1
|
Guo Q, Lu J, Zhao H, Zhou D, Liu H. Effect of extracellular vesicle ZNF280B derived from lung cancer stem cells on lung cancer progression. Cancer Biol Ther 2025; 26:2450849. [PMID: 39819193 DOI: 10.1080/15384047.2025.2450849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 12/12/2024] [Accepted: 01/03/2025] [Indexed: 01/19/2025] Open
Abstract
OBJECTIVE The purpose of this research was to investigate the role of extracellular vesicles derived from lung cancer stem cells (lung CSCs-EVs) in lung cancer and to explore their potential mechanisms. METHODS Lung CSCs were first isolated and verified using flow cytometry and RT-qPCR assays. Lung CSCs-EVs were extracted through ultracentrifugation and further characterized using transmission electron microscopy and Western blotting. The interaction between lung CSCs-EVs and lung cancer cells was observed through PKH67 staining. Subsequently, we analyzed the differentially expressed genes in lung CSCs using bioinformatics data analysis and evaluated the prognostic value of ZNF280B in lung cancer with the Kaplan-Meier Plotter. RT-qPCR was utilized to assess the mRNA expression levels of these genes, while Western blotting was used to evaluate the protein expression levels of ZNF280B and P53. Next, CCK-8 and colony formation assays were conducted to assess the effects of lung CSCs-EVs and ZNF280B on cancer cell proliferation, migration (via wound healing assay), and invasion (using transwell assay). Additionally, subcutaneous tumor-bearing experiments in nude mice were performed to evaluate the roles of lung CSCs-EVs in lung cancer progression in vivo. RESULTS The results indicated that lung CSCs-EVs accelerated the progression of lung cancer. Mechanistically, these lung CSCs-EVs transferred ZNF280B into cancer cells, leading to the inhibition of P53 expression. CONCLUSIONS In summary, the manuscript first describes the molecular mechanism by which lung CSCs-EVs promote pro-cancer functions in lung cancer through the ZNF280B/P53 axis.
Collapse
Affiliation(s)
- Qixia Guo
- Department of Pulmonary and Critical Care Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, People's Republic of China
- Department of Pulmonary and Critical Care Medicine, Rugao Boai Hospital, Nantong, People's Republic of China
| | - Jiayan Lu
- Department of Pulmonary and Critical Care Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, People's Republic of China
- Department of Pulmonary and Critical Care Medicine, Rugao Boai Hospital, Nantong, People's Republic of China
| | - Hui Zhao
- Department of Pulmonary and Critical Care Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, People's Republic of China
| | - Ding Zhou
- Department of Radiotherapy, LianShui County People's Hospital, Huai'an, People's Republic of China
| | - Hua Liu
- Department of Pulmonary and Critical Care Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, People's Republic of China
| |
Collapse
|
2
|
Xu SH, Xu H, Xiao KW, Mao SJ. Exercise rehabilitation on patients with non-small cell lung cancer: A meta-analysis of randomized controlled trials. World J Clin Cases 2025; 13:100161. [DOI: 10.12998/wjcc.v13.i11.100161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 11/19/2024] [Accepted: 12/16/2024] [Indexed: 12/26/2024] Open
Abstract
BACKGROUND Lung cancer is one of the most common and deadly cancers worldwide. As the disease progresses and due to the side effects of treatment, patients’ physical activity significantly decreases.
AIM To systematically review and conduct a meta-analysis on the effects of exercise rehabilitation on the physical activity of lung cancer patients and determine the best implementation methods to provide clinical guidance.
METHODS Literature was searched through multiple electronic databases. A random effects model was used to combine effect sizes through standardized mean difference (SMD). The Cochrane risk of bias tool was used to assess the quality of the literature, sensitivity analysis was used to ensure the robustness of the results, and Egger’s test was used to detect publication bias and asymmetry.
RESULTS A total of 11 studies involving 541 patients were included in this study. The physical endurance, muscle function and cardiopulmonary function of non-small cell lung cancer (NSCLC) patients were evaluated. The overall effect size of the six-minute walk test (6MWT) was not statistically significant. However, subgroup analysis found that endurance significantly improved when exercise duration exceeded 0.5 hours (P ≤ 0.05). In terms of muscle function, the overall effect size was SMD = 0.619. Subgroup analysis showed that strength training, respiratory training, and cross-training (XT) significantly improved muscle function. Exercise rehabilitation significantly enhanced cardiopulmonary endurance (SMD = 0.856, P = 0.002), and the effect was better when the single exercise duration was more than 1 hour, age was over 65 years, and the intervention period was more than 3 months.
CONCLUSION Exercise rehabilitation effectively improved muscle function in NSCLC patients, especially strength training, respiratory training, and cross-training. Cardiopulmonary function also showed improvement, particularly when exercise duration exceeded 1 hour, age was ≥ 65 years, and the intervention period was more than 3 months. A single exercise duration of more than 0.5 hours can enhance patients’ physical endurance. Appropriately increasing exercise duration and selecting suitable exercise forms can effectively improve the physical activity of NSCLC patients.
Collapse
Affiliation(s)
- Sheng-Hui Xu
- Department of Sports, Gansu Vocational College of Communications, Lanzhou 730070, Gansu Province, China
| | - Hong Xu
- Department of Sports, Gansu Vocational College of Communications, Lanzhou 730070, Gansu Province, China
| | - Kai-Wen Xiao
- Department of Sports, Gansu Vocational College of Communications, Lanzhou 730070, Gansu Province, China
| | - Su-Jie Mao
- Department of Sports, Harbin Sports University, Harbin 150008, Heilongjiang Province, China
| |
Collapse
|
3
|
Bi L, Wang X, Li J, Li W, Wang Z. Epigenetic modifications in early stage lung cancer: pathogenesis, biomarkers, and early diagnosis. MedComm (Beijing) 2025; 6:e70080. [PMID: 39991629 PMCID: PMC11843169 DOI: 10.1002/mco2.70080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 01/03/2025] [Accepted: 01/09/2025] [Indexed: 02/25/2025] Open
Abstract
The integration of liquid biopsy with epigenetic markers offers significant potential for early lung cancer detection and personalized treatment. Epigenetic alterations, including DNA methylation, histone modifications, and noncoding RNA changes, often precede genetic mutations and are critical in cancer progression. In this study, we explore how liquid biopsy, combined with epigenetic markers, can provide early detection of lung cancer, potentially predicting onset up to 4 years before clinical diagnosis. We discuss the challenges of targeting epigenetic regulators, which could disrupt cellular balance if overexploited, and the need for maintaining key gene expressions in therapeutic applications. This review highlights the promise and challenges of using liquid biopsy and epigenetic markers for early-stage lung cancer diagnosis, with a focus on optimizing treatment strategies for personalized and precision medicine.
Collapse
Affiliation(s)
- Lingfeng Bi
- Department of Respiratory and Critical Care Medicine, Frontiers Science Center for Disease‐related Molecular Network, State Key Laboratory of Respiratory Health and MultimorbidityWest China Hospital, Sichuan UniversityChengduSichuanChina
- Institute of Respiratory Health, Frontiers Science Center for Disease‐Related Molecular NetworkWest China Hospital, Sichuan UniversityChengduSichuanChina
| | - Xin Wang
- Department of Respiratory and Critical Care Medicine, Frontiers Science Center for Disease‐related Molecular Network, State Key Laboratory of Respiratory Health and MultimorbidityWest China Hospital, Sichuan UniversityChengduSichuanChina
- Institute of Respiratory Health, Frontiers Science Center for Disease‐Related Molecular NetworkWest China Hospital, Sichuan UniversityChengduSichuanChina
| | - Jiayi Li
- Department of Respiratory and Critical Care Medicine, Frontiers Science Center for Disease‐related Molecular Network, State Key Laboratory of Respiratory Health and MultimorbidityWest China Hospital, Sichuan UniversityChengduSichuanChina
- Institute of Respiratory Health, Frontiers Science Center for Disease‐Related Molecular NetworkWest China Hospital, Sichuan UniversityChengduSichuanChina
| | - Weimin Li
- Department of Respiratory and Critical Care Medicine, Frontiers Science Center for Disease‐related Molecular Network, State Key Laboratory of Respiratory Health and MultimorbidityWest China Hospital, Sichuan UniversityChengduSichuanChina
- Institute of Respiratory Health, Frontiers Science Center for Disease‐Related Molecular NetworkWest China Hospital, Sichuan UniversityChengduSichuanChina
- Precision Medicine Center, Precision Medicine Key Laboratory of Sichuan ProvinceWest China Hospital, Sichuan UniversityChengduSichuanChina
- The Research Units of West China, Chinese Academy of Medical SciencesWest China HospitalChengduSichuanChina
| | - Zhoufeng Wang
- Department of Respiratory and Critical Care Medicine, Frontiers Science Center for Disease‐related Molecular Network, State Key Laboratory of Respiratory Health and MultimorbidityWest China Hospital, Sichuan UniversityChengduSichuanChina
- Institute of Respiratory Health, Frontiers Science Center for Disease‐Related Molecular NetworkWest China Hospital, Sichuan UniversityChengduSichuanChina
- Precision Medicine Center, Precision Medicine Key Laboratory of Sichuan ProvinceWest China Hospital, Sichuan UniversityChengduSichuanChina
- The Research Units of West China, Chinese Academy of Medical SciencesWest China HospitalChengduSichuanChina
| |
Collapse
|
4
|
Fatima S, Kumar V, Kumar D. Molecular mechanism of genetic, epigenetic, and metabolic alteration in lung cancer. Med Oncol 2025; 42:61. [PMID: 39893601 DOI: 10.1007/s12032-025-02608-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 01/13/2025] [Indexed: 02/04/2025]
Abstract
Lung cancer, a leading cause of cancer-related deaths worldwide, is primarily linked to smoking, tobacco use, air pollution, and exposure to hazardous chemicals. Genetic alterations, particularly in oncogenes like RAS, EGFR, MYC, BRAF, HER, and P13K, can lead to metabolic changes in cancer cells. These cells often rely on glycolysis for energy production, even in the presence of oxygen, a phenomenon known as aerobic glycolysis. This metabolic shift, along with other alterations, contributes to cancer cell growth and survival. To develop effective therapies, it's crucial to understand the genetic and metabolic changes that drive lung cancer. This review aims to identify specific genes associated with these metabolic alterations and screen phytochemicals for their potential to target these genes. By targeting both genetic and metabolic pathways, we hope to develop innovative therapeutic approaches to combat lung cancer.
Collapse
Affiliation(s)
- Sheeri Fatima
- School of Health Science and Technology (SoHST), UPES, Dehradun, Uttarakhand, 248007, India
| | - Vineet Kumar
- Chemistry & Bioprospecting Division, Forest Research Institute, Dehradun, 248006, India
| | - Dhruv Kumar
- School of Health Science and Technology (SoHST), UPES, Dehradun, Uttarakhand, 248007, India.
| |
Collapse
|
5
|
Tang C, He Q, Xiong Y, Chen Z. Safety and Effectiveness of Drug-Eluting Embolic Bronchial Arterial Chemoembolization for Lung Cancer: A Systematic Review and Meta-Analysis. J Vasc Interv Radiol 2025; 36:221-236.e8. [PMID: 39477084 DOI: 10.1016/j.jvir.2024.10.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 09/26/2024] [Accepted: 10/19/2024] [Indexed: 12/19/2024] Open
Abstract
PURPOSE To assess the effectiveness and safety of drug-eluting embolic (DEE) bronchial arterial chemoembolization (BACE) in lung cancer and compare its outcomes with those of conventional BACE (cBACE). MATERIALS AND METHODS A comprehensive search was conducted across PubMed, Embase, Cochrane Library, Web of Science, CNKI, VIP, and Wanfang databases. Random-effects model analysis was applied when I2 was ≥50%; otherwise, fixed-effects model analysis was used. Subgroup analysis was performed for I2 values of ≥50%. Eighteen studies involving 681 patients were included, with 501 patients receiving DEE-BACE and 110 patients undergoing cBACE. RESULTS Among patients with lung cancer treated with DEE-BACE, the pooled objective response rates (ORRs) at 1 and 6 months were 64.4% and 50.3%, respectively; the disease control rates (DCRs) at 1, 3, and 6 months were 93.4%, 74.4%, and 71.7%, respectively. The 1-year overall survival and progression-free survival rates were 48.2% and 22.5%, respectively. The incidences of adverse events such as cough, fever, chest discomfort, nausea, fatigue, and leukopenia were reported at 30.7%, 22.8%, 22.4%, 29.6%, 7.4%, and 21.8%, respectively. Compared with the cBACE group, the DEE-BACE group exhibited higher 1-month DCR (pooled relative risk [RR], 1.236; 95% confidence interval [CI], 1.028-1.486) and 6-month ORR (pooled RR, 2.036; 95% CI, 1.226-3.383) and DCR (pooled RR, 1.824; 95% CI, 1.249-2.662). Both DEE-BACE and cBACE exhibited similar rates of adverse events. CONCLUSIONS DEE-BACE presents a favorable effectiveness and safety profile for lung cancer treatment compared with cBACE, particularly for nonresectable cases or when chemotherapy or radiation therapy options are limited. However, the lack of direct comparisons with standard treatments requires cautious interpretation of these results.
