1
|
Zhang Z, He Z, Pan J, Yuan M, Lang Y, Wei X, Zhang C. The interaction of BDNF with estrogen in the development of hypertension and obesity, particularly during menopause. Front Endocrinol (Lausanne) 2024; 15:1384159. [PMID: 39655343 PMCID: PMC11625588 DOI: 10.3389/fendo.2024.1384159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 11/05/2024] [Indexed: 12/12/2024] Open
Abstract
The expression of BDNF in both neuronal and non-neuronal cells is influenced by various stimuli, including prenatal developmental factors and postnatal conditions such as estrogens, dietary habits, and lifestyle factors like obesity, blood pressure, and aging. Central BDNF plays a crucial role in modulating how target tissues respond to these stimuli, influencing the pathogenesis of hypertension, mitigating obesity, and protecting neurons from aging. Thus, BDNF serves as a dynamic mediator of environmental influences, reflecting an individual's unique history of exposure. Estrogens, on the other hand, regulate various processes to maintain overall physiological well-being. Through nuclear estrogen receptors (ERα, ERβ) and the membrane estrogen receptor (GPER1), estrogens modulate transcriptional processes and signaling events that regulate the expression of target genes, such as ERα, components of the renin-angiotensin system (RAS), and hormone-sensitive lipase. Estrogens are instrumental in maintaining the set point for blood pressure and energy balance. BDNF and estrogens work cooperatively to prevent obesity by favoring lipolysis, and counteractively regulate blood pressure to adapt to the environment. Estrogen deficiency leads to menopause in women with low central BDNF level. This review delves into the complex mechanisms involving BDNF and estrogen, especially in the context of hypertension and obesity, particularly among postmenopausal women. The insights gained aim to inform the development of comprehensive therapeutic strategies for these prevalent syndromes affecting approximately 68% of adults.
Collapse
Affiliation(s)
- Zhongming Zhang
- Zhang Zhongjing College of Chinese Medicine, Henan Key Laboratory of Zhang Zhongjing’s Formulas for Immunoregulation, Nanyang Institute of Technology, Nanyang, Henan, China
- School of Medicine, Zhengzhou University of Industrial Technology, Xinzheng, Henan, China
| | - Ziyi He
- Zhang Zhongjing College of Chinese Medicine, Henan Key Laboratory of Zhang Zhongjing’s Formulas for Immunoregulation, Nanyang Institute of Technology, Nanyang, Henan, China
| | - Jing Pan
- The First Clinical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Minghui Yuan
- Zhang Zhongjing College of Chinese Medicine, Henan Key Laboratory of Zhang Zhongjing’s Formulas for Immunoregulation, Nanyang Institute of Technology, Nanyang, Henan, China
| | - Yini Lang
- Zhang Zhongjing College of Chinese Medicine, Henan Key Laboratory of Zhang Zhongjing’s Formulas for Immunoregulation, Nanyang Institute of Technology, Nanyang, Henan, China
| | - Xiaomeng Wei
- School of Medicine, Zhengzhou University of Industrial Technology, Xinzheng, Henan, China
| | - Chaoyun Zhang
- Zhang Zhongjing College of Chinese Medicine, Henan Key Laboratory of Zhang Zhongjing’s Formulas for Immunoregulation, Nanyang Institute of Technology, Nanyang, Henan, China
| |
Collapse
|
2
|
Jing MR, Liang XY, Zhang YX, Zhu YW, Wang Y, Chu T, Jin YQ, Zhang CH, Zhu SG, Zhang CJ, Wang QM, Feng ZF, Ji XY, Wu DD. Role of hydrogen sulfide-microRNA crosstalk in health and disease. Nitric Oxide 2024; 152:19-30. [PMID: 39260562 DOI: 10.1016/j.niox.2024.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 07/15/2024] [Accepted: 09/05/2024] [Indexed: 09/13/2024]
Abstract
The mutual regulation between hydrogen sulfide (H2S) and microRNA (miRNA) is involved in the development of many diseases, including cancer, cardiovascular disease, inflammatory disease, and high-risk pregnancy. Abnormal expressions of endogenous H2S-producing enzyme and miRNA in tissues and cells often indicate the occurrence of diseases, so the maintenance of their normal levels in the body can mitigate damages caused by various factors. Many studies have found that H2S can promote the migration, invasion, and proliferation of cancer cells by regulating the expression of miRNA, while many H2S donors can inhibit cancer progression by interfering with the proliferation, apoptosis, cell cycle, metastasis, and angiogenesis of cancer cells. Furthermore, the mutual regulation between H2S and miRNA can also prevent cell injury in cardiovascular disease and inflammatory disease through anti-inflammation, anti-oxidation, anti-apoptosis, and pro-autophagy. In addition, H2S can promote angiogenesis and relieve vasoconstriction by regulating the expression of miRNA, thereby improving fetal growth in high-risk pregnancy. In this review, we discuss the mechanism of mutual regulation between H2S and miRNA in various diseases, which may provide reliable therapeutic targets for these diseases.
Collapse
Affiliation(s)
- Mi-Rong Jing
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China; Kaifeng Key Laboratory of Cell Signal Transduction, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Xiao-Yi Liang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China; Kaifeng Key Laboratory of Cell Signal Transduction, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Yan-Xia Zhang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China; Kaifeng Key Laboratory of Cell Signal Transduction, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Yi-Wen Zhu
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China; Kaifeng Key Laboratory of Cell Signal Transduction, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Yan Wang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China; Kaifeng Key Laboratory of Cell Signal Transduction, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Ti Chu
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China; Kaifeng Key Laboratory of Cell Signal Transduction, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Yu-Qing Jin
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China; Kaifeng Key Laboratory of Cell Signal Transduction, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Chuan-Hao Zhang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China; Kaifeng Key Laboratory of Cell Signal Transduction, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Shuai-Gang Zhu
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China; Kaifeng Key Laboratory of Cell Signal Transduction, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Chao-Jing Zhang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China; Kaifeng Key Laboratory of Cell Signal Transduction, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Qi-Meng Wang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China; Kaifeng Key Laboratory of Cell Signal Transduction, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Zhi-Fen Feng
- School of Nursing and Health, Henan University, Kaifeng, Henan, 475004, China.
| | - Xin-Ying Ji
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China; Kaifeng Key Laboratory of Cell Signal Transduction, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China; Faculty of Basic Medical Subjects, Shu-Qing Medical College of Zhengzhou, Zhengzhou, Henan, 450064, China.
| | - Dong-Dong Wu
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China; Kaifeng Key Laboratory of Cell Signal Transduction, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China; Department of Stomatology, Huaihe Hospital of Henan University, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China.
| |
Collapse
|
3
|
de Alencar AKN, Swan KF, Mahapatra S, Lindsey SH, Pridjian GC, Bayer CL. GPER Stimulation Attenuates Cardiac Dysfunction in a Rat Model of Preeclampsia. Hypertension 2024; 81:e161-e172. [PMID: 39224973 PMCID: PMC11483207 DOI: 10.1161/hypertensionaha.123.22303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 08/13/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Preeclampsia poses a substantial clinical challenge, characterized by maternal hypertension, cardiac dysfunction, and persistent cardiovascular risks for both the mother and offspring. Despite the known roles of the estrogen receptor (GPER [G protein-coupled estrogen receptor]) in placental development, its impact on cardiovascular aspects within a preeclampsia animal model remains unexplored. We propose that G-1, a GPER agonist, could have the potential to regulate not only hypertension but also cardiac dysfunction in rats with preeclampsia. METHODS To explore the influence of G-1 on preeclampsia, we used the reduced uterine perfusion pressure (RUPP) model. RUPP rats were administered either G-1 (100 µg/kg per day) or hydralazine (25 mg/kg per day). We conducted echocardiography to probe the intricate cardiac effects of G-1. RESULTS The RUPP rat model revealed signs of hypertension and cardiac dysfunction and alterations in gene and protein expression within placental and heart tissues. G-1 treatment reduced blood pressure and reversed cardiac dysfunction in rats with preeclampsia. In contrast, administration of the vasodilator hydralazine reduced blood pressure without an improvement in cardiac function. In addition, while G-1 treatment restored the levels of sFLT-1 (soluble fms-like tyrosine kinase-1) in RUPP rats, hydralazine did not normalize this antiangiogenic factor. CONCLUSIONS The therapeutic intervention of G-1 significantly mitigated the cardiovascular dysfunction observed in the RUPP rat model of preeclampsia. This discovery underscores the broader significance of understanding GPER's role in the context of preeclampsia-related cardiovascular complications.
Collapse
Affiliation(s)
| | - Kenneth F. Swan
- Department of Obstetrics & Gynecology, Tulane University, New Orleans, LA, 70112, USA
| | - Smruti Mahapatra
- Department of Biomedical Engineering, Tulane University, New Orleans, LA, 70118, USA
| | - Sarah H. Lindsey
- Department of Pharmacology, Tulane University, New Orleans, LA, 70112, USA
| | - Gabriella C. Pridjian
- Department of Obstetrics & Gynecology, Tulane University, New Orleans, LA, 70112, USA
| | - Carolyn L. Bayer
- Department of Biomedical Engineering, Tulane University, New Orleans, LA, 70118, USA
- Department of Obstetrics & Gynecology, Tulane University, New Orleans, LA, 70112, USA
| |
Collapse
|
4
|
Xiao H, Li L, Yang M, Zhang X, Zhou J, Zeng J, Zhou Y, Lan X, Liu J, Lin Y, Zhong Y, Zhang X, Wang L, Cao Z, Liu P, Mei H, Cai M, Cai X, Tao Y, Zhu Y, Yu C, Hu L, Wang Y, Huang Y, Su F, Gao Y, Zhou R, Xu X, Yang H, Wang J, Zhu H, Zhou A, Jin X. Genetic analyses of 104 phenotypes in 20,900 Chinese pregnant women reveal pregnancy-specific discoveries. CELL GENOMICS 2024; 4:100633. [PMID: 39389017 PMCID: PMC11602630 DOI: 10.1016/j.xgen.2024.100633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 12/14/2023] [Accepted: 07/22/2024] [Indexed: 10/12/2024]
Abstract
Monitoring biochemical phenotypes during pregnancy is vital for maternal and fetal health, allowing early detection and management of pregnancy-related conditions to ensure safety for both. Here, we conducted a genetic analysis of 104 pregnancy phenotypes in 20,900 Chinese women. The genome-wide association study (GWAS) identified a total of 410 trait-locus associations, with 71.71% reported previously. Among the 116 novel hits for 45 phenotypes, 83 were successfully replicated. Among them, 31 were defined as potentially pregnancy-specific associations, including creatine and HELLPAR and neutrophils and ESR1, with subsequent analysis revealing enrichments in estrogen-related pathways and female reproductive tissues. The partitioning heritability underscored the significant roles of fetal blood, embryoid bodies, and female reproductive organs in pregnancy hematology and birth outcomes. Pathway analysis confirmed the intricate interplay of hormone and immune regulation, metabolism, and cell cycle during pregnancy. This study contributes to the understanding of genetic influences on pregnancy phenotypes and their implications for maternal health.
Collapse
Affiliation(s)
- Han Xiao
- Institute of Maternal and Child Health, Wuhan Children's Hospital (Wuhan Maternal and Child Health Care Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430010, China
| | - Linxuan Li
- BGI Research, Shenzhen 518083, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Meng Yang
- Institute of Maternal and Child Health, Wuhan Children's Hospital (Wuhan Maternal and Child Health Care Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430010, China
| | - Xinyi Zhang
- BGI Research, Shenzhen 518083, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jieqiong Zhou
- Department of Obstetrics, Wuhan Children's Hospital (Wuhan Maternal and Child Health Care Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430010, China
| | - Jingyu Zeng
- BGI Research, Shenzhen 518083, China; College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yan Zhou
- Department of Obstetrics, Wuhan Children's Hospital (Wuhan Maternal and Child Health Care Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430010, China
| | - Xianmei Lan
- BGI Research, Shenzhen 518083, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiuying Liu
- Department of Obstetrics, Wuhan Children's Hospital (Wuhan Maternal and Child Health Care Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430010, China
| | - Ying Lin
- BGI Research, Shenzhen 518083, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuanyuan Zhong
- Department of Obstetrics, Wuhan Children's Hospital (Wuhan Maternal and Child Health Care Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430010, China
| | - Xiaoqian Zhang
- BGI Research, Shenzhen 518083, China; College of Computer Science and Technology, Guizhou University, Guiyang 550025, China
| | - Lin Wang
- BGI Research, Shenzhen 518083, China
| | - Zhongqiang Cao
- Institute of Maternal and Child Health, Wuhan Children's Hospital (Wuhan Maternal and Child Health Care Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430010, China
| | | | - Hong Mei
- Institute of Maternal and Child Health, Wuhan Children's Hospital (Wuhan Maternal and Child Health Care Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430010, China
| | | | - Xiaonan Cai
- Institute of Maternal and Child Health, Wuhan Children's Hospital (Wuhan Maternal and Child Health Care Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430010, China
| | - Ye Tao
- BGI Research, Shenzhen 518083, China
| | - Yunqing Zhu
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Center, Beijing 100191, China
| | - Canqing Yu
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Center, Beijing 100191, China; Center for Public Health and Epidemic Preparedness & Response, Peking University, Beijing 100191, China
| | - Liqin Hu
- Institute of Maternal and Child Health, Wuhan Children's Hospital (Wuhan Maternal and Child Health Care Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430010, China
| | - Yu Wang
- BGI Research, Shenzhen 518083, China
| | - Yushan Huang
- BGI Research, Shenzhen 518083, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | | | - Ya Gao
- BGI Research, Shenzhen 518083, China
| | | | - Xun Xu
- BGI Research, Shenzhen 518083, China; Guangdong Provincial Key Laboratory of Genome Read and Write, BGI Research, Shenzhen 518120, China
| | - Huanming Yang
- BGI Research, Shenzhen 518083, China; Guangdong Provincial Academician Workstation of BGI Synthetic Genomics, BGI, Shenzhen 518120, China; James D. Watson Institute of Genome Sciences, Hangzhou 310058, China
| | | | - Huanhuan Zhu
- BGI Research, Shenzhen 518083, China; BGI Research, Wuhan 430074, China.
