1
|
Piersigilli A, Carreira VS, Gervais F, Mansfield K, McIntosh BE, Cornax I. A Pathologist's Guide to Non-clinical Safety Assessment of Adoptive Cell Therapy Products. Toxicol Pathol 2024; 52:531-544. [PMID: 39644098 DOI: 10.1177/01926233241298570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2024]
Abstract
Through two decades of research and development, adoptive cell therapies (ACTs) have revolutionized treatment for hematologic malignancies. Many of the seven US Food and Drug Administration (FDA)-approved products are proven to be a curative last line of defense against said malignancies. The ACTs, known more commonly as chimeric antigen receptor (CAR) T-cells, utilize engineered lymphocytes to target and destroy cancer cells in a patient-specific, major histocompatibility complex (MHC)-independent manner, acting as "living drugs" that adapt to and surveil the body post-treatment. Despite their efficacy, CAR T-cell therapies present unique challenges in preclinical safety assessment. The safety and pharmacokinetics of CAR T-cells are influenced by numerous factors including donor and recipient characteristics, product design, and manufacturing processes that are not well-predicted by existing in vitro and in vivo preclinical safety models. The CAR therapy-mediated toxicities in clinical settings primarily arise from unintended targeting of non-tumor cells, potential tumorigenicity, and severe immune activation syndromes like cytokine release syndrome and immune effector cell-associated neurotoxicity. Addressing these issues necessitates a deep understanding of CAR target expression in normal tissues, inclusive of the spatial microanatomical distribution, off-target screening, and a deep understanding CAR cell manufacturing practices and immunopathology.
Collapse
|
2
|
Goto H, Oba U, Ueda T, Yamamoto S, Inoue M, Shimo Y, Yokoyama S, Takase Y, Kato W, Suenobu S, Ihara K, Koga Y, Ohga S. Early defibrotide therapy and risk factors for post-transplant veno-occlusive disease/sinusoidal obstruction syndrome in childhood. Pediatr Blood Cancer 2024; 71:e31331. [PMID: 39289887 DOI: 10.1002/pbc.31331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 09/02/2024] [Indexed: 09/19/2024]
Abstract
BACKGROUND Veno-occlusive disease (VOD), also known as sinusoidal obstruction syndrome (SOS), is a life-threatening complications of hematopoietic cell transplantation (HCT). METHODS We studied the impact of early defibrotide (DF) therapy on the outcomes of pediatric patients with VOD/SOS after transplantation, focusing on recent immunotherapies. A total of 111 pediatric patients who underwent HCT for malignant disease between February 2017 and March 2023 at Kyushu University Hospital were included. RESULTS Among 111 patients of less than 20 years of age who underwent HCT for malignancy at a single institution between 2017 and 2023, VOD/SOS occurred in 25 (23%) patients. VOD/SOS developed more frequently in the post-DF era (2020-2023, n = 58) than in the pre-DF era (31% vs. 13%, p = .04). The proportion of patients with relapsed/refractory acute lymphoblastic leukemia (ALL) was higher in the post-DF era than in the pre-DF era (44% vs. 8%, p = .04). Early DF therapy that was started at two European Society for Blood and Marrow Transplantation diagnostic criteria reduced the severity of VOD/SOS (p < .01) in comparison to non-early therapy started at less than two criteria. A multivariate analysis indicated that a history of cytokine release syndrome (odds ratio [OR] = 10.4, p = .01) and juvenile myelomonocytic leukemia (OR = 8.98, p = .04), but not an endothelial activation and stress index (EASIX) score of greater than 0.85, were independent risk factors for VOD/SOS. CONCLUSIONS Early DF therapy improves the severity and survival outcomes of post-transplant VOD/SOS in children. However, its incidence is increasing in the era of immunotherapy for progressive diseases.
Collapse
Affiliation(s)
- Hironori Goto
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
- Department of Pediatrics, Oita University Faculty of Medicine, Oita, Japan
| | - Utako Oba
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Tamaki Ueda
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Shunsuke Yamamoto
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Masataka Inoue
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yu Shimo
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Satomi Yokoyama
- Department of Pediatrics, NHO Kumamoto Medical Center, Kumamoto, Japan
| | - Yusuke Takase
- Department of Pediatrics, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Wakako Kato
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Souichi Suenobu
- Department of Pediatrics, Oita University Faculty of Medicine, Oita, Japan
- National Hospital Organization Nishibeppu National Hospital, Oita, Japan
| | - Kenji Ihara
- Department of Pediatrics, Oita University Faculty of Medicine, Oita, Japan
| | - Yuhki Koga
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
- Department of Pediatrics, National Hospital Organization Kyushu Cancer Center, Fukuoka, Japan
| | - Shouichi Ohga
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
3
|
Gavriilaki E, Demosthenous C, Evangelidis P, Bousiou Z, Batsis I, Vardi A, Mallouri D, Koravou EE, Spyridis N, Panteliadou A, Karavalakis G, Masmanidou M, Touloumenidou T, Papalexandri A, Poziopoulos C, Yannaki E, Sakellari I, Politou M, Papassotiriou I. Soluble Urokinase-Type Plasminogen Activator Receptor (suPAR), Growth Differentiation Factor-15 (GDF-15), and Soluble C5b-9 (sC5b-9) Levels Are Significantly Associated with Endothelial Injury Indices in CAR-T Cell Recipients. Int J Mol Sci 2024; 25:11028. [PMID: 39456810 PMCID: PMC11507105 DOI: 10.3390/ijms252011028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/09/2024] [Accepted: 10/13/2024] [Indexed: 10/28/2024] Open
Abstract
Endothelial injury indices, such as Endothelial Activation and Stress Index (EASIX), modified EASIX (m-EASIX), and simplified EASIX (s-EASIX) scores, have been previously associated with chimeric antigen receptor-T (CAR-T) cell immunotherapy complications. Soluble urokinase-type plasminogen activator receptor (suPAR), growth differentiation factor-15 (GDF-15), and soluble C5b-9 (sC5b-9) have been described as markers of endothelial injury post-hematopoietic stem cell transplantation. In the current study, we examined whether suPAR, GDF-15, and sC5b-9 levels were associated with endothelial injury indices in adult CAR-T cell recipients. The levels of these markers were measured in patients before CAR-T cell infusion and in healthy individuals with immunoenzymatic methods. We studied 45 CAR-T cell recipients and 20 healthy individuals as the control group. SuPAR, GDF-15, and sC5b-9 levels were significantly higher in the patients' group compared to the healthy control group (p < 0.001, in all comparisons). SuPAR levels at baseline were associated with the m-EASIX scores calculated at the same time point (p = 0.020), while suPAR and GDF-15 concentrations were correlated with EASIX scores at day 14 post-infusion (p < 0.001 in both comparisons). Moreover, sC5b-9 levels were correlated with the s-EASIX scores at infusion (p = 0.008) and the EASIX scores at day 14 (p = 0.005). In our study, sC5b9, suPAR, and GDF-15 levels were found to reflect endothelial injury in CAR-T cell recipients.
Collapse
Affiliation(s)
- Eleni Gavriilaki
- BMT Unit, Hematology Department, George Papanicolaou General Hospital, 57010 Thessaloniki, Greece; (C.D.); (Z.B.); (I.B.); (A.V.); (D.M.); (E.-E.K.); (N.S.); (A.P.); (G.K.); (M.M.); (T.T.); (A.P.); (E.Y.); (I.S.)
- Second Propedeutic Department of Internal Medicine, Hippocration Hospital, Aristotle University of Thessaloniki, 54642 Thessaloniki, Greece;
| | - Christos Demosthenous
- BMT Unit, Hematology Department, George Papanicolaou General Hospital, 57010 Thessaloniki, Greece; (C.D.); (Z.B.); (I.B.); (A.V.); (D.M.); (E.-E.K.); (N.S.); (A.P.); (G.K.); (M.M.); (T.T.); (A.P.); (E.Y.); (I.S.)
| | - Paschalis Evangelidis
- Second Propedeutic Department of Internal Medicine, Hippocration Hospital, Aristotle University of Thessaloniki, 54642 Thessaloniki, Greece;
| | - Zoi Bousiou
- BMT Unit, Hematology Department, George Papanicolaou General Hospital, 57010 Thessaloniki, Greece; (C.D.); (Z.B.); (I.B.); (A.V.); (D.M.); (E.-E.K.); (N.S.); (A.P.); (G.K.); (M.M.); (T.T.); (A.P.); (E.Y.); (I.S.)
| | - Ioannis Batsis
- BMT Unit, Hematology Department, George Papanicolaou General Hospital, 57010 Thessaloniki, Greece; (C.D.); (Z.B.); (I.B.); (A.V.); (D.M.); (E.-E.K.); (N.S.); (A.P.); (G.K.); (M.M.); (T.T.); (A.P.); (E.Y.); (I.S.)
| | - Anna Vardi
- BMT Unit, Hematology Department, George Papanicolaou General Hospital, 57010 Thessaloniki, Greece; (C.D.); (Z.B.); (I.B.); (A.V.); (D.M.); (E.-E.K.); (N.S.); (A.P.); (G.K.); (M.M.); (T.T.); (A.P.); (E.Y.); (I.S.)
| | - Despina Mallouri
- BMT Unit, Hematology Department, George Papanicolaou General Hospital, 57010 Thessaloniki, Greece; (C.D.); (Z.B.); (I.B.); (A.V.); (D.M.); (E.-E.K.); (N.S.); (A.P.); (G.K.); (M.M.); (T.T.); (A.P.); (E.Y.); (I.S.)
| | - Eudoxia-Evaggelia Koravou
- BMT Unit, Hematology Department, George Papanicolaou General Hospital, 57010 Thessaloniki, Greece; (C.D.); (Z.B.); (I.B.); (A.V.); (D.M.); (E.-E.K.); (N.S.); (A.P.); (G.K.); (M.M.); (T.T.); (A.P.); (E.Y.); (I.S.)
| | - Nikolaos Spyridis
- BMT Unit, Hematology Department, George Papanicolaou General Hospital, 57010 Thessaloniki, Greece; (C.D.); (Z.B.); (I.B.); (A.V.); (D.M.); (E.-E.K.); (N.S.); (A.P.); (G.K.); (M.M.); (T.T.); (A.P.); (E.Y.); (I.S.)
| | - Alkistis Panteliadou
- BMT Unit, Hematology Department, George Papanicolaou General Hospital, 57010 Thessaloniki, Greece; (C.D.); (Z.B.); (I.B.); (A.V.); (D.M.); (E.-E.K.); (N.S.); (A.P.); (G.K.); (M.M.); (T.T.); (A.P.); (E.Y.); (I.S.)
| | - Georgios Karavalakis
- BMT Unit, Hematology Department, George Papanicolaou General Hospital, 57010 Thessaloniki, Greece; (C.D.); (Z.B.); (I.B.); (A.V.); (D.M.); (E.-E.K.); (N.S.); (A.P.); (G.K.); (M.M.); (T.T.); (A.P.); (E.Y.); (I.S.)
