department of Radiation Oncology, Pitié-Salpêtrière University Hospital, 75013 Paris, France;
| | - Elie Rassy
- Department of Medical Oncology, Institut Gustave Roussy, 94805 Villejuif, France;
| | - Stergios Boussios
- Department of Medical Oncology, Medway NHS Foundation Trust, Gillingham ME7 5NY, UK; (A.G.); (E.S.); (M.S.)
- Faculty of Life Sciences & Medicine, School of Cancer & Pharmaceutical Sciences, King’s College London, Strand, London WC2R 2LS, UK
- Kent and Medway Medical School, University of Kent, Canterbury CT2 7LX, UK
- AELIA Organization, 9th Km Thessaloniki–Thermi, 57001 Thessaloniki, Greece
| |
Collapse
|
30
|
Nafe R, Hattingen E. The Spectrum of Molecular Pathways in Gliomas-An Up-to-Date Review. Biomedicines 2023; 11:2281. [PMID: 37626776 PMCID: PMC10452344 DOI: 10.3390/biomedicines11082281] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/02/2023] [Accepted: 08/04/2023] [Indexed: 08/27/2023] Open
Abstract
During the last 20 years, molecular alterations have gained increasing significance in the diagnosis and biological assessment of tumors. Gliomas represent the largest group of tumors of the central nervous system, and the main aim of this review is to present the current knowledge on molecular pathways and their alterations in gliomas. A wide range of new insights has been gained, including evidence for the involvement of the WNT pathway or the hippo pathway in the pathobiology of gliomas, indicating a broad involvement of different pathways formerly not considered to play a central role in gliomas. Even new aspects of angiogenic, apoptotic, and metabolic pathways are presented, as well as the rapidly growing field of epigenetic processes, including non-coding RNAs. The two major conclusions drawn from the present review are the distinct interconnectivity of the whole spectrum of molecular pathways and the prominent role of non-coding RNAs, especially circular RNAs, in the regulation of specific targets. All these new insights are discussed, even considering the topic of the resistance to therapy of gliomas, along with aspects that are still incompletely understood, like the role of hydroxymethylation, or even ferroptosis, in the pathobiology of gliomas.
Collapse
Affiliation(s)
- Reinhold Nafe
- Department of Neuroradiology, Clinics of Johann Wolfgang Goethe-University, Schleusenweg 2-16, D-60528 Frankfurt am Main, Germany;
| | | |
Collapse
|
31
|
Sun Y. A systematic pan-cancer analysis reveals the clinical prognosis and immunotherapy value of C-X3-C motif ligand 1 (CX3CL1). Front Genet 2023; 14:1183795. [PMID: 37153002 PMCID: PMC10157490 DOI: 10.3389/fgene.2023.1183795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 04/10/2023] [Indexed: 05/09/2023] Open
Abstract
It is now widely known that C-X3-C motif ligand 1 (CX3CL1) plays an essential part in the process of regulating pro-inflammatory cells migration across a wide range of inflammatory disorders, including a number of malignancies. However, there has been no comprehensive study on the correlation between CX3CL1 and cancers on the basis of clinical features. In order to investigate the potential function of CX3CL1 in the clinical prognosis and immunotherapy, I evaluated the expression of CX3CL1 in numerous cancer types, methylation levels and genetic alterations. I found CX3CL1 was differentially expressed in numerous cancer types, which indicated CX3CL1 may plays a potential role in tumor progression. Furthermore, CX3CL1 was variably expressed in methylation levels and gene alterations in most cancers according to The Cancer Genome Atlas (TCGA). CX3CL1 was robustly associated with clinical characteristics and pathological stages, suggesting that it was related to the degree of tumor malignancy and the physical function of patients. As determined by the Kaplan-Meier method of estimating survival, high CX3CL1 expression was associated with either favorable or unfavorable outcomes depending on the different types of cancer. It suggests the correlation between CX3CL1 and tumor prognosis. Significant positive correlations of CX3CL1 expression with CD4+ T cells, M1 macrophage cells and activated mast cells have been established in the majority of TCGA malignancies. Which indicates CX3CL1 plays an important role in tumor immune microenvironment. Gene Ontology (GO) terms and the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis suggested that the chemokine signaling pathway may shed light on the pathway for CX3CL1 to exert function. In a conclusion, our study comprehensively summarizes the potential role of CX3CL1 in clinical prognosis and immunotherapy, suggesting that CX3CL1 may represent a promising pharmacological treatment target of tumors.
Collapse
Affiliation(s)
- Yidi Sun
- School of Biomedical Engineering, Hainan University, Haikou, Hainan, China
| |
Collapse
|
32
|
Cheng M, Hu C, Yao Z, Hao D, Jin T, Zhang Z, Liu X, Yu Z, Zhang H. Harnessing Reconstructed Macrophage Modulation of Infiltration-Excluded Immune Microenvironments To Delineate Glioma Infiltrative Region. ACS APPLIED MATERIALS & INTERFACES 2023; 15:8811-8823. [PMID: 36758126 DOI: 10.1021/acsami.2c16586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
High invasiveness of glioma produces residual glioma cells in the brain parenchyma after surgery and ultimately causes recurrence. Precise delineation of glioma infiltrative region is critical for an accurate complete resection, which is challenging. The glioma-infiltrating area constitutes infiltration-excluded immune microenvironments (I-E TIMEs), which recruits endogenous or adoptive macrophages to the invasive edge of glioma. Thus, combined with immune cell tracing technology, we provided a novel strategy for the preoperative precise definition of the glioma infiltration boundary, even satellite-like infiltration stoves. Herein, the biomimetic probe was constructed by internalizing fluorophore labeled PEGylated KMnF3 nanoparticles into bone-marrow-derived macrophages using magnetic resonance imaging (MRI)/fluorescence imaging (FI). The biomimetic probe was able to cross the blood-brain barrier and home to the orthotopic glioma infiltrates including satellite stove under MRI and FI tracing, which was validated using hematoxylin and eosin staining, indicating its excellent performance in distinguishing the margins between the glioma cell and normal tissues. This study guides the precise definition of glioma infiltration boundaries at the cellular level, including the observation of any residual glioma cells after surgery. Thus, it has the potential to guide surgery to maximize resection and predict recurrence in the clinic.
Collapse
Affiliation(s)
- Miaomiao Cheng
- Department of Radiology, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Chenchen Hu
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, China
| | - Zhenwei Yao
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Dapeng Hao
- Department of Radiology, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Teng Jin
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430020, China
| | - Zhenao Zhang
- Department of Radiology, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Xuejun Liu
- Department of Radiology, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Zhengze Yu
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, China
| | - Hua Zhang
- Department of Radiology, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| |
Collapse
|
33
|
Andrade ADO, Mesquita RA, Gordón-Núñez MA, Alves PM, Nonaka CFW. Immunoexpression of CXCL12 and CXCR4 in Radicular Cysts, Dentigerous Cysts, and Odontogenic Keratocysts. Appl Immunohistochem Mol Morphol 2023; 31:113-120. [PMID: 36449693 DOI: 10.1097/pai.0000000000001093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 11/08/2022] [Indexed: 12/05/2022]
Abstract
The aim of this study was to evaluate the immunoexpression of chemokine CXCL12 and its receptor CXCR4 in radicular cysts (RCs), dentigerous cysts (DCs), and odontogenic keratocysts (OKCs), and to correlate the findings with morphologic parameters of RCs (inflammatory infiltrate and cystic epithelium). Twenty RCs, 20 DCs, and 20 OKCs were submitted to immunohistochemistry. The percentages of cytoplasmic (CXCL12 and CXCR4) and nuclear (CXCR4) staining in epithelial and fibrous capsule cells were determined. RCs and DCs exhibited higher epithelial expression of CXCL12 than OKCs ( P <0.05). The expression of CXCL12 in the fibrous capsule was higher in DCs than in RCs and OKCs ( P <0.05). Higher cytoplasmic expression of CXCR4 was observed in the epithelial lining and fibrous capsule of RCs and DCs compared with OKCs ( P <0.05). In the fibrous capsule, DCs exhibited higher nuclear expression of CXCR4 than OKCs ( P <0.05). No significant differences in the immunoexpression of CXCL12 or CXCR4 were observed according to the morphologic parameters of RCs ( P >0.05). Strong positive correlations were found between cytoplasmic and nuclear expression of CXCR4 in the epithelial lining of RCs and DCs and in the fibrous capsule of all groups ( P <0.05). The results suggest the participation of CXCL12 and CXCR4 in the pathogenesis of RCs, DCs, and OKCs. These proteins may be particularly relevant for the development of odontogenic cysts with less aggressive biological behavior, irrespective of their nature (inflammatory or developmental). In RCs, the expression of CXCL12 and CXCR4 may not be related to the intensity of the inflammatory infiltrate or the status of cystic epithelium.