| | - Aifen Zhou
- Institute of Maternal and Child Health, Wuhan Children's Hospital (Wuhan Maternal and Child Health Care Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430010, China; Department of Obstetrics, Wuhan Children's Hospital (Wuhan Maternal and Child Health Care Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430010, China.
| | - Xin Jin
- BGI Research, Shenzhen 518083, China; BGI Research, Wuhan 430074, China; The Innovation Centre of Ministry of Education for Development and Diseases, School of Medicine, South China University of Technology, Guangzhou 510006, China; Shanxi Medical University-BGI Collaborative Center for Future Medicine, Shanxi Medical University, Taiyuan 030001, China; Shenzhen Key Laboratory of Transomics Biotechnologies, BGI Research, Shenzhen 518083, China.
| |
Collapse
|
5
|
Hansel MC, Rosenberg AM, Kinkade CW, Capurro C, Rivera-Núñez Z, Barrett ES. Exposure to Synthetic Endocrine-Disrupting Chemicals in Relation to Maternal and Fetal Sex Steroid Hormones: A Scoping Review. Curr Environ Health Rep 2024; 11:356-379. [PMID: 39037689 PMCID: PMC11324767 DOI: 10.1007/s40572-024-00455-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/24/2024] [Indexed: 07/23/2024]
Abstract
PURPOSE OF REVIEW Many synthetic endocrine-disrupting chemicals (EDCs) are ubiquitous in the environment and highly detected among pregnant people. These chemicals may disrupt maternal and/or fetal sex steroid hormones, which are critical to pregnancy maintenance and fetal development. Here, we review the epidemiological literature examining prenatal exposure to common synthetic EDCs in relation to maternal and fetal sex steroid hormones. RECENT FINDINGS We performed a literature search using PubMed, SCOPUS, and Embase, ultimately identifying 29 articles for full review. Phenols, parabens, and persistent organic pollutants generally showed inverse associations with androgens, estrogens, and progesterone. Phthalates and per-and polyfluoroalkyl substances tended to be inversely associated with progesterone, while evidence regarding androgens and estrogens was mixed. Inconsistent, but noteworthy, differences by fetal sex and timing of exposure/outcome were observed. Overall, the literature suggests EDCs may disrupt maternal and fetal sex steroid activity, though findings are mixed. Given the pervasive, high-volume production of these synthetic chemicals and the critical functions sex steroid hormones play during gestation, additional research is warranted.
Collapse
Affiliation(s)
- Megan C Hansel
- Department of Biostatistics and Epidemiology, Rutgers School of Public Health, Piscataway, NJ, USA
| | - Abigail M Rosenberg
- Department of Obstetrics and Gynecology, University of Rochester Medical Center, 601 Elmwood Ave., Rochester, NY, 14642, USA
| | - Carolyn W Kinkade
- Environmental and Occupational Health Sciences Institute, Rutgers University, 170 Frelinghuysen Rd, Piscataway, NJ, 08854, USA
| | - Camila Capurro
- Department of Biostatistics and Epidemiology, Rutgers School of Public Health, Piscataway, NJ, USA
| | - Zorimar Rivera-Núñez
- Department of Biostatistics and Epidemiology, Rutgers School of Public Health, Piscataway, NJ, USA
- Environmental and Occupational Health Sciences Institute, Rutgers University, 170 Frelinghuysen Rd, Piscataway, NJ, 08854, USA
| | - Emily S Barrett
- Department of Biostatistics and Epidemiology, Rutgers School of Public Health, Piscataway, NJ, USA.
- Department of Obstetrics and Gynecology, University of Rochester Medical Center, 601 Elmwood Ave., Rochester, NY, 14642, USA.
- Environmental and Occupational Health Sciences Institute, Rutgers University, 170 Frelinghuysen Rd, Piscataway, NJ, 08854, USA.
| |
Collapse
|
6
|
Eleazar EG, Carrera ARM, Quiambao JIR, Caparanga AR, Tayo LL. QSTR Models in Dioxins and Dioxin-like Compounds Provide Insights into Gene Expression Dysregulation. TOXICS 2024; 12:597. [PMID: 39195699 PMCID: PMC11359467 DOI: 10.3390/toxics12080597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/11/2024] [Accepted: 08/15/2024] [Indexed: 08/29/2024]
Abstract
Polychlorinated dibenzo-p-dioxins and polychlorinated dibenzo-p-furans (PCDD/Fs) are a group of organic chemicals containing three-ring structures that can be substituted with one to eight chlorine atoms, leading to 75 dioxin and 135 furan congeners. As endocrine-disrupting chemicals (EDCs), they can alter physiological processes causing a number of disorders. In this study, quantitative structure-toxicity relationship (QSTR) studies were used to determine the correlations between the PCDD/Fs' molecular structures and various toxicity endpoints. Strong QSTR models, with the coefficients of determination (r2) values greater than 0.95 and ANOVA p-values less than 0.0001 were established between molecular descriptors and the endpoints of bioconcentration, fathead minnow LC50, and Daphnia magna LC50. The ability of PCDD/Fs to bind to several nuclear receptors was investigated via molecular docking studies. The results show comparable, and in some instances better, binding affinities of PCDD/Fs toward the receptors relative to their natural agonistic and antagonistic ligands, signifying possible interference with the receptors' natural biological activities. These studies were accompanied by the molecular dynamics simulations of the top-binding PCDD/Fs to show changes in the receptor-ligand complexes during binding and provide insights into these compounds' ability to interfere with transcription and thereby modify gene expression. This introspection of PCDD/Fs at the molecular level provides a deeper understanding of these compounds' toxicity and opens avenues for future studies.
Collapse
Affiliation(s)
- Elisa G. Eleazar
- School of Graduate Studies, Mapua University, Manila 1002, Philippines; (E.G.E.); (A.R.M.C.); (A.R.C.)
- School of Chemical, Biological, and Materials Engineering and Sciences, Mapua University, Manila 1002, Philippines;
| | - Andrei Raphael M. Carrera
- School of Graduate Studies, Mapua University, Manila 1002, Philippines; (E.G.E.); (A.R.M.C.); (A.R.C.)
- School of Chemical, Biological, and Materials Engineering and Sciences, Mapua University, Manila 1002, Philippines;
| | - Janus Isaiah R. Quiambao
- School of Chemical, Biological, and Materials Engineering and Sciences, Mapua University, Manila 1002, Philippines;
| | - Alvin R. Caparanga
- School of Graduate Studies, Mapua University, Manila 1002, Philippines; (E.G.E.); (A.R.M.C.); (A.R.C.)
| | - Lemmuel L. Tayo
- School of Chemical, Biological, and Materials Engineering and Sciences, Mapua University, Manila 1002, Philippines;
- Department of Biology, School of Health Sciences, Mapua University, Makati 1200, Philippines
| |
Collapse
|
7
|
Wang K, Xin J, Hu Q, Wang X, Yu H. Pregnancy outcomes in patients complicated with pre-excitation syndrome. Arch Gynecol Obstet 2024; 310:1027-1035. [PMID: 38431699 PMCID: PMC11258095 DOI: 10.1007/s00404-024-07420-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 02/05/2024] [Indexed: 03/05/2024]
Abstract
INTRODUCTION Pregnant women with pre-excitation syndrome are more likely to develop supraventricular tachycardia (SVT) during pregnancy and delivery, leading to an increased risk of adverse events. METHOD This was a retrospective study of 309 pregnancies in 280 women (29 women had two pregnancies in this series) with pre-excitation syndrome who delivered at West China Second University Hospital from June 2011 to October 2021. All the 309 pregnant women with pre-excitation syndrome were divided into SVT and non-SVT groups to analyze the cardiac and obstetric complications. RESULTS Among the included pregnant women in the past 10 years, the prevalence of pre-excitation syndrome was 0.24% (309/127725). There were 309 cases with pre-excitation syndrome in all hospitalized pregnant women. Among them, 62 (20.1%, 62/309) had a history of SVT. In the 62 cases with SVT during pregnancy, 22 (35.5%) cases had a history of SVT. Gestational diabetes mellitus was associated with SVT during pregnancy. The cesarean section rate was 88.7% in the SVT group, which was significantly higher than that in the non-SVT group (64.8%) (P < 0.001). Cases with SVT during pregnancy had more cardiac and obstetric complications. Four fetal deaths were recorded in the SVT group. Additionally, 29 women experienced two pregnancies during the study period, among whom, five received radiofrequency ablation after the first delivery and obtained better outcomes in the second pregnancy. CONCLUSION The adverse outcomes such as cardiac complications, maternal and fetal complications (PROM, prematurity, SGA, fetal distress, etc.) in pregnant women with pre-excitation syndrome were closely related to SVT, with possible risk factors including history of SVT before pregnancy, cardiac function, heart organic abnormalities, and gestational diabetes mellitus.
Collapse
Affiliation(s)
- Kana Wang
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, No. 20, 3rd Section, South Renmin Road, Chengdu, 610041, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, No. 20, 3rd Section, South Renmin Road, Chengdu, 610041, China
| | - Junguo Xin
- School of Public Heath, Chengdu Medical College, No. 20, 3rd Section, South Renmin Road, Chengdu, 610041, China
| | - Qing Hu
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, No. 20, 3rd Section, South Renmin Road, Chengdu, 610041, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, No. 20, 3rd Section, South Renmin Road, Chengdu, 610041, China
| | - Xiaodong Wang
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, No. 20, 3rd Section, South Renmin Road, Chengdu, 610041, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, No. 20, 3rd Section, South Renmin Road, Chengdu, 610041, China
| | - Haiyan Yu
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, No. 20, 3rd Section, South Renmin Road, Chengdu, 610041, China.
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, No. 20, 3rd Section, South Renmin Road, Chengdu, 610041, China.
| |
Collapse
|
8
|
Carrera ARM, Eleazar EG, Caparanga AR, Tayo LL. Theoretical Studies on the Quantitative Structure-Toxicity Relationship of Polychlorinated Biphenyl Congeners Reveal High Affinity Binding to Multiple Human Nuclear Receptors. TOXICS 2024; 12:49. [PMID: 38251005 PMCID: PMC10821279 DOI: 10.3390/toxics12010049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/31/2023] [Accepted: 01/02/2024] [Indexed: 01/23/2024]
Abstract
Polychlorinated biphenyls (PCBs) are organic chemicals consisting of a biphenyl structure substituted with one to ten chlorine atoms, with 209 congeners depending on the number and position of the chlorine atoms. PCBs are widely known to be endocrine-disrupting chemicals (EDCs) and have been found to be involved in several diseases/disorders. This study takes various molecular descriptors of these PCBs (e.g., molecular weight) and toxicity endpoints as molecular activities, investigating the possibility of correlations via the quantitative structure-toxicity relationship (QSTR). This study then focuses on molecular docking and dynamics to investigate the docking behavior of the strongest-binding PCBs to nuclear receptors and compares these to the docking behavior of their natural ligands. Nuclear receptors are a family of transcription factors activated by steroid hormones, and they have been investigated to consider the impact of PCBs on humans in this context. It has been observed that the docking affinity of PCBs is comparable to that of the natural ligands, but they are inferior in terms of stability and interacting forces, as shown by the RMSD and total energy values. However, it is noted that most nuclear receptors respond to PCBs similarly to how they respond to their natural ligands-as shown in the RMSF plots-the most similar of which are seen in the ER, THR-β, and RAR-α. However, this study is performed purely in silico and will need experimental verification for validation.
Collapse
Affiliation(s)
- Andrei Raphael M. Carrera
- School of Graduate Studies, Mapúa University, Manila 1002, Philippines; (A.R.M.C.); (E.G.E.)
- School of Chemical, Biological, and Materials Engineering and Sciences, Mapúa University, Manila 1002, Philippines;
| | - Elisa G. Eleazar
- School of Graduate Studies, Mapúa University, Manila 1002, Philippines; (A.R.M.C.); (E.G.E.)
- School of Chemical, Biological, and Materials Engineering and Sciences, Mapúa University, Manila 1002, Philippines;
| | - Alvin R. Caparanga
- School of Chemical, Biological, and Materials Engineering and Sciences, Mapúa University, Manila 1002, Philippines;
| | - Lemmuel L. Tayo
- School of Chemical, Biological, and Materials Engineering and Sciences, Mapúa University, Manila 1002, Philippines;
- Department of Biology, School of Medicine and Health Sciences, Mapúa University, Makati 1200, Philippines
| |
Collapse
|
9
|
Basak S, Varma S, Duttaroy AK. Modulation of fetoplacental growth, development and reproductive function by endocrine disrupters. Front Endocrinol (Lausanne) 2023; 14:1215353. [PMID: 37854189 PMCID: PMC10579913 DOI: 10.3389/fendo.2023.1215353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 09/14/2023] [Indexed: 10/20/2023] Open
Abstract
Maternal endocrine homeostasis is vital to a successful pregnancy, regulated by several hormones such as human chorionic gonadotropin, estrogen, leptin, glucocorticoid, insulin, prostaglandin, and others. Endocrine stress during pregnancy can modulate nutrient availability from mother to fetus, alter fetoplacental growth and reproductive functions. Endocrine disrupters such as bisphenols (BPs) and phthalates are exposed in our daily life's highest volume. Therefore, they are extensively scrutinized for their effects on metabolism, steroidogenesis, insulin signaling, and inflammation involving obesity, diabetes, and the reproductive system. BPs have their structural similarity to 17-β estradiol and their ability to bind as an agonist or antagonist to estrogen receptors to elicit an adverse response to the function of the endocrine and reproductive system. While adults can negate the adverse effects of these endocrine-disrupting chemicals (EDCs), fetuses do not equip themselves with enzymatic machinery to catabolize their conjugates. Therefore, EDC exposure makes the fetoplacental developmental window vulnerable to programming in utero. On the one hand prenatal BPs and phthalates exposure can impair the structure and function of the ovary and uterus, resulting in placental vascular defects, inappropriate placental expression of angiogenic growth factors due to altered hypothalamic response, expression of nutrient transporters, and epigenetic changes associated with maternal endocrine stress. On the other, their exposure during pregnancy can affect the offspring's metabolic, endocrine and reproductive functions by altering fetoplacental programming. This review highlights the latest development in maternal metabolic and endocrine modulations from exposure to estrogenic mimic chemicals on subcellular and transgenerational changes in placental development and its effects on fetal growth, size, and metabolic & reproductive functions.