| | - Marianna Masmanidou
- BMT Unit, Hematology Department, George Papanicolaou General Hospital, 57010 Thessaloniki, Greece; (C.D.); (Z.B.); (I.B.); (A.V.); (D.M.); (E.-E.K.); (N.S.); (A.P.); (G.K.); (M.M.); (T.T.); (A.P.); (E.Y.); (I.S.)
| | - Tasoula Touloumenidou
- BMT Unit, Hematology Department, George Papanicolaou General Hospital, 57010 Thessaloniki, Greece; (C.D.); (Z.B.); (I.B.); (A.V.); (D.M.); (E.-E.K.); (N.S.); (A.P.); (G.K.); (M.M.); (T.T.); (A.P.); (E.Y.); (I.S.)
| | - Apostolia Papalexandri
- BMT Unit, Hematology Department, George Papanicolaou General Hospital, 57010 Thessaloniki, Greece; (C.D.); (Z.B.); (I.B.); (A.V.); (D.M.); (E.-E.K.); (N.S.); (A.P.); (G.K.); (M.M.); (T.T.); (A.P.); (E.Y.); (I.S.)
| | | | - Evangelia Yannaki
- BMT Unit, Hematology Department, George Papanicolaou General Hospital, 57010 Thessaloniki, Greece; (C.D.); (Z.B.); (I.B.); (A.V.); (D.M.); (E.-E.K.); (N.S.); (A.P.); (G.K.); (M.M.); (T.T.); (A.P.); (E.Y.); (I.S.)
| | - Ioanna Sakellari
- BMT Unit, Hematology Department, George Papanicolaou General Hospital, 57010 Thessaloniki, Greece; (C.D.); (Z.B.); (I.B.); (A.V.); (D.M.); (E.-E.K.); (N.S.); (A.P.); (G.K.); (M.M.); (T.T.); (A.P.); (E.Y.); (I.S.)
| | - Marianna Politou
- Thrombosis–Bleeding–Transfusion Medicine Postgraduate Studies, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece;
- Hematology Laboratory-Blood Bank, Aretaieion Hospital, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Ioannis Papassotiriou
- First Department of Pediatrics, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| |
Collapse
|
4
|
Liu X, Xu Z, Li S, Zhang X, Li J, Li H, Wang F. Naturally selected CD7-directed CAR-T bridging allo-HSCT in refractory acute myeloid leukemia: a case report and review. Front Immunol 2024; 15:1461908. [PMID: 39469704 PMCID: PMC11513260 DOI: 10.3389/fimmu.2024.1461908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 09/20/2024] [Indexed: 10/30/2024] Open
Abstract
Relapsed/refractory acute myeloid leukemia (R/R-AML) has a poor prognosis. CD7 is expressed in leukemic cells in 30% of patients with AML but not in normal myeloid cells. Therefore, it can be a potential target for immunotherapy in patients with R/R-AML. Naturally selected CD7-directed chimeric antigen receptor T cells (CAR-T) have promising effects against AML based on xenotransplantation models. We report a R/R-AML case that achieved complete remission with incomplete hematologic recovery with naturally selected CD7 CAR-T therapy. Allogeneic hematopoietic stem cell transplantation (allo-HSCT) as consolidation early after CAR T therapy, the patient experienced 12 months of disease-free survival to date. Our results confirmed that allogeneic hematopoietic stem cell transplantation after naturally selected CD7 CAR-T therapy can be a potential treatment for patients with CD7-positive R/R-AML.
Collapse
Affiliation(s)
- Xuan Liu
- Department of Hematology, The Second Hospital of Hebei Medical University, Hebei Key Laboratory of Hematology, Shijiazhuang, Hebei, China
| | - Zheng Xu
- Department of Hematology, The Second Hospital of Hebei Medical University, Hebei Key Laboratory of Hematology, Shijiazhuang, Hebei, China
| | - Shuhui Li
- Department of Hematology, The Second Hospital of Hebei Medical University, Hebei Key Laboratory of Hematology, Shijiazhuang, Hebei, China
| | - Xuejun Zhang
- Department of Hematology, The Second Hospital of Hebei Medical University, Hebei Key Laboratory of Hematology, Shijiazhuang, Hebei, China
| | - Jianqiang Li
- Hebei Senlang Biotechnology Co, Shijiazhuang, China
| | - Hang Li
- Department of Histology and Embryology, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Fuxu Wang
- Department of Hematology, The Second Hospital of Hebei Medical University, Hebei Key Laboratory of Hematology, Shijiazhuang, Hebei, China
| |
Collapse
|
5
|
Mo CC, Richardson E, Calabretta E, Corrado F, Kocoglu MH, Baron RM, Connors JM, Iacobelli M, Wei LJ, Rapoport AP, Díaz-Ricart M, Moraleda JM, Carlo-Stella C, Richardson PG. Endothelial injury and dysfunction with emerging immunotherapies in multiple myeloma, the impact of COVID-19, and endothelial protection with a focus on the evolving role of defibrotide. Blood Rev 2024; 66:101218. [PMID: 38852017 DOI: 10.1016/j.blre.2024.101218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 05/31/2024] [Accepted: 05/31/2024] [Indexed: 06/10/2024]
Abstract
Patients with multiple myeloma (MM) were among the groups impacted more severely by the COVID-19 pandemic, with higher rates of severe disease and COVID-19-related mortality. MM and COVID-19, plus post-acute sequelae of SARS-CoV-2 infection, are associated with endothelial dysfunction and injury, with overlapping inflammatory pathways and coagulopathies. Existing treatment options for MM, notably high-dose therapy with autologous stem cell transplantation and novel chimeric antigen receptor (CAR) T-cell therapies and bispecific T-cell engaging antibodies, are also associated with endothelial cell injury and mechanism-related toxicities. These pathologies include cytokine release syndrome (CRS) and neurotoxicity that may be exacerbated by underlying endotheliopathies. In the context of these overlapping risks, prophylaxis and treatment approaches mitigating the inflammatory and pro-coagulant effects of endothelial injury are important considerations for patient management, including cytokine receptor antagonists, thromboprophylaxis with low-molecular-weight heparin and direct oral anticoagulants, and direct endothelial protection with defibrotide in the appropriate clinical settings.
Collapse
Affiliation(s)
- Clifton C Mo
- Department of Medical Oncology, Dana-Farber Cancer Institute, Jerome Lipper Center for Multiple Myeloma Research, Harvard Medical School, Boston, MA, USA
| | - Edward Richardson
- Department of Medicine, Warren Alpert Medical School at Brown University, Providence, RI, USA
| | - Eleonora Calabretta
- Department of Biomedical Sciences, Humanitas University, and IRCCS Humanitas Research Hospital, Milan, Italy; Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Francesco Corrado
- Department of Medical Oncology, Dana-Farber Cancer Institute, Jerome Lipper Center for Multiple Myeloma Research, Harvard Medical School, Boston, MA, USA; Department of Biomedical Sciences, Humanitas University, and IRCCS Humanitas Research Hospital, Milan, Italy; Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA
| | - Mehmet H Kocoglu
- Department of Medicine, University of Maryland School of Medicine, and Transplant and Cellular Therapy Program, University of Maryland Greenebaum Comprehensive Cancer Center, Baltimore, MD, USA
| | - Rebecca M Baron
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | | | | | - Lee-Jen Wei
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Aaron P Rapoport
- Department of Medicine, University of Maryland School of Medicine, and Transplant and Cellular Therapy Program, University of Maryland Greenebaum Comprehensive Cancer Center, Baltimore, MD, USA
| | - Maribel Díaz-Ricart
- Hematopathology, Pathology Department, CDB, Hospital Clinic, and IDIBAPS, Barcelona, Spain, and Barcelona Endothelium Team, Barcelona, Spain
| | - José M Moraleda
- Department of Medicine, Faculty of Medicine, Institute of Biomedical Research (IMIB-Pascual Parrilla), University of Murcia, Murcia, Spain
| | - Carmelo Carlo-Stella
- Department of Biomedical Sciences, Humanitas University, and IRCCS Humanitas Research Hospital, Milan, Italy
| | - Paul G Richardson
- Department of Medical Oncology, Dana-Farber Cancer Institute, Jerome Lipper Center for Multiple Myeloma Research, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
6
|
Dolgyras P, Anyfanti P, Lazaridis A, Gavriilaki E, Koletsos N, Triantafyllou A, Barbara N, Mastrogiannis K, Yiannaki E, Papakonstantinou A, Galanapoulou V, Douma S, Gkaliagkousi E. Endothelial dysfunction and complement activation are independently associated with disease duration in patients with systemic vasculitis. Microvasc Res 2024; 154:104692. [PMID: 38705254 DOI: 10.1016/j.mvr.2024.104692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/18/2024] [Accepted: 04/30/2024] [Indexed: 05/07/2024]
Abstract
OBJECTIVES Systemic vasculitis is a heterogenous group of autoimmune diseases characterized by enhanced cardiovascular mortality. Endothelial dysfunction is associated with accelerated vascular damage, representing a core pathophysiologic mechanism contributing to excess CV risk. Recent studies have also shown that complement activation holds significant role in the pathogenesis of Anti-Neutrophilic Cytoplasmic Autoantibody (ANCA) -associated vasculitis (AAV). Given the potential crosstalk between the endothelium and complement, we aimed to assess, for the first time simultaneously, easily accessible biomarkers of endothelial dysfunction and complement activation in SV. METHODS We measured circulating endothelial microvesicles (EMVs) and soluble complement components representative of alternative, classical and terminal activation (C5b-9, C1q, Bb fragments, respectively) in a meticulously selected group of patients with systemic vasculitis, but without cardiovascular disease. Individuals free from systemic diseases, who were matched with patients for cardiovascular risk factors(hypertension, diabetes, smoking, dyslipidemia), comprised the control group. RESULTS We studied 60 individuals (30 in each group). Patients with systemic vasculitis had elevated EMVs, higher levels of C5b-9 [536.4(463.4) vs 1200.94457.3), p = 0.003] and C1q [136.2(146.5 vs 204.2(232.9), p = 0.0129], compared to controls [232.0 (243.5) vs 139.3(52.1), p < 0.001]. In multivariate analysis both EMVs and C5b-9 were independently associated with disease duration (p = 0.005 and p = 0.004 respectively), yet not with disease activity. CONCLUSION Patients with systemic vasculitis exhibit impaired endothelial function and complement activation, both assessed by easily accessible biomarkers, even in the absence of cardiovascular disease manifestations. EMVs and soluble complement components such as C5b-9 and C1q could be used as early biomarkers of endothelial dysfunction and complement activation, respectively, in clinical practice during the course of SV, yet their predictive value in terms of future cardiovascular disease warrants further verification in appropriately designed studies.