Collapse
Affiliation(s)
| | - Ricardo Alves Mesquita
- Department of Oral Pathology and Surgery, School of Dentistry, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | | | - Pollianna Muniz Alves
- Department of Dentistry, School of Dentistry, State University of Paraíba, Campina Grande, Brazil
| | | |
Collapse
|
34
|
Tu J, Wang D, Zheng X, Liu B. Single-cell RNA datasets and bulk RNA datasets analysis demonstrated C1Q+ tumor-associated macrophage as a major and antitumor immune cell population in osteosarcoma. Front Immunol 2023; 14:911368. [PMID: 36814925 PMCID: PMC9939514 DOI: 10.3389/fimmu.2023.911368] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 01/23/2023] [Indexed: 02/09/2023] Open
Abstract
Background Osteosarcoma is the most frequent primary bone tumor with a poor prognosis. Immune infiltration proved to have a strong impact on prognosis. We analyzed single-cell datasets and bulk datasets to confirm the main immune cell populations and their properties in osteosarcoma. Methods The examples in bulk datasets GSE21257 and GSE32981 from the Gene Expression Omnibus database were divided into two immune infiltration level groups, and 34 differentially expressed genes were spotted. Then, we located these genes among nine major cell clusters and their subclusters identified from 99,668 individual cells in single-cell dataset GSE152048 including 11 osteosarcoma patients. Especially, the markers of all kinds of myeloid cells identified in single-cell dataset GSE152048 were set to gene ontology enrichment. We clustered the osteosarcoma samples in the TARGET-OS from the Therapeutically Applicable Research to Generate Effective Treatments dataset into two groups by complete component 1q positive macrophage markers and compared their survival. Results Compared with the low-immune infiltrated group, the high-immune infiltrated group showed a better prognosis. Almost all the 34 differentially expressed genes expressed higher or exclusively among myeloid cells. A group of complete component 1q-positive macrophages was identified from the myeloid cells. In the bulk dataset TARGET-OS, these markers and the infiltration of complete component 1q-positive macrophages related to longer survival. Conclusions Complete component 1q-positive tumor-associated macrophages were the major immune cell population in osteosarcoma, which contributed to a better prognosis.
Collapse
Affiliation(s)
- Jihao Tu
- Department of Hand and Foot Surgery, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Duo Wang
- Department of Hand and Foot Surgery, The First Hospital of Jilin University, Changchun, Jilin, China
| | - XiaoTian Zheng
- Department of Hand and Foot Surgery, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Bin Liu
- Department of Hand and Foot Surgery, The First Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
35
|
Single-cell analyses reveal novel molecular signatures and pathogenesis in cutaneous T cell lymphoma. Cell Death Dis 2022; 13:970. [PMID: 36400759 PMCID: PMC9674677 DOI: 10.1038/s41419-022-05323-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 10/04/2022] [Accepted: 10/05/2022] [Indexed: 11/19/2022]
Abstract
Sézary syndrome (SS) is a rare and aggressive type of cutaneous T cell lymphoma (CTCL) with a poor prognosis. Intra-tumoral heterogeneity caused by different disease compartments (e.g., skin, blood) and poor understanding of the pathogenesis has created obstacles to the precise diagnosis and targeted treatment of the disease. Here we performed a comprehensive analysis by integrating single-cell transcriptomic data of 40,333 peripheral blood mononuclear cells (PBMCs) and 41,580 skin cells, as well as single-cell chromatin accessibility data of 11,058 PBMCs from an SS patient and matched healthy controls (HCs). Validation and functional investigation were carried out in an independent cohort consisting of SS patients, mycosis fungoides (MF) patients, psoriatic erythroderma patients, and HCs, as well as multiple cell lines. The analysis revealed that skin-derived Sézary cells (SCs) had a shifting trend to more advanced mature phenotypes compared to blood-derived SCs. A series of specific marker genes (TOX, DNM3, KLHL42, PGM2L1, and SESN3) shared in blood- and skin-derived SCs were identified, facilitating the diagnosis and prognosis of MF/SS. Moreover, luciferase reporter assays and gene knockdown assays were used to verify that KLHL42 was transcriptionally activated by GATA3 in SS. Functional assays indicated that KLHL42 silencing significantly inhibited aggressive CTCL cell proliferation and promoted its apoptosis. Therefore, targeting inhibition KLHL42 might serve as a promising therapeutic approach in CTCL.
Collapse
|
36
|
Silver A, Feier D, Ghosh T, Rahman M, Huang J, Sarkisian MR, Deleyrolle LP. Heterogeneity of glioblastoma stem cells in the context of the immune microenvironment and geospatial organization. Front Oncol 2022; 12:1022716. [PMID: 36338705 PMCID: PMC9628999 DOI: 10.3389/fonc.2022.1022716] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 10/03/2022] [Indexed: 01/16/2023] Open
Abstract
Glioblastoma (GBM) is an extremely aggressive and incurable primary brain tumor with a 10-year survival of just 0.71%. Cancer stem cells (CSCs) are thought to seed GBM's inevitable recurrence by evading standard of care treatment, which combines surgical resection, radiotherapy, and chemotherapy, contributing to this grim prognosis. Effective targeting of CSCs could result in insights into GBM treatment resistance and development of novel treatment paradigms. There is a major ongoing effort to characterize CSCs, understand their interactions with the tumor microenvironment, and identify ways to eliminate them. This review discusses the diversity of CSC lineages present in GBM and how this glioma stem cell (GSC) mosaicism drives global intratumoral heterogeneity constituted by complex and spatially distinct local microenvironments. We review how a tumor's diverse CSC populations orchestrate and interact with the environment, especially the immune landscape. We also discuss how to map this intricate GBM ecosystem through the lens of metabolism and immunology to find vulnerabilities and new ways to disrupt the equilibrium of the system to achieve improved disease outcome.