Collapse
Affiliation(s)
- Sanjay Basak
- Molecular Biology Division, ICMR-National Institute of Nutrition, Indian Council of Medical Research, Hyderabad, India
| | - Saikanth Varma
- Molecular Biology Division, ICMR-National Institute of Nutrition, Indian Council of Medical Research, Hyderabad, India
| | - Asim K. Duttaroy
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
10
|
Bai J, Li Y, Yan G, Zhou J, Salmeron AG, Fategbe OT, Kumar S, Chen X, Chen DB. ICI 182,780 Attenuates Selective Upregulation of Uterine Artery Cystathionine β-Synthase Expression in Rat Pregnancy. Int J Mol Sci 2023; 24:14384. [PMID: 37762687 PMCID: PMC10532247 DOI: 10.3390/ijms241814384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/16/2023] [Accepted: 09/17/2023] [Indexed: 09/29/2023] Open
Abstract
Endogenous hydrogen sulfide (H2S) produced by cystathionine β-synthase (CBS) and cystathionine-γ lyase (CSE) has emerged as a novel uterine vasodilator contributing to pregnancy-associated increases in uterine blood flow, which safeguard pregnancy health. Uterine artery (UA) H2S production is stimulated via exogenous estrogen replacement and is associated with elevated endogenous estrogens during pregnancy through the selective upregulation of CBS without altering CSE. However, how endogenous estrogens regulate uterine artery CBS expression in pregnancy is unknown. This study was conducted to test a hypothesis that endogenous estrogens selectively stimulate UA CBS expression via specific estrogen receptors (ER). Treatment with E2β (0.01 to 100 nM) stimulated CBS but not CSE mRNA in organ cultures of fresh UA rings from both NP and P (gestational day 20, GD20) rats, with greater responses to all doses of E2β tested in P vs. NP UA. ER antagonist ICI 182,780 (ICI, 1 µM) completely attenuated E2β-stimulated CBS mRNA in both NP and P rat UA. Subcutaneous injection with ICI 182,780 (0.3 mg/rat) of GD19 P rats for 24 h significantly inhibited UA CBS but not mRNA expression, consistent with reduced endothelial and smooth muscle cell CBS (but not CSE) protein. ICI did not alter mesenteric and renal artery CBS and CSE mRNA. In addition, ICI decreased endothelial nitric oxide synthase mRNA in UA but not in mesenteric or renal arteries. Thus, pregnancy-augmented UA CBS/H2S production is mediated by the actions of endogenous estrogens via specific ER in pregnant rats.
Collapse
Affiliation(s)
- Jin Bai
- Department of Obstetrics and Gynecology, University of California Irvine, Irvine, CA 92697, USA; (J.B.); (A.G.S.); (O.T.F.)
| | - Yao Li
- Department of Laboratory Animal Sciences, School of Medicine, Shanghai Jiaotong University, 280 South Chongqing Road, Shanghai 200025, China; (Y.L.); (G.Y.); (J.Z.); (X.C.)
| | - Guofeng Yan
- Department of Laboratory Animal Sciences, School of Medicine, Shanghai Jiaotong University, 280 South Chongqing Road, Shanghai 200025, China; (Y.L.); (G.Y.); (J.Z.); (X.C.)
| | - Jing Zhou
- Department of Laboratory Animal Sciences, School of Medicine, Shanghai Jiaotong University, 280 South Chongqing Road, Shanghai 200025, China; (Y.L.); (G.Y.); (J.Z.); (X.C.)
| | - Alejandra Garcia Salmeron
- Department of Obstetrics and Gynecology, University of California Irvine, Irvine, CA 92697, USA; (J.B.); (A.G.S.); (O.T.F.)
| | - Olamide Tolulope Fategbe
- Department of Obstetrics and Gynecology, University of California Irvine, Irvine, CA 92697, USA; (J.B.); (A.G.S.); (O.T.F.)
| | - Sathish Kumar
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI 53706, USA;
| | - Xuejin Chen
- Department of Laboratory Animal Sciences, School of Medicine, Shanghai Jiaotong University, 280 South Chongqing Road, Shanghai 200025, China; (Y.L.); (G.Y.); (J.Z.); (X.C.)
| | - Dong-Bao Chen
- Department of Obstetrics and Gynecology, University of California Irvine, Irvine, CA 92697, USA; (J.B.); (A.G.S.); (O.T.F.)
| |
Collapse
|
11
|
Xu F, Ma J, Wang X, Wang X, Fang W, Sun J, Li Z, Liu J. The Role of G Protein-Coupled Estrogen Receptor (GPER) in Vascular Pathology and Physiology. Biomolecules 2023; 13:1410. [PMID: 37759810 PMCID: PMC10526873 DOI: 10.3390/biom13091410] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/12/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023] Open
Abstract
OBJECTIVE Estrogen is indispensable in health and disease and mainly functions through its receptors. The protection of the cardiovascular system by estrogen and its receptors has been recognized for decades. Numerous studies with a focus on estrogen and its receptor system have been conducted to elucidate the underlying mechanism. Although nuclear estrogen receptors, including estrogen receptor-α and estrogen receptor-β, have been shown to be classical receptors that mediate genomic effects, studies now show that GPER mainly mediates rapid signaling events as well as transcriptional regulation via binding to estrogen as a membrane receptor. With the discovery of selective synthetic ligands for GPER and the utilization of GPER knockout mice, significant progress has been made in understanding the function of GPER. In this review, the tissue and cellular localizations, endogenous and exogenous ligands, and signaling pathways of GPER are systematically summarized in diverse physiological and diseased conditions. This article further emphasizes the role of GPER in vascular pathology and physiology, focusing on the latest research progress and evidence of GPER as a promising therapeutic target in hypertension, pulmonary hypertension, and atherosclerosis. Thus, selective regulation of GPER by its agonists and antagonists have the potential to be used in clinical practice for treating such diseases.
Collapse
Affiliation(s)
- Fujie Xu
- Xi’an Medical University, Xi’an 710068, China; (F.X.); (W.F.); (J.S.)
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China; (J.M.); (X.W.); (X.W.)
| | - Jipeng Ma
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China; (J.M.); (X.W.); (X.W.)
| | - Xiaowu Wang
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China; (J.M.); (X.W.); (X.W.)
| | - Xiaoya Wang
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China; (J.M.); (X.W.); (X.W.)
| | - Weiyi Fang
- Xi’an Medical University, Xi’an 710068, China; (F.X.); (W.F.); (J.S.)
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China; (J.M.); (X.W.); (X.W.)
| | - Jingwei Sun
- Xi’an Medical University, Xi’an 710068, China; (F.X.); (W.F.); (J.S.)
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China; (J.M.); (X.W.); (X.W.)
| | - Zilin Li
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China; (J.M.); (X.W.); (X.W.)
| | - Jincheng Liu
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China; (J.M.); (X.W.); (X.W.)
| |
Collapse
|
12
|
Brugger BA, Neuper L, Guettler J, Forstner D, Wernitznig S, Kummer D, Lyssy F, Feichtinger J, Krappinger J, El-Heliebi A, Bonstingl L, Moser G, Rodriguez-Blanco G, Bachkönig OA, Gottschalk B, Gruber M, Nonn O, Herse F, Verlohren S, Frank HG, Barapatre N, Kampfer C, Fluhr H, Desoye G, Gauster M. Fluid shear stress induces a shift from glycolytic to amino acid pathway in human trophoblasts. Cell Biosci 2023; 13:163. [PMID: 37684702 PMCID: PMC10492287 DOI: 10.1186/s13578-023-01114-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 08/28/2023] [Indexed: 09/10/2023] Open
Abstract
BACKGROUND The human placenta, a tissue with a lifespan limited to the period of pregnancy, is exposed to varying shear rates by maternal blood perfusion depending on the stage of development. In this study, we aimed to investigate the effects of fluidic shear stress on the human trophoblast transcriptome and metabolism. RESULTS Based on a trophoblast cell line cultured in a fluidic flow system, changes caused by shear stress were analyzed and compared to static conditions. RNA sequencing and bioinformatics analysis revealed an altered transcriptome and enriched gene ontology terms associated with amino acid and mitochondrial metabolism. A decreased GLUT1 expression and reduced glucose uptake, together with downregulated expression of key glycolytic rate-limiting enzymes, hexokinase 2 and phosphofructokinase 1 was observed. Altered mitochondrial ATP levels and mass spectrometry data, suggested a shift in energy production from glycolysis towards mitochondrial oxidative phosphorylation. This shift in energy production could be supported by increased expression of glutamic-oxaloacetic transaminase variants in response to shear stress as well as under low glucose availability or after silencing of GLUT1. The shift towards amino acid metabolic pathways could be supported by significantly altered amino acid levels, like glutamic acid, cysteine and serine. Downregulation of GLUT1 and glycolytic rate-limiting enzymes, with concomitant upregulation of glutamic-oxaloacetic transaminase 2 was confirmed in first trimester placental explants cultured under fluidic flow. In contrast, high fluid shear stress decreased glutamic-oxaloacetic transaminase 2 expression in term placental explants when compared to low flow rates. Placental tissue from pregnancies with intrauterine growth restriction are exposed to high shear rates and showed also decreased glutamic-oxaloacetic transaminase 2, while GLUT1 was unchanged and glycolytic rate-limiting enzymes showed a trend to be upregulated. The results were generated by using qPCR, immunoblots, quantification of immunofluorescent pictures, padlock probe hybridization, mass spectrometry and FRET-based measurement. CONCLUSION Our study suggests that onset of uteroplacental blood flow is accompanied by a shift from a predominant glycolytic- to an alternative amino acid converting metabolism in the villous trophoblast. Rheological changes with excessive fluidic shear stress at the placental surface, may disrupt this alternative amino acid pathway in the syncytiotrophoblast and could contribute to intrauterine growth restriction.
Collapse
Affiliation(s)
- Beatrice Anna Brugger
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, Neue Stiftingtalstraße 6, OST V, 8010, Graz, Austria
| | - Lena Neuper
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, Neue Stiftingtalstraße 6, OST V, 8010, Graz, Austria
| | - Jacqueline Guettler
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, Neue Stiftingtalstraße 6, OST V, 8010, Graz, Austria
| | - Désirée Forstner
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, Neue Stiftingtalstraße 6, OST V, 8010, Graz, Austria
| | - Stefan Wernitznig
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, Neue Stiftingtalstraße 6, OST V, 8010, Graz, Austria
| | - Daniel Kummer
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, Neue Stiftingtalstraße 6, OST V, 8010, Graz, Austria
| | - Freya Lyssy
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, Neue Stiftingtalstraße 6, OST V, 8010, Graz, Austria
| | - Julia Feichtinger
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, Neue Stiftingtalstraße 6, OST V, 8010, Graz, Austria
| | - Julian Krappinger
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, Neue Stiftingtalstraße 6, OST V, 8010, Graz, Austria
| | - Amin El-Heliebi
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, Neue Stiftingtalstraße 6, OST V, 8010, Graz, Austria
- Center for Biomarker Research in Medicine (CBmed), Graz, Austria
| | - Lilli Bonstingl
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, Neue Stiftingtalstraße 6, OST V, 8010, Graz, Austria
- Center for Biomarker Research in Medicine (CBmed), Graz, Austria
| | - Gerit Moser
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, Neue Stiftingtalstraße 6, OST V, 8010, Graz, Austria
| | - Giovanny Rodriguez-Blanco
- Clinical Institute for Medical and Chemical Laboratory Diagnosis, Medical University of Graz, Graz, Austria
| | - Olaf A Bachkönig
- Division of Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Graz, Austria
| | - Benjamin Gottschalk
- Division of Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Graz, Austria
| | - Michael Gruber
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, Neue Stiftingtalstraße 6, OST V, 8010, Graz, Austria
| | - Olivia Nonn
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, Neue Stiftingtalstraße 6, OST V, 8010, Graz, Austria
- Experimental and Clinical Research Center, a cooperation between the Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association and the Charité-Universitätsmedizin Berlin, Berlin, Germany
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Florian Herse
- Experimental and Clinical Research Center, a cooperation between the Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association and the Charité-Universitätsmedizin Berlin, Berlin, Germany
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Stefan Verlohren
- Department of Obstetrics and Gynaecology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Clinic for Obstetrics, Charité Berlin, Berlin, Germany
| | | | | | | | - Herbert Fluhr
- Department of Obstetrics and Gynaecology, Medical University of Graz, Graz, Austria
| | - Gernot Desoye
- Department of Obstetrics and Gynaecology, Medical University of Graz, Graz, Austria
| | - Martin Gauster
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, Neue Stiftingtalstraße 6, OST V, 8010, Graz, Austria.
| |
Collapse
|
13
|
Li Y, Wan H, Ma R, Liu T, Chen Y, Dong Y. Chronic Stress That Changed Intestinal Permeability and Induced Inflammation Was Restored by Estrogen. Int J Mol Sci 2023; 24:12822. [PMID: 37629009 PMCID: PMC10454097 DOI: 10.3390/ijms241612822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 08/05/2023] [Accepted: 08/11/2023] [Indexed: 08/27/2023] Open
Abstract
Chronic psychological stress affects the health of humans and animals (especially females or pregnant bodies). In this study, a stress-induced model was established by placing eight-week-old female and pregnant mice in centrifuge tubes for 4 h to determine whether chronic stress affects the intestinal mucosal barrier and microbiota composition of pregnant mice. Compared with the control group, we found that norepinephrine (NE), corticosterone (CORT), and estradiol (E2) in plasma increased significantly in the stress group. We then observed a decreased down-regulation of anti-inflammatory cytokines and up-regulation of pro-inflammatory cytokines, which resulted in colonic mucosal injury, including a reduced number of goblet cells, proliferating cell nuclear antigen-positive cells, caspase-3, and expression of tight junction mRNA and protein. Moreover, the diversity and richness of the colonic microbiota decreased in pregnant mice. Bacteroidetes decreased, and pernicious bacteria were markedly increased. At last, we found E2 protects the intestinal epithelial cells after H2O2 treatment. Results suggested that 25 pg/mL E2 provides better protection for intestinal barrier after chronic stress, which greatly affected the intestinal mucosal barrier and altered the colonic microbiota composition.