Collapse
Affiliation(s)
- Panagiotis Dolgyras
- 3rd Department of Internal Medicine, Papageorgiou Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece.
| | - Panagiota Anyfanti
- 3rd Department of Internal Medicine, Papageorgiou Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Antonios Lazaridis
- 3rd Department of Internal Medicine, Papageorgiou Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Eleni Gavriilaki
- 3rd Department of Internal Medicine, Papageorgiou Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Nikolaos Koletsos
- 3rd Department of Internal Medicine, Papageorgiou Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Areti Triantafyllou
- 3rd Department of Internal Medicine, Papageorgiou Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Nikolaidou Barbara
- 3rd Department of Internal Medicine, Papageorgiou Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Konstantinos Mastrogiannis
- 3rd Department of Internal Medicine, Papageorgiou Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Efi Yiannaki
- Hematology Laboratory, Theagenion Cancer Center, Thessaloniki, Greece
| | - Anna Papakonstantinou
- Faculty of Health Sciences, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | | | - Stella Douma
- 3rd Department of Internal Medicine, Papageorgiou Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Eugenia Gkaliagkousi
- 3rd Department of Internal Medicine, Papageorgiou Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
7
|
Zhang Q, Zhu X, Xiao Y. The critical role of endothelial cell in the toxicity associated with chimeric antigen receptor T cell therapy and intervention strategies. Ann Hematol 2024; 103:2197-2206. [PMID: 38329486 PMCID: PMC11224091 DOI: 10.1007/s00277-024-05640-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 01/21/2024] [Indexed: 02/09/2024]
Abstract
Chimeric antigen receptor (CAR)-T cell therapy has shown promising results in patients with hematological malignancies. However, many patients still have poor prognoses or even fatal outcomes due to the life-threatening toxicities associated with the therapy. Moreover, even after improving the known influencing factors (such as number or type of CAR-T infusion) related to CAR-T cell infusion, the results remain unsatisfactory. In recent years, it has been found that endothelial cells (ECs), which are key components of the organization, play a crucial role in various aspects of immune system activation and inflammatory response. The levels of typical markers of endothelial activation positively correlated with the severity of cytokine release syndrome (CRS) and immune effector cell-associated neurotoxic syndrome (ICANS), suggesting that ECs are important targets for intervention and toxicity prevention. This review focuses on the critical role of ECs in CRS and ICANS and the intervention strategies adopted.
Collapse
Affiliation(s)
- Qi Zhang
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xiaojian Zhu
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| | - Yi Xiao
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
8
|
Evangelidis P, Evangelidis N, Kalmoukos P, Kourti M, Tragiannidis A, Gavriilaki E. Genetic Susceptibility in Endothelial Injury Syndromes after Hematopoietic Cell Transplantation and Other Cellular Therapies: Climbing a Steep Hill. Curr Issues Mol Biol 2024; 46:4787-4802. [PMID: 38785556 PMCID: PMC11119915 DOI: 10.3390/cimb46050288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 05/10/2024] [Accepted: 05/14/2024] [Indexed: 05/25/2024] Open
Abstract
Hematopoietic stem cell transplantation (HSCT) remains a cornerstone in the management of patients with hematological malignancies. Endothelial injury syndromes, such as HSCT-associated thrombotic microangiopathy (HSCT-TMA), veno-occlusive disease/sinusoidal obstruction syndrome (SOS/VOD), and capillary leak syndrome (CLS), constitute complications after HSCT. Moreover, endothelial damage is prevalent after immunotherapy with chimeric antigen receptor-T (CAR-T) and can be manifested with cytokine release syndrome (CRS) or immune effector cell-associated neurotoxicity syndrome (ICANS). Our literature review aims to investigate the genetic susceptibility in endothelial injury syndromes after HSCT and CAR-T cell therapy. Variations in complement pathway- and endothelial function-related genes have been associated with the development of HSCT-TMA. In these genes, CFHR5, CFHR1, CFHR3, CFI, ADAMTS13, CFB, C3, C4, C5, and MASP1 are included. Thus, patients with these variations might have a predisposition to complement activation, which is also exaggerated by other factors (such as acute graft-versus-host disease, infections, and calcineurin inhibitors). Few studies have examined the genetic susceptibility to SOS/VOD syndrome, and the implicated genes include CFH, methylenetetrahydrofolate reductase, and heparinase. Finally, specific mutations have been associated with the onset of CRS (PFKFB4, CX3CR1) and ICANS (PPM1D, DNMT3A, TE2, ASXL1). More research is essential in this field to achieve better outcomes for our patients.
Collapse
Affiliation(s)
- Paschalis Evangelidis
- 2nd Propedeutic Department of Internal Medicine, Hippocration Hospital, Aristotle University of Thessaloniki, 54642 Thessaloniki, Greece; (P.E.); (N.E.); (P.K.)
| | - Nikolaos Evangelidis
- 2nd Propedeutic Department of Internal Medicine, Hippocration Hospital, Aristotle University of Thessaloniki, 54642 Thessaloniki, Greece; (P.E.); (N.E.); (P.K.)
| | - Panagiotis Kalmoukos
- 2nd Propedeutic Department of Internal Medicine, Hippocration Hospital, Aristotle University of Thessaloniki, 54642 Thessaloniki, Greece; (P.E.); (N.E.); (P.K.)
| | - Maria Kourti
- 3rd Department of Pediatrics, Hippocration Hospital, Aristotle University of Thessaloniki, 54642 Thessaloniki, Greece;
| | - Athanasios Tragiannidis
- 2nd Department of Pediatrics, AHEPA University Hospital, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece;
| | - Eleni Gavriilaki
- 2nd Propedeutic Department of Internal Medicine, Hippocration Hospital, Aristotle University of Thessaloniki, 54642 Thessaloniki, Greece; (P.E.); (N.E.); (P.K.)
| |
Collapse
|
9
|
Strongyli E, Evangelidis P, Sakellari I, Gavriilaki M, Gavriilaki E. Change in Neurocognitive Function in Patients Who Receive CAR-T Cell Therapies: A Steep Hill to Climb. Pharmaceuticals (Basel) 2024; 17:591. [PMID: 38794161 PMCID: PMC11123727 DOI: 10.3390/ph17050591] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/01/2024] [Accepted: 05/02/2024] [Indexed: 05/26/2024] Open
Abstract
Immunotherapy with chimeric antigen receptor T (CAR-T) cell therapies has brought substantial improvement in clinical outcomes in patients with relapsed/refractory B cell neoplasms. However, complications such as cytokine release syndrome (CRS) and immune effector cell-associated neurotoxicity syndrome (ICANS) limit the therapeutic efficacy of this treatment approach. ICANS can have a broad range of clinical manifestations, while various scoring systems have been developed for its grading. Cognitive decline is prevalent in CAR-T therapy recipients including impaired attention, difficulty in item naming, and writing, agraphia, and executive dysfunction. In this review, we aim to present the diagnostic methods and tests that have been used for the recognition of cognitive impairment in these patients. Moreover, up-to-date data about the duration of cognitive impairment symptoms after the infusion are presented. More research on the risk factors, pathogenesis, preventive measures, and therapy of neurocognitive impairment is crucial for better outcomes for our patients.
Collapse
Affiliation(s)
- Evlampia Strongyli
- Hematology Department and Bone Marrow Transplant (BMT) Unit, G. Papanicolaou Hospital, 57010 Thessaloniki, Greece; (E.S.); (I.S.)
| | - Paschalis Evangelidis
- Second Propedeutic Department of Internal Medicine, Hippocration Hospital, Aristotle University of Thessaloniki, 54642 Thessaloniki, Greece;
| | - Ioanna Sakellari
- Hematology Department and Bone Marrow Transplant (BMT) Unit, G. Papanicolaou Hospital, 57010 Thessaloniki, Greece; (E.S.); (I.S.)
| | - Maria Gavriilaki
- 1st Department of Neurology, AHEPA University Hospital, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece;
| | - Eleni Gavriilaki
- Hematology Department and Bone Marrow Transplant (BMT) Unit, G. Papanicolaou Hospital, 57010 Thessaloniki, Greece; (E.S.); (I.S.)
- Second Propedeutic Department of Internal Medicine, Hippocration Hospital, Aristotle University of Thessaloniki, 54642 Thessaloniki, Greece;
| |
Collapse
|
10
|
Gavriilaki E. Hematology: the specialty with a record number of new approvals. Front Med (Lausanne) 2024; 11:1385052. [PMID: 38487026 PMCID: PMC10937422 DOI: 10.3389/fmed.2024.1385052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 02/19/2024] [Indexed: 03/17/2024] Open
Affiliation(s)
- Eleni Gavriilaki
- 2nd Propedeutic Department of Internal Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
11
|
Yang S, Xu J, Dai Y, Jin S, Sun Y, Li J, Liu C, Ma X, Chen Z, Chen L, Hou J, Mi JQ, Chen SJ. Neutrophil activation and clonal CAR-T re-expansion underpinning cytokine release syndrome during ciltacabtagene autoleucel therapy in multiple myeloma. Nat Commun 2024; 15:360. [PMID: 38191582 PMCID: PMC10774397 DOI: 10.1038/s41467-023-44648-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 12/21/2023] [Indexed: 01/10/2024] Open
Abstract
Cytokine release syndrome (CRS) is the most common complication of chimeric antigen receptor redirected T cells (CAR-T) therapy. CAR-T toxicity management has been greatly improved, but CRS remains a prime safety concern. Here we follow serum cytokine levels and circulating immune cell transcriptomes longitudinally in 26 relapsed/refractory multiple myeloma patients receiving the CAR-T product, ciltacabtagene autoleucel, to understand the immunological kinetics of CRS. We find that although T lymphocytes and monocytes/macrophages are the major overall cytokine source in manifest CRS, neutrophil activation peaks earlier, before the onset of severe symptoms. Intracellularly, signaling activation dominated by JAK/STAT pathway occurred prior to cytokine cascade and displayed regular kinetic changes. CRS severity is accurately described and potentially predicted by temporal cytokine secretion signatures. Notably, CAR-T re-expansion is found in three patients, including a fatal case characterized by somatic TET2-mutation, clonal expanded cytotoxic CAR-T, broadened cytokine profiles and irreversible hepatic toxicity. Together, our findings show that a latent phase with distinct immunological changes precedes manifest CRS, providing an optimal window and potential targets for CRS therapeutic intervention and that CAR-T re-expansion warrants close clinical attention and laboratory investigation to mitigate the lethal risk.