Collapse
Affiliation(s)
- Congsheng Tang
- Department of Respiratory Medicine, Haining People's Hospital, Zhejiang, China
| | - Qifan He
- Department of Radiology, Haining People's Hospital, Zhejiang, China
| | - Yue Xiong
- Department of Radiology, Haining People's Hospital, Zhejiang, China
| | - Zhonghua Chen
- Department of Radiology, Haining People's Hospital, Zhejiang, China.
| |
Collapse
|
6
|
Ko EJ, Kwag EB, Park JH, Cho SH, Park SJ, Jung MK, Kang IC, Yoo HS. Synergistic Effect of HAD-B1 and Osimertinib Against Gefitinib Resistant HCC827 Non-Small Cell Lung Cancer Cells. Integr Cancer Ther 2025; 24:15347354241307006. [PMID: 39819155 PMCID: PMC11748080 DOI: 10.1177/15347354241307006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 10/11/2024] [Accepted: 11/28/2024] [Indexed: 01/30/2025] Open
Abstract
In this study, we investigated the synergistic effect of co-administration of osimertinib and HAD-B1 using gefitinib-resistant non-small cell lung cancer cells, HCC827-GR. HAD-B1 is composed of 4 natural drugs, Panax Notoginseng Radix, Panax ginseng C. A. Meyer, Cordyceps militaris, and Boswellia carterii Birdwood, and has been reported to have therapeutic effects on patients with advanced non-small cell lung cancer in several studies. Resistance to gefitinib in HCC827 cells was acquired through MET activity. Co-treatment with osimertinib and HAD-B1 reduced the cell viability of HCC827-GR cells. In addition, phosphorylation of MET and ERK were effectively suppressed for HCC827-GR cells. And, compared to when osimertinib and HAD-B1 were administered alone, cell proliferation was significantly inhibited and apoptosis was effectively induced when osimertinib and HAD-B1 were co-administered to HCC827-GR cells. We found that the synergistic effect of osimertinib and HAD-B1 combination therapy resulted in cancer cell death and cell cycle arrest by targeting the ERK and mTOR signaling pathways. In conclusion, this study confirmed that the combination of osimertinib, a third-generation anticancer drug, and HAD-B1, a natural anticancer drug, had a potentially synergistic effect on non-small cell lung cancer resistant to EGFR-targeted anticancer drugs.
Collapse
Affiliation(s)
- Eun-Ju Ko
- Cha Ilsan Medical Center of Cha University, Ilsan, Republic of Korea
| | - Eun-Bin Kwag
- Integrative Medicine Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ji-Hye Park
- Seoul Korean Medicine Hospital of Daejeon University, Seoul, Republic of Korea
| | | | - So-Jung Park
- Pusan National University of Korean Medicine Hospital, Busan, Republic of Korea
| | - Mi-Kyung Jung
- Korean Institute of Oriental Medicine, Daejeon, Republic of Korea
| | - In-Cheol Kang
- Innopharmascreen, Inc., Incheon, Republic of Korea
- Hoseo University, Asan, Republic of Korea
| | - Hwa-Seung Yoo
- Seoul Korean Medicine Hospital of Daejeon University, Seoul, Republic of Korea
| |
Collapse
|
7
|
Liu W, Xu W, Hao H, Yang L, Zhang B, Zhang Y. RIPK2 and lysosomal pathway: Unveiling a new mechanism for lung cancer metastasis. Transl Oncol 2025; 51:102182. [PMID: 39515087 PMCID: PMC11584686 DOI: 10.1016/j.tranon.2024.102182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 09/03/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND This study aims to explore the role of RIPK2 in lung cancer metastasis and its potential mechanisms. METHODS The expression levels of RIPK2 in lung cancer patients and cell lines were detected by immunohistochemistry, qRT-PCR, and Western blot. RIPK2 expression was knocked down using siRNA technology, and its effects on the proliferation, migration, and invasion capabilities of lung cancer cells were assessed through CCK-8, EdU, colony formation, and Transwell assays. Furthermore, by overexpressing RIPK2 and LAMP2, the regulatory effect of RIPK2 on the lysosomal pathway and its mechanism of action in lung cancer metastasis were investigated. RESULTS The results showed that the expression of RIPK2 was significantly increased in lung cancer patients and cell lines. Knockdown of RIPK2 significantly inhibited the migration, invasion, and proliferation capabilities of lung cancer cells, while overexpression of RIPK2 promoted these malignant behaviors. Further studies found that RIPK2 promoted lung cancer metastasis by inhibiting LAMP2 expression, thereby suppressing the lysosomal pathway and altering the tumor microenvironment. Additionally, overexpression of LAMP2 could reverse the promotive effects of RIPK2 overexpression on the malignant behaviors of lung cancer cells. CONCLUSION This study reveals for the first time that RIPK2 promotes lung cancer metastasis by inhibiting LAMP2 expression, thereby suppressing the lysosomal pathway and altering the tumor microenvironment. In the future, targeted therapy against RIPK2 and LAMP2 may become an effective means to inhibit lung cancer metastasis.
Collapse
Affiliation(s)
- Wei Liu
- Department of Oncology, Graduate school, Hebei Medical University, 050011, Shijiazhuang, China
| | - Wei Xu
- Department of Oncology, Cangzhou Pelple's Hospital, 061002, Heibei, China
| | - Hui Hao
- Department of Oncology, Cangzhou Pelple's Hospital, 061002, Heibei, China
| | - Lin Yang
- Department of Oncology, Cangzhou Pelple's Hospital, 061002, Heibei, China
| | - Bo Zhang
- Department of Oncology, Cangzhou Pelple's Hospital, 061002, Heibei, China
| | - Yan Zhang
- Department of Oncology, Graduate school, Hebei Medical University, 050011, Shijiazhuang, China; Department of Oncology, Shijiazhuang Pelple's Hospital, 050030, Shijiazhuang, China.
| |
Collapse
|
8
|
Wang F, Nie A, Liao S, Zhang Z, Su X. Therapy-Related Symptoms and Sense of Coherence: The Mediating Role of Social Support and Hope in Lung Cancer Patients Undergoing Chemotherapy. Patient Prefer Adherence 2024; 18:2559-2568. [PMID: 39691782 PMCID: PMC11651130 DOI: 10.2147/ppa.s480306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 11/30/2024] [Indexed: 12/19/2024] Open
Abstract
Aim To investigate the current status of the sense of coherence in lung cancer patients undergoing chemotherapy and explore the mediating role of social support and hope in the relationship between therapy-related symptoms and sense of coherence. Methods We conducted a cross-sectional study to investigate lung cancer chemotherapy patients aged 18 years or older who completed at least two cycles of chemotherapy. Patients were recruited from the First Affiliated Hospital of Guangzhou Medical University's chemotherapy day ward from May to December 2023. Patients were required to complete a questionnaire that included the Sense of Coherence Scale, the Perceived Social Support Scale, the Herth Hope Index, and the Therapy-related Symptoms Checklist. The structural equation model was used to test the mediating role of social support and hope between therapy-related symptoms and the sense of coherence. Results A total of 241 patients were included. The scores of the sense of coherence, hope level, therapy-related symptoms, and social support were 68.79 ± 11.24, 38.94 ± 4.25, 11.53 ± 8.15, and 69.49 ± 8.15, respectively. Sense of coherence, social support, hope, and therapy-related symptoms were significantly related (P<0.01). Therapy-related symptoms had a direct negative influence on the sense of coherence [B=-0.144, 95% CI (-0.209, -0.070)]. Meanwhile, therapy-related symptoms influenced the sense of coherence via three pathways: independent mediation of social support [B=-0.021, 95% CI (-0.065, -0.002)], independent mediation of hope [B=-0.022, 95% CI (-0.057, -0.000)], and chain mediation of social support and hope [B=-0.012, 95% CI (-0.035, -0.002)]. Conclusion Lung cancer patients undergoing chemotherapy experience a medium sense of coherence. This study's findings indicate that the relationship between therapy-related symptoms and sense of coherence is affected by the independent mediating effect of social support and hope and the chain mediating effect of social support and hope. Therefore, reducing the burden of their therapy-related symptoms, providing them with social support, and fostering their hope can enhance patients' sense of coherence and improve their quality of life.
Collapse
Affiliation(s)
- Fang Wang
- The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, People’s Republic of China
| | - Anliu Nie
- The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, People’s Republic of China
| | - Shaona Liao
- The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, People’s Republic of China
| | - Zhisheng Zhang
- The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, People’s Republic of China
| | - Xiangfen Su
- The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, People’s Republic of China
| |
Collapse
|
9
|
Yenigun VB, Ucar VB, Sari ZB, Azzawri AA, Acar YS, Kaplan MB, Nergiz S, Acar H. Evaluation of the simultaneous effects of KRAS G12V and LCS6 alterations on the behavior of head and neck squamous cell carcinoma. Mutat Res 2024; 830:111895. [PMID: 39667107 DOI: 10.1016/j.mrfmmm.2024.111895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 11/29/2024] [Accepted: 12/02/2024] [Indexed: 12/14/2024]
Abstract
BACKGROUND Head and neck squamous cell carcinomas are the seventh most common cancer accounting for 90 % of malignant neoplasia of the upper respiratory system. KRAS is a very important oncogene, leading to the suppression of apoptosis, and promoting the pathogenesis and development of tumors. MicroRNAs (miRNAs) are highly conserved, small noncoding RNA molecules aberrantly expressed in various pathologies including regulation of tumor and metastasis-associated genes. Variant (rs61764370) of the let-7 miRNA complementary site of KRAS 3'-untranslated region (KRAS-LCS6) has been shown to disrupt the ability of miRNAs to target genes resulting in differential target mRNA and protein expression. METHODS In this study, the effects of variant complementary site LCS6 of the let-7 miRNA in head and neck cancer were investigated in vitro using laryngeal carcinoma HEp-2 carrying G12V and LCS6 alterations in the KRAS gene. Non-cancer HEK-293 cells were also used as control cells. RESULTS G12V mutation in the KRAS gene increases invasion capacity and is specifically active on the ERK pathway associated with metastasis. Alteration in the LCS6 region of the KRAS gene did not show additional effects compared to cells only carrying G12V mutation. Our results also showed that the coexistence of G12V and LCS6 alterations is lethal to specific cell types, UM-SCC-17A laryngeal cancer cells in our case. CONCLUSIONS The LCS6 region alteration of the KRAS may play a key role in further cancer progression, and more research is needed to fully understand the mechanisms by which the LCS6 alterations promote cancer progression.
Collapse
Affiliation(s)
- Vildan Betul Yenigun
- Selcuk University, Faculty of Medicine, Department of Medical Genetics, Konya, Turkey; Bezmialem Vakif University, Faculty of Medicine, Department of Medical Biochemistry, Istanbul, Turkey
| | - Vasfiye Betul Ucar
- Selcuk University, Faculty of Medicine, Department of Medical Genetics, Konya, Turkey
| | - Zeynep Betul Sari
- Selcuk University, Faculty of Medicine, Department of Medical Genetics, Konya, Turkey; Yıldırım Beyazıt University, Department of Medical Biology, Ankara, Turkey
| | - Ali Ahmed Azzawri
- Selcuk University, Faculty of Medicine, Department of Medical Genetics, Konya, Turkey
| | | | - Muhammed Burak Kaplan
- Selcuk University, Faculty of Medicine, Department of Medical Genetics, Konya, Turkey
| | - Suleyman Nergiz
- Selcuk University, Faculty of Medicine, Department of Medical Genetics, Konya, Turkey
| | - Hasan Acar
- Selcuk University, Faculty of Medicine, Department of Medical Genetics, Konya, Turkey.
| |
Collapse
|
10
|
Arif U, Zhang C, Hussain S, Abbasi AR. An efficient interpretable stacking ensemble model for lung cancer prognosis. Comput Biol Chem 2024; 113:108248. [PMID: 39426256 DOI: 10.1016/j.compbiolchem.2024.108248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/29/2024] [Accepted: 10/09/2024] [Indexed: 10/21/2024]
Abstract
Lung cancer significantly contributes to global cancer mortality, posing challenges in clinical management. Early detection and accurate prognosis are crucial for improving patient outcomes. This study develops an interpretable stacking ensemble model (SEM) for lung cancer prognosis prediction and identifies key risk factors. Using a Kaggle dataset of 1000 patients with 22 variables, the model classifies prognosis into Low, Medium, and High-risk categories. The bootstrap method was employed for evaluation metrics, while SHAP (Shapley Additive Explanations) and LIME (Local Interpretable Model-agnostic Explanations) assessed model interpretability. Results showed SEM's superior interpretability over traditional models, such as Random Forest, Logistic Regression, Decision Tree, Gradient Boosting Machine, Extreme Gradient Boosting Machine, and Light Gradient Boosting Machine. SEM achieved an accuracy of 98.90 %, precision of 98.70 %, F1 score of 98.85 %, sensitivity of 98.77 %, specificity of 95.45 %, Cohen's kappa value of 94.56 %, and an AUC of 98.10 %. The SEM demonstrated robust performance in lung cancer prognosis, revealing chronic lung cancer and genetic risk as major factors.