Collapse
Affiliation(s)
- Aryeh Silver
- Department of Neurosurgery, Adam Michael Rosen Neuro-Oncology Laboratories, University of Florida, Gainesville, FL, United States
| | - Diana Feier
- Department of Neurosurgery, Adam Michael Rosen Neuro-Oncology Laboratories, University of Florida, Gainesville, FL, United States
| | - Tanya Ghosh
- Department of Neurosurgery, Adam Michael Rosen Neuro-Oncology Laboratories, University of Florida, Gainesville, FL, United States
| | - Maryam Rahman
- Department of Neurosurgery, Adam Michael Rosen Neuro-Oncology Laboratories, University of Florida, Gainesville, FL, United States,Preston A. Wells, Jr. Center for Brain Tumor Therapy, University of Florida, Gainesville, FL, United States
| | - Jianping Huang
- Department of Neurosurgery, Adam Michael Rosen Neuro-Oncology Laboratories, University of Florida, Gainesville, FL, United States,Preston A. Wells, Jr. Center for Brain Tumor Therapy, University of Florida, Gainesville, FL, United States
| | - Matthew R. Sarkisian
- Preston A. Wells, Jr. Center for Brain Tumor Therapy, University of Florida, Gainesville, FL, United States,Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL, United States
| | - Loic P. Deleyrolle
- Department of Neurosurgery, Adam Michael Rosen Neuro-Oncology Laboratories, University of Florida, Gainesville, FL, United States,Preston A. Wells, Jr. Center for Brain Tumor Therapy, University of Florida, Gainesville, FL, United States,*Correspondence: Loic P. Deleyrolle,
| |
Collapse
|
37
|
Xu C, Xiao M, Li X, Xin L, Song J, Zhan Q, Wang C, Zhang Q, Yuan X, Tan Y, Fang C. Origin, activation, and targeted therapy of glioma-associated macrophages. Front Immunol 2022; 13:974996. [PMID: 36275720 PMCID: PMC9582955 DOI: 10.3389/fimmu.2022.974996] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 09/22/2022] [Indexed: 12/02/2022] Open
Abstract
The glioma tumor microenvironment plays a crucial role in the development, occurrence, and treatment of gliomas. Glioma-associated macrophages (GAMs) are the most widely infiltrated immune cells in the tumor microenvironment (TME) and one of the major cell populations that exert immune functions. GAMs typically originate from two cell types-brain-resident microglia (BRM) and bone marrow-derived monocytes (BMDM), depending on a variety of cytokines for recruitment and activation. GAMs mainly contain two functionally and morphologically distinct activation types- classically activated M1 macrophages (antitumor/immunostimulatory) and alternatively activated M2 macrophages (protumor/immunosuppressive). GAMs have been shown to affect multiple biological functions of gliomas, including promoting tumor growth and invasion, angiogenesis, energy metabolism, and treatment resistance. Both M1 and M2 macrophages are highly plastic and can polarize or interconvert under various malignant conditions. As the relationship between GAMs and gliomas has become more apparent, GAMs have long been one of the promising targets for glioma therapy, and many studies have demonstrated the therapeutic potential of this target. Here, we review the origin and activation of GAMs in gliomas, how they regulate tumor development and response to therapies, and current glioma therapeutic strategies targeting GAMs.
Collapse
Affiliation(s)
- Can Xu
- School of Clinical Medicine, Hebei University, Department of Neurosurgery, Affiliated Hospital of Hebei University, Baoding, China
- Hebei Key Laboratory of Precise Diagnosis and Treatment of Glioma, Baoding, China
| | - Menglin Xiao
- School of Clinical Medicine, Hebei University, Department of Neurosurgery, Affiliated Hospital of Hebei University, Baoding, China
- Hebei Key Laboratory of Precise Diagnosis and Treatment of Glioma, Baoding, China
| | - Xiang Li
- Hebei University School of Basic Medical Sciences, Department of Pathology, Affiliated Hospital of Hebei University, Baoding, China
| | - Lei Xin
- School of Clinical Medicine, Hebei University, Department of Neurosurgery, Affiliated Hospital of Hebei University, Baoding, China
- Hebei Key Laboratory of Precise Diagnosis and Treatment of Glioma, Baoding, China
| | - Jia Song
- Hebei Key Laboratory of Precise Diagnosis and Treatment of Glioma, Baoding, China
- Hebei University School of Basic Medical Sciences, Department of Pathology, Affiliated Hospital of Hebei University, Baoding, China
| | - Qi Zhan
- Tianjin Key Laboratory of Composite and Functional Materials, School of Material Science and Engineering, Tianjin University, Tianjin, China
| | - Changsheng Wang
- School of Clinical Medicine, Hebei University, Department of Neurosurgery, Affiliated Hospital of Hebei University, Baoding, China
- Hebei Key Laboratory of Precise Diagnosis and Treatment of Glioma, Baoding, China
| | - Qisong Zhang
- School of Clinical Medicine, Hebei University, Department of Neurosurgery, Affiliated Hospital of Hebei University, Baoding, China
- Hebei Key Laboratory of Precise Diagnosis and Treatment of Glioma, Baoding, China
| | - Xiaoye Yuan
- Hebei Key Laboratory of Precise Diagnosis and Treatment of Glioma, Baoding, China
- Hebei University School of Basic Medical Sciences, Department of Pathology, Affiliated Hospital of Hebei University, Baoding, China
| | - Yanli Tan
- Hebei Key Laboratory of Precise Diagnosis and Treatment of Glioma, Baoding, China
- Hebei University School of Basic Medical Sciences, Department of Pathology, Affiliated Hospital of Hebei University, Baoding, China
- *Correspondence: Chuan Fang, ; Yanli Tan,
| | - Chuan Fang
- School of Clinical Medicine, Hebei University, Department of Neurosurgery, Affiliated Hospital of Hebei University, Baoding, China
- Hebei Key Laboratory of Precise Diagnosis and Treatment of Glioma, Baoding, China
- *Correspondence: Chuan Fang, ; Yanli Tan,
| |
Collapse
|
38
|
Wei S, Chiang J, Wang H, Lei F, Huang Y, Wang C, Cho D, Hsieh C. Hypoxia-induced CXC chemokine ligand 14 expression drives protumorigenic effects through activation of insulin-like growth factor-1 receptor signaling in glioblastoma. Cancer Sci 2022; 114:174-186. [PMID: 36106406 PMCID: PMC9807529 DOI: 10.1111/cas.15587] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 08/04/2022] [Accepted: 09/11/2022] [Indexed: 01/07/2023] Open
Abstract
Hypoxic tumor microenvironment (HTM) promotes a more aggressive and malignant state in glioblastoma. However, little is known about the role and mechanism of CXC chemokine ligand 14 (CXCL14) in HTM-mediated glioblastoma progression. In this study, we report that CXCL14 expression correlated with poor outcomes, tumor grade, and hypoxia-inducible factor (HIF) expression in patients with glioblastoma. CXCL14 was upregulated in tumor cells within the hypoxic areas of glioblastoma. Hypoxia induced HIF-dependent expression of CXCL14, which promoted glioblastoma tumorigenicity and invasiveness in vitro and in vivo. Moreover, CXCL14 gain-of-function in glioblastoma cells activated insulin-like growth factor-1 receptor (IGF-1R) signal transduction to regulate the growth, invasiveness, and neurosphere formation of glioblastoma. Finally, systemic delivery of CXCL14 siRNA nanoparticles (NPs) with polysorbate 80 coating significantly suppressed tumor growth in vivo and extended the survival time in patient-derived glioblastoma xenografts. Together, these findings suggest that HIF-dependent CXCL14 expression contributes to HTM-promoted glioblastoma tumorigenicity and invasiveness through activation of the IGF-1R signaling pathway. CXCL14 siRNA NPs as an oligonucleotide drug can inhibit glioblastoma progression and constitute a translational path for the clinical treatment of glioblastoma patients.