Collapse
Affiliation(s)
- Yuanyuan Li
- Department of Basic Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (Y.L.); (H.W.); (R.M.); (T.L.); (Y.C.)
| | - Huayun Wan
- Department of Basic Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (Y.L.); (H.W.); (R.M.); (T.L.); (Y.C.)
| | - Ruiqin Ma
- Department of Basic Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (Y.L.); (H.W.); (R.M.); (T.L.); (Y.C.)
| | - Tianya Liu
- Department of Basic Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (Y.L.); (H.W.); (R.M.); (T.L.); (Y.C.)
| | - Yaoxing Chen
- Department of Basic Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (Y.L.); (H.W.); (R.M.); (T.L.); (Y.C.)
| | - Yulan Dong
- Department of Basic Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (Y.L.); (H.W.); (R.M.); (T.L.); (Y.C.)
- Key Laboratory of Precision Nutrition and Food Quality, Ministry of Education, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| |
Collapse
|
14
|
Bai J, Jiao F, Salmeron AG, Xu S, Xian M, Huang L, Chen DB. Mapping Pregnancy-dependent Sulfhydrome Unfolds Diverse Functions of Protein Sulfhydration in Human Uterine Artery. Endocrinology 2023; 164:bqad107. [PMID: 37439247 PMCID: PMC10413431 DOI: 10.1210/endocr/bqad107] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 06/26/2023] [Accepted: 07/11/2023] [Indexed: 07/14/2023]
Abstract
Uterine artery (UA) hydrogen sulfide (H2S) production is augmented in pregnancy and, on stimulation by systemic/local vasodilators, contributes to pregnancy-dependent uterine vasodilation; however, how H2S exploits this role is largely unknown. S-sulfhydration converts free thiols to persulfides at reactive cysteine(s) on targeted proteins to affect the entire proteome posttranslationally, representing the main route for H2S to elicit its function. Here, we used Tag-Switch to quantify changes in sulfhydrated (SSH-) proteins (ie, sulfhydrome) in H2S-treated nonpregnant and pregnant human UA. We further used the low-pH quantitative thiol reactivity profiling platform by which paired sulfhydromes were subjected to liquid chromatography tandem mass spectrometry-based peptide sequencing to generate site (cysteine)-specific pregnancy-dependent H2S-responsive human UA sulfhydrome. Total levels of sulfhydrated proteins were significantly greater in pregnant vs nonpregnant human UA and further stimulated by treatment with sodium hydrosulfide. We identified a total of 360 and 1671 SSH-peptides from 480 and 1186 SSH-proteins in untreated and sodium hydrosulfide-treated human UA, respectively. Bioinformatics analyses identified pregnancy-dependent H2S-responsive human UA SSH peptides/proteins, which were categorized to various molecular functions, pathways, and biological processes, especially vascular smooth muscle contraction/relaxation. Pregnancy-dependent changes in these proteins were rectified by immunoblotting of the Tag-Switch labeled SSH proteins. Low-pH quantitative thiol reactivity profiling failed to identify low abundance SSH proteins such as KATP channels in human UA; however, immunoblotting of Tag-Switch-labeled SSH proteins identified pregnancy-dependent upregulation of SSH-KATP channels without altering their total proteins. Thus, comprehensive analyses of human UA sulfhydromes influenced by endogenous and exogenous H2S inform novel roles of protein sulfhydration in uterine hemodynamics regulation.
Collapse
Affiliation(s)
- Jin Bai
- Department of Obstetrics and Gynecology, University of California, Irvine, CA 92697, USA
| | - Fenglong Jiao
- Department of Physiology and Biophysics, University of California, Irvine, CA 92697, USA
| | | | - Shi Xu
- Department of Chemistry, Brown University, Providence, RI 02912, USA
| | - Ming Xian
- Department of Chemistry, Brown University, Providence, RI 02912, USA
| | - Lan Huang
- Department of Physiology and Biophysics, University of California, Irvine, CA 92697, USA
| | - Dong-bao Chen
- Department of Obstetrics and Gynecology, University of California, Irvine, CA 92697, USA
| |
Collapse
|
15
|
Alencar AKN, Swan KF, Pridjian G, Lindsey SH, Bayer CL. Connecting G protein-coupled estrogen receptor biomolecular mechanisms with the pathophysiology of preeclampsia: a review. Reprod Biol Endocrinol 2023; 21:60. [PMID: 37393260 DOI: 10.1186/s12958-023-01112-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 06/20/2023] [Indexed: 07/03/2023] Open
Abstract
BACKGROUND Throughout the course of pregnancy, small maternal spiral arteries that are in contact with fetal tissue undergo structural remodeling, lose smooth muscle cells, and become less responsive to vasoconstrictors. Additionally, placental extravillous trophoblasts invade the maternal decidua to establish an interaction between the fetal placental villi with the maternal blood supply. When successful, this process enables the transport of oxygen, nutrients, and signaling molecules but an insufficiency leads to placental ischemia. In response, the placenta releases vasoactive factors that enter the maternal circulation and promote maternal cardiorenal dysfunction, a hallmark of preeclampsia (PE), the leading cause of maternal and fetal death. An underexplored mechanism in the development of PE is the impact of membrane-initiated estrogen signaling via the G protein-coupled estrogen receptor (GPER). Recent evidence indicates that GPER activation is associated with normal trophoblast invasion, placental angiogenesis/hypoxia, and regulation of uteroplacental vasodilation, and these mechanisms could explain part of the estrogen-induced control of uterine remodeling and placental development in pregnancy. CONCLUSION Although the relevance of GPER in PE remains speculative, this review provides a summary of our current understanding on how GPER stimulation regulates some of the features of normal pregnancy and a potential link between its signaling network and uteroplacental dysfunction in PE. Synthesis of this information will facilitate the development of innovative treatment options.
Collapse
Affiliation(s)
| | - Kenneth F Swan
- Department of Obstetrics & Gynecology, Tulane University, New Orleans, LA, 70112, USA
| | - Gabriella Pridjian
- Department of Obstetrics & Gynecology, Tulane University, New Orleans, LA, 70112, USA
| | - Sarah H Lindsey
- Department of Pharmacology, Tulane University, New Orleans, LA, 70112, USA
| | - Carolyn L Bayer
- Department of Biomedical Engineering, Tulane University, 500 Lindy Boggs Center, New Orleans, LA, 70118, USA.
| |
Collapse
|
16
|
Zeigler MB, Fay EE, Moreni SL, Mao J, Totah RA, Hebert MF. Plasma hydrogen sulfide, nitric oxide, and thiocyanate levels are lower during pregnancy compared to postpartum in a cohort of women from the Pacific northwest of the United States. Life Sci 2023; 322:121625. [PMID: 37001802 PMCID: PMC10133030 DOI: 10.1016/j.lfs.2023.121625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 03/21/2023] [Accepted: 03/22/2023] [Indexed: 04/03/2023]
Abstract
AIMS Pregnancy alters multiple physiological processes including angiogenesis, vasodilation, inflammation, and cellular redox, which are partially modulated by the gasotransmitters hydrogen sulfide (H2S) and nitric oxide (NO). In this study, we sought to determine how plasma levels of H2S, NO, and the H2S-related metabolites thiocyanate (SCN-), and methanethiol (CH3SH) change during pregnancy progression. MATERIALS AND METHODS Plasma was collected from 45 women at three points: 25-28 weeks gestation, 28-32 week gestation, and at ≥3 months postpartum. Plasma levels of H2S, SCN-, and CH3SH were measured following derivatization using monobromobimane followed by LC-MS/MS. Plasma NO was measured indirectly using the Griess reagent. KEY FINDINGS NO and SCN- were significantly lower in women at 25-28 weeks gestation and 28-32 weeks gestation than postpartum while plasma H2S levels were significantly lower at 28-32 weeks gestation than postpartum. No significant differences were observed in CH3SH. SIGNIFICANCE Previous reports demonstrated that the production of H2S and NO are stimulated during pregnancy, but we observed lower levels during pregnancy compared to postpartum. Previous reports on NO have been mixed, but given the related effects of H2S and NO, it is expected that their levels would be higher during pregnancy vs. postpartum. Future studies determining the mechanism for decreased H2S and NO during pregnancy will elucidate the role of these gasotransmitters during normal and pathological progression of pregnancy.
Collapse
Affiliation(s)
- Maxwell B Zeigler
- University of Washington, Department of Medicinal Chemistry, Seattle, WA, USA.
| | - Emily E Fay
- University of Washington, Department of Obstetrics and Gynecology, Seattle, WA, USA
| | - Sue L Moreni
- University of Washington, Department of Obstetrics and Gynecology, Seattle, WA, USA
| | - Jennie Mao
- University of Washington, Department of Obstetrics and Gynecology, Seattle, WA, USA
| | - Rheem A Totah
- University of Washington, Department of Medicinal Chemistry, Seattle, WA, USA
| | - Mary F Hebert
- University of Washington, Department of Obstetrics and Gynecology, Seattle, WA, USA; University of Washington, Department of Pharmacy, Seattle, WA, USA
| |
Collapse
|
17
|
Park SR, Kook MG, Kim SR, Lee JW, Park CH, Oh BC, Jung Y, Hong IS. Development of cell-laden multimodular Lego-like customizable endometrial tissue assembly for successful tissue regeneration. Biomater Res 2023; 27:33. [PMID: 37085887 PMCID: PMC10122345 DOI: 10.1186/s40824-023-00376-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 04/07/2023] [Indexed: 04/23/2023] Open
Abstract
BACKGROUND The endometrium, the inner lining of the uterine cavity, plays essential roles in embryo implantation and its subsequent development. Although some positive results were preliminarily archived, the regeneration of damaged endometrial tissues by administrating stem cells only is very challenging due to the lack of specific microenvironments and their low attachment rates at the sites of injury. In this context, various biomaterial-based scaffolds have been used to overcome these limitations by providing simple structural support for cell attachment. However, these scaffold-based strategies also cannot properly reflect patient tissue-specific structural complexity and thus show only limited therapeutic effects. METHOD Therefore, in the present study, we developed a customizable Lego-like multimodular endometrial tissue architecture by assembling individually fabricated tissue blocks. RESULTS Each tissue block was fabricated by incorporating biodegradable biomaterials and certain endometrial constituent cells. Each small tissue block was effectively fabricated by integrating conventional mold casting and 3D printing techniques. The fabricated individual tissue blocks were properly assembled into a larger customized tissue architecture. This structure not only properly mimics the patient-specific multicellular microenvironment of the endometrial tissue but also properly responds to key reproductive hormones in a manner similar to the physiological functions. CONCLUSION This customizable modular tissue assembly allows easy and scalable configuration of a complex patient-specific tissue microenvironment, thus accelerating various tissue regeneration procedures.
Collapse
Affiliation(s)
- Se-Ra Park
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon, 21999, Republic of Korea
- Department of Molecular Medicine, School of Medicine, Gachon University, 7-45 Songdo-dong, Yeonsu-ku, Incheon, 406-840, Republic of Korea
| | - Myung Geun Kook
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon, 21999, Republic of Korea
- Department of Molecular Medicine, School of Medicine, Gachon University, 7-45 Songdo-dong, Yeonsu-ku, Incheon, 406-840, Republic of Korea
| | - Soo-Rim Kim
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon, 21999, Republic of Korea
- Department of Molecular Medicine, School of Medicine, Gachon University, 7-45 Songdo-dong, Yeonsu-ku, Incheon, 406-840, Republic of Korea
| | - Jin Woo Lee
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon, 21999, Republic of Korea
- Department of Molecular Medicine, School of Medicine, Gachon University, 7-45 Songdo-dong, Yeonsu-ku, Incheon, 406-840, Republic of Korea
| | - Chan Hum Park
- Department of Otolaryngology-Head and Neck Surgery, Chuncheon Sacred Heart Hospital, Hallym University College of Medicine, Chuncheon, Republic of Korea
| | - Byung-Chul Oh
- Department of Physiology, Lee Gil Ya Cancer and Diabetes Institute, Gachon University College of Medicine, Incheon, 21999, Republic of Korea
| | - YunJae Jung
- Department of Microbiology, College of Medicine, Gachon University, Incheon, 21999, Korea
| | - In-Sun Hong
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon, 21999, Republic of Korea.