Collapse
Affiliation(s)
- Umair Arif
- School of Mathematics and Statistics, Xi'an Jiaotong University, Xian, Shaanxi 710049, China.
| | - Chunxia Zhang
- School of Mathematics and Statistics, Xi'an Jiaotong University, Xian, Shaanxi 710049, China.
| | - Sajid Hussain
- School of Mathematics and Statistics, Xi'an Jiaotong University, Xian, Shaanxi 710049, China.
| | - Abdul Rauf Abbasi
- Department of Statistics, COMSATS University Islamabad, Lahore Campus, Lahore 5400, Pakistan.
| |
Collapse
|
11
|
Zhang R, Datta S. asmbPLS: biomarker identification and patient survival prediction with multi-omics data. Front Genet 2024; 15:1444054. [PMID: 39649094 PMCID: PMC11621212 DOI: 10.3389/fgene.2024.1444054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 11/11/2024] [Indexed: 12/10/2024] Open
Abstract
Introduction With the advancement of high-throughput studies, an increasing wealth of high-dimensional multi-omics data is being collected from the same patient cohort. However, leveraging this multi-omics data to predict survival outcomes poses a significant challenge due to its complex structure. Methods In this article, we present a novel approach, the Adaptive Sparse Multi-Block Partial Least Squares (asmbPLS) Regression model, which introduces a dynamic assignment of penalty factors to distinct blocks within various PLS components, facilitating effective feature selection and prediction. Results We compared the proposed method with several state-of-the-art algorithms encompassing prediction performance, feature selection and computation efficiency. We conducted comprehensive evaluations using both simulated data with various scenarios and a real dataset from the melanoma patients to validate the effectiveness and efficiency of the asmbPLS method. Additionally, we applied the lung squamous cell carcinoma (LUSC) dataset from The Cancer Genome Atlas (TCGA) to further assess the feature selection capability of asmbPLS. Discussion The inherent nature of asmbPLS imparts it with higher sensitivity in feature selection compared to other methods. Furthermore, an R package called asmbPLS implementing this method is made publicly available.
Collapse
Affiliation(s)
| | - Susmita Datta
- Department of Biostatistics, University of Florida, Gainesville, FL, United States
| |
Collapse
|
12
|
Li X, Wang Y, Cheng J, Qiu L, Wang R, Zhang Y, Wang H. METTL3 -mediated m6A modification of circ_0000620 regulates cisplatin sensitivity and apoptosis in lung adenocarcinoma via the MiR-216b-5p/KRAS axis. Cell Signal 2024; 123:111349. [PMID: 39153585 DOI: 10.1016/j.cellsig.2024.111349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/25/2024] [Accepted: 08/13/2024] [Indexed: 08/19/2024]
Abstract
Circular RNAs (circRNAs) are stable non-coding RNAs characterized by the absence of the conventional 5' cap and 3' polyadenylated tail structure. Its involvement in various aspects of cancers underscores its significance in oncology. Elevated expression of circ_0000620 was observed in both lung adenocarcinoma (LUAD) tissues and cell lines. In vitro, experiments demonstrated that the downregulation of circ_0000620 increased cisplatin sensitivity and promoted cell apoptosis while suppressing malignant characteristics such as cell migration and proliferation. Further investigation into the mechanism underlying the increased expression of circ_0000620 revealed that Methyltransferase 3, N6-Adenosine-Methyltransferase Complex Catalytic Subunit (METTL3) mediates the m6A methylation modification of circ_0000620, thereby promoting its stability and expression. Furthermore, circ_0000620 modulates the miR-216b-5p/KRAS axis to influence apoptosis and cisplatin sensitivity in both A549 and H1299 cell lines. These findings were corroborated by in vivo nude mouse experiments, which showed that knockdown of circ_0000620 inhibited tumor growth and proliferation. In summary, METTL3 plays a role in regulating the stability of circ_0000620 expression, and circ_0000620 exerts its effects on LUAD apoptosis and cisplatin sensitivity through the miR-216b-5p/KRAS signaling pathway.
Collapse
Affiliation(s)
- Xiangmei Li
- Department of Respiratory Medicine, Zhengzhou University First Affiliated Hospital, Zhengzhou 450000, China
| | - Yinlu Wang
- Department of Respiratory Medicine, Zhengzhou University First Affiliated Hospital, Zhengzhou 450000, China
| | - Jiuling Cheng
- Department of Respiratory Medicine, Zhengzhou University First Affiliated Hospital, Zhengzhou 450000, China
| | - Liliang Qiu
- Department of Respiratory Medicine, Zhengzhou University First Affiliated Hospital, Zhengzhou 450000, China
| | - Ruiyang Wang
- Department of Respiratory Medicine, Zhengzhou University First Affiliated Hospital, Zhengzhou 450000, China
| | - Yuping Zhang
- Department of Respiratory Medicine, Zhengzhou University First Affiliated Hospital, Zhengzhou 450000, China
| | - Huaqi Wang
- Department of Respiratory Medicine, Zhengzhou University First Affiliated Hospital, Zhengzhou 450000, China.
| |
Collapse
|
13
|
Abdelaziz MA, Alalawy AI, Sobhi M, Alatawi OM, Alaysuy O, Alshehri MG, Mohamed ELI, Abdelaziz MM, Algrfan IA, Mohareb RM. Elaboration of chitosan nanoparticles loaded with star anise extract as a therapeutic system for lung cancer: Physicochemical and biological evaluation. Int J Biol Macromol 2024; 279:135099. [PMID: 39197631 DOI: 10.1016/j.ijbiomac.2024.135099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 08/13/2024] [Accepted: 08/24/2024] [Indexed: 09/01/2024]
Abstract
The research study aimed to maximize the important medical role of star anise extract (SAE) through its loading on a widely available natural polymer (chitosan, Cs). Thus, SAE loaded chitosan nanoparticles (CsNPs) was prepared. The finding illustrated the formation of spherical particles of SAE loaded CsNPs as proved by transmission electron microscope (TEM). In addition, the average particle size of CsNPs and SAE loaded CsNPs are 131.8 ± 24.63 and 318.5 ± 73.94 nm, respectively. Scanning electron microscope (SEM) showed the presence of many spherical particles deposited on the surface of CsNPs owing to the deposition of SAE on the surface and encapsulated into pores of CsNPs. It also showed the presence of elements such as sodium, potassium, copper, magnesium, zinc, calcium, and iron, as well as the elements that accompanied with CsNPs: carbon, oxygen, nitrogen, and phosphorus. The extract was rich in bioactive components, such as anethole, shikimic acid, and different flavonoids, contributing to its medicinal qualities. The bioactive molecules in SAE were assessed by chromatographic analysis. Using the agar well diffusion test, the antibacterial qualities of CsNPs and SAE loaded CsNPs were evaluated against pathogenic bacteria linked to lung illnesses. The most significant inhibition zones showed that the SAE loaded CsNPs had the most antibacterial activity. The anticancer activity using MTT assay was used in the biological assessments to determine the cytotoxicity against the NCl-H460 lung cancer cell line. The results showed that CsNPs loaded with SAE considerably decreased cell viability in a dose-dependent manner, with the most significant anticancer impact by SAE loaded CsNPs. Furthermore, in vivo tests on lung cancer therapy revealed that when compared to other treatment groups, the SAE loaded CsNPs group showed the greatest reduction in tumor biomarkers and inflammation, as seen by decreased levels of Plasma malondialdehyde (MDA), tumor protein 53 (p53), Tumor necrosis factor-alpha (TNF- alpha), and fibronectin. Results concluded that these thorough characterizations, biological assessments, and antibacterial tests have confirmed the effective integration of SAE into CsNPs. Further, SAE loaded CsNPs could be a suitable option for various biomedical applications in tackling lung cancer and the inactivation of bacterial infection.
Collapse
Affiliation(s)
- Mahmoud A Abdelaziz
- Organic Chemistry Research Laboratory, Department of Chemistry, Faculty of Science, University of Tabuk, P.O. Box 741, Tabuk 71491, Saudi Arabia.
| | - Adel I Alalawy
- Department of Biochemistry, Faculty of Science, University of Tabuk, P.O. Box 741, Tabuk 71491, Saudi Arabia
| | - Mohamed Sobhi
- Organic Chemistry Research Laboratory, Department of Chemistry, Faculty of Science, University of Tabuk, P.O. Box 741, Tabuk 71491, Saudi Arabia
| | - Omar M Alatawi
- Organic Chemistry Research Laboratory, Department of Chemistry, Faculty of Science, University of Tabuk, P.O. Box 741, Tabuk 71491, Saudi Arabia
| | - Omaymah Alaysuy
- Organic Chemistry Research Laboratory, Department of Chemistry, Faculty of Science, University of Tabuk, P.O. Box 741, Tabuk 71491, Saudi Arabia
| | - Maryam G Alshehri
- Department of Mathematics, Faculty of Science, University of Tabuk, P.O. Box 741, Tabuk 71491, Saudi Arabia
| | - ELsiddig Idriss Mohamed
- Department of Statistics, Faculty of Science, University of Tabuk, P.O. Box 741, Tabuk 71491, Saudi Arabia
| | - Maiar M Abdelaziz
- Department of Mathematics, Faculty of Science, University of Tabuk, P.O. Box 741, Tabuk 71491, Saudi Arabia
| | - Ibrahim A Algrfan
- Organic Chemistry Research Laboratory, Department of Chemistry, Faculty of Science, University of Tabuk, P.O. Box 741, Tabuk 71491, Saudi Arabia
| | - Rafat M Mohareb
- Department of Chemistry, Faculty of Science, Cairo University, Giza, Egypt
| |
Collapse
|
14
|
Yue L, Li Y, Luo Y, Alarfaj AA, Shi Y. Pelargonidin inhibits cell growth and promotes oxidative stress-mediated apoptosis in lung cancer A549 cells. Biotechnol Appl Biochem 2024; 71:1195-1203. [PMID: 38853344 DOI: 10.1002/bab.2621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/14/2024] [Accepted: 05/17/2024] [Indexed: 06/11/2024]
Abstract
Lung cancer has the worst prognosis with an average 5-year survival rate of only 10%-20%. Lung cancer has the highest prevalence rate and a second most common cause of cancer-associated mortalities worldwide. The present study was planned to explore the anticancer effects of pelargonidin against the lung cancer A549 cells via analyzing oxidative stress-mediated apoptosis. The viability of both control and pelargonidin-treated A549 cells was analyzed using the MTT cytotoxicity assay at different time periods. The levels of endogenous ROS generation, mitochondrial membrane potential (Δψm), and apoptosis were assessed using corresponding fluorescent staining assays. The levels of oxidative stress biomarkers, including TBARS, SOD, CAT, and GSH, in the cell lysates of control and pelargonidin-treated A549 cells were examined using the assay kits. The pelargonidin treatment substantially suppressed the A549 cell growth. Further, pelargonidin promoted the ROS production and depleted the Δψm levels in the A549 cells. The fluorescent staining assays witnessed the occurrence of increased apoptosis in the pelargonidin-treated A549 cells. The pelargonidin also boosted the TBARS and reduced the antioxidant levels thereby promoted the oxidative stress-regulated apoptosis in the A549 cells. In summary, the findings' results of the current study demonstrated an anticancer activity of pelargonidin on A549 cells. The pelargonidin treatment substantially decreased the growth and encouraged the oxidative stress-regulated apoptosis in A549 cells. Therefore, it was evident that the pelargonidin could be employed as an effective anticancer candidate to treat the lung cancer.
Collapse
Affiliation(s)
- Liwei Yue
- Department of Pneumology, Shandong Provincial Third Hospital, Jinan, China
| | - Ying Li
- Department of Pneumology, Shandong Provincial Third Hospital, Jinan, China
| | - Yuting Luo
- Department of Pneumology, Jinan Third People's Hospital, Jinan, China
| | - Abdullah A Alarfaj
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Yubo Shi
- Department of Cardiothoracic Surgery, Yantaishan Hospital, Yantaishan Hospital Affiliated to Binzhou Medical University, Yantai, China
| |
Collapse
|
15
|
Roknabadi N, Borghei YS, Seifezadeh SS, Soltani BM, Mowla SJ. Selective Naked-Eye Detection of Lung Squamous Cell Carcinoma Mediated by lncRNA SOX2OT Targeted Nanoplasmonic Probe. ACS OMEGA 2024; 9:37205-37212. [PMID: 39246497 PMCID: PMC11375807 DOI: 10.1021/acsomega.4c04565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/25/2024] [Accepted: 08/09/2024] [Indexed: 09/10/2024]
Abstract
The application of nanobiotechnology in biomolecule detection can provide fast and accurate tests for diagnosing molecular changing-associated diseases. The use of AuNPs-thiolated probe conjugates has long been considered as an alternative method for the detection of specific DNA/RNA targets. Here, we present a colorimetric direct detection method for the SOX2OT transcript, long noncoding RNAs (lncRNAs), by using a poly guanine tail (G12) as a template for in situ synthesis of gold nanoparticles (AuNPs) without any chemical modification or DNA labeling. We have then developed this proposed detection system based on two complementary sequences of long noncoding RNA SOX2OT with an extra strand of poly G12. Using this method, we were able to differentiate lung squamous cell carcinoma from adenocarcinoma samples. Based on this disclosure, this invention provides a simple visual method to detect specific lncRNA sequences without the need for amplifying the target lncRNA and discriminate squamous cell carcinoma from adenocarcinoma samples. Our invention provides a diagnostic kit to detect RNA by means of direct detection (PCR-free) of the lncRNA by in situ synthesis of AuNPs based on two probes with an extra strand of poly G12.