Collapse
Affiliation(s)
- Shuangshuang Yang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Jie Xu
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yuting Dai
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Shiwei Jin
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yan Sun
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Jianfeng Li
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Chenglin Liu
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Xiaolin Ma
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Zhu Chen
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Lijuan Chen
- Department of Hematology, First affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, China
| | - Jian Hou
- Department of Hematology, Ren Ji Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Jian-Qing Mi
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Sai-Juan Chen
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
12
|
Palomo M, Moreno-Castaño AB, Salas MQ, Escribano-Serrat S, Rovira M, Guillen-Olmos E, Fernandez S, Ventosa-Capell H, Youssef L, Crispi F, Nomdedeu M, Martinez-Sanchez J, De Moner B, Diaz-Ricart M. Endothelial activation and damage as a common pathological substrate in different pathologies and cell therapy complications. Front Med (Lausanne) 2023; 10:1285898. [PMID: 38034541 PMCID: PMC10682735 DOI: 10.3389/fmed.2023.1285898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 10/30/2023] [Indexed: 12/02/2023] Open
Abstract
The endothelium is a biologically active interface with multiple functions, some of them common throughout the vascular tree, and others that depend on its anatomical location. Endothelial cells are continually exposed to cellular and humoral factors, and to all those elements (biological, chemical, or hemodynamic) that circulate in blood at a certain time. It can adapt to different stimuli but this capability may be lost if the stimuli are strong enough and/or persistent in time. If the endothelium loses its adaptability it may become dysfunctional, becoming a potential real danger to the host. Endothelial dysfunction is present in multiple clinical conditions, such as chronic kidney disease, obesity, major depression, pregnancy-related complications, septic syndromes, COVID-19, and thrombotic microangiopathies, among other pathologies, but also in association with cell therapies, such as hematopoietic stem cell transplantation and treatment with chimeric antigen receptor T cells. In these diverse conditions, evidence suggests that the presence and severity of endothelial dysfunction correlate with the severity of the associated disease. More importantly, endothelial dysfunction has a strong diagnostic and prognostic value for the development of critical complications that, although may differ according to the underlying disease, have a vascular background in common. Our multidisciplinary team of women has devoted many years to exploring the role of the endothelium in association with the mentioned diseases and conditions. Our research group has characterized some of the mechanisms and also proposed biomarkers of endothelial damage. A better knowledge would provide therapeutic strategies either to prevent or to treat endothelial dysfunction.
Collapse
Affiliation(s)
- Marta Palomo
- Hemostasis and Erythropathology Laboratory, Centre de Diagnòstic Biomèdic, Hospital Clínic de Barcelona, Institut de Recerca August Pi Sunyer, University of Barcelona, Barcelona, Spain
- Hematology External Quality Assessment Laboratory, Centre de Diagnòstic Biomèdic, Hospital Clínic de Barcelona, Barcelona, Spain
| | - Ana Belén Moreno-Castaño
- Hemostasis and Erythropathology Laboratory, Centre de Diagnòstic Biomèdic, Hospital Clínic de Barcelona, Institut de Recerca August Pi Sunyer, University of Barcelona, Barcelona, Spain
| | - María Queralt Salas
- Hematopoietic Stem Cell Transplantation Unit, Hematology Department, Institute of Cancer and Blood Diseases, Hospital Clínic de Barcelona, Institut de Recerca August Pi Sunyer, Barcelona, Spain
| | - Silvia Escribano-Serrat
- Hemostasis and Erythropathology Laboratory, Centre de Diagnòstic Biomèdic, Hospital Clínic de Barcelona, Institut de Recerca August Pi Sunyer, University of Barcelona, Barcelona, Spain
| | - Montserrat Rovira
- Hematopoietic Stem Cell Transplantation Unit, Hematology Department, Institute of Cancer and Blood Diseases, Hospital Clínic de Barcelona, Institut de Recerca August Pi Sunyer, Barcelona, Spain
| | - Elena Guillen-Olmos
- Department of Nephrology and Kidney Transplantation, Hospital Clínic de Barcelona, Centro de Referencia en Enfermedad Glomerular Compleja del Sistema Nacional de Salud (CSUR), University of Barcelona, Barcelona, Spain
| | - Sara Fernandez
- Medical Intensive Care Unit, Hospital Clínic de Barcelona, Barcelona, Spain
| | | | - Lina Youssef
- BCNatal – Barcelona Center for Maternal Fetal and Neonatal Medicine, Hospital Clínic de Barcelona and Hospital Sant Joan de Déu, Institut de Recerca August Pi Sunyer, University of Barcelona, Barcelona, Spain
- Josep Carreras Leukaemia Research Institute, Hospital Clinic, University of Barcelona, Barcelona, Spain
| | - Fatima Crispi
- BCNatal – Barcelona Center for Maternal Fetal and Neonatal Medicine, Hospital Clínic de Barcelona and Hospital Sant Joan de Déu, Institut de Recerca August Pi Sunyer, University of Barcelona, Barcelona, Spain
- Centre for Biomedical Research on Rare Diseases (CIBER-ER), Madrid, Spain
| | - Meritxell Nomdedeu
- Hemostasis and Hemotherapy Department, Institute of Cancer and Blood Diseases, Hospital Clínic de Barcelona, Barcelona, Spain
| | - Julia Martinez-Sanchez
- Hemostasis and Erythropathology Laboratory, Centre de Diagnòstic Biomèdic, Hospital Clínic de Barcelona, Institut de Recerca August Pi Sunyer, University of Barcelona, Barcelona, Spain
| | - Blanca De Moner
- Hemostasis and Erythropathology Laboratory, Centre de Diagnòstic Biomèdic, Hospital Clínic de Barcelona, Institut de Recerca August Pi Sunyer, University of Barcelona, Barcelona, Spain
- Josep Carreras Leukaemia Research Institute, Hospital Clinic, University of Barcelona, Barcelona, Spain
| | - Maribel Diaz-Ricart
- Hemostasis and Erythropathology Laboratory, Centre de Diagnòstic Biomèdic, Hospital Clínic de Barcelona, Institut de Recerca August Pi Sunyer, University of Barcelona, Barcelona, Spain
| |
Collapse
|
13
|
Huang S, de Jong D, Das JP, Widemon RS, Braumuller B, Paily J, Deng A, Liou C, Roa T, Huang A, Ma H, D'Souza B, Leb J, L'Hereaux J, Nguyen P, Luk L, Francescone M, Yeh R, Maccarrone V, Dercle L, Salvatore MM, Capaccione KM. Imaging the Side Effects of CAR T Cell Therapy: A Primer for the Practicing Radiologist. Acad Radiol 2023; 30:2712-2727. [PMID: 37394411 DOI: 10.1016/j.acra.2023.04.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 04/02/2023] [Accepted: 04/03/2023] [Indexed: 07/04/2023]
Abstract
Chimeric antigen receptor (CAR) T cell therapy is a revolutionary form of immunotherapy that has proven to be efficacious in the treatment of many hematologic cancers. CARs are modified T lymphocytes that express an artificial receptor specific to a tumor-associated antigen. These engineered cells are then reintroduced to upregulate the host immune responses and eradicate malignant cells. While the use of CAR T cell therapy is rapidly expanding, little is known about how common side effects such as cytokine release syndrome (CRS) and immune effector cell-associated neurotoxicity (ICANS) present radiographically. Here we provide a comprehensive review of how side effects present in different organ systems and how they can be optimally imaged. Early and accurate recognition of the radiographic presentation of these side effects is critical to the practicing radiologist and their patients so that these side effects can be promptly identified and treated.
Collapse
Affiliation(s)
- Sophia Huang
- Department of Radiology, Columbia University Irving Medical Center, 622 W 168th Street, New York, New York 10032 (S.H., R.S.W., B.B., J.P., C.L., T.R., A.H., H.M., B.D.S., J.L., J.L.H., P.N., L.L., M.F., V.M., L.D., M.S., K.M.C.)
| | - Dorine de Jong
- Department of Immunology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, New York 10065 (D.J.)
| | - Jeeban P Das
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, New York 10065 (J.D., R.Y.)
| | - Reginald Scott Widemon
- Department of Radiology, Columbia University Irving Medical Center, 622 W 168th Street, New York, New York 10032 (S.H., R.S.W., B.B., J.P., C.L., T.R., A.H., H.M., B.D.S., J.L., J.L.H., P.N., L.L., M.F., V.M., L.D., M.S., K.M.C.)
| | - Brian Braumuller
- Department of Radiology, Columbia University Irving Medical Center, 622 W 168th Street, New York, New York 10032 (S.H., R.S.W., B.B., J.P., C.L., T.R., A.H., H.M., B.D.S., J.L., J.L.H., P.N., L.L., M.F., V.M., L.D., M.S., K.M.C.)
| | - Jacienta Paily
- Department of Radiology, Columbia University Irving Medical Center, 622 W 168th Street, New York, New York 10032 (S.H., R.S.W., B.B., J.P., C.L., T.R., A.H., H.M., B.D.S., J.L., J.L.H., P.N., L.L., M.F., V.M., L.D., M.S., K.M.C.)
| | - Aileen Deng
- Department of Hematology and Oncology, Novant Health, 170 Medical Park Road, Mooresville, North Carolina 28117 (A.D.)
| | - Connie Liou
- Department of Radiology, Columbia University Irving Medical Center, 622 W 168th Street, New York, New York 10032 (S.H., R.S.W., B.B., J.P., C.L., T.R., A.H., H.M., B.D.S., J.L., J.L.H., P.N., L.L., M.F., V.M., L.D., M.S., K.M.C.)
| | - Tina Roa
- Department of Radiology, Columbia University Irving Medical Center, 622 W 168th Street, New York, New York 10032 (S.H., R.S.W., B.B., J.P., C.L., T.R., A.H., H.M., B.D.S., J.L., J.L.H., P.N., L.L., M.F., V.M., L.D., M.S., K.M.C.)
| | - Alice Huang
- Department of Radiology, Columbia University Irving Medical Center, 622 W 168th Street, New York, New York 10032 (S.H., R.S.W., B.B., J.P., C.L., T.R., A.H., H.M., B.D.S., J.L., J.L.H., P.N., L.L., M.F., V.M., L.D., M.S., K.M.C.)
| | - Hong Ma
- Department of Radiology, Columbia University Irving Medical Center, 622 W 168th Street, New York, New York 10032 (S.H., R.S.W., B.B., J.P., C.L., T.R., A.H., H.M., B.D.S., J.L., J.L.H., P.N., L.L., M.F., V.M., L.D., M.S., K.M.C.)
| | - Belinda D'Souza
- Department of Radiology, Columbia University Irving Medical Center, 622 W 168th Street, New York, New York 10032 (S.H., R.S.W., B.B., J.P., C.L., T.R., A.H., H.M., B.D.S., J.L., J.L.H., P.N., L.L., M.F., V.M., L.D., M.S., K.M.C.)
| | - Jay Leb
- Department of Radiology, Columbia University Irving Medical Center, 622 W 168th Street, New York, New York 10032 (S.H., R.S.W., B.B., J.P., C.L., T.R., A.H., H.M., B.D.S., J.L., J.L.H., P.N., L.L., M.F., V.M., L.D., M.S., K.M.C.)
| | - Jade L'Hereaux
- Department of Radiology, Columbia University Irving Medical Center, 622 W 168th Street, New York, New York 10032 (S.H., R.S.W., B.B., J.P., C.L., T.R., A.H., H.M., B.D.S., J.L., J.L.H., P.N., L.L., M.F., V.M., L.D., M.S., K.M.C.)