- Department of Molecular Medicine, School of Medicine, Gachon University, 7-45 Songdo-dong, Yeonsu-ku, Incheon, 406-840, Republic of Korea.
| |
Collapse
|
18
|
Dingle K, Kassem OM, Azizieh F, AbdulHussain G, Raghupathy R. Quantitative analyses of cytokine profiles reveal hormone-mediated modulation of cytokine profiles in recurrent spontaneous miscarriage. Cytokine 2023; 164:156160. [PMID: 36804258 DOI: 10.1016/j.cyto.2023.156160] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 02/02/2023] [Accepted: 02/06/2023] [Indexed: 02/21/2023]
Abstract
PURPOSE Cytokines play important roles in pregnancy complications. Some hormones such as estrogen, progesterone, and dydrogesterone have been shown to alter cytokine profiles. Understanding how cytokine profiles are affected by these hormones is therefore an important step towards immunomodulatory therapies for pregnancy complications. We analyse previously published data on the effects of estrogen, progesterone, and dydrogesterone on cytokine balances in women having recurrent spontaneous miscarriages. MATERIALS AND METHODS Levels of eight cytokines (IFN-γ, IL-2, IL-6, IL-10, IL-13, IL-17, IL-23, TNF-α) from n = 22 women presenting unexplained recurrent spontaneous miscarriages were studied. Cytokine values were recorded after in vitro exposure of peripheral blood cells to estrogen, progesterone, and dydrogesterone. We expand on earlier analysis of the dataset by employing different statistical techniques including effect sizes for individual cytokine values, a more powerful statistical test, and adjusting p-values for multiple comparisons. We employ multivariate analysis methods, including to determine the relative magnitude of the effects of the hormone therapies on cytokines. A new statistical method is introduced based on pairwise distances able to accommodate complex relations in cytokine profiles. RESULTS We report several statistically significant differences in individual cytokine values between the control group and each hormone treated group, with estrogen affecting the fewest cytokines, and progesterone and dydrogesterone both affecting seven out of eight cytokines. Exposure to estrogen produces no large effects sizes however, while IFN-γ and IL-17 show large effect sizes for both progesterone and dydrogesterone, among other cytokines. Our new method for identifying which collections (i.e. subsets) of cytokines best distinguish contrasting groups identifies IFN-γ, IL-10 and IL-23 as especially noteworthy for both progesterone and dydrogesterone treatments. CONCLUSIONS While some statistically significant differences in cytokine levels after exposure to estrogen are found, these have small effect sizes and are unlikely to be clinically relevant. Progesterone and dydrogesterone both induce statistically significant and large effect-size differences in cytokine levels, hence therapy with these two progestogens is more likely to be clinically relevant. Univariate and multivariate methods for identifying cytokine importances provide insight into which groups of cytokines are most affected and in what ways by therapies.
Collapse
Affiliation(s)
- Kamaludin Dingle
- Centre for Applied Mathematics and Bioinformatics, Department of Mathematics and Natural Sciences, Gulf University for Science and Technology, Hawally, Kuwait; Department of Computing and Mathematical Sciences, California Institute of Technology, Pasadena, CA, USA.
| | - Osama M Kassem
- Centre for Applied Mathematics and Bioinformatics, Department of Mathematics and Natural Sciences, Gulf University for Science and Technology, Hawally, Kuwait
| | - Fawaz Azizieh
- Centre for Applied Mathematics and Bioinformatics, Department of Mathematics and Natural Sciences, Gulf University for Science and Technology, Hawally, Kuwait
| | | | - Raj Raghupathy
- Department of Microbiology, Faculty of Medicine, Kuwait University, Kuwait
| |
Collapse
|
19
|
Rusidzé M, Gargaros A, Fébrissy C, Dubucs C, Weyl A, Ousselin J, Aziza J, Arnal JF, Lenfant F. Estrogen Actions in Placental Vascular Morphogenesis and Spiral Artery Remodeling: A Comparative View between Humans and Mice. Cells 2023; 12:cells12040620. [PMID: 36831287 PMCID: PMC9954071 DOI: 10.3390/cells12040620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 02/06/2023] [Accepted: 02/07/2023] [Indexed: 02/17/2023] Open
Abstract
Estrogens, mainly 17β-estradiol (E2), play a critical role in reproductive organogenesis, ovulation, and fertility via estrogen receptors. E2 is also a well-known regulator of utero-placental vascular development and blood-flow dynamics throughout gestation. Mouse and human placentas possess strikingly different morphological configurations that confer important reproductive advantages. However, the functional interplay between fetal and maternal vasculature remains similar in both species. In this review, we briefly describe the structural and functional characteristics, as well as the development, of mouse and human placentas. In addition, we summarize the current knowledge regarding estrogen actions during utero-placental vascular morphogenesis, which includes uterine angiogenesis, the control of trophoblast behavior, spiral artery remodeling, and hemodynamic adaptation throughout pregnancy, in both mice and humans. Finally, the estrogens that are present in abnormal placentation are also mentioned. Overall, this review highlights the importance of the actions of estrogens in the physiology and pathophysiology of placental vascular development.
Collapse
Affiliation(s)
- Mariam Rusidzé
- Institute of Metabolic and Cardiovascular Diseases (I2MC), INSERM U1297, University of Toulouse III-Paul Sabatier (UPS), CHU, 31432 Toulouse, France
- Department of Pathology, Cancer University Institute of Toulouse Oncopole-IUCT, 31100 Toulouse, France
| | - Adrien Gargaros
- Institute of Metabolic and Cardiovascular Diseases (I2MC), INSERM U1297, University of Toulouse III-Paul Sabatier (UPS), CHU, 31432 Toulouse, France
| | - Chanaëlle Fébrissy
- Institute of Metabolic and Cardiovascular Diseases (I2MC), INSERM U1297, University of Toulouse III-Paul Sabatier (UPS), CHU, 31432 Toulouse, France
| | - Charlotte Dubucs
- Department of Pathology, Cancer University Institute of Toulouse Oncopole-IUCT, 31100 Toulouse, France
| | - Ariane Weyl
- Institute of Metabolic and Cardiovascular Diseases (I2MC), INSERM U1297, University of Toulouse III-Paul Sabatier (UPS), CHU, 31432 Toulouse, France
- Department of Pathology, Cancer University Institute of Toulouse Oncopole-IUCT, 31100 Toulouse, France
| | - Jessie Ousselin
- Department of Pathology, Cancer University Institute of Toulouse Oncopole-IUCT, 31100 Toulouse, France
| | - Jacqueline Aziza
- Department of Pathology, Cancer University Institute of Toulouse Oncopole-IUCT, 31100 Toulouse, France
| | - Jean-François Arnal
- Institute of Metabolic and Cardiovascular Diseases (I2MC), INSERM U1297, University of Toulouse III-Paul Sabatier (UPS), CHU, 31432 Toulouse, France
| | - Françoise Lenfant
- Institute of Metabolic and Cardiovascular Diseases (I2MC), INSERM U1297, University of Toulouse III-Paul Sabatier (UPS), CHU, 31432 Toulouse, France
- Correspondence:
| |
Collapse
|
20
|
Kong J, Li S, Li Y, Chen M. Effects of Salvia miltiorrhiza active compounds on placenta-mediated pregnancy complications. Front Cell Dev Biol 2023; 11:1034455. [PMID: 36711034 PMCID: PMC9880055 DOI: 10.3389/fcell.2023.1034455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 01/03/2023] [Indexed: 01/15/2023] Open
Abstract
Placenta-mediated pregnancy complications (PMPCs), including preeclampsia (PE), fetal growth restriction (FGR), and recurrent spontaneous abortion (RSA), occur in approximately 5% of pregnancies and are caused by abnormal placenta development. The development of effective therapies for PMPCs is still challenging due to the complicated pathogenesis, such as disrupted vascular homeostasis and subsequent abnormal placentation. Synthetic drugs have been recommended for treating PMPCs; however, they tend to cause adverse reactions in the mother and fetus. Salvia miltiorrhiza (S. miltiorrhiza) has potential effects on PMPCs owing to its advantages in treating cardiovascular disorders. S. miltiorrhiza and its active compounds could attenuate the symptoms of PMPCs through anticoagulation, vasodilation, antioxidation, and endothelial protection. Thus, in this review, we summarize the literature and provide comprehensive insights on S. miltiorrhiza and its phytochemical constituents, pharmacological activities, and on PMPCs, which would be valuable to explore promising drugs.
Collapse
Affiliation(s)
- Jingyin Kong
- Department of Prenatal Diagnosis and Fetal Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Songjun Li
- Department of Reproduction Medical Center, The Third Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Yingting Li
- Department of Prenatal Diagnosis and Fetal Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Min Chen
- Department of Prenatal Diagnosis and Fetal Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China,*Correspondence: Min Chen,
| |
Collapse
|
21
|
Rodríguez-Jaimes SY, Hernández-Hernández GC, Hernández-Aragón LG, Sánchez-García O, Martínez-Gómez M, Cuevas-Romero E, Castelán F. G protein-coupled estrogen receptor (GPER/GPR30) levels in pelvic floor muscles and its association with estrogen status in female rabbits. Gynecol Endocrinol 2022; 38:748-753. [PMID: 35861367 DOI: 10.1080/09513590.2022.2099830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
Abstract
Objective: To assess the relative expression of the G-protein coupled estrogen receptor (GPER) in the bulbospongiosus (Bsm) and pubococcygeus (Pcm) muscles in control, ovariectomized (OVX), and OVX with estradiol benzoate supplementation (OVX + EB) rabbits.Methods: We used tissues from C, 1-month OVX, and OVX plus 15-day EB implanted (OVX + EB) groups. The GPER expression was evaluated by Western blot and immunohistochemistry for both Bsm and Pcm. Results: Both muscles showed a GPER immunoreactivity in blood vessels, inside myofibers next to myonuclei, and in polymorphonuclear cells. Four-week ovariectomy did not modify the GPER expression in the Bsm and Pcm, but two-week estradiol benzoate increased it in the latter muscle alone.Conclusions: We demonstrated that the Bsm and Pcm of female rabbits express GPER. High serum estradiol levels elevate GPER relative expression in the Pcm alone. The present study supports the remarkable estrogen sensitivity of the Pcm.
Collapse
Affiliation(s)
- Sharet Y Rodríguez-Jaimes
- Centro Tlaxcala de Biología de la Conducta, Universidad Autónoma de Tlaxcala, Tlaxcala, México
- Doctorado en Ciencias Biológicas, Universidad Autónoma de Tlaxcala, Tlaxcala, México
| | - Guadalupe C Hernández-Hernández
- Centro Tlaxcala de Biología de la Conducta, Universidad Autónoma de Tlaxcala, Tlaxcala, México
- Maestría en Ciencias Biológicas, Universidad Autónoma de Tlaxcala, Tlaxcala, México
| | | | | | - Margarita Martínez-Gómez
- Centro Tlaxcala de Biología de la Conducta, Universidad Autónoma de Tlaxcala, Tlaxcala, México
- Depto. de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Tlaxcala, México
| | - Estela Cuevas-Romero
- Centro Tlaxcala de Biología de la Conducta, Universidad Autónoma de Tlaxcala, Tlaxcala, México
| | - Francisco Castelán
- Centro Tlaxcala de Biología de la Conducta, Universidad Autónoma de Tlaxcala, Tlaxcala, México
- Depto. de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Tlaxcala, México
| |
Collapse
|
22
|
Grant AD, Erickson EN. Birth, love, and fear: Physiological networks from pregnancy to parenthood. COMPREHENSIVE PSYCHONEUROENDOCRINOLOGY 2022; 11:100138. [PMID: 35757173 PMCID: PMC9227990 DOI: 10.1016/j.cpnec.2022.100138] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 04/21/2022] [Accepted: 04/21/2022] [Indexed: 12/01/2022] Open
Abstract
Pregnancy and childbirth are among the most dramatic physiological and emotional transformations of a lifetime. Despite their central importance to human survival, many gaps remain in our understanding of the temporal progression of and mechanisms underlying the transition to new parenthood. The goal of this paper is to outline the physiological and emotional development of the maternal-infant dyad from late pregnancy to the postpartum period, and to provide a framework to investigate this development using non-invasive timeseries. We focus on the interaction among neuroendocrine, emotional, and autonomic outputs in the context of late pregnancy, parturition, and post-partum. We then propose that coupled dynamics in these outputs can be leveraged to map both physiologic and pathologic pregnancy, parturition, and parenthood. This approach could address gaps in our knowledge and enable early detection or prediction of problems, with both personalized depth and broad population scale.
Collapse
Affiliation(s)
- Azure D. Grant
- Helen Wills Neuroscience Institute, University of California, Berkeley, CA, 94720, United States
- Levels Health Inc., 228 Park Ave. South, PMB 63877, New York, NY, 10003, United States
| | - Elise N. Erickson
- Oregon Health and Science University, Portland, OR, 97239, United States
| |
Collapse
|
23
|
G-Protein-Coupled Estrogen Receptor Expression in Rat Uterine Artery Is Increased by Pregnancy and Induces Dilation in a Ca2+ and ERK1/2 Dependent Manner. Int J Mol Sci 2022; 23:ijms23115996. [PMID: 35682675 PMCID: PMC9180712 DOI: 10.3390/ijms23115996] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/23/2022] [Accepted: 05/23/2022] [Indexed: 02/04/2023] Open
Abstract
Increasing levels of estrogens across gestation are partly responsible for the physiological adaptations of the maternal vasculature to pregnancy. The G protein-coupled estrogen receptor (GPER) mediates acute vasorelaxing effects in the uterine vasculature, which may contribute to the regulation of uteroplacental blood flow. The aim of this study was to investigate whether GPER expression and vasorelaxation may occur following pregnancy. Elucidation of the functional signalling involved was also investigated. Radial uterine and third-order mesenteric arteries were isolated from non-pregnant (NP) and pregnant rats (P). GPER mRNA levels were determined and—concentration–response curve to the GPER-specific agonist, G1 (10−10–10−6 M), was assessed in arteries pre-constricted with phenylephrine. In uterine arteries, GPER mRNA expression was significantly increased and vasorelaxation to G1 was significantly enhanced in P compared with NP rats. Meanwhile, in mesenteric arteries, there was a similar order of magnitude in NP and P rats. Inhibition of L-type calcium channels and extracellular signal-regulated kinases 1/2 significantly reduced vasorelaxation triggered by G1 in uterine arteries. Increased GPER expression and GPER-mediated vasorelaxation are associated with the advancement of gestation in uterine arteries. The modulation of GPER is exclusive to uterine arteries, thus suggesting a physiological contribution of GPER toward the regulation of uteroplacental blood flow during pregnancy.