Collapse
Affiliation(s)
- Sung‐Tai Wei
- Graduate Institute of Biomedical SciencesChina Medical UniversityTaichungTaiwan,Division of Neurosurgery, Department of Surgery, An Nan HospitalChina Medical UniversityTainanTaiwan
| | - Jung‐Ying Chiang
- Graduate Institute of Biomedical SciencesChina Medical UniversityTaichungTaiwan,Department of NeurosurgeryChina Medical University Hsinchu HospitalHsinchuTaiwan
| | - Hwai‐Lee Wang
- Graduate Institute of Biomedical SciencesChina Medical UniversityTaichungTaiwan
| | - Fu‐Ju Lei
- Graduate Institute of Biomedical SciencesChina Medical UniversityTaichungTaiwan
| | - Yen‐Chih Huang
- Graduate Institute of Biomedical SciencesChina Medical UniversityTaichungTaiwan,Department of Medical ImagingChina Medical University and HospitalTaichungTaiwan
| | - Chi‐Chung Wang
- Graduate Institute of Biomedical and Pharmaceutical ScienceFu Jen Catholic UniversityNew TaipeiTaiwan
| | - Der‐Yang Cho
- Graduate Institute of Biomedical SciencesChina Medical UniversityTaichungTaiwan,Division of Neurosurgery, Department of Surgery, An Nan HospitalChina Medical UniversityTainanTaiwan
| | - Chia‐Hung Hsieh
- Graduate Institute of Biomedical SciencesChina Medical UniversityTaichungTaiwan,Department of Medical ResearchChina Medical University HospitalTaichungTaiwan,Department of Biomedical InformaticsAsia UniversityTaichungTaiwan
| |
Collapse
|
39
|
Smycz-Kubańska M, Stępień S, Gola JM, Kruszniewska-Rajs C, Wendlocha D, Królewska-Daszczyńska P, Strzelec A, Strzelczyk J, Szanecki W, Witek A, Mielczarek-Palacz A. Analysis of CXCL8 and its receptors CXCR1/CXCR2 at the mRNA level in neoplastic tissue, as well as in serum and peritoneal fluid in patients with ovarian cance. Mol Med Rep 2022; 26:296. [PMID: 35920183 PMCID: PMC9435018 DOI: 10.3892/mmr.2022.12812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 06/29/2022] [Indexed: 12/24/2022] Open
Abstract
Understanding the relationship between the coexistence of inflammatory and neoplastic processes in ovarian cancer, particularly those involving chemokines and their receptors, may help to elucidate the involvement of the studied parameters in tumor pathogenesis and could lead to improved clinical applications. Therefore, the present study aimed to analyze the levels of C-X-C motif chemokine ligand 8 (CXCL8), and its receptors C-X-C chemokine receptor (CXCR)1 and CXCR2, in the serum and peritoneal fluid of women with ovarian cancer, and to evaluate the association between the expression of these parameters in tumor tissue and patient characteristics, particularly the degree of histological differentiation. The study group included women with ovarian cancer diagnosed with serous cystadenocarcinoma International Federation of Gynecology and Obstetrics stage IIIc and a control group, which consisted of women who were diagnosed with a benign lesion (serous cystadenoma). The transcript levels of CXCL8, CXCR1 and CXCR2 were evaluated using reverse transcription-quantitative PCR (RT-qPCR). The quantitative analysis was carried out using the LightCycler® 480 System and GoTaq® 1-Step RT-qPCR System, according to the manufacturers' instructions. The concentration of CXCL8 in serum and peritoneal fluid was determined using a Human Interleukin-8 ELISA kit, and the concentrations of CXCR1 and CXCR2 were determined using the CLOUD-CLONE ELISA kit. Local and systemic disturbances in immune and inflammatory responses involving the CXCL8 chemokine and its receptors indicated the involvement of these studied parameters in the pathogenesis of ovarian cancer. Immunoregulation of the CXCL8-CXCR1 system may influence the course of the inflammatory process accompanying ovarian cancer development, which may result in the identification of novel clinical applications; however, further studies are required.
Collapse
Affiliation(s)
- Marta Smycz-Kubańska
- Department of Immunology and Serology, Faculty of Pharmaceutical Sciences in Sosnowiec, Faculty of Medical Sciences in Katowice, Medical University of Silesia in Katowice, 40‑055 Katowice, Poland
| | - Sebastian Stępień
- Department of Immunology and Serology, Faculty of Pharmaceutical Sciences in Sosnowiec, Faculty of Medical Sciences in Katowice, Medical University of Silesia in Katowice, 40‑055 Katowice, Poland
| | - Joanna Magdalena Gola
- Department of Molecular Biology, Faculty of Pharmaceutical Sciences in Sosnowiec, Faculty of Medical Sciences in Katowice, Medical University of Silesia in Katowice, 40‑055 Katowice, Poland
| | - Celina Kruszniewska-Rajs
- Department of Molecular Biology, Faculty of Pharmaceutical Sciences in Sosnowiec, Faculty of Medical Sciences in Katowice, Medical University of Silesia in Katowice, 40‑055 Katowice, Poland
| | - Dominika Wendlocha
- Department of Immunology and Serology, Faculty of Pharmaceutical Sciences in Sosnowiec, Faculty of Medical Sciences in Katowice, Medical University of Silesia in Katowice, 40‑055 Katowice, Poland
| | - Patrycja Królewska-Daszczyńska
- Department of Immunology and Serology, Faculty of Pharmaceutical Sciences in Sosnowiec, Faculty of Medical Sciences in Katowice, Medical University of Silesia in Katowice, 40‑055 Katowice, Poland
| | - Anna Strzelec
- Department of Immunology and Serology, Faculty of Pharmaceutical Sciences in Sosnowiec, Faculty of Medical Sciences in Katowice, Medical University of Silesia in Katowice, 40‑055 Katowice, Poland
| | - Jarosław Strzelczyk
- Department of Immunology and Serology, Faculty of Pharmaceutical Sciences in Sosnowiec, Faculty of Medical Sciences in Katowice, Medical University of Silesia in Katowice, 40‑055 Katowice, Poland
| | - Wojciech Szanecki
- Department of Gynecology and Obstetrics, Faculty of Medical Sciences in Katowice, Medical University of Silesia in Katowice, 40‑055 Katowice, Poland
| | - Andrzej Witek
- Department of Gynecology and Obstetrics, Faculty of Medical Sciences in Katowice, Medical University of Silesia in Katowice, 40‑055 Katowice, Poland
| | - Aleksandra Mielczarek-Palacz
- Department of Immunology and Serology, Faculty of Pharmaceutical Sciences in Sosnowiec, Faculty of Medical Sciences in Katowice, Medical University of Silesia in Katowice, 40‑055 Katowice, Poland
| |
Collapse
|
40
|
Microenvironment components and spatially resolved single-cell transcriptome atlas of breast cancer metastatic axillary lymph nodes. Acta Biochim Biophys Sin (Shanghai) 2022; 54:1336-1348. [PMID: 36148946 PMCID: PMC9828062 DOI: 10.3724/abbs.2022131] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
As an indicator of clinical prognosis, lymph node metastasis of breast cancer has drawn great attention. Many reports have revealed the characteristics of metastatic breast cancer cells, however, the effect of breast cancer cells on the microenvironment components of lymph nodes and spatial transcriptome atlas remains unclear. In this study, by integrating single-cell RNA sequencing (scRNA-seq) and spatial transcriptomics, we investigate the transcriptional profiling of six surgically excised lymph node samples and the spatial organization of one positive lymph node. We identify the existence of osteoclast-like giant cells (OGC) which have high expressions of CD68 and CD163, the biomarkers of tumor-associated macrophages (TAMs). Through a spatially resolved transcriptomic method, we find that OGCs are scattered among metastatic breast cancer cells. In the lymph node microenvironment with breast cancer cell infiltration, TAMs are enriched in protumoral pathways including NF-κB signaling pathways and NOD-like receptor signaling pathways. Further subclustering demonstrates the potential differentiation trajectory in which macrophages develop from a state of active chemokine production to a state of active lymphocyte activation. This study is the first to integrate scRNA-seq and spatial transcriptomics in the tumor microenvironment of axillary lymph nodes, offering a systematic approach to delve into breast cancer lymph node metastasis.