| | - Pamela Nguyen
- Department of Radiology, Columbia University Irving Medical Center, 622 W 168th Street, New York, New York 10032 (S.H., R.S.W., B.B., J.P., C.L., T.R., A.H., H.M., B.D.S., J.L., J.L.H., P.N., L.L., M.F., V.M., L.D., M.S., K.M.C.)
| | - Lyndon Luk
- Department of Radiology, Columbia University Irving Medical Center, 622 W 168th Street, New York, New York 10032 (S.H., R.S.W., B.B., J.P., C.L., T.R., A.H., H.M., B.D.S., J.L., J.L.H., P.N., L.L., M.F., V.M., L.D., M.S., K.M.C.)
| | - Mark Francescone
- Department of Radiology, Columbia University Irving Medical Center, 622 W 168th Street, New York, New York 10032 (S.H., R.S.W., B.B., J.P., C.L., T.R., A.H., H.M., B.D.S., J.L., J.L.H., P.N., L.L., M.F., V.M., L.D., M.S., K.M.C.)
| | - Randy Yeh
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, New York 10065 (J.D., R.Y.)
| | - Valerie Maccarrone
- Department of Radiology, Columbia University Irving Medical Center, 622 W 168th Street, New York, New York 10032 (S.H., R.S.W., B.B., J.P., C.L., T.R., A.H., H.M., B.D.S., J.L., J.L.H., P.N., L.L., M.F., V.M., L.D., M.S., K.M.C.)
| | - Laurent Dercle
- Department of Radiology, Columbia University Irving Medical Center, 622 W 168th Street, New York, New York 10032 (S.H., R.S.W., B.B., J.P., C.L., T.R., A.H., H.M., B.D.S., J.L., J.L.H., P.N., L.L., M.F., V.M., L.D., M.S., K.M.C.)
| | - Mary M Salvatore
- Department of Radiology, Columbia University Irving Medical Center, 622 W 168th Street, New York, New York 10032 (S.H., R.S.W., B.B., J.P., C.L., T.R., A.H., H.M., B.D.S., J.L., J.L.H., P.N., L.L., M.F., V.M., L.D., M.S., K.M.C.)
| | - Kathleen M Capaccione
- Department of Radiology, Columbia University Irving Medical Center, 622 W 168th Street, New York, New York 10032 (S.H., R.S.W., B.B., J.P., C.L., T.R., A.H., H.M., B.D.S., J.L., J.L.H., P.N., L.L., M.F., V.M., L.D., M.S., K.M.C.).
| |
Collapse
|
14
|
Gavriilaki E, Mallouri D, Bousiou Z, Demosthenous C, Vardi A, Dolgyras P, Batsis I, Stroggyli E, Karvouni P, Masmanidou M, Gavriilaki M, Bouinta A, Bitsianis S, Kapravelos N, Bitzani M, Vasileiadou G, Yannaki E, Sotiropoulos D, Papagiannopoulos S, Kazis D, Kimiskidis V, Anagnostopoulos A, Sakellari I. Molecular and Clinical Characteristics of Different Toxicity Rates in Anti-CD19 Chimeric Antigen Receptor T Cells: Real-World Experience. Cancers (Basel) 2023; 15:4253. [PMID: 37686529 PMCID: PMC10487155 DOI: 10.3390/cancers15174253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/21/2023] [Accepted: 08/22/2023] [Indexed: 09/10/2023] Open
Abstract
Commercially available anti-CD19 chimeric antigen receptor T cells (CARΤ cells) have offered long-term survival to a constantly expanding patient population. Given that novel toxicities including cytokine release syndrome (CRS) and neurotoxicity (ICANS) have been observed, we aimed to document the safety and toxicity of this treatment in a real-world study. We enrolled 31 adult patients referred to our center for CAR T therapy. Tisagenlecleucel was infused in 12 patients, axicabtagene ciloleucel in 14, and brexucabtagene autoleucel in 5. Cytokine release syndrome was noted in 26 patients while neurotoxicity was observed in 7. Tocilizumab was administered for CRS in 18 patients, along with short-term, low-dose steroid administration in one patient who developed grade III CRS and, subsequently, grade I ICANS. High-dose steroids, along with anakinra and siltuximab, were administered in only two MCL patients. With a median follow-up time of 13.4 months, nine patients were then in CR. The progression-free (PFS) and overall survival (OS) rates were 41.2% and 88.1% at one year, respectively. MCL diagnosis, which coincides with the administration of brexucabtagene autoleucel, was the only factor to be independently associated with poor OS (p < 0.001); meanwhile, increased LDH independently predicted PFS (p = 0.027).In addition, CRP at day 14 was associated with a poor OS (p = 0.001). Therefore, our real-world experience confirmed that commercial CAR T therapy can be administered with minimal toxicity.
Collapse
Affiliation(s)
- E. Gavriilaki
- Hematology Department and Bone Marrow Transplant (BMT) Unit, G. Papanicolaou Hospital, 57010 Thessaloniki, Greece; (D.M.); (Z.B.); (C.D.); (A.V.); (P.D.); (I.B.); (E.S.); (M.M.); (A.B.); (E.Y.); (D.S.); (A.A.); (I.S.)
- Medical School, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece;
| | - D. Mallouri
- Hematology Department and Bone Marrow Transplant (BMT) Unit, G. Papanicolaou Hospital, 57010 Thessaloniki, Greece; (D.M.); (Z.B.); (C.D.); (A.V.); (P.D.); (I.B.); (E.S.); (M.M.); (A.B.); (E.Y.); (D.S.); (A.A.); (I.S.)
| | - Z. Bousiou
- Hematology Department and Bone Marrow Transplant (BMT) Unit, G. Papanicolaou Hospital, 57010 Thessaloniki, Greece; (D.M.); (Z.B.); (C.D.); (A.V.); (P.D.); (I.B.); (E.S.); (M.M.); (A.B.); (E.Y.); (D.S.); (A.A.); (I.S.)
| | - C. Demosthenous
- Hematology Department and Bone Marrow Transplant (BMT) Unit, G. Papanicolaou Hospital, 57010 Thessaloniki, Greece; (D.M.); (Z.B.); (C.D.); (A.V.); (P.D.); (I.B.); (E.S.); (M.M.); (A.B.); (E.Y.); (D.S.); (A.A.); (I.S.)
| | - A. Vardi
- Hematology Department and Bone Marrow Transplant (BMT) Unit, G. Papanicolaou Hospital, 57010 Thessaloniki, Greece; (D.M.); (Z.B.); (C.D.); (A.V.); (P.D.); (I.B.); (E.S.); (M.M.); (A.B.); (E.Y.); (D.S.); (A.A.); (I.S.)
| | - P. Dolgyras
- Hematology Department and Bone Marrow Transplant (BMT) Unit, G. Papanicolaou Hospital, 57010 Thessaloniki, Greece; (D.M.); (Z.B.); (C.D.); (A.V.); (P.D.); (I.B.); (E.S.); (M.M.); (A.B.); (E.Y.); (D.S.); (A.A.); (I.S.)
| | - I. Batsis
- Hematology Department and Bone Marrow Transplant (BMT) Unit, G. Papanicolaou Hospital, 57010 Thessaloniki, Greece; (D.M.); (Z.B.); (C.D.); (A.V.); (P.D.); (I.B.); (E.S.); (M.M.); (A.B.); (E.Y.); (D.S.); (A.A.); (I.S.)
| | - E. Stroggyli
- Hematology Department and Bone Marrow Transplant (BMT) Unit, G. Papanicolaou Hospital, 57010 Thessaloniki, Greece; (D.M.); (Z.B.); (C.D.); (A.V.); (P.D.); (I.B.); (E.S.); (M.M.); (A.B.); (E.Y.); (D.S.); (A.A.); (I.S.)
| | - P. Karvouni
- Medical School, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece;
| | - M. Masmanidou
- Hematology Department and Bone Marrow Transplant (BMT) Unit, G. Papanicolaou Hospital, 57010 Thessaloniki, Greece; (D.M.); (Z.B.); (C.D.); (A.V.); (P.D.); (I.B.); (E.S.); (M.M.); (A.B.); (E.Y.); (D.S.); (A.A.); (I.S.)
| | - M. Gavriilaki
- 1st Department of Neurology, AHEPA University Hospital, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (M.G.); (V.K.)
| | - A. Bouinta
- Hematology Department and Bone Marrow Transplant (BMT) Unit, G. Papanicolaou Hospital, 57010 Thessaloniki, Greece; (D.M.); (Z.B.); (C.D.); (A.V.); (P.D.); (I.B.); (E.S.); (M.M.); (A.B.); (E.Y.); (D.S.); (A.A.); (I.S.)
| | - S. Bitsianis
- Department of Surgery, G. Papanicolaou Hospital, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece;
| | - N. Kapravelos
- 1st Intensive Care Unit, G. Papanicolaou Hospital, 57010 Thessaloniki, Greece; (N.K.); (G.V.)
| | - M. Bitzani
- 2nd Intensive Care Unit, G. Papanicolaou Hospital, 57010 Thessaloniki, Greece; (M.B.); (S.P.)
| | - G. Vasileiadou
- 1st Intensive Care Unit, G. Papanicolaou Hospital, 57010 Thessaloniki, Greece; (N.K.); (G.V.)
| | - E. Yannaki
- Hematology Department and Bone Marrow Transplant (BMT) Unit, G. Papanicolaou Hospital, 57010 Thessaloniki, Greece; (D.M.); (Z.B.); (C.D.); (A.V.); (P.D.); (I.B.); (E.S.); (M.M.); (A.B.); (E.Y.); (D.S.); (A.A.); (I.S.)
| | - D. Sotiropoulos
- Hematology Department and Bone Marrow Transplant (BMT) Unit, G. Papanicolaou Hospital, 57010 Thessaloniki, Greece; (D.M.); (Z.B.); (C.D.); (A.V.); (P.D.); (I.B.); (E.S.); (M.M.); (A.B.); (E.Y.); (D.S.); (A.A.); (I.S.)
| | - S. Papagiannopoulos
- 2nd Intensive Care Unit, G. Papanicolaou Hospital, 57010 Thessaloniki, Greece; (M.B.); (S.P.)
| | - D. Kazis
- 3rd Department of Neurology, AHEPA University Hospital, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece;
| | - V. Kimiskidis
- Hematology Department and Bone Marrow Transplant (BMT) Unit, G. Papanicolaou Hospital, 57010 Thessaloniki, Greece; (D.M.); (Z.B.); (C.D.); (A.V.); (P.D.); (I.B.); (E.S.); (M.M.); (A.B.); (E.Y.); (D.S.); (A.A.); (I.S.)