Collapse
|
24
|
Gonsioroski A, Plewa MJ, Flaws JA. Effects of prenatal and lactational exposure to iodoacetic acid on the F1 generation of mice†. Biol Reprod 2022; 107:650-663. [PMID: 35470848 PMCID: PMC9382386 DOI: 10.1093/biolre/ioac079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 03/07/2022] [Accepted: 04/15/2022] [Indexed: 11/14/2022] Open
Abstract
Water disinfection can generate water disinfection byproducts (DBPs). Iodoacetic acid (IAA) is one DBP, and it has been shown to be an ovarian toxicant in vitro and in vivo. However, it is unknown if prenatal and lactational exposure to IAA affects reproductive outcomes in female offspring. This study tested the hypothesis that prenatal and lactational exposure to IAA adversely affects reproductive parameters in F1 female offspring. Adult female CD-1 mice were dosed with water (control) or IAA (10, 100, and 500 mg/L) in the drinking water for 35 days and then mated with unexposed males. IAA exposure continued throughout gestation. Dams delivered naturally, and pups were continuously exposed to IAA through lactation until postnatal day (PND) 21. Female pups were euthanized on PND 21 and subjected to measurements of anogenital distance, ovarian weight, and vaginal opening. Ovaries were subjected to histological analysis. In addition, sera were collected to measure reproductive hormone levels. IAA exposure decreased vaginal opening rate, increased the absolute weight of the ovaries, increased anogenital index, and decreased the percentage of atretic follicles in female pups compared to control. IAA exposure caused a borderline decrease in the levels of progesterone and follicle-stimulating hormone (FSH) and increased levels of testosterone in female pups compared to control. Collectively, these data show that prenatal and lactational exposure to IAA in drinking water affects vaginal opening, anogenital index, the weight of the ovaries, the percentage of atretic follicles, and hormone levels in the F1 generation in mice.
Collapse
Affiliation(s)
- Andressa Gonsioroski
- Department of Comparative Biosciences, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Michael J Plewa
- Department of Crop Sciences and the Safe Global Water Institute, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Jodi A Flaws
- Correspondence: Department of Comparative Biosciences, University of Illinois, 2001 S. Lincoln Ave., Urbana, 61802, IL, USA. E-mail:
| |
Collapse
|
25
|
Endometriosis and Impaired Placentation: A Prospective Cohort Study Comparing Uterine Arteries Doppler Pulsatility Index in Pregnancies of Patients with and without Moderate-Severe Disease. Diagnostics (Basel) 2022; 12:diagnostics12051024. [PMID: 35626180 PMCID: PMC9139463 DOI: 10.3390/diagnostics12051024] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/08/2022] [Accepted: 04/16/2022] [Indexed: 11/17/2022] Open
Abstract
The aim of this study was to evaluate if moderate-severe endometriosis impairs uterine arteries pulsatility index (UtA-PI) during pregnancy when compared to unaffected controls. In this prospective cohort study, pregnant women with stage III–IV endometriosis according to the revised American Fertility Society (r-AFS) classification were matched for body mass index and parity in a 1:2 ratio with unaffected controls. UtA-PIs were assessed at 11–14, 19–22 and 26–34 weeks of gestation following major reference guidelines. A General Linear Model (GLM) was implemented to evaluate the association between endometriosis and UtA-PI Z-scores. Significantly higher third trimester UtA-PI Z-scores were observed in patients with r-AFS stage III–IV endometriosis when compared to controls (p = 0.024). In the GLM, endometriosis (p = 0.026) and maternal age (p = 0.007) were associated with increased third trimester UtA-PI Z-scores, whereas conception by in-vitro fertilization with frozen-thawed embryo transfer significantly decreased UtA-PI measures (p = 0.011). According to these results, r-AFS stage III–IV endometriosis is associated with a clinically measurable impaired late placental perfusion. Closer follow-up may be recommended in pregnant patients affected by moderate-severe endometriosis in order to attempt prediction and prevention of adverse pregnancy and perinatal outcomes due to a defective late placental perfusion.
Collapse
|
26
|
Ilgisonis EV, Shalina R, Kasum-Zade N, Burkova KG, Trifonova OP, Maslov DL, Kaysheva AL, Markin SS. Metabolomic Markers for Predicting Preeclampsia in the First Trimester of Pregnancy: A Retrospective Study. Molecules 2022; 27:molecules27082475. [PMID: 35458675 PMCID: PMC9025490 DOI: 10.3390/molecules27082475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 04/05/2022] [Accepted: 04/07/2022] [Indexed: 11/25/2022] Open
Abstract
We sought to identify the characteristic metabolite profile of blood plasma samples obtained from patients with preeclampsia. Direct high-resolution mass spectrometry was used to analyze samples from 79 pregnant women, 34 of whom had preeclampsia. We performed a comparative analysis of the metabolite profiles and found that they differed between pregnant women with and without preeclampsia. Lipids and sugars were identified as components of the metabolite profile that are likely to be associated with the development of preeclampsia. While PE was established only in the third trimester, a set of metabolites specific for the third trimester, including 2-(acetylamino)-1,5-anhydro-2-deoxy-4-O-b-D-galactopyranosyl-D-arabino-Hex-1-enitol, N-Acetyl-D-glucosaminyldiphosphodolichol, Cer(d18:0/20:0), and allolithocholic acid, was already traced in the first trimester. These components are also likely involved in lipid metabolism disorders and the development of oxidative stress.
Collapse
Affiliation(s)
- Ekaterina V. Ilgisonis
- V.N. Orekhovich Institute of Biomedical Chemistry, 119121 Moscow, Russia; (E.V.I.); (O.P.T.); (D.L.M.); (S.S.M.)
| | - Raisa Shalina
- Department of Obstetrics and Gynecology, Pirogov Russian National Research Medical University, Ostrovitianov Str. 1, 117997 Moscow, Russia; (R.S.); (N.K.-Z.); (K.G.B.)
| | - Nigyar Kasum-Zade
- Department of Obstetrics and Gynecology, Pirogov Russian National Research Medical University, Ostrovitianov Str. 1, 117997 Moscow, Russia; (R.S.); (N.K.-Z.); (K.G.B.)
| | - Kristina G. Burkova
- Department of Obstetrics and Gynecology, Pirogov Russian National Research Medical University, Ostrovitianov Str. 1, 117997 Moscow, Russia; (R.S.); (N.K.-Z.); (K.G.B.)
| | - Oxana P. Trifonova
- V.N. Orekhovich Institute of Biomedical Chemistry, 119121 Moscow, Russia; (E.V.I.); (O.P.T.); (D.L.M.); (S.S.M.)
| | - Dmitry L. Maslov
- V.N. Orekhovich Institute of Biomedical Chemistry, 119121 Moscow, Russia; (E.V.I.); (O.P.T.); (D.L.M.); (S.S.M.)
| | - Anna L. Kaysheva
- V.N. Orekhovich Institute of Biomedical Chemistry, 119121 Moscow, Russia; (E.V.I.); (O.P.T.); (D.L.M.); (S.S.M.)
- Correspondence: ; Tel.: +7-499-764-98-78
| | - Sergey S. Markin
- V.N. Orekhovich Institute of Biomedical Chemistry, 119121 Moscow, Russia; (E.V.I.); (O.P.T.); (D.L.M.); (S.S.M.)
| |
Collapse
|
27
|
Hart DA. Sex Differences in Biological Systems and the Conundrum of Menopause: Potential Commonalities in Post-Menopausal Disease Mechanisms. Int J Mol Sci 2022; 23:4119. [PMID: 35456937 PMCID: PMC9026302 DOI: 10.3390/ijms23084119] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/30/2022] [Accepted: 04/05/2022] [Indexed: 02/04/2023] Open
Abstract
Sex-specific differences in biology and physiology likely start at the time of conception and progress and mature during the pre-puberty time frame and then during the transitions accompanying puberty. These sex differences are impacted by both genetics and epigenetic alterations during the maturation process, likely for the purpose of preparing for successful reproduction. For females, later in life (~45-50) they undergo another transition leading to a loss of ovarian hormone production at menopause. The reasons for menopause are not clear, but for a subset of females, menopause is accompanied by an increased risk of a number of diseases or conditions that impact a variety of tissues. Most research has mainly focused on the target cells in each of the affected tissues rather than pursue the alternative option that there may be commonalities in the development of these post-menopausal conditions in addition to influences on specific target cells. This review will address some of the potential commonalities presented by an integration of the literature regarding tissue-specific aspects of these post-menopausal conditions and data presented by space flight/microgravity (a condition not anticipated by evolution) that could implicate a loss of a regulatory function of the microvasculature in the risk attached to the affected tissues. Thus, the loss of the integration of the paracrine relationships between endothelial cells of the microvasculature of the tissues affected in the post-menopausal environment could contribute to the risk for post-menopausal diseases/conditions. The validation of this concept could lead to new approaches for interventions to treat post-menopausal conditions, as well as provide new understanding regarding sex-specific biological regulation.
Collapse
Affiliation(s)
- David A. Hart
- Department of Surgery and Faculty of Kinesiology, University of Calgary, Calgary, AB T2N 4N1, Canada; ; Tel.: +1-403-220-4571
- Bone & Joint Health Strategic Clinical Network, Alberta Health Services, Edmonton, AB T5J 3E4, Canada
| |
Collapse
|
28
|
Estrogen-Induced Uterine Vasodilation in Pregnancy and Preeclampsia. MATERNAL-FETAL MEDICINE 2022; 4:52-60. [PMID: 35072088 PMCID: PMC8772435 DOI: 10.1097/fm9.0000000000000132] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 11/09/2021] [Indexed: 12/02/2022] Open
Abstract
Normal pregnancy is associated with dramatically increased estrogen biosynthesis whose role is believed to raise uterine blood flow to facilitate the bi-directional maternal-fetal exchanges of gases (O2 and CO2), to deliver nutrients, and exhaust wastes to support fetal development and survival. Constrained uterine blood flow in pregnancy is a leading cause of preeclampsia with fetal growth restriction, rendering investigations of uterine hemodynamics to hold a high promise to inform pathways as targets for therapeutic interventions for preeclampsia. The mechanisms of estrogen-induced uterine vasodilation in pregnancy have long been attributed to enhanced endothelium production of nitric oxide, but clinical trials targeting this pathway that dominates uterine hemodynamics have achieved no to little success. Emerging evidence has recently shown a novel proangiogenic vasodilatory role of hydrogen sulfide in regulating uterine hemodynamics in pregnancy and preeclampsia, provoking a new field of perinatal research in searching for alternative pathways for pregnancy disorders especially preeclampsia and intrauterine growth restriction. This minireview is intended to summarize the nitric oxide pathway and to discuss the emerging hydrogen sulfide pathway in modulating estrogen-induced uterine vasodilation in pregnancy and preeclampsia.
Collapse
|
29
|
den Hoedt S, Crivelli SM, Leijten FPJ, Losen M, Stevens JAA, Mané-Damas M, de Vries HE, Walter J, Mirzaian M, Sijbrands EJG, Aerts JMFG, Verhoeven AJM, Martinez-Martinez P, Mulder MT. Effects of Sex, Age, and Apolipoprotein E Genotype on Brain Ceramides and Sphingosine-1-Phosphate in Alzheimer's Disease and Control Mice. Front Aging Neurosci 2021; 13:765252. [PMID: 34776936 PMCID: PMC8579780 DOI: 10.3389/fnagi.2021.765252] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 09/29/2021] [Indexed: 11/28/2022] Open
Abstract
Apolipoprotein ε4 (APOE)4 is a strong risk factor for the development of Alzheimer’s disease (AD) and aberrant sphingolipid levels have been implicated in AD. We tested the hypothesis that the APOE4 genotype affects brain sphingolipid levels in AD. Seven ceramides and sphingosine-1-phosphate (S1P) were quantified by LC-MSMS in hippocampus, cortex, cerebellum, and plasma of <3 months and >5 months old human APOE3 and APOE4-targeted replacement mice with or without the familial AD (FAD) background of both sexes (145 animals). APOE4 mice had higher Cer(d18:1/24:0) levels in the cortex (1.7-fold, p = 0.002) than APOE3 mice. Mice with AD background showed higher levels of Cer(d18:1/24:1) in the cortex than mice without (1.4-fold, p = 0.003). S1P levels were higher in all three brain regions of older mice than of young mice (1.7-1.8-fold, all p ≤ 0.001). In female mice, S1P levels in hippocampus (r = −0.54 [−0.70, −0.35], p < 0.001) and in cortex correlated with those in plasma (r = −0.53 [−0.71, −0.32], p < 0.001). Ceramide levels were lower in the hippocampus (3.7–10.7-fold, all p < 0.001), but higher in the cortex (2.3–12.8-fold, p < 0.001) of female than male mice. In cerebellum and plasma, sex effects on individual ceramides depended on acyl chain length (9.5-fold lower to 11.5-fold higher, p ≤ 0.001). In conclusion, sex is a stronger determinant of brain ceramide levels in mice than APOE genotype, AD background, or age. Whether these differences impact AD neuropathology in men and women remains to be investigated.