Collapse
|
41
|
Fan W, Wang D, Li G, Xu J, Ren C, Sun Z, Wang Z, Ma W, Zhao Z, Bao Z, Jiang T, Zhang Y. A novel chemokine-based signature for prediction of prognosis and therapeutic response in glioma. CNS Neurosci Ther 2022; 28:2090-2103. [PMID: 35985661 PMCID: PMC9627384 DOI: 10.1111/cns.13944] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 07/28/2022] [Accepted: 07/28/2022] [Indexed: 02/06/2023] Open
Abstract
AIMS Gliomas are the primary malignant brain tumor and characterized as the striking cellular heterogeneity and intricate tumor microenvironment (TME), where chemokines regulate immune cell trafficking by shaping local networks. This study aimed to construct a chemokine-based gene signature to evaluate the prognosis and therapeutic response in glioma. METHODS In this study, 1024 patients (699 from TCGA and 325 from CGGA database) with clinicopathological information and mRNA sequencing data were enrolled. A chemokine gene signature was constructed by combining LASSO and SVM-RFE algorithm. GO, KEGG, and GSVA analyses were performed for function annotations of the chemokine signature. Candidate mRNAs were subsequently verified through qRT-PCR in an independent cohort including 28 glioma samples. Then, through immunohistochemical staining (IHC), we detected the expression of immunosuppressive markers and explore the role of this gene signature in immunotherapy for glioma. Lastly, the Genomics of Drug Sensitivity in Cancer (GDSC) were leveraged to predict the potential drug related to the gene signature in glioma. RESULTS A constructed chemokine gene signature was significantly associated with poorer survival, especially in glioblastoma, IDH wildtype. It also played an independent prognostic factor in both datasets. Moreover, biological function annotations of the predictive signature indicated the gene signature was positively associated with immune-relevant pathways, and the immunosuppressive protein expressions (PD-L1, IBA1, TMEM119, CD68, CSF1R, and TGFB1) were enriched in the high-risk group. In an immunotherapy of glioblastoma cohort, we confirmed the chemokine signature showed a good predictor for patients' response. Lastly, we predicted twelve potential agents for glioma patients with higher riskscore. CONCLUSION In all, our results highlighted a potential 4-chemokine signature for predicting prognosis in glioma and reflected the intricate immune landscape in glioma. It also threw light on integrating tailored risk stratification with precision therapy for glioblastoma.
Collapse
Affiliation(s)
- Wenhua Fan
- Department of Neurosurgery, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina,Department Molecular Neuropathology, Beijing Neurosurgical InstituteCapital Medical UniversityBeijingChina,Chinese Glioma Genome Atlas Network (CGGA) and Asian Glioma Genome Atlas Network (AGGA)BeijingChina
| | - Di Wang
- Department of Neurosurgery, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Guanzhang Li
- Department of Neurosurgery, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina,Department Molecular Neuropathology, Beijing Neurosurgical InstituteCapital Medical UniversityBeijingChina,Chinese Glioma Genome Atlas Network (CGGA) and Asian Glioma Genome Atlas Network (AGGA)BeijingChina
| | - Jianbao Xu
- The Second Affiliated Hospital of Harbin Medical UniversityHarbinChina
| | - Changyuan Ren
- Sanbo Brain HospitalCapital Medical UniversityBeijingChina
| | - Zhiyan Sun
- Department of Neurosurgery, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina,Department Molecular Neuropathology, Beijing Neurosurgical InstituteCapital Medical UniversityBeijingChina,Chinese Glioma Genome Atlas Network (CGGA) and Asian Glioma Genome Atlas Network (AGGA)BeijingChina
| | - Zhiliang Wang
- Department of Neurosurgery, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina,Chinese Glioma Genome Atlas Network (CGGA) and Asian Glioma Genome Atlas Network (AGGA)BeijingChina
| | - Wenping Ma
- Department of Neurosurgery, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina,Department Molecular Neuropathology, Beijing Neurosurgical InstituteCapital Medical UniversityBeijingChina,Chinese Glioma Genome Atlas Network (CGGA) and Asian Glioma Genome Atlas Network (AGGA)BeijingChina
| | - Zheng Zhao
- Department Molecular Neuropathology, Beijing Neurosurgical InstituteCapital Medical UniversityBeijingChina,Chinese Glioma Genome Atlas Network (CGGA) and Asian Glioma Genome Atlas Network (AGGA)BeijingChina
| | - Zhaoshi Bao
- Department of Neurosurgery, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina,Department Molecular Neuropathology, Beijing Neurosurgical InstituteCapital Medical UniversityBeijingChina,Chinese Glioma Genome Atlas Network (CGGA) and Asian Glioma Genome Atlas Network (AGGA)BeijingChina
| | - Tao Jiang
- Department of Neurosurgery, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina,Department Molecular Neuropathology, Beijing Neurosurgical InstituteCapital Medical UniversityBeijingChina,Chinese Glioma Genome Atlas Network (CGGA) and Asian Glioma Genome Atlas Network (AGGA)BeijingChina
| | - Ying Zhang
- Department of Neurosurgery, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina,Department Molecular Neuropathology, Beijing Neurosurgical InstituteCapital Medical UniversityBeijingChina,Chinese Glioma Genome Atlas Network (CGGA) and Asian Glioma Genome Atlas Network (AGGA)BeijingChina
| |
Collapse
|
42
|
Lee SH, Jeong YJ, Park J, Kim HY, Son Y, Kim KS, Lee HJ. Low-Dose Radiation Affects Cardiovascular Disease Risk in Human Aortic Endothelial Cells by Altering Gene Expression under Normal and Diabetic Conditions. Int J Mol Sci 2022; 23:8577. [PMID: 35955709 PMCID: PMC9369411 DOI: 10.3390/ijms23158577] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/29/2022] [Accepted: 07/30/2022] [Indexed: 02/05/2023] Open
Abstract
High doses of ionizing radiation can cause cardiovascular diseases (CVDs); however, the effects of <100 mGy radiation on CVD remain underreported. Endothelial cells (ECs) play major roles in cardiovascular health and disease, and their function is reduced by stimuli such as chronic disease, metabolic disorders, and smoking. However, whether exposure to low-dose radiation results in the disruption of similar molecular mechanisms in ECs under diabetic and non-diabetic states remains largely unknown; we aimed to address this gap in knowledge through the molecular and functional characterization of primary human aortic endothelial cells (HAECs) derived from patients with type 2 diabetes (T2D-HAECs) and normal HAECs in response to low-dose radiation. To address these limitations, we performed RNA sequencing on HAECs and T2D-HAECs following exposure to 100 mGy of ionizing radiation and examined the transcriptome changes associated with the low-dose radiation. Compared with that in the non-irradiation group, low-dose irradiation induced 243 differentially expressed genes (DEGs) (133 down-regulated and 110 up-regulated) in HAECs and 378 DEGs (195 down-regulated and 183 up-regulated) in T2D-HAECs. We also discovered a significant association between the DEGs and the interferon (IFN)-I signaling pathway, which is associated with CVD by Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis, protein−protein network analysis, and module analysis. Our findings demonstrate the potential impact of low-dose radiation on EC functions that are related to the risk of CVD.
Collapse
Affiliation(s)
- Soo-Ho Lee
- Divisions of Radiation Biomedical Research, Korea Institute of Radiological and Medical Sciences, Seoul 01812, Korea; (S.-H.L.); (Y.J.J.); (J.P.); (H.-Y.K.); (Y.S.)
| | - Ye Ji Jeong
- Divisions of Radiation Biomedical Research, Korea Institute of Radiological and Medical Sciences, Seoul 01812, Korea; (S.-H.L.); (Y.J.J.); (J.P.); (H.-Y.K.); (Y.S.)
| | - Jeongwoo Park
- Divisions of Radiation Biomedical Research, Korea Institute of Radiological and Medical Sciences, Seoul 01812, Korea; (S.-H.L.); (Y.J.J.); (J.P.); (H.-Y.K.); (Y.S.)