- 1st Department of Neurology, AHEPA University Hospital, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (M.G.); (V.K.)
| | - A. Anagnostopoulos
- Hematology Department and Bone Marrow Transplant (BMT) Unit, G. Papanicolaou Hospital, 57010 Thessaloniki, Greece; (D.M.); (Z.B.); (C.D.); (A.V.); (P.D.); (I.B.); (E.S.); (M.M.); (A.B.); (E.Y.); (D.S.); (A.A.); (I.S.)
| | - I. Sakellari
- Hematology Department and Bone Marrow Transplant (BMT) Unit, G. Papanicolaou Hospital, 57010 Thessaloniki, Greece; (D.M.); (Z.B.); (C.D.); (A.V.); (P.D.); (I.B.); (E.S.); (M.M.); (A.B.); (E.Y.); (D.S.); (A.A.); (I.S.)
| |
Collapse
|
15
|
Jain T, Olson TS, Locke FL. How I treat cytopenias after CAR T-cell therapy. Blood 2023; 141:2460-2469. [PMID: 36800563 PMCID: PMC10646792 DOI: 10.1182/blood.2022017415] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 01/27/2023] [Accepted: 02/13/2023] [Indexed: 02/19/2023] Open
Abstract
Increasing use of chimeric antigen receptor T-cell therapy (CAR-T) has unveiled diverse toxicities warranting specific recognition and management. Cytopenias occurring after CAR-T infusion invariably manifest early (<30 days), commonly are prolonged (30-90 days), and sometimes persist or occur late (>90 days). Variable etiologies of these cytopenias, some of which remain incompletely understood, create clinical conundrums and uncertainties about optimal management strategies. These cytopenias may cause additional sequelae, decreased quality of life, and increased resource use. Early cytopenias are typically attributed to lymphodepletion chemotherapy, however, infections and hyperinflammatory response such as immune effector cell-associated hemophagocytic lymphohistiocytosis-like syndrome may occur. Early and prolonged cytopenias often correlate with severity of cytokine release syndrome or immune effector cell-associated neurotoxicity syndrome. Bone marrow biopsy in patients with prolonged or late cytopenias is important to evaluate for primary disease and secondary marrow neoplasm in both pediatric and adult patients. Commonly, cytopenias resolve over time and evidence for effective interventions is often anecdotal. Treatment strategies, which are limited and require tailoring based upon likely underlying etiology, include growth factors, thrombopoietin-receptor agonist, stem cell boost, transfusion support, and abrogation of infection risk. Here we provide our approach, including workup and management strategies, for cytopenias after CAR-T.
Collapse
Affiliation(s)
- Tania Jain
- Division of Hematological Malignancies and Bone Marrow Transplantation, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD
| | - Timothy S. Olson
- Department of Pediatrics, Children’s Hospital of Philadelphia, Perelman School of Medicine at The University of Pennsylvania, Philadelphia, PA
| | - Frederick L. Locke
- Department of Blood and Marrow Transplant and Cellular Immunotherapy, Moffitt Cancer Center, Tampa, FL
| |
Collapse
|
16
|
Moreno-Castaño AB, Fernández S, Ventosa H, Palomo M, Martinez-Sanchez J, Ramos A, Ortiz-Maldonado V, Delgado J, Fernández de Larrea C, Urbano-Ispizua A, Penack O, Nicolás JM, Téllez A, Escolar G, Carreras E, Fernández-Avilés F, Castro P, Diaz-Ricart M. Characterization of the endotheliopathy, innate-immune activation and hemostatic imbalance underlying CAR-T cell toxicities: laboratory tools for an early and differential diagnosis. J Immunother Cancer 2023; 11:jitc-2022-006365. [PMID: 37045474 PMCID: PMC10106034 DOI: 10.1136/jitc-2022-006365] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/16/2023] [Indexed: 04/14/2023] Open
Abstract
BACKGROUND Chimeric antigen receptor (CAR)-T cell-based immunotherapy constitutes a revolutionary advance for treatment of relapsed/refractory hematological malignancies. Nevertheless, cytokine release and immune effector cell-associated neurotoxicity syndromes are life-threatening toxicities in which the endothelium could be a pathophysiological substrate. Furthermore, differential diagnosis from sepsis, highly incident in these patients, is challenging. Suitable laboratory tools could be determinant for their appropriate management. METHODS Sixty-two patients treated with CAR-T cell immunotherapy for hematological malignancies (n=46 with CD19-positive diseases, n=16 with multiple myeloma) were included. Plasma samples were obtained: before CAR-T cell infusion (baseline); after 24-48 hours; at suspicion of any toxicity onset and 24-48 hours after immunomodulatory treatment. Biomarkers of endothelial dysfunction (soluble vascular cell adhesion molecule 1 (sVCAM-1), soluble TNF receptor 1 (sTNFRI), thrombomodulin (TM), soluble suppression of tumorigenesis-2 factor (ST2), angiopoietin-2 (Ang-2)), innate immunity activation (neutrophil extracellular traps (NETs), soluble C5b-9 (sC5b-9)) and hemostasis/fibrinolysis (von Willebrand Factor antigen (VWF:Ag), ADAMTS-13 (A13), α2-antiplasmin (α2-AP), plasminogen activator inhibitor-1 antigen (PAI-1 Ag)) were measured and compared with those in cohorts of patients with sepsis and healthy donors. RESULTS Patients who developed CAR-T cell toxicities presented increased levels of sVCAM-1, sTNFRI and ST2 at the clinical onset versus postinfusion values. Twenty-four hours after infusion, ST2 levels were good predictors of any CAR-T cell toxicity, and combination of ST2, Ang-2 and NETs differentiated patients requiring intensive care unit admission from those with milder clinical presentations. Association of Ang-2, NETs, sC5b-9, VWF:Ag and PAI-1 Ag showed excellent discrimination between severe CAR-T cell toxicities and sepsis. CONCLUSIONS This study provides relevant contributions to the current knowledge of the CAR-T cell toxicities pathophysiology. Markers of endotheliopathy, innate immunity activation and hemostatic imbalance appear as potential laboratory tools for their prediction, severity and differential diagnosis.
Collapse
Affiliation(s)
- Ana Belen Moreno-Castaño
- Hemostasis and Erythropathology Laboratory, Hematopathology, Pathology Department, Biomedical Diagnostic Center (CDB), Hospital Clínic de Barcelona, Universitat de Barcelona, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic de Barcelona, Barcelona, Spain
| | - Sara Fernández
- Intensive Care Unit, Clinical Institute of Medicine and Dermatology (ICMID), Hospital Clínic de Barcelona, Universitat de Barcelona, Barcelona, Spain
| | - Helena Ventosa
- Intensive Care Unit, Clinical Institute of Medicine and Dermatology (ICMID), Hospital Clínic de Barcelona, Universitat de Barcelona, Barcelona, Spain
| | - Marta Palomo
- Hematology External Quality Assessment Laboratory, Biomedical Diagnostic Center (CDB), Hospital Clínic de Barcelona, Barcelona, Spain
| | | | - Alex Ramos
- Institut de Recerca Contra la Leucèmia Josep Carreras, Campus Clínic, Barcelona, Spain
| | - Valentín Ortiz-Maldonado
- Hematology Department, Clinical Institute of Hematologic and Oncologic Diseases (ICMHO), Hospital Clínic de Barcelona, Universitat de Barcelona, Barcelona, Spain
| | - Julio Delgado
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic de Barcelona, Barcelona, Spain
- Hematology Department, Clinical Institute of Hematologic and Oncologic Diseases (ICMHO), Hospital Clínic de Barcelona, Universitat de Barcelona, Barcelona, Spain
| | - Carlos Fernández de Larrea
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic de Barcelona, Barcelona, Spain
- Hematology Department, Clinical Institute of Hematologic and Oncologic Diseases (ICMHO), Hospital Clínic de Barcelona, Universitat de Barcelona, Barcelona, Spain
| | - Alvaro Urbano-Ispizua
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic de Barcelona, Barcelona, Spain
- Hematology Department, Clinical Institute of Hematologic and Oncologic Diseases (ICMHO), Hospital Clínic de Barcelona, Universitat de Barcelona, Barcelona, Spain
| | - Olaf Penack
- Hematology Department, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - J M Nicolás
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic de Barcelona, Barcelona, Spain
- Intensive Care Unit, Clinical Institute of Medicine and Dermatology (ICMID), Hospital Clínic de Barcelona, Universitat de Barcelona, Barcelona, Spain
| | - Adrian Téllez
- Intensive Care Unit, Clinical Institute of Medicine and Dermatology (ICMID), Hospital Clínic de Barcelona, Universitat de Barcelona, Barcelona, Spain
| | - Gines Escolar
- Hemostasis and Erythropathology Laboratory, Hematopathology, Pathology Department, Biomedical Diagnostic Center (CDB), Hospital Clínic de Barcelona, Universitat de Barcelona, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic de Barcelona, Barcelona, Spain
| | - Enric Carreras
- Fundación Josep Carreras contra la Leucemia, Josep Carreras Leukaemia Research Institute, Barcelona, Spain
| | - Francesc Fernández-Avilés
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic de Barcelona, Barcelona, Spain
- Hematology Department, Clinical Institute of Hematologic and Oncologic Diseases (ICMHO), Hospital Clínic de Barcelona, Universitat de Barcelona, Barcelona, Spain
| | - Pedro Castro
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic de Barcelona, Barcelona, Spain
- Intensive Care Unit, Clinical Institute of Medicine and Dermatology (ICMID), Hospital Clínic de Barcelona, Universitat de Barcelona, Barcelona, Spain
| | - Maribel Diaz-Ricart
- Hemostasis and Erythropathology Laboratory, Hematopathology, Pathology Department, Biomedical Diagnostic Center (CDB), Hospital Clínic de Barcelona, Universitat de Barcelona, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic de Barcelona, Barcelona, Spain
| |
Collapse
|
17
|
Thrombotic microangiopathy following chimeric antigen receptor T-cell therapy. Clin Nephrol Case Stud 2023; 11:17-21. [PMID: 36844260 PMCID: PMC9948748 DOI: 10.5414/cncs111045] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 12/09/2022] [Indexed: 02/18/2023] Open
Abstract
INTRODUCTION Thrombotic microangiopathy (TMA) is characterized by microangiopathic hemolytic anemia and is associated with a variety of conditions and following hematopoietic stem cell transplantation. Chimeric antigen receptor T-cell (CAR-T) therapy is a novel immunotherapeutic approach using genetically modified autologous T cells. CAR-T therapy has been linked with injuries to vascular endothelium, but a direct association between CAR-T and TMA has not been reported. CASE REPORTS Two cases of TMAs following CAR-T treatment are reported here. In each case, clinical evidence of kidney injury, thrombocytopenia, and hemolytic anemia became apparent 2 - 3 months following CAR-T infusion. We describe the clinical course, management, and outcome of these experiences. DISCUSSION/CONCLUSION CAR-T cell therapy-associated TMA (CAR-T TMA) appear to be an entity that shares overlapping clinical features with transplant-associated TMA (TA-TMA). Based on our preliminary clinical observations, we discuss the best clinical diagnosis/classification criteria, underlying pathophysiology, and the implication of the apparently self-limiting course. With increasing use of CAR-T cell treatment in hematologic malignancies, systematic studies will be necessary to improve management of CAR-T TMA.