Collapse
Affiliation(s)
- Nastaran Roknabadi
- Department of Molecular Genetics Faculty of Biological Sciences, Tarbiat Modares University, Tehran 14115-175, Iran
| | - Yasaman-Sadat Borghei
- Center for Bioscience & Technology, Institute for Convergence Science & Technology Sharif University of Technology, Tehran 1458889694, Iran
| | - Seyedeh Saina Seifezadeh
- Department of Molecular Genetics Faculty of Biological Sciences, Tarbiat Modares University, Tehran 14115-175, Iran
| | - Bahram M Soltani
- Department of Molecular Genetics Faculty of Biological Sciences, Tarbiat Modares University, Tehran 14115-175, Iran
| | - Seyed Javad Mowla
- Department of Molecular Genetics Faculty of Biological Sciences, Tarbiat Modares University, Tehran 14115-175, Iran
| |
Collapse
|
16
|
WANG Y, CHEN L. [Research Progress of Circular RNA CircHIPK3 in Non-small Cell Lung Cancer]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2024; 27:629-636. [PMID: 39318256 PMCID: PMC11425674 DOI: 10.3779/j.issn.1009-3419.2024.106.20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Indexed: 09/26/2024]
Abstract
Lung cancer ranks among the most prevalent and deadliest malignancies worldwide. Despite significant strides in targeted therapies and immunotherapy for lung cancer, curing the disease remains a highly prioritized issue. Circular RNAs (circRNAs), recently discovered RNA molecules characterized by covalently closed loop structures, possess features such as structural stability, sequence conservation, and disease-specific expression. Cutting-edge medical research has linked circRNA dysregulation to the progression of various cancers. Among these, circular RNA HIPK3 (circHIPK3), an oncogenic gene primarily derived from the second exon of the HIPK3 gene, has emerged as a focal point of investigation. Increasing evidences suggest that circHIPK3 is involved in the development of non-small cell lung cancer (NSCLC) and other malignancies. Aberrant expression of circHIPK3 is closely associated with the disease mechanisms, diagnosis, treatment, and prognosis of NSCLC. This review discusses the latest research advancements on circHIPK3 in NSCLC, aiming to promote precise diagnosis and treatment of lung cancer.
.
Collapse
|
17
|
Kong Q, Zhu Q, Yang Y, Wang W, Qian J, Chen Y. Current status and trend of mitochondrial research in lung cancer: A bibliometric and visualization analysis. Heliyon 2024; 10:e34442. [PMID: 39144972 PMCID: PMC11320136 DOI: 10.1016/j.heliyon.2024.e34442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/08/2024] [Accepted: 07/09/2024] [Indexed: 08/16/2024] Open
Abstract
This study summarizes and analyzes the relationship between mitochondria and the pathogenesis of lung cancer. The related articles in the Web of Science core literature database are searched and collected, and the data are processed by R software, Citespace, VOSviewer, and Excel. A total of 4476 related papers were retrieved, 4476 articles from 20162 co-authors of 3968 institutions in 84 countries and published in 951 journals. Through various bibliometric analysis tools, the relationship between mitochondria and the pathogenesis of lung cancer was analyzed, the previous research results were summarized, and the potential research direction was found.
Collapse
Affiliation(s)
- Qing Kong
- Functional Examination Department, Northern Jiangsu People's Hospital, Affiliated to Yangzhou University, Yangzhou, 225001, PR China
| | - Qingyong Zhu
- Functional Examination Department, Northern Jiangsu People's Hospital, Affiliated to Yangzhou University, Yangzhou, 225001, PR China
| | - Yuxia Yang
- Department of Orthopedics and Sports Medicine, Northern Jiangsu People's Hospital, Affiliated to Yangzhou University, Yangzhou, 225001, PR China
| | - Wei Wang
- Clinical Medical College, Weifang Medical University, Weifang, 261053, PR China
| | - Juan Qian
- Functional Examination Department, Northern Jiangsu People's Hospital, Affiliated to Yangzhou University, Yangzhou, 225001, PR China
| | - Yong Chen
- Functional Examination Department, Northern Jiangsu People's Hospital, Affiliated to Yangzhou University, Yangzhou, 225001, PR China
| |
Collapse
|
18
|
Lian S, Wang Q, Liu Y, Lu Y, Huang L, Deng H, Xie X. Multi-targeted nanoarrays for early broad-spectrum detection of lung cancer based on blood biopsy of tumor exosomes. Talanta 2024; 276:126270. [PMID: 38761662 DOI: 10.1016/j.talanta.2024.126270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/13/2024] [Accepted: 05/15/2024] [Indexed: 05/20/2024]
Abstract
Liquid biopsies utilizing tumor exosomes offer a noninvasive approach for cancer diagnosis. However, validation studies consistently report that in the early stages of cancer, the secretion of exosomes by cancer cells is relatively low, while bodily fluids exhibit a high abundance of other interfering biomolecules. Additionally, target mutations or differences in biomarker expression among various lung cancer subtypes may contribute to detection failures. In this study, we propose a targeted nanoarray-based early cancer diagnostic approach for multiple subtypes of lung cancer. The targeted nanoarray was constructed by modifying five targeting aptamers onto mesoporous silica nanoparticles through the conjugation between amino and carboxyl groups. The flow cytometry experiments demonstrated the specific recognition ability of the targeted nanoarray to tumor exosomes in PBS, even at biomarker expression levels as low as 1.5 %. Moreover, the TEM results indicated that the targeted nanoarray could isolate tumor exosomes in the blood of tumor-bearing mice. Furthermore, the targeted nanoarray could detect tumor exosomes in the blood of various lung cancer bearing mice, including at the early stages of cancer, which has just been established for 7 days. Overall, the targeted nanoarray represents a promising tool for the early detection of various subtypes of lung cancer.
Collapse
Affiliation(s)
- Shu Lian
- College of Materials and Chemical Engineering, Minjiang University, Fuzhou, Fujian, 350108, China
| | - Qixuan Wang
- College of Materials and Chemical Engineering, Minjiang University, Fuzhou, Fujian, 350108, China; College of Chemical Engineering, Fuzhou University, 350116, Fuzhou, China
| | - Yuxin Liu
- College of Materials and Chemical Engineering, Minjiang University, Fuzhou, Fujian, 350108, China
| | - Yusheng Lu
- College of Materials and Chemical Engineering, Minjiang University, Fuzhou, Fujian, 350108, China
| | - Lu Huang
- College of Materials and Chemical Engineering, Minjiang University, Fuzhou, Fujian, 350108, China; College of Chemical Engineering, Fuzhou University, 350116, Fuzhou, China.
| | - Haohua Deng
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, School of Pharmacy, Fujian Medical University, Fuzhou, 350004, China.
| | - Xiaodong Xie
- College of Materials and Chemical Engineering, Minjiang University, Fuzhou, Fujian, 350108, China; College of Chemical Engineering, Fuzhou University, 350116, Fuzhou, China.
| |
Collapse
|
19
|
Lou W, Li Y. Research trend of lung cancer epigenetics research: Bibliometric and visual analysis of top-100 cited documents. Heliyon 2024; 10:e35686. [PMID: 39170116 PMCID: PMC11337132 DOI: 10.1016/j.heliyon.2024.e35686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 08/01/2024] [Accepted: 08/01/2024] [Indexed: 08/23/2024] Open
Abstract
Background Lung cancer is a highly prevalent cancer on a global scale and its oncogenic process is driven by the accumulation of multiple pathological events. Epigenetics has gained significant recognition in recent years as a crucial contributor to the development of lung cancer. Epigenetics include processes such as DNA methylation, histone modification, chromatin remodeling, and RNA modification. These pathways lead to enduring alterations in genetic phenotypes, which are crucial in the advancement and growth of lung cancer. However, the specific mechanisms and roles of epigenetics in lung cancer still need to be further elucidated. Methods We obtained publications from the Web of Science databases and applied a rigorous search method to filter them. Ultimately, we gathered high-quality publications that had received the highest 100 number of citations. The data were processed and visualized by various bibliometric tools. Results The 100 papers had varying numbers of citations, with the lowest being 491 and the most being 6316. On average, each work received 1119 citations. A total of 1056 co-authors were involved in publishing these papers in 59 journals from 185 institutions in 27 countries. The majority of high-caliber research in the subject of lung cancer epigenetics is conducted in advanced countries, with the United States taking the lead in terms of both the quantity of articles produced and their academic influence. The study of DNA methylation has been a longstanding research priority in the discipline. With the development of next-generation sequencing technology in recent years, research related to non-coding RNA has become a research hotspot. Future research directions may focus more on exploring the mechanisms of action of messenger RNA and circular RNA and developing targeted treatment strategies based on non-coding RNA drugs. Conclusion We analyzed 100 top lung cancer and epigenetics documents through various bibliometric analysis tools. This study provides a concise overview of the findings from prior research, anticipates future research directions, and offers potential avenues for additional investigation.
Collapse
Affiliation(s)
- Wangzhouyang Lou
- Chun'an County First People's Hospital, Hangzhou, 311700, People's Republic of China
| | - Yunsheng Li
- Chun'an County First People's Hospital, Hangzhou, 311700, People's Republic of China
| |
Collapse
|
20
|
Bagci O. Association of 3'UTR variations of EGFR and KRAS oncogenes with clinical parameters in lung cancer tumours. Biol Cell 2024; 116:e2400017. [PMID: 38881162 DOI: 10.1111/boc.202400017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/26/2024] [Accepted: 05/25/2024] [Indexed: 06/18/2024]
Abstract
BACGROUND INFORMATION Lung cancer is one of the leading types of cancer deaths worldwide, with approximately 2 million people diagnosed with lung cancer each year. In this study, we aimed to determine the exonic and 3'UTR sequences of EGFR, PIK3CA and KRAS genes in 39 sporadic lung cancer tumors and to reveal the changes in the miRNA binding profile of tumors with somatic variation in the 3'UTR region and to examine the relationship of these changes with clinical parameters. RESULTS A statistically significant correlation was found between the presence of miRNA that could not bind to the 3'UTR region due to variation in at least one of the EGFR or KRAS genes and the presence of metastasis in the tumor. At the same time, Kaplan-Meier analysis between those with and without alterations in the miRNA profile due to somatic variation in the 3'UTR region showed that survival was lower in those with miRNA alterations and this was statistically significant. CONCLUSIONS In our study, it was shown that variations in the 3'UTR regions of EGFR and KRAS oncogenes may cause increased expression of these oncogenes by preventing the binding of miRNAs, and it was suggested that this may be related to metastasis, survival and drug resistance mechanism. SIGNIFICANCE In this study, we show that hsa-miR-124-3p, hsa-miR-506-3p, hsa-miR-1290 and hsa-miR-6514-3p are particularly prominent in lung carcinoma in relation to these biological pathways and the roles that variations in the 3'UTR regions of oncogenes may play in the carcinogenesis process.
Collapse
Affiliation(s)
- Ozkan Bagci
- Department of Medical Genetics, School of Medicine, Selcuk, University, Selcuklu, Konya, Turkey
| |
Collapse
|
21
|
Zhang J, Ma Y. Luteolin as a potential therapeutic candidate for lung cancer: Emerging preclinical evidence. Biomed Pharmacother 2024; 176:116909. [PMID: 38852513 DOI: 10.1016/j.biopha.2024.116909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/04/2024] [Accepted: 06/06/2024] [Indexed: 06/11/2024] Open
Abstract
Lung cancer is a prevalent malignant tumor and a leading cause of cancer-related fatalities globally. However, current treatments all have limitations. Therefore, there is an urgent need to identify a readily available therapeutic agent to counteract lung cancer development and progression. Luteolin is a flavonoid derived from vegetables and herbs that possesses preventive and therapeutic effects on various cancers. With the goal of providing new directions for the treatment of lung cancer, we review here the recent findings on luteolin so as to provide new ideas for the development of new anti-lung cancer drugs. The search focused on studies published between January 1995 and January 2024 that explored the use of luteolin in lung cancer. A comprehensive literature search was conducted in the SCOPUS, Google Scholar, PubMed, and Web of Science databases using the keywords "luteolin" and "lung cancer." By collecting previous literature, we found that luteolin has multiple mechanisms of therapeutic effects, including promotion of apoptosis in lung cancer cells; inhibition of tumor cell proliferation, invasion and metastasis; and modulation of immune responses. In addition, it can be used as an adjuvant to radio-chemotherapy and helps to ameliorate cancer complications. This review summarizes the structure, natural sources, physicochemical properties and pharmacokinetics of luteolin, and focuses on the anti-lung cancer mechanism of luteolin, so as to provide new ideas for the development of new anti-lung cancer drugs.
Collapse
Affiliation(s)
- Jin Zhang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, Shenyang, Liaoning 110004, PR China
| | - Yue Ma
- Department of Pulmonary and Critical Care Medicine, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, Shenyang, Liaoning 110004, PR China.
| |
Collapse
|
22
|
Sun Z, Ren M, Niu J, Tang G, Li Y, Kong F, Song X. miR-29b-3p targetedly regulates VEGF to inhibit tumor progression and cisplatin resistance through Nrf2/HO-1 signaling pathway in non-small cell lung cancer. ENVIRONMENTAL TOXICOLOGY 2024; 39:3956-3966. [PMID: 38587027 DOI: 10.1002/tox.24253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 03/09/2024] [Accepted: 03/14/2024] [Indexed: 04/09/2024]
Abstract
BACKGROUNDS Non-small cell lung carcinoma (NSCLC) is a common type of lung cancer. Prior investigations have elucidated the pivotal role of miR-29b-3p in restraining tumor growth and metastasis. Nonetheless, it remains to be determined whether miR-29b-3p can effectively suppress NSCLC progression and enhance the sensitivity of NSCLC cells to cisplatin. This investigation sought to determine the mechanism by which miR-29b-3p inhibited the advancement of NSCLC and mitigated resistance to cisplatin. METHODS We initially assessed miR-29b-3p and VEGF levels in NSCLC tissues and cell lines. Next, miR-29b-3p expression was elevated in NSCLC cell lines H1975 and A549 by overexpression plasmid transfection. Following this, a sequence of molecular biology experiments was conducted to evaluate the impact of miR-29b-3p on the biological behaviors of NSCLC cells and their resistance to cisplatin. Additionally, we predicted VEGF was a target gene of miR-29b-3p by bioinformatics analysis. We next employed western blot to evaluate the protein expression of Nrf2 and HO-1 in NSCLC cells. Finally, we elucidated the effects of VEGF and Nrf2/HO-1pathway on NSCLC progression and cisplatin resistance by in vitro assays. RESULTS In comparison to paracancerous tissues and human normal lung epithelial cells, the expression of miR-29b-3p was notably reduced and VEGF expression was clearly elevated in NSCLC tissues and cells. Moreover, miR-29b-3p upregulated obviously suppressed the biological activities of NSCLC cells and increased their sensitivity to cisplatin. Furthermore, in NSCLC cells, miR-29b-3p bound to VEGF and negatively regulate its transcription. Additionally, miR-29b-3p overexpression also inhibited the Nrf2/HO-1 signaling pathway. Finally, the overexpression of VEGF and the activation of the Nrf2/HO-1 pathway reversed miR-29b-3p-mediated inhibitory effect on biological behaviors of NSCLC cells and increased the cisplatin resistance. CONCLUSION Our findings indicate that miR-29b-3p impedes NSCLC cells' biological behaviors and augments their sensitivity to cisplatin by targeting VEGF to modulate the Nfr2/HO-1 signaling pathway.