- New Drug Development Center, Daegu Gyeongbuk Medical Innovation Foundation, Daegu 41061, Korea
| | - Hyun-Yong Kim
- Divisions of Radiation Biomedical Research, Korea Institute of Radiological and Medical Sciences, Seoul 01812, Korea; (S.-H.L.); (Y.J.J.); (J.P.); (H.-Y.K.); (Y.S.)
| | - Yeonghoon Son
- Divisions of Radiation Biomedical Research, Korea Institute of Radiological and Medical Sciences, Seoul 01812, Korea; (S.-H.L.); (Y.J.J.); (J.P.); (H.-Y.K.); (Y.S.)
| | - Kwang Seok Kim
- Divisions of Radiation Biomedical Research, Korea Institute of Radiological and Medical Sciences, Seoul 01812, Korea; (S.-H.L.); (Y.J.J.); (J.P.); (H.-Y.K.); (Y.S.)
| | - Hae-June Lee
- Divisions of Radiation Biomedical Research, Korea Institute of Radiological and Medical Sciences, Seoul 01812, Korea; (S.-H.L.); (Y.J.J.); (J.P.); (H.-Y.K.); (Y.S.)
| |
Collapse
|
43
|
Poot E, Maguregui A, Brunton VG, Sieger D, Hulme AN. Targeting Glioblastoma through Nano- and Micro-particle-Mediated Immune Modulation. Bioorg Med Chem 2022; 72:116913. [DOI: 10.1016/j.bmc.2022.116913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 06/24/2022] [Accepted: 06/27/2022] [Indexed: 11/02/2022]
|
44
|
El Kheir W, Marcos B, Virgilio N, Paquette B, Faucheux N, Lauzon MA. Drug Delivery Systems in the Development of Novel Strategies for Glioblastoma Treatment. Pharmaceutics 2022; 14:1189. [PMID: 35745762 PMCID: PMC9227363 DOI: 10.3390/pharmaceutics14061189] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 05/25/2022] [Accepted: 05/30/2022] [Indexed: 02/04/2023] Open
Abstract
Glioblastoma multiforme (GBM) is a grade IV glioma considered the most fatal cancer of the central nervous system (CNS), with less than a 5% survival rate after five years. The tumor heterogeneity, the high infiltrative behavior of its cells, and the blood-brain barrier (BBB) that limits the access of therapeutic drugs to the brain are the main reasons hampering the current standard treatment efficiency. Following the tumor resection, the infiltrative remaining GBM cells, which are resistant to chemotherapy and radiotherapy, can further invade the surrounding brain parenchyma. Consequently, the development of new strategies to treat parenchyma-infiltrating GBM cells, such as vaccines, nanotherapies, and tumor cells traps including drug delivery systems, is required. For example, the chemoattractant CXCL12, by binding to its CXCR4 receptor, activates signaling pathways that play a critical role in tumor progression and invasion, making it an interesting therapeutic target to properly control the direction of GBM cell migration for treatment proposes. Moreover, the interstitial fluid flow (IFF) is also implicated in increasing the GBM cell migration through the activation of the CXCL12-CXCR4 signaling pathway. However, due to its complex and variable nature, the influence of the IFF on the efficiency of drug delivery systems is not well understood yet. Therefore, this review discusses novel drug delivery strategies to overcome the GBM treatment limitations, focusing on chemokines such as CXCL12 as an innovative approach to reverse the migration of infiltrated GBM. Furthermore, recent developments regarding in vitro 3D culture systems aiming to mimic the dynamic peritumoral environment for the optimization of new drug delivery technologies are highlighted.
Collapse
Affiliation(s)
- Wiam El Kheir
- Advanced Dynamic Cell Culture Systems Laboratory, Department of Chemical Engineering and Biotechnology Engineering, Faculty of Engineering, Université de Sherbrooke, 2500 Boul. Université, Sherbrooke, QC J1K 2R1, Canada;
- Laboratory of Cell-Biomaterial Biohybrid Systems, Department of Chemical Engineering and Biotechnology Engineering, Faculty of Engineering, Université de Sherbrooke, 2500 Boul. Université, Sherbrooke, QC J1K 2R1, Canada;
| | - Bernard Marcos
- Department of Chemical Engineering and Biotechnology Engineering, Faculty of Engineering, Université de Sherbrooke, 2500 Boul. Université, Sherbrooke, QC J1K 2R1, Canada;
| | - Nick Virgilio
- Department of Chemical Engineering, Polytechnique Montréal, 2500 Chemin de Polytechnique, Montréal, QC H3T 1J4, Canada;
| | - Benoit Paquette
- Department of Nuclear Medicine and Radiobiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, 12e Avenue Nord, Sherbrooke, QC J1H 5N4, Canada;
- Clinical Research Center of the Centre Hospitalier Universitaire de l’Université de Sherbrooke, 12e Avenue Nord, Sherbrooke, QC J1H 5N4, Canada
| | - Nathalie Faucheux
- Laboratory of Cell-Biomaterial Biohybrid Systems, Department of Chemical Engineering and Biotechnology Engineering, Faculty of Engineering, Université de Sherbrooke, 2500 Boul. Université, Sherbrooke, QC J1K 2R1, Canada;
- Clinical Research Center of the Centre Hospitalier Universitaire de l’Université de Sherbrooke, 12e Avenue Nord, Sherbrooke, QC J1H 5N4, Canada
| | - Marc-Antoine Lauzon
- Advanced Dynamic Cell Culture Systems Laboratory, Department of Chemical Engineering and Biotechnology Engineering, Faculty of Engineering, Université de Sherbrooke, 2500 Boul. Université, Sherbrooke, QC J1K 2R1, Canada;
- Research Center on Aging, 1036 Rue Belvédère Sud, Sherbrooke, QC J1H 4C4, Canada
| |
Collapse
|
45
|
Xue C, Li G, Zheng Q, Gu X, Bao Z, Lu J, Li L. The functional roles of the circRNA/Wnt axis in cancer. Mol Cancer 2022; 21:108. [PMID: 35513849 PMCID: PMC9074313 DOI: 10.1186/s12943-022-01582-0] [Citation(s) in RCA: 80] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 04/22/2022] [Indexed: 01/09/2023] Open
Abstract
CircRNAs, covalently closed noncoding RNAs, are widely expressed in a wide range of species ranging from viruses to plants to mammals. CircRNAs were enriched in the Wnt pathway. Aberrant Wnt pathway activation is involved in the development of various types of cancers. Accumulating evidence indicates that the circRNA/Wnt axis modulates the expression of cancer-associated genes and then regulates cancer progression. Wnt pathway-related circRNA expression is obviously associated with many clinical characteristics. CircRNAs could regulate cell biological functions by interacting with the Wnt pathway. Moreover, Wnt pathway-related circRNAs are promising potential biomarkers for cancer diagnosis, prognosis evaluation, and treatment. In our review, we summarized the recent research progress on the role and clinical application of Wnt pathway-related circRNAs in tumorigenesis and progression.