Collapse
Affiliation(s)
- Sandra den Hoedt
- Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Simone M Crivelli
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, Netherlands
| | - Frank P J Leijten
- Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Mario Losen
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, Netherlands
| | - Jo A A Stevens
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, Netherlands
| | - Marina Mané-Damas
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, Netherlands
| | - Helga E de Vries
- Department of Molecular Cell Biology and Immunology, Amsterdam Neuroscience, VU Medical Center, Amsterdam UMC, Amsterdam, Netherlands
| | - Jochen Walter
- Department of Neurology, University Hospital Bonn, Venusberg Campus, Bonn, Germany
| | - Mina Mirzaian
- Department of Clinical Chemistry, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Eric J G Sijbrands
- Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, Netherlands
| | | | - Adrie J M Verhoeven
- Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Pilar Martinez-Martinez
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, Netherlands
| | - Monique T Mulder
- Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, Netherlands
| |
Collapse
|
30
|
Ibetoh CN, Stratulat E, Liu F, Wuni GY, Bahuva R, Shafiq MA, Gattas BS, Gordon DK. Supraventricular Tachycardia in Pregnancy: Gestational and Labor Differences in Treatment. Cureus 2021; 13:e18479. [PMID: 34659918 PMCID: PMC8494174 DOI: 10.7759/cureus.18479] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 10/04/2021] [Indexed: 11/28/2022] Open
Abstract
Supraventricular tachycardia (SVT) is a tachyarrhythmia characterized by a heart rate above 120 beats per minute (BPM). Patients with SVT exhibit the following symptoms: palpitations, shortness of breath, chest pain, hemodynamic instability, or possibly asymptomatic. The increase in cardiac output and the increase in resting heart rate during pregnancy predispose pregnant women to SVT. The management of SVT in pregnancy, although remarkably similar, varies slightly based on the trimester of pregnancy. Atenolol and verapamil are effective methods of treating SVT, which can be used during the second and third trimesters. Both medications are contraindicated in the first trimester. At the same time, intravenous adenosine can be used in all three trimesters, including labor. Electrical cardioversion is an effective treatment method for hemodynamically unstable or drug-refractory patients, which has proven to be safe in all three trimesters, including labor but can result in pre-term labor in the third trimester. Non-fluoroscopic ablation proved to be the only treatment method that definitively resolved SVT without recurrence.
Collapse
Affiliation(s)
- Crystal N Ibetoh
- Family Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Eugeniu Stratulat
- Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Fan Liu
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - George Y Wuni
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Ronak Bahuva
- Internal Medicine, California Institute of Behavioral Neuroscience & Psychology, Fairfield, USA
- Internal Medicine, University at Buffalo, Buffalo, USA
| | - Muhammad A Shafiq
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
- Internal Medicine, Rawalpindi Medical University, Islamabad, PAK
| | - Boula S Gattas
- Internal Medicine, California Institute of Behavioral Neuroscience & Psychology, Fairfield, USA
| | - Domonick K Gordon
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
- Internal Medicine, Scarborough General Hospital, Scarborough, TTO
| |
Collapse
|
31
|
Hu X, Zhang L. Uteroplacental Circulation in Normal Pregnancy and Preeclampsia: Functional Adaptation and Maladaptation. Int J Mol Sci 2021; 22:8622. [PMID: 34445328 PMCID: PMC8395300 DOI: 10.3390/ijms22168622] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/04/2021] [Accepted: 08/09/2021] [Indexed: 02/07/2023] Open
Abstract
Uteroplacental blood flow increases as pregnancy advances. Adequate supply of nutrients and oxygen carried by uteroplacental blood flow is essential for the well-being of the mother and growth/development of the fetus. The uteroplacental hemodynamic change is accomplished primarily through uterine vascular adaptation, involving hormonal regulation of myogenic tone, vasoreactivity, release of vasoactive factors and others, in addition to the remodeling of spiral arteries. In preeclampsia, hormonal and angiogenic imbalance, proinflammatory cytokines and autoantibodies cause dysfunction of both endothelium and vascular smooth muscle cells of the uteroplacental vasculature. Consequently, the vascular dysfunction leads to increased vascular resistance and reduced blood flow in the uteroplacental circulation. In this article, the (mal)adaptation of uteroplacental vascular function in normal pregnancy and preeclampsia and underlying mechanisms are reviewed.
Collapse
Affiliation(s)
- Xiangqun Hu
- Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA 92350, USA
| | - Lubo Zhang
- Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA 92350, USA
| |
Collapse
|
32
|
Schuler LA, Murdoch FE. Endogenous and Therapeutic Estrogens: Maestro Conductors of the Microenvironment of ER+ Breast Cancers. Cancers (Basel) 2021; 13:3725. [PMID: 34359625 PMCID: PMC8345134 DOI: 10.3390/cancers13153725] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/20/2021] [Accepted: 07/21/2021] [Indexed: 12/25/2022] Open
Abstract
Estrogen receptor alpha (ERα) marks heterogeneous breast cancers which display a repertoire of somatic genomic mutations and an immune environment that differs from other breast cancer subtypes. These cancers also exhibit distinct biological behaviors; despite an overall better prognosis than HER2+ or triple negative breast cancers, disseminated dormant cells can lead to disease recurrence decades after the initial diagnosis and treatment. Estrogen is the best studied driver of these cancers, and antagonism or reduction of estrogen activity is the cornerstone of therapeutic approaches. In addition to reducing proliferation of ERα+ cancer cells, these treatments also alter signals to multiple other target cells in the environment, including immune cell subpopulations, cancer-associated fibroblasts, and endothelial cells via several distinct estrogen receptors. In this review, we update progress in our understanding of the stromal cells populating the microenvironments of primary and metastatic ER+ tumors, the effects of estrogen on tumor and stromal cells to modulate immune activity and the extracellular matrix, and net outcomes in experimental and clinical studies. We highlight new approaches that will illuminate the unique biology of these cancers, provide the foundation for developing new treatment and prevention strategies, and reduce mortality of this disease.
Collapse
Affiliation(s)
- Linda A. Schuler
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI 53706, USA;
| | | |
Collapse
|
33
|
Barberio L, Paulesu L, Canesi L, Grasselli E, Mandalà M. Bisphenol a Interferes with Uterine Artery Features and Impairs Rat Feto-Placental Growth. Int J Mol Sci 2021; 22:ijms22136912. [PMID: 34199136 PMCID: PMC8268965 DOI: 10.3390/ijms22136912] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/15/2021] [Accepted: 06/22/2021] [Indexed: 12/11/2022] Open
Abstract
Bisphenol A (BPA) is a widespread environmental contaminant, found in human fluids and tissues. Maternal BPA exposure is associated with alterations in pregnancy outcomes. Because maternal uterine circulation plays a crucial role in normal placenta and fetal growth, we hypothesized that BPA compromises the function of uterine arteries (UAs) and fetoplacental development. Female rats were orally administered with BPA (2.5, 25 and 250 µg/kg/day) or with its vehicle (ethanol) for 30 days before pregnancy and during the first 20 days of pregnancy. To compare the effect of BPA in the reproductive vs. systemic circulation, it was tested on UAs and mesenteric arteries (MAs). Arteries were isolated and examined by pressure myography. Moreover, fetuses and placentas were weighed to provide an index of reproductive performance. In UAs of BPA-treated rats, lumen diameter, acetylcholine-relaxation and expressions of endothelial nitric oxide synthase 3 (NOS3), estrogen receptor α (ERα) and peroxisome proliferator-activated receptor ɣ (PPARɣ) were reduced. Conversely, no changes were observed in MAs. BPA treatment also reduced placental weights, while fetal weights were increased. For the first time, our results indicate that UAs represent a specific target of BPA during pregnancy and provide insight into the molecular mechanisms that underlie its negative effects on pregnancy outcomes.
Collapse
Affiliation(s)
- Laura Barberio
- Department of Biology, Ecology & Earth Sciences, University of Calabria, 87036 Rende, Italy;
| | - Luana Paulesu
- Department of Life Sciences, University of Siena, 53100 Siena, Italy;
| | - Laura Canesi
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genova, 16132 Genova, Italy; (L.C.); (E.G.)
| | - Elena Grasselli
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genova, 16132 Genova, Italy; (L.C.); (E.G.)
| | - Maurizio Mandalà
- Department of Biology, Ecology & Earth Sciences, University of Calabria, 87036 Rende, Italy;
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Vermont, Burlington, VT 05405, USA
- Correspondence:
| |
Collapse
|
34
|
Huang Z, Huang S, Song T, Yin Y, Tan C. Placental Angiogenesis in Mammals: A Review of the Regulatory Effects of Signaling Pathways and Functional Nutrients. Adv Nutr 2021; 12:2415-2434. [PMID: 34167152 PMCID: PMC8634476 DOI: 10.1093/advances/nmab070] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/05/2021] [Accepted: 05/11/2021] [Indexed: 12/13/2022] Open
Abstract
Normal placental development and proper angiogenesis are essential for fetal growth during pregnancy. Angiogenesis involves the regulatory action of many angiogenic factors and a series of signal transduction processes inside and outside the cell. The obstruction of placental angiogenesis causes fetal growth restriction and serious pregnancy complications, even leading to fetal loss and pregnancy cessation. In this review, the effects of placental angiogenesis on fetal development are described, and several signaling pathways related to placental angiogenesis and their key regulatory mediators are summarized. These factors, which include vascular endothelial growth factor (VEGF)-VEGF receptor, delta-like ligand 4 (DLL-4)-Notch, Wnt, and Hedgehog, may affect the placental angiogenesis process. Moreover, the degree of vascularization depends on cell proliferation, migration, and differentiation, which is affected by the synthesis and secretion of metabolites or intermediates and mutual coordination or inhibition in these pathways. Furthermore, we discuss recent advances regarding the role of functional nutrients (including amino acids and fatty acids) in regulating placental angiogenesis. Understanding the specific mechanism of placental angiogenesis and its influence on fetal development may facilitate the establishment of new therapeutic strategies for the treatment of preterm birth, pre-eclampsia, or intrauterine growth restriction, and provide a theoretical basis for formulating nutritional regulation strategies during pregnancy.
Collapse
Affiliation(s)
- Zihao Huang
- Guangdong Laboratory of Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, and National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Shuangbo Huang
- Guangdong Laboratory of Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, and National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Tongxing Song
- Huazhong Agricultural University, College of Animal Science and Technology, Wuhan, China
| | - Yulong Yin
- National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China
| | | |
Collapse
|
35
|
Shu C, Han S, Xu P, Wang Y, Cheng T, Hu C. Estrogen and Preeclampsia: Potential of Estrogens as Therapeutic Agents in Preeclampsia. DRUG DESIGN DEVELOPMENT AND THERAPY 2021; 15:2543-2550. [PMID: 34163140 PMCID: PMC8214522 DOI: 10.2147/dddt.s304316] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 05/17/2021] [Indexed: 12/20/2022]
Abstract
There is a significant decline in the estrogen levels in preeclampsia, and exogenous administration of estradiol normalizes blood pressure and other associated symptoms of preeclampsia. The decrease in estrogen levels may be due to changes in enzyme activities of hydroxysteroid (17-β) dehydrogenase 1, aromatase, and COMT. There is also a decrease in the novel, estrogenic G-protein-coupled receptor 30 (GPR30) in the placental trophoblast cells in preeclampsia. The activation of GPR30 protects the placenta from hypoxia-reoxygenation injury, decreases apoptosis and increases proliferation through eNOS and PI3K-Akt signaling pathways. Estrogens may also increase Ca2+-activated K+ channel function, decrease the release of inflammatory cytokines, and oxidative stress to improve placental perfusion. Both preclinical and clinical studies show the decrease in the 2-methoxyestradiol levels in preeclampsia, which may be due to a decrease in estradiol itself along with a decrease in the enzymatic actions of the COMT enzyme. 2-Methoxyestradiol activates HIF1α and vascular endothelial growth factor receptors (VEGFR-2) to maintain placental perfusion by increasing angiogenesis. The present review discusses the preclinical and clinical studies describing the role of estrogen in preeclampsia along with possible mechanisms.