Collapse
Affiliation(s)
- Zhen Sun
- Department of Thoracic Surgery, Cangzhou Central Hospital, Cangzhou, Hebei, China
| | - Mingming Ren
- Department of Thoracic Surgery, Cangzhou Central Hospital, Cangzhou, Hebei, China
| | - Jieting Niu
- Department of Geriatrics, Cangzhou Central Hospital, Cangzhou, Hebei, China
| | - Guojie Tang
- Department of Thoracic Surgery, Cangzhou Central Hospital, Cangzhou, Hebei, China
| | - Yanguang Li
- Department of Thoracic Surgery, Cangzhou Central Hospital, Cangzhou, Hebei, China
| | - Fanyi Kong
- Department of Thoracic Surgery, Cangzhou Central Hospital, Cangzhou, Hebei, China
| | - Xiang Song
- Department of Thoracic Surgery, Cangzhou Central Hospital, Cangzhou, Hebei, China
| |
Collapse
|
23
|
Liu X, Zhu X, Zhao Y, Shan Y, Gao Z, Yuan K. CDCA gene family promotes progression and prognosis in lung adenocarcinoma. Medicine (Baltimore) 2024; 103:e38581. [PMID: 38875380 PMCID: PMC11175971 DOI: 10.1097/md.0000000000038581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/16/2024] Open
Abstract
BACKGROUND The cell division cycle-associated (CDCA) family participates in the cell cycle, and the dysregulation of its expression is associated with the development of several types of cancers. However, the roles of CDCAs in lung adenocarcinomas (LUAD) have not been investigated in systematic research. METHODS Using data retrieved from The Cancer Genome Atlas (TCGA), the expression of CDCAs in LUAD and normal tissues was compared, and survival analysis was performed using the data. Also, the correlation between clinical characteristics and the expression of CDCAs was assessed. Using data from cBioPortal, we investigated genetic alterations in CDCAs and their prognostic implications. Immunohistochemical analyses were performed to validate our findings from TCGA data. Following this, we created a risk score model to develop a nomogram. We also performed gene set enrichment analyses (GSEA), gene ontology, and KEGG pathway analysis. We used Timer to analyze the correlation between immune cell infiltration, tumor purity, and expression data. RESULTS Our results indicated that all CDCAs were expressed at high levels in LUAD; this could be associated with poor overall survival, as indicated in TCGA data. Univariate and multivariate Cox analyses revealed that CDCA4/5 could serve as independent risk factors. The results of immunohistochemical analyses confirmed our results. Based on the estimation of expression levels, clinical characteristics, alterations, and immune infiltration, the low-risk group of CDCA4/5 had a better prognosis than the high-risk group. Immune therapy is also a potential treatment option. CONCLUSION In conclusion, our findings indicate that CDCAs play important roles in LUAD, and CDCA4/5 can serve as diagnostic and prognostic biomarkers and therapeutic targets in LUAD.
Collapse
Affiliation(s)
- XiangSen Liu
- Department of Thoracic Surgery, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, China
| | - Xudong Zhu
- Department of Thoracic Surgery, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, China
| | - Yi Zhao
- Department of Thoracic Surgery, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, China
| | - Yuchen Shan
- Department of Thoracic Surgery, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, China
| | - ZhaoJia Gao
- Department of Thoracic Surgery, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, China
| | - Kai Yuan
- Department of Thoracic Surgery, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, China
- Heart and Lung Disease Laboratory, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, China
| |
Collapse
|
24
|
Li X, Gu Y, Hu B, Shao M, Li H. A liquid biopsy assay for the noninvasive detection of lymph node metastases in T1 lung adenocarcinoma. Thorac Cancer 2024; 15:1312-1319. [PMID: 38682829 PMCID: PMC11147666 DOI: 10.1111/1759-7714.15315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/06/2024] [Accepted: 04/10/2024] [Indexed: 05/01/2024] Open
Abstract
INTRODUCTION Lung adenocarcinoma (LUAD) is a common pathological type of lung cancer. The presence of lymph node metastasis plays a crucial role in determining the overall treatment approach and long-term prognosis for early LUAD, therefore accurate prediction of lymph node metastasis is essential to guide treatment decisions and ultimately improve patient outcomes. METHODS We performed transcriptome sequencing on T1 LUAD patients with positive or negative lymph node metastases and combined this data with The Cancer Genome Atlas Program cohort to identify potential risk molecules at the tissue level. Subsequently, by detecting the expression of these risk molecules by real-time quantitative PCR in serum samples, we developed a model to predict the risk of lymph node metastasis from a training cohort of 96 patients and a validation cohort of 158 patients. RESULTS Through transcriptome sequencing analysis of tissue samples, we identified 11 RNA (miR-412, miR-219, miR-371, FOXC1, ID1, MMP13, COL11A1, PODXL2, CXCL13, SPOCK1 and MECOM) associated with positive lymph node metastases in T1 LUAD. As the expression of FOXC1 and COL11A1 was not detected in serum, we constructed a predictive model that accurately identifies patients with positive lymph node metastases using the remaining nine RNA molecules in the serum of T1 LUAD patients. In the training set, the model achieved an area under the curve (AUC) of 0.89, and in the validation set, the AUC was 0.91. CONCLUSIONS We have established a new risk prediction model using serum samples from T1 LUAD patients, enabling noninvasive identification of those with positive lymph node metastases.
Collapse
Affiliation(s)
- Xin Li
- Department of Thoracic Surgery, Beijing Institute of Respiratory Medicine and Beijing Chao‐Yang HospitalCapital Medical UniversityBeijingChina
| | - Yang Gu
- Department of Thoracic Surgery, Beijing Institute of Respiratory Medicine and Beijing Chao‐Yang HospitalCapital Medical UniversityBeijingChina
| | - Bin Hu
- Department of Thoracic Surgery, Beijing Institute of Respiratory Medicine and Beijing Chao‐Yang HospitalCapital Medical UniversityBeijingChina
| | - Ming‐Ming Shao
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine and Beijing Chao‐Yang HospitalCapital Medical UniversityBeijingChina
| | - Hui Li
- Department of Thoracic Surgery, Beijing Institute of Respiratory Medicine and Beijing Chao‐Yang HospitalCapital Medical UniversityBeijingChina
| |
Collapse
|
25
|
Ling Z, Yang L. Diagnostic value of miR-200 family in non-small cell lung cancer: a meta-analysis. Biomark Med 2024; 18:419-431. [PMID: 39041844 DOI: 10.2217/bmm-2024-0087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 03/19/2024] [Indexed: 07/24/2024] Open
Abstract
Aim: To investigate the diagnostic potential of the miR-200 family for early detection in non-small cell lung cancer (NSCLC). Materials & methods: A systematic search was conducted of PubMed, Embase and Web of Science databases to identify studies of the miR-200 family in NSCLC. Sixteen studies meeting the inclusion criteria were included in the analysis with a total of 20 cohorts. Results: The combined sensitivity and specificity reached 73% and 85%, with an area under the curve of 0.83. Notably, miR-200b introduced heterogeneity. Subgroup analysis highlighted miR-200a and miR-141 as more sensitive, while blood-derived miRNAs showed slightly lower accuracy. Conclusion: The miR-200 family, predominantly assessed in blood, exhibits significant diagnostic potential for NSCLC, especially in distinguishing it from benign diseases.
Collapse
Affiliation(s)
- Zhen Ling
- Graduate School, Anhui University of Chinese Medicine, Hefei, 230012, Anhui, China
| | - Lichang Yang
- Graduate School, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, China
| |
Collapse
|
26
|
Lei X, Lu T. Single-cell sequencing reveals lung cell fate evolution initiated by smoking to explore gene predictions of correlative diseases. Toxicol Mech Methods 2024; 34:369-384. [PMID: 38064719 DOI: 10.1080/15376516.2023.2293117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 12/02/2023] [Indexed: 01/11/2024]
Abstract
Continuous smoking leads to adaptive regulation and physiological changes in lung tissue and cells, and is an inductive factor for many diseases, making smokers face the risk of malignant and nonmalignant diseases. The impact of research in this area is getting more and more in-depth, but the stimulant effect, mechanism of action and response mechanism of the main cells in the lungs caused by smoke components have not yet been fully elucidated, and the early diagnosis and identification of various diseases induced by smoke toxins have not yet formed a systematic relationship method. In this study, single-cell transcriptome data were generated from three lung samples of smokers and nonsmokers through scRNA-seq technology, revealing the influence of smoking on lung tissue and cells and the changes in immune response. The results show that: through UMAP cell clustering, 16 intermediate cell states of 23 cell clusters of the four main cell types in the lung are revealed, the differences of the main cell groups between smokers and nonsmokers are explained, and the human lung cells are clarified. Components and their marker genes, screen for new marker genes that can be used in the evolution of intermediate-state cells, and at the same time, the analysis of lung cell subgroups reveals the changes in the intermediate state of cells under smoke stimulation, forming a subtype intermediate state cell map. Pseudo-time ordering analysis, to determine the pattern of dynamic processes experienced by cells, differential expression analysis of different branch cells, to clarify the expression rules of cells at different positions, to clarify the evolution process of the intermediate state of cells, and to clarify the response of lung tissue and cells to smoke components mechanism. The development of this study provides new diagnosis and treatment ideas for early disease detection, identification, disease prevention and treatment of patients with smoking-related diseases, and lays a theoretical foundation based on cell and molecular regulation.
Collapse
Affiliation(s)
- Xu Lei
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Taiying Lu
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
27
|
Chen S, Wang H, Guo M, Zhao X, Yang J, Chen L, Zhao J, Chen C, Zhou Y, Xu L. Promoter A1312C mutation leads to microRNA-7 downregulation in human non-small cell lung cancer. Cell Signal 2024; 117:111095. [PMID: 38346527 DOI: 10.1016/j.cellsig.2024.111095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 01/26/2024] [Accepted: 02/09/2024] [Indexed: 02/16/2024]
Abstract
MicroRNA-7 (miRNA-7, miR-7) is a unique class of tumor suppressors, plays an important role in various physiological and pathological processes including human non-small cell lung cancer (NSCLC). In previous works, we revealed that miR-7 could regulate the growth and metastasis of human NSCLC cells. However, the mechanism of dysregulated miR-7 expression in NSCLC remains to be further elucidated. In this study, based on clinical sample analysis, we found that the downregulated expression of miR-7 was dominantly attributed to the decreased level of pri-miR-7-2 in human NSCLC. Furthermore, there were four site mutations in the miR-7-2 promoter sequence. Notably, among these four sites, mutation at -1312 locus (A → C, termed as A1312C mutation) was dominate, and A1312C mutation further led to decreased expression of miR-7 in human NSCLC cells, accompanied with elevated transduction of NDUFA4/ERK/AKT signaling pathway. Mechanistically, homeobox A5 (HOXA5) is the key transcription factors regulating miR-7 expression in NSCLC. A1312C mutation impairs HOXA5 binding, thereby reducing the transcriptional activity of miR-7-2 promoter, resulting in downregulation of miR-7 expression. Together, these data may provide new insights into the dysregulation of specific miRNA expression in NSCLC and ultimately prove to be helpful in the diagnostic, prognostic, and therapeutic strategies against NSCLC.