Collapse
Affiliation(s)
- Chen Xue
- grid.13402.340000 0004 1759 700XState Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, National Clinical Research Center for Infectious Diseases, Zhejiang University, No. 79 Qingchun Road, Shangcheng District, 310003 Hangzhou, China
| | - Ganglei Li
- grid.13402.340000 0004 1759 700XDepartment of Neurosurgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, 310003 Hangzhou, China
| | - Qiuxian Zheng
- grid.13402.340000 0004 1759 700XState Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, National Clinical Research Center for Infectious Diseases, Zhejiang University, No. 79 Qingchun Road, Shangcheng District, 310003 Hangzhou, China
| | - Xinyu Gu
- grid.13402.340000 0004 1759 700XState Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, National Clinical Research Center for Infectious Diseases, Zhejiang University, No. 79 Qingchun Road, Shangcheng District, 310003 Hangzhou, China
| | - Zhengyi Bao
- grid.13402.340000 0004 1759 700XState Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, National Clinical Research Center for Infectious Diseases, Zhejiang University, No. 79 Qingchun Road, Shangcheng District, 310003 Hangzhou, China
| | - Juan Lu
- grid.13402.340000 0004 1759 700XState Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, National Clinical Research Center for Infectious Diseases, Zhejiang University, No. 79 Qingchun Road, Shangcheng District, 310003 Hangzhou, China
| | - Lanjuan Li
- grid.13402.340000 0004 1759 700XState Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, National Clinical Research Center for Infectious Diseases, Zhejiang University, No. 79 Qingchun Road, Shangcheng District, 310003 Hangzhou, China
| |
Collapse
|
46
|
Ren W, Jin W, Liang Z. Construction and Validation of an Immune-Related Risk Score Model for Survival Prediction in Glioblastoma. Front Neurol 2022; 13:832944. [PMID: 35370869 PMCID: PMC8965766 DOI: 10.3389/fneur.2022.832944] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 01/20/2022] [Indexed: 12/12/2022] Open
Abstract
BackgroundAs one of the most important brain tumors, glioblastoma (GBM) has a poor prognosis, especially in adults. Immune-related genes (IRGs) and immune cell infiltration are responsible for the pathogenesis of GBM. This study aimed to identify new tumor markers to predict the prognosis of patients with GBM.MethodsThe Cancer Genome Atlas (TCGA) database and ImmPort database were used for model construction. The Wilcoxon rank-sum test was applied to identify the differentially expressed IRGs (DEIRGs) between the GBM and normal samples. Univariate Cox regression analysis and Kaplan–Meier analysis was performed to investigate the relationship between each DEIRG and overall survival. Next, multivariate Cox regression analysis was exploited to further explore the prognostic potential of DEIRGs. A risk-score model was constructed based on the above results. The area under the curve (AUC) values were calculated to assess the effect of the model prediction. Furthermore, the Chinese Glioma Genome Atlas (CGGA) dataset was used for model validation. STRING database and functional enrichment analysis were used for exploring the gene interactions and the underlying functions and pathways. The CIBERSORT algorithm was used for correlation analysis of the marker genes and the tumor-infiltrating immune cells.ResultsThere were 198 DEIRGs in GBM, including 153 upregulated genes and 45 downregulated genes. Seven marker genes (LYNX1, PRELID1P4, MMP9, TCF12, RGS14, RUNX1, and CCR2) were filtered out by sequential screening for DEIRGs. The regression coefficients (0.0410, 1.335, 0.005, −0.021, 0.123, 0.142, and −0.329) and expression data of the marker genes were used to construct the model. The AUC values for 1, 2, and 3 years were 0.744, 0.737, and 0.749 in the TCGA–GBM cohort and 0.612, 0.602, and 0.594 in the CGGA-GBM cohort, respectively, which indicated a high predictive power. The results of enrichment analysis revealed that these genes were enriched in the activation of T cell and cytokine receptor interaction pathways. The interaction network map demonstrated a close relationship between the marker genes MMP9 and CCR2. Infiltration analysis of the immune cells showed that dendritic cells (DCs) could identify GBM, while LYNX1, RUNX1, and CCR2 were significantly positively correlated with DCs expression.ConclusionThis study analyzed the expression of IRGs in GBM and identified seven marker genes for the construction of an immune-related risk score model. These marker genes were found to be associated with DCs and were enriched in similar immune response pathways. These findings are likely to provide new insights for the immunotherapy of patients with GBM.
Collapse
Affiliation(s)
- Wei Ren
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Weifeng Jin
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zehua Liang
- School of Humanities and Management, Zhejiang Chinese Medical University, Hangzhou, China
- *Correspondence: Zehua Liang
| |
Collapse
|
47
|
Codrici E, Popescu ID, Tanase C, Enciu AM. Friends with Benefits: Chemokines, Glioblastoma-Associated Microglia/Macrophages, and Tumor Microenvironment. Int J Mol Sci 2022; 23:ijms23052509. [PMID: 35269652 PMCID: PMC8910233 DOI: 10.3390/ijms23052509] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/17/2022] [Accepted: 02/22/2022] [Indexed: 12/19/2022] Open
Abstract
Glioma is the most common primary intracranial tumor and has the greatest prevalence of all brain tumors. Treatment resistance and tumor recurrence in GBM are mostly explained by considerable alterations within the tumor microenvironment, as well as extraordinary cellular and molecular heterogeneity. Soluble factors, extracellular matrix components, tissue-resident cell types, resident or newly recruited immune cells together make up the GBM microenvironment. Regardless of many immune cells, a profound state of tumor immunosuppression is supported and developed, posing a considerable hurdle to cancer cells' immune-mediated destruction. Several studies have suggested that various GBM subtypes present different modifications in their microenvironment, although the importance of the microenvironment in treatment response has yet to be determined. Understanding the microenvironment and how it changes after therapies is critical because it can influence the remaining invasive GSCs and lead to recurrence. This review article sheds light on the various components of the GBM microenvironment and their roles in tumoral development, as well as immune-related biological processes that support the interconnection/interrelationship between different cell types. Also, we summarize the current understanding of the modulation of soluble factors and highlight the dysregulated inflammatory chemokine/specific receptors cascades/networks and their significance in tumorigenesis, cancer-related inflammation, and metastasis.
Collapse
Affiliation(s)
- Elena Codrici
- Victor Babes National Institute of Pathology, 050096 Bucharest, Romania;
- Correspondence: (E.C.); (I.-D.P.); (A.-M.E.)
| | - Ionela-Daniela Popescu
- Victor Babes National Institute of Pathology, 050096 Bucharest, Romania;
- Correspondence: (E.C.); (I.-D.P.); (A.-M.E.)
| | - Cristiana Tanase
- Victor Babes National Institute of Pathology, 050096 Bucharest, Romania;
- Department of Clinical Biochemistry, Faculty of Medicine, Titu Maiorescu University, 031593 Bucharest, Romania
| | - Ana-Maria Enciu
- Victor Babes National Institute of Pathology, 050096 Bucharest, Romania;
- Department of Cell Biology and Histology, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Correspondence: (E.C.); (I.-D.P.); (A.-M.E.)
| |
Collapse
|
48
|
Bausart M, Préat V, Malfanti A. Immunotherapy for glioblastoma: the promise of combination strategies. J Exp Clin Cancer Res 2022; 41:35. [PMID: 35078492 PMCID: PMC8787896 DOI: 10.1186/s13046-022-02251-2] [Citation(s) in RCA: 109] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 01/11/2022] [Indexed: 12/11/2022] Open
Abstract
Glioblastoma (GBM) treatment has remained almost unchanged for more than 20 years. The current standard of care involves surgical resection (if possible) followed by concomitant radiotherapy and chemotherapy. In recent years, immunotherapy strategies have revolutionized the treatment of many cancers, increasing the hope for GBM therapy. However, mostly due to the high, multifactorial immunosuppression occurring in the microenvironment, the poor knowledge of the neuroimmune system and the presence of the blood-brain barrier, the efficacy of immunotherapy in GBM is still low. Recently, new strategies for GBM treatments have employed immunotherapy combinations and have provided encouraging results in both preclinical and clinical studies. The lessons learned from clinical trials highlight the importance of tackling different arms of immunity. In this review, we aim to summarize the preclinical evidence regarding combination immunotherapy in terms of immune and survival benefits for GBM management. The outcomes of recent studies assessing the combination of different classes of immunotherapeutic agents (e.g., immune checkpoint blockade and vaccines) will be discussed. Finally, future strategies to ameliorate the efficacy of immunotherapy and facilitate clinical translation will be provided to address the unmet medical needs of GBM.
Collapse
Affiliation(s)
- Mathilde Bausart
- UCLouvain, Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, Avenue Mounier 73 B1.73.12, 1200, Brussels, Belgium
| | - Véronique Préat
- UCLouvain, Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, Avenue Mounier 73 B1.73.12, 1200, Brussels, Belgium.