Collapse
Affiliation(s)
- Chang Shu
- Department of Obstetrics and Gynecology, The First Hospital of Jilin University, Jilin University, Changchun, Jilin, 130061, People's Republic of China
| | - Shumei Han
- Department of Medical Administration, The First Hospital of Jilin University, Jilin University, Changchun, Jilin, 130021, People's Republic of China
| | - Peng Xu
- Department of Sports Medicine, The First Hospital of Jilin University, Jilin University, Changchun, Jilin, 130021, People's Republic of China
| | - Ying Wang
- Department of Obstetrics and Gynecology, The First Hospital of Jilin University, Jilin University, Changchun, Jilin, 130061, People's Republic of China
| | - Tingting Cheng
- Department of Obstetrics and Gynecology, The First Hospital of Jilin University, Jilin University, Changchun, Jilin, 130061, People's Republic of China
| | - Cong Hu
- Reproductive Center, The First Hospital of Jilin University, Jilin University, Changchun, Jilin, 130021, People's Republic of China
| |
Collapse
|
36
|
Vishnyakova P, Poltavets A, Nikitina M, Midiber K, Mikhaleva L, Muminova K, Potapova A, Khodzhaeva Z, Pyregov A, Elchaninov A, Fatkhudinov T, Sukhikh G. Expression of Estrogen Receptor α by Decidual Macrophages in Preeclampsia. Biomedicines 2021; 9:biomedicines9020191. [PMID: 33672970 PMCID: PMC7917975 DOI: 10.3390/biomedicines9020191] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 02/10/2021] [Accepted: 02/11/2021] [Indexed: 02/07/2023] Open
Abstract
Preeclampsia is a gestation-associated hypertensive syndrome that threatens the life and health of the mother and the child. The condition is presumably caused by systemic failure with a strong involvement of innate immunity. In particular, it has been associated with flexible phenotypes of macrophages, which depend on the molecules circulating in the blood and tissue fluid, such as cytokines and hormones. This study aimed at a comparative evaluation of pro-inflammatory (TNFα) and anti-inflammatory (CD206, MMP9, HGF) markers, as well as the levels of estrogen receptor α, expressed by decidual macrophages in normal pregnancy and in patients with early- and late-onset preeclampsia. The tissue samples of decidua basalis were examined by immunohistochemistry and Western blotting. Isolation of decidual macrophages and their characterization were performed using cultural methods, flow cytometry and real-time PCR. Over 50% of the isolated decidual macrophages were positive for the pan-macrophage marker CD68. In the early-onset preeclampsia group, the levels of estrogen receptor α in decidua were significantly decreased. Furthermore, significantly decreased levels of HGF and CD206 were observed in both preeclampsia groups compared with the control group. The observed downregulation of estrogen receptor α, HGF and CD206 may contribute to the balance of pro- and anti-inflammatory macrophages and thereby to pathogenesis of preeclampsia.
Collapse
Affiliation(s)
- Polina Vishnyakova
- National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, 117198 Moscow, Russia; (A.P.); (K.M.); (A.P.); (Z.K.); (A.P.); (A.E.); (G.S.)
- Histology Department, Peoples’ Friendship University of Russia (RUDN University), 117198 Moscow, Russia;
- Correspondence: ; Tel.: +7-9150658577
| | - Anastasiya Poltavets
- National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, 117198 Moscow, Russia; (A.P.); (K.M.); (A.P.); (Z.K.); (A.P.); (A.E.); (G.S.)
| | - Maria Nikitina
- Scientific Research Institute of Human Morphology, 117418 Moscow, Russia; (M.N.); (K.M.); (L.M.)
| | - Konstantin Midiber
- Scientific Research Institute of Human Morphology, 117418 Moscow, Russia; (M.N.); (K.M.); (L.M.)
| | - Liudmila Mikhaleva
- Scientific Research Institute of Human Morphology, 117418 Moscow, Russia; (M.N.); (K.M.); (L.M.)
| | - Kamilla Muminova
- National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, 117198 Moscow, Russia; (A.P.); (K.M.); (A.P.); (Z.K.); (A.P.); (A.E.); (G.S.)
| | - Alena Potapova
- National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, 117198 Moscow, Russia; (A.P.); (K.M.); (A.P.); (Z.K.); (A.P.); (A.E.); (G.S.)
| | - Zulfiya Khodzhaeva
- National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, 117198 Moscow, Russia; (A.P.); (K.M.); (A.P.); (Z.K.); (A.P.); (A.E.); (G.S.)
| | - Alexey Pyregov
- National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, 117198 Moscow, Russia; (A.P.); (K.M.); (A.P.); (Z.K.); (A.P.); (A.E.); (G.S.)
| | - Andrey Elchaninov
- National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, 117198 Moscow, Russia; (A.P.); (K.M.); (A.P.); (Z.K.); (A.P.); (A.E.); (G.S.)
- Pirogov Russian National Research Medical University (RNRMU), 117997 Moscow, Russia
| | - Timur Fatkhudinov
- Histology Department, Peoples’ Friendship University of Russia (RUDN University), 117198 Moscow, Russia;
- Scientific Research Institute of Human Morphology, 117418 Moscow, Russia; (M.N.); (K.M.); (L.M.)
| | - Gennady Sukhikh
- National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, 117198 Moscow, Russia; (A.P.); (K.M.); (A.P.); (Z.K.); (A.P.); (A.E.); (G.S.)
| |
Collapse
|
37
|
Lloyd-Davies C, Collins SL, Burton GJ. Understanding the uterine artery Doppler waveform and its relationship to spiral artery remodelling. Placenta 2021; 105:78-84. [PMID: 33556717 DOI: 10.1016/j.placenta.2021.01.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 12/31/2020] [Accepted: 01/03/2021] [Indexed: 12/16/2022]
Abstract
Analysis of the uterine artery (UtA) Doppler waveform is frequently used in high-risk pregnancies to assess the likelihood of adverse pregnancy outcomes, including preeclampsia and fetal growth restriction. Whilst abnormal UtA waveforms at 18-20 weeks are associated with adverse outcomes, the underlying cause of these waveform changes remains unknown. Current evidence suggests the long-held dogma that the UtA waveform is merely a reflection of trophoblast-induced spiral artery remodelling is incorrect. Hence, the origins of the waveform changes must be reassessed. Recent data from human and animal models suggests that the arcuate arteries, placental bed arterio-venous anastomoses and, most notably, the radial arteries may be more important in determining the UtA waveform profile than previously appreciated. Furthermore, there is increasing evidence implicating the maternal cardiovascular system in the pathophysiology of the complications predicted by the waveform changes, particularly preeclampsia, and therefore its underlying association with the UtA waveform warrants further investigation.
Collapse
Affiliation(s)
- Claire Lloyd-Davies
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Sally L Collins
- Nuffield Department of Women's & Reproductive Health, University of Oxford, Oxford, UK and Fetal Medicine Unit, John Radcliffe Hospital, Oxford, UK
| | - Graham J Burton
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK; Centre for Trophoblast Research, University of Cambridge, Cambridge, UK.
| |
Collapse
|
38
|
Chang KT, Su YT, Tsai YR, Lan KC, Hsuuw YD, Kang HY, Chan WH, Huang FJ. High levels estradiol affect blastocyst implantation and post-implantation development directly in mice. Biomed J 2021; 45:179-189. [PMID: 35148258 PMCID: PMC9133257 DOI: 10.1016/j.bj.2021.01.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 12/25/2020] [Accepted: 01/11/2021] [Indexed: 01/09/2023] Open
Abstract
Background Previous studies have demonstrated that high levels of estradiol (E2) impair blastocyst implantation through effects on the endometrium; however, whether high E2 directly affects blastocysts is not well established. The present study sought to clarify the direct impacts of high E2 levels on blastocysts in vitro. Methods ICR virgin albino mice were used. Using an in-vitro 8-day blastocyst culture model, immunofluorescence staining for the estrogen receptor (ER), blastocyst outgrowth assays, differential staining and TUNEL assays of blastocysts, and embryo transfer, we investigated the main outcomes of exposure to different E2 concentrations (10−7 to 10−4 M) in vitro and in vivo. Results ERα and ERβ expression were detected in pre-implantation stage embryos. In vitro exposure of blastocysts to 10−4 M E2 for 24 h followed by 7 days culture in the absence of E2 caused severe inhibition of implantation and post-implantation development. The late adverse effects of E2 on post-implantation development still occurred at concentrations of 10−7 to 10−5 M. In addition, blastocyst proliferation was reduced and apoptotic cells were increased following exposure to 10−4 M E2. Using an in vivo embryo-transfer model, we also showed that treatment with high E2 resulted in fewer implantation sites (38% vs. 72% in control) and greater resorption of implanted blastocysts (81% vs. 38% in control). Conclusion Exposure to high E2 concentrations in vitro is deleterious to blastocyst implantation and early post-implantation development, mainly owing to direct impacts of E2 on implanting blastocysts. In clinical assisted reproductive technique (ART), high serum E2 concentrations not only affects the endometrium, but also affects blastocysts directly at the period of implantation.
Collapse
Affiliation(s)
- Ko-Tung Chang
- Department of Biological Science and Technology, National Pingtung University of Science and Technology, Taiwan
| | - Yu-Ting Su
- Department of Obstetrics and Gynecology, Kaohsiung Chang Gung Memorial Hospital, Taiwan
| | - Yi-Ru Tsai
- Department of Obstetrics and Gynecology, Kaohsiung Chang Gung Memorial Hospital, Taiwan
| | - Kuo-Chung Lan
- Department of Obstetrics and Gynecology, Kaohsiung Chang Gung Memorial Hospital, Taiwan; Chang Gung University College of Medicine, Taiwan
| | - Yan-Der Hsuuw
- Department of Tropical Agriculture and International Cooperation, National Pingtung University of Science and Technology, Taiwan
| | - Hong-Yo Kang
- Chang Gung University College of Medicine, Taiwan
| | - Wen-Hsiung Chan
- Department of Bioscience Technology and Center for Nanotechnology, Chung Yuan Christian University, Taiwan.
| | - Fu-Jen Huang
- Department of Obstetrics and Gynecology, Kaohsiung Chang Gung Memorial Hospital, Taiwan; Chang Gung University College of Medicine, Taiwan.
| |
Collapse
|
39
|
Hydrogen Sulfide Relaxes Human Uterine Artery via Activating Smooth Muscle BK Ca Channels. Antioxidants (Basel) 2020; 9:antiox9111127. [PMID: 33202933 PMCID: PMC7697977 DOI: 10.3390/antiox9111127] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/29/2020] [Accepted: 11/06/2020] [Indexed: 12/16/2022] Open
Abstract
Opening of large conductance calcium-activated and voltage-dependent potassium (BKCa) channels hyperpolarizes plasma membranes of smooth muscle (SM) to cause vasodilation, underling a key mechanism for mediating uterine artery (UA) dilation in pregnancy. Hydrogen sulfide (H2S) has been recently identified as a new UA vasodilator, yet the mechanism underlying H2S-induced UA dilation is unknown. Here, we tested whether H2S activated BKCa channels in human UA smooth muscle cells (hUASMC) to mediate UA relaxation. Multiple BKCa subunits were found in human UA in vitro and hUASMC in vitro, and high β1 and γ1 proteins were localized in SM cells in human UA. Baseline outward currents, recorded by whole-cell and single-channel patch clamps, were significantly inhibited by specific BKCa blockers iberiotoxin (IBTX) or tetraethylammonium, showing specific BKCa activity in hUASMC. H2S dose (NaHS, 1–1000 µM)-dependently potentiated BKCa currents and open probability. Co-incubation with a Ca2+ blocker nifedipine (5 µM) or a chelator (ethylene glycol-bis (β-aminoethyl ether)-N,N,N′,N′-tetraacetic acid (EGTA), 5 mM) did not alter H2S-potentiated BKCa currents and open probability. NaHS also dose-dependently relaxed phenylephrine pre-constricted freshly prepared human UA rings, which was inhibited by IBTX. Thus, H2S stimulated human UA relaxation at least partially via activating SM BKCa channels independent of extracellular Ca2+.
Collapse
|
40
|
Raloxifene as Treatment for Various Types of Brain Injuries and Neurodegenerative Diseases: A Good Start. Int J Mol Sci 2020; 21:ijms21207586. [PMID: 33066585 PMCID: PMC7589740 DOI: 10.3390/ijms21207586] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 10/10/2020] [Accepted: 10/12/2020] [Indexed: 02/06/2023] Open
Abstract
Recent studies have shown that the selective estrogen receptor modulator (SERM) raloxifene had pronounced protective effects against progressing brain damage after traumatic brain injury (TBI) in mice. These studies, indicating beneficial effects of raloxifene for brain health, prompted the study of the history and present state of knowledge of this topic. It appears that, apart from raloxifene, to date, four nonrelated compounds have shown comparable beneficial effects—fucoidan, pifithrin, SMM-189 (5-dihydroxy-phenyl]-phenyl-methanone), and translocator protein (TSPO) ligands. Raloxifene, however, is ahead of the field, as for more than two decades it has been used in medical practice for various chronic ailments in humans. Thus, apart from different types of animal and cell culture studies, it has also been assessed in various human clinical trials, including assaying its effects on mild cognitive impairments. Regarding cell types, raloxifene protects neurons from cell death, prevents glial activation, ameliorates myelin damage, and maintains health of endothelial cells. At whole central nervous system (CNS) levels, raloxifene ameliorated mild cognitive impairments, as seen in clinical trials, and showed beneficial effects in animal models of Parkinson’s disease. Moreover, with stroke and TBI in animal models, raloxifene showed curative effects. Furthermore, raloxifene showed healing effects regarding multiple sclerosis (MS) and amyotrophic lateral sclerosis (ALS) in cell culture. The adverse biological signals typical of these conditions relate to neuronal activity, neurotransmitters and their receptors, plasticity, inflammation, oxidative stress, nitric oxide, calcium homeostasis, cell death, behavioral impairments, etc. Raloxifene favorably modulates these signals toward cell health—on the one hand, by modulating gene expression of the relevant proteins, for example by way of its binding to the cell nuclear estrogen receptors ERα and ERβ (genomic effects) and, on the other hand (nongenomic effects) by modulation of mitochondrial activity, reduction of oxidative stress and programmed cell death, maintaining metabolic balance, degradation of Abeta, and modulation of intracellular cholesterol levels. More specifically regarding Alzheimer’s disease, raloxifene may not cure diagnosed Alzheimer’s disease. However, the onset of Alzheimer’s disease may be delayed or arrested by raloxifene’s capability to attenuate mild cognitive impairment. Mild cognitive impairment is a condition that may precede diagnosis of Alzheimer’s disease. In this review, relatively new insights are addressed regarding the notion that Alzheimer’s disease can be caused by bacterial (as well as viral) infections, together with the most recent findings that raloxifene can counteract infections of at least some bacterial and viral strains. Thus, here, an overview of potential treatments of neurodegenerative disease by raloxifene is presented, and attention is paid to subcellular molecular biological pathways that may be involved.
Collapse
|