Collapse
|
18
|
Acosta-Medina AA, Johnson IM, Bansal R, Hathcock M, Kenderian SJ, Durani U, Khurana A, Wang Y, Paludo J, Villasboas JC, Bennani NN, Johnston PB, Ansell SM, Lin Y, Alkhateeb HB. Pre-lymphodepletion & infusion endothelial activation and stress index as predictors of clinical outcomes in CAR-T therapy for B-cell lymphoma. Blood Cancer J 2023; 13:7. [PMID: 36599834 DOI: 10.1038/s41408-022-00777-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 12/09/2022] [Accepted: 12/15/2022] [Indexed: 01/06/2023] Open
Affiliation(s)
| | | | | | | | | | | | | | - Yucai Wang
- Division of Hematology, Mayo Clinic, Rochester, MN, USA
| | - Jonas Paludo
- Division of Hematology, Mayo Clinic, Rochester, MN, USA
| | | | | | | | | | - Yi Lin
- Division of Hematology, Mayo Clinic, Rochester, MN, USA
| | | |
Collapse
|
19
|
Gavriilaki E, Anyfanti P. Editorial: Endotheliopathies: Current concepts and importance in clinical practice. Front Med (Lausanne) 2023; 10:1162121. [PMID: 36936244 PMCID: PMC10022819 DOI: 10.3389/fmed.2023.1162121] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 02/20/2023] [Indexed: 03/06/2023] Open
Affiliation(s)
- Eleni Gavriilaki
- Second Propedeutic Department of Internal Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
- *Correspondence: Eleni Gavriilaki
| | - Panagiota Anyfanti
- Second Medical Department, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
20
|
Neurotoxicidades apresentadas por pacientes submetidos ao transplante de células-tronco hematopoéticas: uma revisão de escopo. ACTA PAUL ENFERM 2022. [DOI: 10.37689/acta-ape/2022ar000567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
|
21
|
Sudarsanam H, Buhmann R, Henschler R. Influence of Culture Conditions on Ex Vivo Expansion of T Lymphocytes and Their Function for Therapy: Current Insights and Open Questions. Front Bioeng Biotechnol 2022; 10:886637. [PMID: 35845425 PMCID: PMC9277485 DOI: 10.3389/fbioe.2022.886637] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 05/16/2022] [Indexed: 01/03/2023] Open
Abstract
Ex vivo expansion of T lymphocytes is a central process in the generation of cellular therapies targeted at tumors and other disease-relevant structures, which currently cannot be reached by established pharmaceuticals. The influence of culture conditions on T cell functions is, however, incompletely understood. In clinical applications of ex vivo expanded T cells, so far, a relatively classical standard cell culture methodology has been established. The expanded cells have been characterized in both preclinical models and clinical studies mainly using a therapeutic endpoint, for example antitumor response and cytotoxic function against cellular targets, whereas the influence of manipulations of T cells ex vivo including transduction and culture expansion has been studied to a much lesser detail, or in many contexts remains unknown. This includes the circulation behavior of expanded T cells after intravenous application, their intracellular metabolism and signal transduction, and their cytoskeletal (re)organization or their adhesion, migration, and subsequent intra-tissue differentiation. This review aims to provide an overview of established T cell expansion methodologies and address unanswered questions relating in vivo interaction of ex vivo expanded T cells for cellular therapy.
Collapse
Affiliation(s)
| | | | - Reinhard Henschler
- Institute of Transfusion Medicine, University Hospital Leipzig, Leipzig, Germany
| |
Collapse
|
22
|
de Groot PM, Arevalo O, Shah K, Strange CD, Shroff GS, Ahuja J, Truong MT, de Groot JF, Vlahos I. Imaging Primer on Chimeric Antigen Receptor T-Cell Therapy for Radiologists. Radiographics 2022; 42:176-194. [PMID: 34990326 DOI: 10.1148/rg.210065] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Chimeric antigen receptor (CAR) T-cell therapy is a recently approved breakthrough treatment that has become a new paradigm in treatment of recurrent or refractory B-cell lymphomas and pediatric or adult acute lymphoid leukemia. CAR T cells are a type of cellular immunotherapy that artificially enhances T cells to boost eradication of malignancy through activation of the native immune system. The CAR construct is a synthetically created functional cell receptor grafted onto previously harvested patient T cells, which bind to preselected tumor-associated antigens and thereby activate host immune signaling cascades to attack tumor cells. Advantages include a single treatment episode of 2-3 weeks and durable disease elimination, with remission rates of over 80%. Responses to therapy are more rapid than with conventional chemotherapy or immunotherapy, with intervening short-interval edema. CAR T-cell administration is associated with therapy-related toxic effects in a large percentage of patients, notably cytokine release syndrome, immune effect cell-associated neurotoxicity syndrome, and infections related to immunosuppression. Knowledge of the expected evolution of therapy response and potential adverse events in CAR T-cell therapy and correlation with the timeline of treatment are important to optimize patient care. Some toxic effects are radiologically evident, and familiarity with their imaging spectrum is key to avoiding misinterpretation. Other clinical toxic effects may be occult at imaging and are diagnosed on the basis of clinical assessment. Future directions for CAR T-cell therapy include new indications and expanded tumor targets, along with novel ways to capture T-cell activation with imaging. An invited commentary by Ramaiya and Smith is available online. Online supplemental material is available for this article. ©RSNA, 2022.
Collapse
Affiliation(s)
- Patricia M de Groot
- From the Departments of Thoracic Imaging (P.M.d.G., C.D.S., G.S.S., J.A., M.T.T., I.V.), Neuroradiology (O.A., K.S.), and Neuro-oncology (J.F.d.G.), University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit 1478, Houston, TX 77030
| | - Octavio Arevalo
- From the Departments of Thoracic Imaging (P.M.d.G., C.D.S., G.S.S., J.A., M.T.T., I.V.), Neuroradiology (O.A., K.S.), and Neuro-oncology (J.F.d.G.), University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit 1478, Houston, TX 77030
| | - Komal Shah
- From the Departments of Thoracic Imaging (P.M.d.G., C.D.S., G.S.S., J.A., M.T.T., I.V.), Neuroradiology (O.A., K.S.), and Neuro-oncology (J.F.d.G.), University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit 1478, Houston, TX 77030
| | - Chad D Strange
- From the Departments of Thoracic Imaging (P.M.d.G., C.D.S., G.S.S., J.A., M.T.T., I.V.), Neuroradiology (O.A., K.S.), and Neuro-oncology (J.F.d.G.), University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit 1478, Houston, TX 77030
| | - Girish S Shroff
- From the Departments of Thoracic Imaging (P.M.d.G., C.D.S., G.S.S., J.A., M.T.T., I.V.), Neuroradiology (O.A., K.S.), and Neuro-oncology (J.F.d.G.), University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit 1478, Houston, TX 77030
| | - Jitesh Ahuja
- From the Departments of Thoracic Imaging (P.M.d.G., C.D.S., G.S.S., J.A., M.T.T., I.V.), Neuroradiology (O.A., K.S.), and Neuro-oncology (J.F.d.G.), University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit 1478, Houston, TX 77030
| | - Mylene T Truong
- From the Departments of Thoracic Imaging (P.M.d.G., C.D.S., G.S.S., J.A., M.T.T., I.V.), Neuroradiology (O.A., K.S.), and Neuro-oncology (J.F.d.G.), University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit 1478, Houston, TX 77030
| | - John F de Groot
- From the Departments of Thoracic Imaging (P.M.d.G., C.D.S., G.S.S., J.A., M.T.T., I.V.), Neuroradiology (O.A., K.S.), and Neuro-oncology (J.F.d.G.), University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit 1478, Houston, TX 77030
| | - Ioannis Vlahos
- From the Departments of Thoracic Imaging (P.M.d.G., C.D.S., G.S.S., J.A., M.T.T., I.V.), Neuroradiology (O.A., K.S.), and Neuro-oncology (J.F.d.G.), University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit 1478, Houston, TX 77030
| |
Collapse
|
23
|
Williams KM. Noninfectious complications of hematopoietic cell transplantation. HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2021; 2021:578-586. [PMID: 34889438 PMCID: PMC8791176 DOI: 10.1182/hematology.2021000293] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Noninfectious lung diseases contribute to nonrelapse mortality. They constitute a spectrum of diseases that can affect the parenchyma, airways, or vascular pulmonary components and specifically exclude cardiac and renal causes. The differential diagnoses of these entities differ as a function of time after hematopoietic cell transplantation. Specific diagnosis, prognosis, and optimal treatment remain challenging, although progress has been made in recent decades.
Collapse
Affiliation(s)
- Kirsten M. Williams
- Correspondence Kirsten M. Williams, Blood and Marrow
Transplant Program, Aflac Cancer and Blood Disorders Center, Emory University
School of Medicine, Children's Healthcare of Atlanta, 1760 Haygood Dr,
3rd floor W362, Atlanta, GA 30322; e-mail:
| |
Collapse
|
24
|
Advancing therapeutic complement inhibition in hematologic diseases: PNH and beyond. Blood 2021; 139:3571-3582. [PMID: 34482398 DOI: 10.1182/blood.2021012860] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 08/11/2021] [Indexed: 11/20/2022] Open
Abstract
Complement is an elaborate system of the innate immunity. Genetic variants and autoantibodies leading to excessive complement activation are implicated in a variety of human diseases. Among them, the hematologic disease paroxysmal nocturnal hemoglobinuria (PNH) remains the prototype model of complement activation and inhibition. Eculizumab, the first-in-class complement inhibitor, was approved for PNH in 2007. Addressing some of the unmet needs, a long-acting C5 inhibitor, ravulizumab, and a C3 inhibitor, pegcetacoplan have been also now approved with PNH. Novel agents, such as factor B and factor D inhibitors, are under study with very promising results. In this era of several approved targeted complement therapeutics, selection of the proper drug needs to be based on a personalized approach. Beyond PNH, complement inhibition has also shown efficacy and safety in cold agglutinin disease (CAD), primarily with the C1s inhibitor of the classical complement pathway, sutimlimab, but also with pegcetacoplan. Furthermore, C5 inhibition with eculizumab and ravulizumab, as well as inhibition of the lectin pathway with narsoplimab, are investigated in transplant-associated thrombotic microangiopathy (TA-TMA). With this revolution of next-generation complement therapeutics, additional hematologic entities, such as delayed hemolytic transfusion reaction (DHTR) or immune thrombocytopenia (ITP), might also benefit from complement inhibitors. Therefore, this review aims to describe state-of-the-art knowledge of targeting complement in hematologic diseases focusing on: a) complement biology for the clinician, b) complement activation and therapeutic inhibition in prototypical complement-mediated hematologic diseases, c) hematologic entities under investigation for complement inhibition, and d) other complement-related disorders of potential interest to hematologists.