| | - Alessio Malfanti
- UCLouvain, Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, Avenue Mounier 73 B1.73.12, 1200, Brussels, Belgium
| |
Collapse
|
49
|
Cocola C, Magnaghi V, Abeni E, Pelucchi P, Martino V, Vilardo L, Piscitelli E, Consiglio A, Grillo G, Mosca E, Gualtierotti R, Mazzaccaro D, La Sala G, Di Pietro C, Palizban M, Liuni S, DePedro G, Morara S, Nano G, Kehler J, Greve B, Noghero A, Marazziti D, Bussolino F, Bellipanni G, D'Agnano I, Götte M, Zucchi I, Reinbold R. Transmembrane Protein TMEM230, a Target of Glioblastoma Therapy. Front Cell Neurosci 2021; 15:703431. [PMID: 34867197 PMCID: PMC8636015 DOI: 10.3389/fncel.2021.703431] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 10/12/2021] [Indexed: 11/13/2022] Open
Abstract
Glioblastomas (GBM) are the most aggressive tumors originating in the brain. Histopathologic features include circuitous, disorganized, and highly permeable blood vessels with intermittent blood flow. These features contribute to the inability to direct therapeutic agents to tumor cells. Known targets for anti-angiogenic therapies provide minimal or no effect in overall survival of 12–15 months following diagnosis. Identification of novel targets therefore remains an important goal for effective treatment of highly vascularized tumors such as GBM. We previously demonstrated in zebrafish that a balanced level of expression of the transmembrane protein TMEM230/C20ORF30 was required to maintain normal blood vessel structural integrity and promote proper vessel network formation. To investigate whether TMEM230 has a role in the pathogenesis of GBM, we analyzed its prognostic value in patient tumor gene expression datasets and performed cell functional analysis. TMEM230 was found necessary for growth of U87-MG cells, a model of human GBM. Downregulation of TMEM230 resulted in loss of U87 migration, substratum adhesion, and re-passaging capacity. Conditioned media from U87 expressing endogenous TMEM230 induced sprouting and tubule-like structure formation of HUVECs. Moreover, TMEM230 promoted vascular mimicry-like behavior of U87 cells. Gene expression analysis of 702 patients identified that TMEM230 expression levels distinguished high from low grade gliomas. Transcriptomic analysis of patients with gliomas revealed molecular pathways consistent with properties observed in U87 cell assays. Within low grade gliomas, elevated TMEM230 expression levels correlated with reduced overall survival independent from tumor subtype. Highest level of TMEM230 correlated with glioblastoma and ATP-dependent microtubule kinesin motor activity, providing a direction for future therapeutic intervention. Our studies support that TMEM230 has both glial tumor and endothelial cell intracellular and extracellular functions. Elevated levels of TMEM230 promote glial tumor cell migration, extracellular scaffold remodeling, and hypervascularization and abnormal formation of blood vessels. Downregulation of TMEM230 expression may inhibit both low grade glioma and glioblastoma tumor progression and promote normalization of abnormally formed blood vessels. TMEM230 therefore is both a promising anticancer and antiangiogenic therapeutic target for inhibiting GBM tumor cells and tumor-driven angiogenesis.
Collapse
Affiliation(s)
- Cinzia Cocola
- Institute for Biomedical Technologies, National Research Council, Milan, Italy.,Consorzio Italbiotec, Milan, Italy
| | - Valerio Magnaghi
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Edoardo Abeni
- Institute for Biomedical Technologies, National Research Council, Milan, Italy
| | - Paride Pelucchi
- Institute for Biomedical Technologies, National Research Council, Milan, Italy
| | - Valentina Martino
- Institute for Biomedical Technologies, National Research Council, Milan, Italy
| | - Laura Vilardo
- Institute for Biomedical Technologies, National Research Council, Milan, Italy
| | - Eleonora Piscitelli
- Institute for Biomedical Technologies, National Research Council, Milan, Italy
| | - Arianna Consiglio
- Institute for Biomedical Technologies, National Research Council, Milan, Italy
| | - Giorgio Grillo
- Institute for Biomedical Technologies, National Research Council, Milan, Italy
| | - Ettore Mosca
- Institute for Biomedical Technologies, National Research Council, Milan, Italy
| | - Roberta Gualtierotti
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Daniela Mazzaccaro
- Operative Unit of Vascular Surgery, IRCCS Policlinico San Donato, San Donato Milanese, Italy
| | - Gina La Sala
- Institute of Biochemistry and Cell Biology, Italian National Research Council, Rome, Italy
| | - Chiara Di Pietro
- Institute of Biochemistry and Cell Biology, Italian National Research Council, Rome, Italy
| | - Mira Palizban
- Department of Gynecology and Obstetrics, University Hospital of Münster, Münster, Germany
| | - Sabino Liuni
- Institute for Biomedical Technologies, National Research Council, Milan, Italy
| | - Giuseppina DePedro
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | | | - Giovanni Nano
- Operative Unit of Vascular Surgery, IRCCS Policlinico San Donato, San Donato Milanese, Italy.,Department of Biomedical Sciences for Health, Università degli Studi di Milano, Milan, Italy
| | - James Kehler
- National Institutes of Health, NIDDK, Laboratory of Cell and Molecular Biology, Bethesda, MD, United States
| | - Burkhard Greve
- Department of Radiation Therapy and Radiation Oncology, University Hospital of Münster, Münster, Germany
| | - Alessio Noghero
- Lovelace Biomedical Research Institute, Albuquerque, NM, United States.,Department of Oncology, University of Turin, Orbassano, Italy
| | - Daniela Marazziti
- Institute of Biochemistry and Cell Biology, Italian National Research Council, Rome, Italy
| | - Federico Bussolino
- Department of Oncology, University of Turin, Orbassano, Italy.,Laboratory of Vascular Oncology Candiolo Cancer Institute - IRCCS, Candiolo, Italy
| | - Gianfranco Bellipanni
- Department of Biology, Center for Biotechnology, Sbarro Institute for Cancer Research and Molecular Medicine, Temple University, Philadelphia, PA, United States
| | - Igea D'Agnano
- Institute for Biomedical Technologies, National Research Council, Milan, Italy
| | - Martin Götte
- Department of Gynecology and Obstetrics, University Hospital of Münster, Münster, Germany
| | - Ileana Zucchi
- Institute for Biomedical Technologies, National Research Council, Milan, Italy
| | - Rolland Reinbold
- Institute for Biomedical Technologies, National Research Council, Milan, Italy
| |
Collapse
|
50
|
Déry L, Charest G, Guérin B, Akbari M, Fortin D. Chemoattraction of Neoplastic Glial Cells with CXCL10, CCL2 and CCL11 as a Paradigm for a Promising Therapeutic Approach for Primary Brain Tumors. Int J Mol Sci 2021; 22:ijms222212150. [PMID: 34830041 PMCID: PMC8626037 DOI: 10.3390/ijms222212150] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/28/2021] [Accepted: 11/05/2021] [Indexed: 12/19/2022] Open
Abstract
Chemoattraction is a normal and essential process, but it can also be involved in tumorigenesis. This phenomenon plays a key role in glioblastoma (GBM). The GBM tumor cells are extremely difficult to eradicate, due to their strong capacity to migrate into the brain parenchyma. Consequently, a complete resection of the tumor is rarely a possibility, and recurrence is inevitable. To overcome this problem, we proposed to exploit this behavior by using three chemoattractants: CXCL10, CCL2 and CCL11, released by a biodegradable hydrogel (GlioGel) to produce a migration of tumor cells toward a therapeutic trap. To investigate this hypothesis, the agarose drop assay was used to test the chemoattraction capacity of these three chemokines on murine F98 and human U87MG cell lines. We then studied the potency of this approach in vivo in the well-established syngeneic F98-Fischer glioma-bearing rat model using GlioGel containing different mixtures of the chemoattractants. In vitro assays resulted in an invasive cell rate 2-fold higher when chemokines were present in the environment. In vivo experiments demonstrated the capacity of these specific chemoattractants to strongly attract neoplastic glioblastoma cells. The use of this strong locomotion ability to our end is a promising avenue in the establishment of a new therapeutic approach in the treatment of primary brain tumors.
Collapse
Affiliation(s)
- Laurence Déry
- Department of Nuclear Medicine and Radiobiology, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada;
- Correspondence:
| | - Gabriel Charest
- Department of Surgery, Division of Neurosurgery, Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada; (G.C.); (D.F.)
| | - Brigitte Guérin
- Department of Nuclear Medicine and Radiobiology, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada;
| | - Mohsen Akbari
- Laboratory for Innovation in Microengineering (LiME), Department of Mechanical Engineering, University of Victoria, Victoria, BC V8P 5C2, Canada;
- Biotechnology Center, Silesian University of Technology, Akademicka 2A, 44-100 Gliwice, Poland
| | - David Fortin
- Department of Surgery, Division of Neurosurgery, Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada; (G.C.); (D.F.)
| |
Collapse
|