Collapse
Affiliation(s)
- Shipeng Chen
- Special Key Laboratory of Gene Detection and Therapy of Guizhou Province, Zunyi 563000, China; Department of Immunology, Zunyi Medical University, Zunyi 563000, Guizhou, China
| | - Hui Wang
- The Second Affiliated Hospital of Zunyi Medical University, Zunyi 563000, Guizhou, China
| | - Mengmeng Guo
- Special Key Laboratory of Gene Detection and Therapy of Guizhou Province, Zunyi 563000, China; Department of Immunology, Zunyi Medical University, Zunyi 563000, Guizhou, China
| | - Xu Zhao
- Special Key Laboratory of Gene Detection and Therapy of Guizhou Province, Zunyi 563000, China; Department of Immunology, Zunyi Medical University, Zunyi 563000, Guizhou, China
| | - Jing Yang
- Special Key Laboratory of Gene Detection and Therapy of Guizhou Province, Zunyi 563000, China; Department of Immunology, Zunyi Medical University, Zunyi 563000, Guizhou, China
| | - Longqing Chen
- Special Key Laboratory of Gene Detection and Therapy of Guizhou Province, Zunyi 563000, China; Department of Immunology, Zunyi Medical University, Zunyi 563000, Guizhou, China
| | - Juanjuan Zhao
- Special Key Laboratory of Gene Detection and Therapy of Guizhou Province, Zunyi 563000, China; Department of Immunology, Zunyi Medical University, Zunyi 563000, Guizhou, China
| | - Chao Chen
- Special Key Laboratory of Gene Detection and Therapy of Guizhou Province, Zunyi 563000, China; Department of Immunology, Zunyi Medical University, Zunyi 563000, Guizhou, China.
| | - Ya Zhou
- Special Key Laboratory of Gene Detection and Therapy of Guizhou Province, Zunyi 563000, China; Department of Medical Physics, Zunyi Medical University, Zunyi 563000, Guizhou, China.
| | - Lin Xu
- Special Key Laboratory of Gene Detection and Therapy of Guizhou Province, Zunyi 563000, China; Department of Immunology, Zunyi Medical University, Zunyi 563000, Guizhou, China; Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical University, Zunyi, Guizhou 563000, China.
| |
Collapse
|
28
|
Huang Y, Zheng D, Zhou Z, Wang H, Li Y, Zheng H, Tan J, Wu J, Yang Q, Tian H, Lin L, Li Z, Li T. The research advances in Kirsten rat sarcoma viral oncogene homolog (KRAS)-related cancer during 2013 to 2022: a scientometric analysis. Front Oncol 2024; 14:1345737. [PMID: 38706597 PMCID: PMC11066287 DOI: 10.3389/fonc.2024.1345737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 04/08/2024] [Indexed: 05/07/2024] Open
Abstract
Introduction Cancer represents a significant global public health concern. In recent years, the incidence of cancer has been on the rise worldwide due to various factors, including diet, environment, and an aging population. Simultaneously, advancements in tumor molecular biology and genomics have led to a shift from systemic chemotherapy focused on disease sites and morphopathology towards precise targeted therapy for driver gene mutations. Therefore, we propose a comprehensive review aimed at exploring the research hotspots and directions in the field of Kirsten rat sarcoma viral oncogene homolog (KRAS)-mutant cancers over the past decade, providing valuable insights for cancer treatment strategies. Specifically, we aim to present an intellectual landscape using data obtained from the Web of Science (WoS) regarding KRAS mutation. Methods Bibliometrix, VOSviewer, CiteSpace, and HistCite were employed to conduct scientometric analyses on national publications, influential authors, highly cited articles, frequent keywords, etc. Results A total of 16,609 publications met the screening criteria and exhibited a consistent annual growth trend overall. Among 102 countries/regions, the United States occupied the vast majority share of the published volume. The journal Oncotarget had the highest circulation among all scientific publications. Moreover, the most seminal articles in this field primarily focus on biology and targeted therapies, with overcoming drug resistance being identified as a future research direction. Conclusion The findings of the thematic analysis indicate that KRAS mutation in lung cancer, the prognosis following B-Raf proto-oncogene, serine/threonine kinase (BRAF) or rat sarcoma (RAS) mutations, and anti-epidermal growth factor receptor (EGFR)-related lung cancer are the significant hotspots in the given field. Considering the significant advancements made in direct targeting drugs like sotorasib, it is anticipated that interest in cancers associated with KRAS mutations will remain steadfast.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Zhiyang Li
- Department of Thyroid, Breast and Hernia Surgery, General Surgery, The Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Tianyu Li
- Department of Thyroid, Breast and Hernia Surgery, General Surgery, The Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| |
Collapse
|
29
|
Jin M, Yuan T, Tian K, Li J, Huang Q, Chi Y, Huang G. Oncogenic circ-SLC16A1 promotes progression of non-small cell lung cancer via regulation of the miR-1287-5p/profilin 2 axis. Cell Mol Biol Lett 2024; 29:43. [PMID: 38539084 PMCID: PMC10976772 DOI: 10.1186/s11658-024-00549-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 02/13/2024] [Indexed: 04/02/2024] Open
Abstract
BACKGROUND Circular RNAs (circRNAs) are single-stranded RNAs with covalently closed structures that have been implicated in cancer progression. However, the regulatory mechanisms remain largely unclear. So, the aim of this study was to reveal the role and regulatory mechanisms of circ-SLC16A1. METHODS In this study, next-generation sequencing was used to identify abnormally expressed circRNAs between cancerous and para-carcinoma tissues. Fluorescence in situ hybridization and quantitative reverse transcription polymerase chain reaction were performed to assess the expression patterns of circ-solute carrier family 16 member 1 (SLC16A1) in non-small cell lung cancer (NSCLC) cells and tissue specimens. The dual-luciferase reporter assay was utilized to identify downstream targets of circ-SLC16A1. Transwell migration, wound healing, 5-ethynyl-2'-deoxyuridine incorporation, cell counting, and colony formation assays were conducted to assess the proliferation and migration of NSCLC cells. A mouse tumor xenograft model was employed to determine the roles of circ-SLC16A1 in NSCLC progression and metastasis in vivo. RESULTS The results found that circ-SLC16A1 was upregulated in NSCLC cells and tissues. Downregulation of circ-SLC16A1 inhibited tumor growth by reducing proliferation, lung metastasis, and lymphatic metastasis of NSCLC cells, and arrested the cell cycle in the G1 phase. Also, silencing of circ-SLC16A1 promoted apoptosis of NSCLC cells. The results of bioinformatics analysis and the dual-luciferase reporter assay confirmed that microRNA (miR)-1287-5p and profilin 2 (PFN2) are downstream targets of circ-SLC16A1. PFN2 overexpression or circ-SLC16A1 inhibition restored proliferation and migration of NSCLC cells after silencing of circ-SLC16A1. PFN2 overexpression restored migration and proliferation of NSCLC cells post miR-1287-5p overexpression. CONCLUSIONS Collectively, these findings show that miR-1287-5p/PFN2 signaling was associated with downregulation of circ-SLC16A1 and reduced invasion and proliferation of NSCLC cells. So, circ-SLC16A1 is identified as a mediator of multiple pro-oncogenic signaling pathways in NSCLC and can be targeted to suppress tumor progression.
Collapse
Affiliation(s)
- Mingming Jin
- Shanghai Key Laboratory of Molecular Imaging, Jiading District Central Hospital Affiliated Shanghai University of Medicine and Health Sciences, Shanghai, 201318, People's Republic of China
| | - Tailei Yuan
- Shanghai Key Laboratory of Molecular Imaging, Jiading District Central Hospital Affiliated Shanghai University of Medicine and Health Sciences, Shanghai, 201318, People's Republic of China
- Postgraduate Training Base of Shanghai Gongli Hospital, Ningxia Medical University, Shanghai, 200135, People's Republic of China
- Department of Clinical Lab, Shanghai Pudong New Area Gongli Hospital, Shanghai, 200135, People's Republic of China
- Jiangbei Hospital Affiliated to Xinglin College, Nantong University, Jiangsu, 210048, People's Republic of China
| | - Kaisai Tian
- Shanghai Key Laboratory of Molecular Imaging, Jiading District Central Hospital Affiliated Shanghai University of Medicine and Health Sciences, Shanghai, 201318, People's Republic of China
- Postgraduate Training Base of Shanghai Gongli Hospital, Ningxia Medical University, Shanghai, 200135, People's Republic of China
- Department of Clinical Lab, Shanghai Pudong New Area Gongli Hospital, Shanghai, 200135, People's Republic of China
| | - Jingjing Li
- Shanghai Key Laboratory of Molecular Imaging, Jiading District Central Hospital Affiliated Shanghai University of Medicine and Health Sciences, Shanghai, 201318, People's Republic of China
| | - Qingqing Huang
- Shanghai Key Laboratory of Molecular Imaging, Jiading District Central Hospital Affiliated Shanghai University of Medicine and Health Sciences, Shanghai, 201318, People's Republic of China.
| | - Yongbin Chi
- Postgraduate Training Base of Shanghai Gongli Hospital, Ningxia Medical University, Shanghai, 200135, People's Republic of China.
- Department of Clinical Lab, Shanghai Pudong New Area Gongli Hospital, Shanghai, 200135, People's Republic of China.
| | - Gang Huang
- Shanghai Key Laboratory of Molecular Imaging, Jiading District Central Hospital Affiliated Shanghai University of Medicine and Health Sciences, Shanghai, 201318, People's Republic of China.
| |
Collapse
|
30
|
Wu Y, Wu D, Lan J, Li A, Hou L, Xu Y, Gou Y. Assessment of Mononuclear/Dinuclear copper acylhydrazone complexes for lung cancer treatment. Bioorg Chem 2024; 144:107122. [PMID: 38278049 DOI: 10.1016/j.bioorg.2024.107122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 12/06/2023] [Accepted: 01/10/2024] [Indexed: 01/28/2024]
Abstract
Non-platinum metal-based complexes have good potential for cancer treatment. Here, we designed and synthesized five hydrazone copper(II) complexes, [Cu2(HL)2Cl2] 1A, [Cu2(HL)2(NO3)H2O]·NO3 2A, [Cu2(HL)2Br2] 3A, [Cu(L)pyridine] 1B and [Cu(HL)(pyridine)Br] 3B, and evaluated their anti-lung cancer activities. MTT experiments revealed that these copper(II) complexes exhibit higher anticancer activity than cisplatin. Mechanism studies revealed that complex 3A induced G1 phase cell cycle arrest, and induced cell apoptosis via reactive oxygen species (ROS)-mediated mitochondrial dysfunction. Scratch wound healing assay was also performed, revealing that complex 3A have good anti-cell migration activity. Hemolysis assays showed good blood biocompatibility of complex 3A. Furthermore, complex 3A can significantly inhibit the proliferation of A549 3D tumor spheroid. An in vivo anticancer study showed that complex 3A could delays the growth of A549 tumor xenografts with lower systemic toxicity. These results highlight the great possibility of developing highly active copper complexes as anti-lung cancer agents.
Collapse
Affiliation(s)
- Youru Wu
- The Laboratory of Respiratory Disease, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, China
| | - Daqi Wu
- School of Pharmacy, Guilin Medical University, Guilin, Guangxi, China
| | - Jianfeng Lan
- Guangxi Key Laboratory of Molecular Medicine in Liver Injury and Repair, the Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, China
| | - Aili Li
- The Laboratory of Respiratory Disease, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, China
| | - Lixia Hou
- The Laboratory of Respiratory Disease, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, China
| | - Yourui Xu
- School of Pharmacy, Guilin Medical University, Guilin, Guangxi, China.
| | - Yi Gou
- The Laboratory of Respiratory Disease, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, China.
| |
Collapse
|
31
|
Cui X, Lin Q, Chen M, Wang Y, Wang Y, Wang Y, Tao J, Yin H, Zhao T. Long-read sequencing unveils novel somatic variants and methylation patterns in the genetic information system of early lung cancer. Comput Biol Med 2024; 171:108174. [PMID: 38442557 DOI: 10.1016/j.compbiomed.2024.108174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 01/25/2024] [Accepted: 02/18/2024] [Indexed: 03/07/2024]
Abstract
Lung cancer poses a global health challenge, necessitating advanced diagnostics for improved outcomes. Intensive efforts are ongoing to pinpoint early detection biomarkers, such as genomic variations and DNA methylation, to elevate diagnostic precision. We conducted long-read sequencing on cancerous and adjacent non-cancerous tissues from a patient with lung adenocarcinoma. We identified somatic structural variations (SVs) specific to lung cancer by integrating data from various SV calling methods and differentially methylated regions (DMRs) that were distinct between these two tissue samples, revealing a unique methylation pattern associated with lung cancer. This study discovered over 40,000 somatic SVs and over 180,000 DMRs linked to lung cancer. We identified approximately 700 genes of significant relevance through comprehensive analysis, including genes intricately associated with many lung cancers, such as NOTCH1, SMOC2, CSMD2, and others. Furthermore, we observed that somatic SVs and DMRs were substantially enriched in several pathways, such as axon guidance signaling pathways, which suggests a comprehensive multi-omics impact on lung cancer progression across various biological investigation levels. These datasets can potentially serve as biomarkers for early lung cancer detection and may hold significant value in clinical diagnosis and treatment applications.
Collapse
Affiliation(s)
- Xinran Cui
- School of Computer Science and Technology, Harbin Institute of Technology, 92 West Da Zhi St, Harbin, Heilongjiang, 150000, China
| | - Qingyan Lin
- Department of Respiratory and Critical Care, Heilongjiang Provincial Hospital, 405 Gorokhovaya Street, Harbin, Heilongjiang, 150000, China
| | - Ming Chen
- Institute of Bioinformatics, Harbin Institute of Technology, 92 West Da Zhi St, Harbin, Heilongjiang, 150000, China
| | - Yidan Wang
- Department of Respiratory and Critical Care, Heilongjiang Provincial Hospital, 405 Gorokhovaya Street, Harbin, Heilongjiang, 150000, China
| | - Yiwen Wang
- Tanwei College, Tsinghua University, Shuangqing Road, Beijing, 100084, China
| | - Yadong Wang
- School of Computer Science and Technology, Harbin Institute of Technology, 92 West Da Zhi St, Harbin, Heilongjiang, 150000, China.
| | - Jiang Tao
- School of Computer Science and Technology, Harbin Institute of Technology, 92 West Da Zhi St, Harbin, Heilongjiang, 150000, China.
| | - Honglei Yin
- Department of Respiratory and Critical Care, Heilongjiang Provincial Hospital, 405 Gorokhovaya Street, Harbin, Heilongjiang, 150000, China.
| | - Tianyi Zhao
- School of Medicine, Harbin Institute of Technology, 92 West Da Zhi St, Harbin, Heilongjiang, 150000, China.
| |
Collapse
|
32
|
Shan L, Qiao Y, Ma L, Zhang X, Chen C, Xu X, Li D, Qiu S, Xue X, Yu Y, Guo Y, Qian K, Wang J. AuNPs/CNC Nanocomposite with A "Dual Dispersion" Effect for LDI-TOF MS Analysis of Intact Proteins in NSCLC Serum Exosomes. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307360. [PMID: 38224220 DOI: 10.1002/advs.202307360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 12/07/2023] [Indexed: 01/16/2024]
Abstract
Detecting exosomal markers using laser desorption/ionization time-of-flight mass spectrometry (LDI-TOF MS) is a novel approach for examining liquid biopsies of non-small cell lung cancer (NSCLC) samples. However, LDI-TOF MS is limited by low sensitivity and poor reproducibility when analyzing intact proteins directly. In this report, gold nanoparticles/cellulose nanocrystals (AuNPs/CNC) is introduced as the matrix for direct analysis of intact proteins in NSCLC serum exosomes. AuNPs/CNC with "dual dispersion" effects dispersed and stabilized AuNPs and improved ion inhibition effects caused by protein aggregation. These features increased the signal-to-noise ratio of [M+H]+ peaks by two orders of magnitude and lowered the detection limit of intact proteins to 0.01 mg mL-1. The coefficient of variation with or without AuNPs/CNC is measured as 10.2% and 32.5%, respectively. The excellent reproducibility yielded a linear relationship (y = 15.41x - 7.983, R2 = 0.989) over the protein concentration range of 0.01 to 20 mg mL-1. Finally, AuNPs/CNC-assisted LDI-TOF MS provides clinically relevant fingerprint information of exosomal proteins in NSCLC serum, and characteristic proteins S100 calcium-binding protein A10, Urokinase plasminogen activator surface receptor, Plasma protease C1 inhibitor, Tyrosine-protein kinase Fgr and Mannose-binding lectin associated serine protease 2 represented excellent predictive biomarkers of NSCLC risk.