Collapse
|
25
|
Sumransub N, El Jurdi N, Chiraphapphaiboon W, Maakaron JE. Putting function back in dysfunction: Endothelial diseases and current therapies in hematopoietic stem cell transplantation and cellular therapies. Blood Rev 2021; 51:100883. [PMID: 34429234 DOI: 10.1016/j.blre.2021.100883] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 07/16/2021] [Accepted: 08/12/2021] [Indexed: 01/28/2023]
Abstract
Endothelial dysfunction is characterized by altered vascular permeability and prothrombotic, pro-inflammatory phenotypes. Endothelial dysfunction results in end-organ damage and has been associated with diverse disease pathologies. Complications observed after hematopoietic stem cell transplantation (HCT) and chimeric antigen receptor-T cell (CAR-T) therapy for hematologic and neoplastic disorders share overlapping clinical manifestations and there is increasing evidence linking these complications to endothelial dysfunction. Despite advances in supportive care and treatments, end-organ toxicity remains the leading cause of mortality. A new strategy to mitigate endothelial dysfunction could lead to improvement of clinical outcomes for patients. Statins have demonstrated pleiotropic effects of immunomodulatory and endothelial protection by various molecular mechanisms. Recent applications in immune-mediated diseases such as autoimmune disorders, chronic inflammatory conditions, and graft-versus-host disease (GVHD) have shown promising results. In this review, we cover the mechanisms underlying endothelial dysfunction in GVHD and CAR-T cell-related toxicities. We summarize the current knowledge about statins and other agents used as endothelial protectants. We propose further studies using statins for prophylaxis and prevention of end-organ damage related to extensive endothelial dysfunction in HCT and CAR-T.
Collapse
Affiliation(s)
- Nuttavut Sumransub
- Department of Medicine, University of Minnesota, 420 Delaware St. SE MMC 480, Minneapolis, MN 55455, United States of America
| | - Najla El Jurdi
- Department of Medicine, University of Minnesota, 420 Delaware St. SE MMC 480, Minneapolis, MN 55455, United States of America
| | - Wannasiri Chiraphapphaiboon
- Division of Molecular Medicine, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, 2 Wanglang Rd, Bangkok-Noi, Bangkok 10700, Thailand
| | - Joseph E Maakaron
- Department of Medicine, University of Minnesota, 420 Delaware St. SE MMC 480, Minneapolis, MN 55455, United States of America.
| |
Collapse
|
26
|
Eftychidis I, Sakellari I, Anagnostopoulos A, Gavriilaki E. Endothelial dysfunction and vascular complications after allogeneic hematopoietic cell transplantation: an expert analysis. Expert Rev Hematol 2021; 14:831-840. [PMID: 34388057 DOI: 10.1080/17474086.2021.1968823] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Allogeneic hematopoietic cell transplantation (alloHCT) is the standard of care for many diseases. However, survivors often present with serious complications resulting from acute and chronic toxicities and it is crucial to increase consciousness from treating physicians. We performed a comprehensive review of the literature and critically examined recent available data, mostly using the PubMed and Medline search engines for original articles published over the last decade. Better understanding of many alloHCT-related disorders has shown that endothelial injury and vascular damage plays a critical role. The most widely studied endothelial injury syndromes (EIS) are veno-occlusive disease/sinusoidal obstruction syndrome (SOS/VOD), graft-versus-host-disease (GVHD), and transplant-associated thrombotic microangiopathy (TA-TMA). TA-TMA, frequently underdiagnosed, needs to be clarified using certain criteria and, as a life-threatening condition, requires immediate and intensive treatment. The first-in-class complement inhibitor eculizumab has significantly improved outcomes in both the pediatric and adult population. Cardiovascular (CV) events are the second major cause of morbidity and mortality of alloHCT survivors, after GVHD. Long-term monitoring and management of CV risk is expected to also incorporate patient stratification with CV risk prediction models, early markers of vascular dysfunction or procoagulant activity, subclinical target organ damage, arterial stiffness, and subclinical atherosclerosis.
Collapse
Affiliation(s)
- Ioannis Eftychidis
- Hematology Department-BMT Unit, G Papanicolaou Hospital, Thessaloniki, Greece
| | - Ioanna Sakellari
- Hematology Department-BMT Unit, G Papanicolaou Hospital, Thessaloniki, Greece
| | | | - Eleni Gavriilaki
- Hematology Department-BMT Unit, G Papanicolaou Hospital, Thessaloniki, Greece
| |
Collapse
|
27
|
Jodele S, Sabulski A. Transplant-associated thrombotic microangiopathy: elucidating prevention strategies and identifying high-risk patients. Expert Rev Hematol 2021; 14:751-763. [PMID: 34301169 DOI: 10.1080/17474086.2021.1960816] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
INTRODUCTION Hematopoietic stem cell transplantation-associated thrombotic microangiopathy (TA-TMA) is a severe complication of transplant. TA-TMA is a multifactorial disease where generalized endothelial dysfunction leads to microangiopathic hemolytic anemia, intravascular platelet activation, and formation of microthrombi leading to end-organ injury. It is essential to identify patients at risk for this complication and to implement early interventions to improve TA-TMA associated transplant outcomes. AREAS COVERED Recognition of TA-TMA and associated multi-organ injury, risk predictors, contributing factors, differential diagnosis and targeting complement pathway in TA-TMA by summarizing peer reviewed manuscripts. EXPERT OPINION TA-TMA is an important transplant complication. Diagnostic and risk criteria are established in children and young adults and risk-based targeted therapies have been proposed using complement blockers. The immediate goal is to extend this work into adult stem cell transplant recipients by implementing universal TA-TMA screening practices. This will facilitate early TA-TMA diagnosis and targeted interventions, which will further improve survival. While complement blocking therapy is effective, about one third of patients are refractory to treatment and those patients commonly die. The next hurdle for the field is identifying reasons for failure, optimizing strategies for complement modifying therapy and searching for additional targetable pathways of endothelial injury.
Collapse
Affiliation(s)
- Sonata Jodele
- Division of Bone Marrow Transplantation and Immune Deficiency, Cancer and Blood Disease Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Anthony Sabulski
- Division of Bone Marrow Transplantation and Immune Deficiency, Cancer and Blood Disease Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| |
Collapse
|
28
|
Demosthenous C, Sakellari I, Douka V, Papayanni PG, Anagnostopoulos A, Gavriilaki E. The Role of Myeloid-Derived Suppressor Cells (MDSCs) in Graft-versus-Host Disease (GVHD). J Clin Med 2021; 10:jcm10102050. [PMID: 34064671 PMCID: PMC8150814 DOI: 10.3390/jcm10102050] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 05/02/2021] [Accepted: 05/06/2021] [Indexed: 12/11/2022] Open
Abstract
Background: Myeloid-derived suppressor cells (MDSCs) are implicated in the complex interplay involving graft-versus-leukemia (GVL) effects and graft-versus-host disease (GVHD) after allogeneic hematopoietic stem cell transplantation (allo-HCT) in hematologic malignancies. Methods: A review of literature through PubMed was undertaken to summarize the published evidence on the pathophysiology and clinical implications of MDSCs in allo-HCT. Literature sources published in English since 1978 were searched, using the terms Natural Suppressor (NS) cells, MDSCs, GVHD, and allo-HCT. Results: In vivo studies demonstrated that MDSCs derived from mobilization protocols could strongly suppress allo-responses mediated by T cells and enhance T-Reg activity, thus inhibiting GVHD toxicity. However, the influence of MDSCs on the GVL effect is not fully defined. Conclusions: The induction or maintenance of MDSC suppressive function would be advantageous in suppressing inflammation associated with GVHD. Pathways involved in MDSC metabolism and the inflammasome signaling are a promising field of study to elucidate the function of MDSCs in the pathogenesis of GVHD and translate these findings to a clinical setting.
Collapse
|
29
|
Hartnett EG, Knight J, Radolec M, Buckanovich RJ, Edwards RP, Vlad AM. Immunotherapy Advances for Epithelial Ovarian Cancer. Cancers (Basel) 2020; 12:cancers12123733. [PMID: 33322601 PMCID: PMC7764119 DOI: 10.3390/cancers12123733] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 12/01/2020] [Accepted: 12/07/2020] [Indexed: 12/23/2022] Open
Abstract
Simple Summary The overall five-year survival rate in epithelial ovarian cancer is 44% and has only marginally improved in the past two decades. Despite an initial response to standard treatment consisting of chemotherapy and surgical removal of tumor, the lesions invariably recur, and patients ultimately die of chemotherapy resistant disease. New treatment modalities are needed in order to improve the prognosis of women diagnosed with ovarian cancer. One such modality is immunotherapy, which aims to boost the capacity of the patient’s immune system to recognize and attack the tumor cells. We performed a retrospective study to identify some of the most promising immune therapies for epithelial ovarian cancer. Special emphasis was given to immuno-oncology clinical trials. Abstract New treatment modalities are needed in order to improve the prognosis of women diagnosed with epithelial ovarian cancer (EOC), the most aggressive gynecologic cancer type. Most ovarian tumors are infiltrated by immune effector cells, providing the rationale for targeted approaches that boost the existing or trigger new anti-tumor immune mechanisms. The field of immuno-oncology has experienced remarkable progress in recent years, although the results seen with single agent immunotherapies in several categories of solid tumors have yet to extend to ovarian cancer. The challenge remains to determine what treatment combinations are most suitable for this disease and which patients are likely to benefit and to identify how immunotherapy should be incorporated into EOC standard of care. We review here some of the most promising immune therapies for EOC and focus on those currently tested in clinical trials.
Collapse
Affiliation(s)
- Erin G. Hartnett
- Department of Obstetrics and Gynecology and Reproductive Sciences, Magee-Womens Research Institute and Foundation and Magee-Womens Hospital of UPMC, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA; (E.G.H.); (M.R.); (R.J.B.); (R.P.E.)
| | - Julia Knight
- School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA;
| | - Mackenzy Radolec
- Department of Obstetrics and Gynecology and Reproductive Sciences, Magee-Womens Research Institute and Foundation and Magee-Womens Hospital of UPMC, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA; (E.G.H.); (M.R.); (R.J.B.); (R.P.E.)
| | - Ronald J. Buckanovich
- Department of Obstetrics and Gynecology and Reproductive Sciences, Magee-Womens Research Institute and Foundation and Magee-Womens Hospital of UPMC, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA; (E.G.H.); (M.R.); (R.J.B.); (R.P.E.)
| | - Robert P. Edwards
- Department of Obstetrics and Gynecology and Reproductive Sciences, Magee-Womens Research Institute and Foundation and Magee-Womens Hospital of UPMC, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA; (E.G.H.); (M.R.); (R.J.B.); (R.P.E.)
| | - Anda M. Vlad
- Department of Obstetrics and Gynecology and Reproductive Sciences, Magee-Womens Research Institute and Foundation and Magee-Womens Hospital of UPMC, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA; (E.G.H.); (M.R.); (R.J.B.); (R.P.E.)
- Correspondence:
| |
Collapse
|