Collapse
Affiliation(s)
- Liang Shan
- Department of Clinical Laboratory, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, No. 241, West Huaihai Road, Shanghai, 200030, P. R. China
| | - Yongxia Qiao
- School of Public Health, Shanghai Jiao Tong University School of Medicine, No. 227, South Chongqing Road, Shanghai, 200025, P. R. China
| | - Lifang Ma
- Department of Clinical Laboratory, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, No. 241, West Huaihai Road, Shanghai, 200030, P. R. China
- Shanghai Institute of Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, No. 241, West Huaihai Road, Shanghai, 200030, P. R. China
| | - Xiao Zhang
- Shanghai Institute of Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, No. 241, West Huaihai Road, Shanghai, 200030, P. R. China
| | - Changqiang Chen
- Department of Clinical Laboratory, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, No. 241, West Huaihai Road, Shanghai, 200030, P. R. China
| | - Xin Xu
- Shanghai Institute of Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, No. 241, West Huaihai Road, Shanghai, 200030, P. R. China
| | - Dan Li
- Department of Clinical Laboratory, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, No. 241, West Huaihai Road, Shanghai, 200030, P. R. China
| | - Shiyu Qiu
- Shanghai Institute of Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, No. 241, West Huaihai Road, Shanghai, 200030, P. R. China
| | - Xiangfei Xue
- Shanghai Institute of Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, No. 241, West Huaihai Road, Shanghai, 200030, P. R. China
| | - Yongchun Yu
- Shanghai Institute of Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, No. 241, West Huaihai Road, Shanghai, 200030, P. R. China
| | - Yinlong Guo
- National Center for Organic Mass Spectrometry in Shanghai, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, No. 345, Lingling Road, Shanghai, 200032, P. R. China
| | - Kun Qian
- State Key Laboratory for Oncogenes and Related Genes School of Biomedical Engineering, Institute of Medical Robotics and Med-X Research Institute, Shanghai Jiao Tong University, No. 1954, Huashan Road, Shanghai, 200030, P. R. China
| | - Jiayi Wang
- Department of Clinical Laboratory, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, No. 241, West Huaihai Road, Shanghai, 200030, P. R. China
- Shanghai Institute of Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, No. 241, West Huaihai Road, Shanghai, 200030, P. R. China
- Faculty of Medical Laboratory Science, College of Health Science and Technology, Shanghai Jiao Tong University School of Medicine, No. 227, South Chongqing Road, Shanghai, 200025, P. R. China
| |
Collapse
|
33
|
Chen K, Hong C, Kong W, Li G, Liu Z, Zhu K, Lu C, Si P, Gao P, Ning G, Zhang R. ACADL-YAP axis activity in non-small cell lung cancer carcinogenicity. Cancer Cell Int 2024; 24:86. [PMID: 38402174 PMCID: PMC10894480 DOI: 10.1186/s12935-024-03276-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 02/17/2024] [Indexed: 02/26/2024] Open
Abstract
BACKGROUND The role of Acyl-CoA dehydrogenase long chain (ACADL) in different tumor types had different inhibiting or promoting effect. However, its role in non-small cell lung cancer (NSCLC) carcinogenicity is not clear. METHOD In this study, we utilized The Cancer Genome Atlas (TCGA) database to analyze ACADL expression in NSCLC and its correlation with overall survival. Furthermore, we investigated the function of ACADL on cellular proliferation, invasion, colony, apoptosis, cell cycle in vitro with NSCLC cells. Mechanistically, we evaluated the regulatory effect of ACADL expression on its downstream factor yes-associated protein (YAP) by assessing YAP phosphorylation levels and its cellular localization. Finally, we verified the tumorigenic effect of ACADL on NSCLC cells through xenograft experiments in vivo. RESULTS Compared to adjacent non-cancerous samples, ACADL significantly down-regulated in NSCLC. Overexpression of ACADL, effectively reduced the proliferative, colony, and invasive capabilities of NSCLC cells, while promoting apoptosis and inducing cell cycle arrest. Moreover, ACADL overexpression significantly enhanced YAP phosphorylation and hindered its nuclear translocation. However, the inhibitory effect of the overexpression of ACADL in NSCLC cells mentioned above can be partially counteracted by YAP activator XMU-MP-1 application both in vitro and in vivo. CONCLUSION The findings suggest that ACADL overexpression could suppress NSCLC development by modulating YAP phosphorylation and limiting its nuclear shift. This role of ACADL-YAP axis provided novel insights into NSCLC carcinogenicity and potential therapeutic strategies.
Collapse
Affiliation(s)
- Kegong Chen
- Department of Thoracic Surgery, The First Affiliated Hospital of Anhui Medical University, No. 218, Jixi Road, Shushan District, Hefei, 230001, China
- Key Laboratory of Respiratory Disease Research and Medical Transformation of Anhui Province, Hefei, 230001, China
| | - Chunqiao Hong
- Department of Critical Care Medicine, Xiamen Chang Gung Hospital Hua Qiao University, Xiamen, 361013, China
| | - Weibo Kong
- Department of Thoracic Surgery, The First Affiliated Hospital of Anhui Medical University, No. 218, Jixi Road, Shushan District, Hefei, 230001, China
- Departments of Thoracic Surgery, Anhui Provincial Chest Hospital, Hefei, 230001, China
| | - Guanghua Li
- Department of Thoracic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150000, China
| | - Zhuang Liu
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, 230001, China
| | - Kechao Zhu
- Department of Thoracic Surgery, The First Affiliated Hospital of Anhui Medical University, No. 218, Jixi Road, Shushan District, Hefei, 230001, China
| | - Chen Lu
- Department of Thoracic Surgery, The First Affiliated Hospital of Anhui Medical University, No. 218, Jixi Road, Shushan District, Hefei, 230001, China
| | - Panpan Si
- Department of Thoracic Surgery, The First Affiliated Hospital of Anhui Medical University, No. 218, Jixi Road, Shushan District, Hefei, 230001, China
| | - Pan Gao
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230001, China
| | - Guangyao Ning
- Department of Thoracic Surgery, The First Affiliated Hospital of Anhui Medical University, No. 218, Jixi Road, Shushan District, Hefei, 230001, China.
| | - Renquan Zhang
- Department of Thoracic Surgery, The First Affiliated Hospital of Anhui Medical University, No. 218, Jixi Road, Shushan District, Hefei, 230001, China.
| |
Collapse
|
34
|
Qian ST, Xie FF, Zhao HY, Liu QS, Cai DL. Prospects in the application of ultrasensitive chromosomal aneuploidy detection in precancerous lesions of gastric cancer. World J Gastrointest Surg 2024; 16:6-12. [PMID: 38328310 PMCID: PMC10845279 DOI: 10.4240/wjgs.v16.i1.6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 12/11/2023] [Accepted: 12/26/2023] [Indexed: 01/25/2024] Open
Abstract
Gastric cancer (GC) is a prevalent malignant tumor within the digestive system, with over 40% of new cases and deaths related to GC globally occurring in China. Despite advancements in treatment modalities, such as surgery supplemented by adjuvant radiotherapy or chemotherapeutic agents, the prognosis for GC remains poor. New targeted therapies and immunotherapies are currently under investigation, but no significant breakthroughs have been achieved. Studies have indicated that GC is a heterogeneous disease, encompassing multiple subtypes with distinct biological characteristics and roles. Consequently, personalized treatment based on clinical features, pathologic typing, and molecular typing is crucial for the diagnosis and management of precancerous lesions of gastric cancer (PLGC). Current research has categorized GC into four subtypes: Epstein-Barr virus-positive, microsatellite instability, genome stability, and chromosome instability (CIN). Technologies such as multi-omics analysis and gene sequencing are being employed to identify more suitable novel testing methods in these areas. Among these, ultrasensitive chromosomal aneuploidy detection (UCAD) can detect CIN at a genome-wide level in subjects using low-depth whole genome sequencing technology, in conjunction with bioinformatics analysis, to achieve qualitative and quantitative detection of chromosomal stability. This editorial reviews recent research advancements in UCAD technology for the diagnosis and management of PLGC.
Collapse
Affiliation(s)
- Su-Ting Qian
- Department of Digestive, Hangzhou Hospital of Traditional Chinese Medicine, Hangzhou 310007, Zhejiang Province, China
| | - Fei-Fei Xie
- Department of Digestive, Hangzhou Hospital of Traditional Chinese Medicine, Hangzhou 310007, Zhejiang Province, China
| | - Hao-Yu Zhao
- Department of Digestive, Hangzhou Hospital of Traditional Chinese Medicine, Hangzhou 310007, Zhejiang Province, China
| | - Qing-Sheng Liu
- Science and Education Section, Hangzhou Hospital of Traditional Chinese Medicine, Hangzhou 310007, Zhejiang Province, China
| | - Dan-Li Cai
- Intensive Care Unit, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 311122, Zhejiang Province, China
| |
Collapse
|
35
|
Chen P, Lv X, Zheng Z. Gigantol exerts anti-lung cancer activity by inducing ferroptosis via SLC7A11-GPX4 axis. Biochem Biophys Res Commun 2024; 690:149274. [PMID: 37995455 DOI: 10.1016/j.bbrc.2023.149274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 11/15/2023] [Indexed: 11/25/2023]
Abstract
Gigantol, a naturally occurring dibenzyl compound derived from various orchid species within the Dendrobium genus, exhibits notable pharmacological activity. We found that gigantol has significant anti-lung cancer properties, both in vitro and in vivo, which it exerts through the induction of ferroptosis. Furthermore, we found gigantol's specific interaction with the subunit solute carrier family 7 member 11 (SLC7A11) within the cystine/glutamate antiporter system (system Xc-), leading to the inhibition of glutathione (GSH) synthesis. This, in turn, disrupts redox homeostasis. Additionally, gigantol hinders the uptake of extracellular cystine via lung cancer cells, resulting in reduced cellular levels of cysteine, a vital precursor in GSH synthesis. This reduction, in turn, leads to an increase in the levels of glutamate. Simultaneously, our study reveals that the decrease in GSH significantly inhibits the activity of glutathione peroxidase 4 (GPX4), a key enzyme within the antioxidant system. Remarkably, N-acetylcysteine, a cystine precursor, effectively reverses gigantol-induced ferroptosis in lung cancer cells. This provides further confirmation that the anti-lung cancer mechanism of gigantol is to induce ferroptosis of lung cancer cells by targeting the SLC7A11-GPX4 signaling axis. In conclusion, our study underscores gigantol's potential as a promising candidate drug for the treatment of patients with lung cancer in clinical practice.
Collapse
Affiliation(s)
- Peng Chen
- Department of Pharmacy, School of Medicine, Hangzhou City University, Hangzhou, 310015, China.
| | - Xing Lv
- Department of Clinical Medicine, School of Medicine, Hangzhou City University, Hangzhou, 310015, China
| | - Zilu Zheng
- Department of Clinical Medicine, School of Medicine, Hangzhou City University, Hangzhou, 310015, China
| |
Collapse
|
36
|
Mlika M, Zorgati MM, Abdennadher M, Bouassida I, Mezni F, Mrabet A. The diagnostic performance of micro-RNA and metabolites in lung cancer: A meta-analysis. Asian Cardiovasc Thorac Ann 2024; 32:45-65. [PMID: 38009802 DOI: 10.1177/02184923231215538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
BACKGROUND The diagnosis of lung cancer is based on the microscopic exam of tissue or liquid. During the recent decade, many biomarkers have been pointed to have a potential diagnostic role. These biomarkers may be assessed in blood, pleural effusion or sputum and they could avoid biopsies or other risky procedures. The authors aimed to assess the diagnostic performances of biomarkers focusing on micro-RNA and metabolites. METHODS This meta-analysis was conducted under the PRISMA guidelines during a nine-year-period (2013-2022). the Meta-Disc software 5.4 (free version) was used. Q test and I2 statistics were carried out to explore the heterogeneity among studies. Meta-regression was performed in case of significant heterogeneity. Publication bias was assessed using the funnel plot test and the Egger's test (free version JASP). RESULTS According to our inclusion criteria, 165 studies from 79 articles were included. The pooled SEN, SPE and dOR accounted, respectively, for 0.76, 0.79 and 13.927. The AUC was estimated to 0.859 suggesting a good diagnostic accuracy. The heterogeneity in the pooled SEN and SPE was statistically significant. The meta-regression analysis focusing on the technique used, the sample, the number of biomarkers, the biomarker subtype, the tumor stage and the ethnicity revealed the biomarker number (p = 0.009) and the tumor stage (p = 0.0241) as potential sources of heterogeneity. CONCLUSION Even if this meta-analysis highlighted the potential diagnostic utility of biomarkers, more prospective studies should be performed, especially to assess the biomarkers' diagnostic potential in early-stage lung cancers.
Collapse
Affiliation(s)
- Mona Mlika
- Department of Pathology, Center of Traumatology and Major Burns, Ben Arous, Tunis, Tunisia
- University Tunis El Manar, Faculty of Medicine of Tunis, Tunisia
| | | | - Mehdi Abdennadher
- University Tunis El Manar, Faculty of Medicine of Tunis, Tunisia
- Department of Thoracic Surgery, Abderrahman Mami Hospital, Tunis, Tunisia
| | - Imen Bouassida
- University Tunis El Manar, Faculty of Medicine of Tunis, Tunisia
- Department of Thoracic Surgery, Abderrahman Mami Hospital, Tunis, Tunisia
| | - Faouzi Mezni
- University Tunis El Manar, Faculty of Medicine of Tunis, Tunisia
| | - Ali Mrabet
- University Tunis El Manar, Faculty of Medicine of Tunis, Tunisia
- Ministry of Health, Tunis, Tunisia
| |
Collapse
|
37
|
Zhang Y, Li L, Ke XP, Liu P. The identification of a PTEN-associated gene signature for the prediction of prognosis and planning of therapeutic strategy in endometrial cancer. Transl Cancer Res 2023; 12:3409-3424. [PMID: 38192993 PMCID: PMC10774041 DOI: 10.21037/tcr-23-1436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 10/29/2023] [Indexed: 01/10/2024]
Abstract
Background Endometrial cancer (EC) is one of the most common malignancies among women. To improve the prognosis and treatment of EC, finding out a phosphatase and tensin homolog deleted on chromosome 10 (PTEN)-associated prognostic signature would be beneficial. Methods EC clinical data, genetic mutation data, and transcriptome data were downloaded from The Cancer Genome Atlas (TCGA) database. To clarify the specific PTEN-associated signature, cox regression analyses were performed. The clinical value of the selected signature on the overall survival (OS) and the secretoglobin family 2A member 1 (SCGB2A1)-independent analysis, immune and functional analysis were investigated respectively. Results Five hundred and fourteen EC samples were screened and PTEN mutation occupied 57%. Enrichment analysis indicated that mutant-type PTEN was enriched for pathways related to the upregulated human T-cell leukemia virus-1 (HTLV-1) infection and estrogen signaling pathway. SCGB2A1 was identified by cox regression analysis. Immune analysis exhibited significant immune infiltration with higher expression of T cells, B cells, and macrophage groups. Immune-checkpoint transcripts CD274 molecule (CD274), and cytotoxic T-lymphocyte associated protein 4 (CTLA4), hepatitis A virus cellular receptor 2 (HAVCR2), lymphocyte activation gene 3 (LAG3), programmed cell death 1 (PDCD1), PDCD1 ligand 2 (PDCD1LG2), T cell immunoreceptor with immunoglobulin and immunoreceptor tyrosine-based inhibition motif domains (TIGIT), and sialic acid binding immunoglobulin like lectin 15 (SIGLEC15) were discovered statistically different. In addition, the low-SCGB2A1 group had worse OS than the high-SCGB2A1 group. SCGB2A1 showed significant area under the curve (AUC) values in a time-dependent receiver operating characteristic (ROC) analysis. Prevalence of microsatellite instability (MSI) was detected and SCGB2A1 showed a negative correlation with EC. Immune checkpoint blockade (ICB) response indicated a worse immune response in the low-SCGB2A1 group. The distribution of one-class linear regression (OCLR) scores reflected the negative correlation between messenger RNA expression-based stemness index (mRNAsi) and prognostic gene expression. Furthermore, several SCGB2A1-related signaling pathways in EC were identified. Conclusions SCGB2A1 is a prognostic immunometabolic signature for patients with EC, which may help improve the prognosis and therapeutic effect.
Collapse
Affiliation(s)
- Yuan Zhang
- Department of General Surgery, Yangpu Hospital, School of Medicine, Tongji University, Shanghai, China
- Department of Obstetrics, International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Li Li
- Department of Obstetrics and Gynaecology, Yangpu Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xiao-Ping Ke
- Department of Obstetrics and Gynaecology, Yangpu Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Ping Liu
- Department of Obstetrics and Gynaecology, Yangpu Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
38
|
Luo N, Mei Z, Zhang Q, Tang H, Wan R, Deng A, Zou X, Lv C. TMX family genes and their association with prognosis, immune infiltration, and chemotherapy in human pan-cancer. Aging (Albany NY) 2023; 15:15064-15083. [PMID: 38147024 PMCID: PMC10781458 DOI: 10.18632/aging.205332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 11/10/2023] [Indexed: 12/27/2023]
Abstract
BACKGROUND The thioredoxin (TMX) system, an important redox system, plays crucial roles in several immune-related diseases. However, there is limited research on the correlation of TMX family gene expression with human pan-cancer prognosis, tumor microenvironment (TME), and immunotherapy. METHODS Based on the integration of several bioinformatics analysis methods, we explored the expression levels and prognostic value of TMX family members in pan-cancer and analyzed their association between TME, immune infiltration, stemness scores, and drug sensitivity. Using KEGG enrichment analysis, we explored the potential signaling pathways of their regulation. Additionally, we conducted a transwell assay to verify the relationship between TMX family gene expression and epithelial-mesenchymal transition (EMT) in liver cancer. RESULTS Expression of the TMX family genes was shown to have an obvious intratumoral heterogeneity. In some cancers, TMX family members expression was also been found to correlate with poor prognosis of patients. Furthermore, TMX family genes may serve important roles in TME. The expression of TMX family genes was found to have a strong correlation with the stromal scores, immune scores, DNAss and RNAss in pan-cancer. Specifically, the expression levels of TMX family genes have been found to be associated with immune subtypes of renal clear cell carcinoma and liver hepatocellular carcinoma. High TMX2 expression promote EMT in liver cancer. CONCLUSIONS The findings of this study may elucidate the biological roles of TMX family genes as potential targets for pan-cancer and also offer valuable insights for further investigating how these genes function in the development and spreading of cancer.
Collapse
Affiliation(s)
- Na Luo
- The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou 646000, Sichuan, China
- School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Zhiqiang Mei
- The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Qiqi Zhang
- Degree Office, The Graduate School of Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Hong Tang
- Department of Pathology, Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Runlan Wan
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Anni Deng
- Department of Pediatrics, Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Xiaopan Zou
- Breast and Thyroid Surgery, Renmin Hospital, Jilin University, Changchun 130024, Jilin, China
| | - Chaoxiang Lv
- The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou 646000, Sichuan, China
| |
Collapse
|
39
|
Chalmers JD, Kettritz R, Korkmaz B. Dipeptidyl peptidase 1 inhibition as a potential therapeutic approach in neutrophil-mediated inflammatory disease. Front Immunol 2023; 14:1239151. [PMID: 38162644 PMCID: PMC10755895 DOI: 10.3389/fimmu.2023.1239151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 11/14/2023] [Indexed: 01/03/2024] Open
Abstract
Neutrophils have a critical role in the innate immune response to infection and the control of inflammation. A key component of this process is the release of neutrophil serine proteases (NSPs), primarily neutrophil elastase, proteinase 3, cathepsin G, and NSP4, which have essential functions in immune modulation and tissue repair following injury. Normally, NSP activity is controlled and modulated by endogenous antiproteases. However, disruption of this homeostatic relationship can cause diseases in which neutrophilic inflammation is central to the pathology, such as chronic obstructive pulmonary disease (COPD), alpha-1 antitrypsin deficiency, bronchiectasis, and cystic fibrosis, as well as many non-pulmonary pathologies. Although the pathobiology of these diseases varies, evidence indicates that excessive NSP activity is common and a principal mediator of tissue damage and clinical decline. NSPs are synthesized as inactive zymogens and activated primarily by the ubiquitous enzyme dipeptidyl peptidase 1, also known as cathepsin C. Preclinical data confirm that inactivation of this protease reduces activation of NSPs. Thus, pharmacological inhibition of dipeptidyl peptidase 1 potentially reduces the contribution of aberrant NSP activity to the severity and/or progression of multiple inflammatory diseases. Initial clinical data support this view. Ongoing research continues to explore the role of NSP activation by dipeptidyl peptidase 1 in different disease states and the potential clinical benefits of dipeptidyl peptidase 1 inhibition.
Collapse
Affiliation(s)
- James D. Chalmers
- Department of Molecular and Clinical Medicine, Ninewells Hospital and Medical School, Dundee, United Kingdom
| | - Ralph Kettritz
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Experimental and Clinical Research Center, a Cooperation Between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Charité Universitätsmedizin, Berlin, Germany
| | - Brice Korkmaz
- INSERM UMR-1100, Research Center for Respiratory Diseases, University of Tours, Tours, France
| |
Collapse
|
40
|
Wu J, Liu G, Jia R, Guo J. Salivary Extracellular Vesicles: Biomarkers and Beyond in Human Diseases. Int J Mol Sci 2023; 24:17328. [PMID: 38139157 PMCID: PMC10743646 DOI: 10.3390/ijms242417328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/29/2023] [Accepted: 12/06/2023] [Indexed: 12/24/2023] Open
Abstract
Extracellular vesicles, as bioactive molecules, have been extensively studied. There are abundant studies in the literature on their biogenesis, secretion, structure, and content, and their roles in pathophysiological processes. Extracellular vesicles have been reviewed as biomarkers for use in diagnostic tools. Saliva contains many extracellular vesicles, and compared with other body fluids, it is easier to obtain in a non-invasive way, making its acquisition more easily accepted by patients. In recent years, there have been numerous new studies investigating the role of salivary extracellular vesicles as biomarkers. These studies have significant implications for future clinical diagnosis. Therefore, in this paper, we summarize and review the potential applications of salivary extracellular vesicles as biomarkers, and we also describe their other functions (e.g., hemostasis, innate immune defense) in both oral and non-oral diseases.
Collapse
Affiliation(s)
- Jialing Wu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430072, China; (J.W.); (G.L.); (R.J.)
| | - Gege Liu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430072, China; (J.W.); (G.L.); (R.J.)
| | - Rong Jia
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430072, China; (J.W.); (G.L.); (R.J.)
| | - Jihua Guo
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430072, China; (J.W.); (G.L.); (R.J.)
- Department of Endodontics, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| |
Collapse
|
41
|
Yadav B, Chauhan M, Sonali, Dinkar R, Shekhar S, Singh RP. Fabrication, in-silico, in-vitro, and in-vivo characterization of transferrin-targeted micelles containing cisplatin and gadolinium for improved theranostic applications in lung cancer therapy. Eur J Pharm Biopharm 2023; 193:44-57. [PMID: 37866420 DOI: 10.1016/j.ejpb.2023.10.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/18/2023] [Accepted: 10/19/2023] [Indexed: 10/24/2023]
Abstract
The targeted delivery of therapeutic and imaging agents is quite challenging in lung cancer therapy. Thus, lung cancer causes high mortality across the world. Herein, we developed TPGS-PF127 micelles containing cisplatin (CDDP) as a model anticancer drug and gadolinium (Gd) as a diagnostic agent by a slightly modified solvent casting method, further, the surface of the micelles was modified using TPGS-transferrin (TPGS-Tf) conjugate to improve targeted delivery of micelles to the lung cancer cells. Prior to this, the binding affinity of Tf over TfR (1E7U) and TfR (1E8W) was investigated with the help of in-silico studies. In-silico results showed good docking scores -7.8 and -7.2 kcal/mol of Tf -ligand towards 1E8W and 1E7U respectively promoting PI3K inhibition. Micelles have shown an average particle size range of 80-200 nm and have shown spherical morphology. The encapsulation efficiency of cisplatin (CDDP) in the CPT, CGPT, and CGPT-Tf micelles ranged from 75.63 % ± 1.58 % to 85.07 % ± 2.65 %. Furthermore, the encapsulation efficiency of gadolinium (Gd) in the CGPT and CGPT-Tf micelles was found to be 67.50 ± 0.32 % and 62.52 ± 0.52 %, respectively. CGPT-Tf micelles exhibited sustained release fashion for CDDP up to 48 h in physiological conditions. In the cytotoxicity study, CGPT-Tf micelles achieved higher cytotoxicity and caused a more antiproliferative effect in A549 cells compared to a commercial CDDP injection (Ciszest 50), after 24 h of treatment. Furthermore, the pharmacokinetic studies have proven the pharmacological effectiveness of developed CGPT-Tf micelles by achieving higher Cmax, Tmax, t1/2, and MRT of CDDP in systemic circulation compared to its counterparts and Ciszest 50. In lung theranostic observations, a higher internalization of Gd was noted in CGPT-TF compared to free Gd. The biochemical studies have proved the biocompatibility of developed micelles formulations by showing no sign of toxicity in the lungs. The developed micelles have great potential to be utilized in treating and diagnosing a wide variety of cancers.
Collapse
Affiliation(s)
- Bhavna Yadav
- Department of Pharmacy, School of Medical and Allied Sciences, GD Goenka University, Gurugram, 122103, India
| | - Mahima Chauhan
- Department of Pharmacy, School of Medical and Allied Sciences, GD Goenka University, Gurugram, 122103, India
| | - Sonali
- Guru Teg Bahadur Hospital, GTB Enclave, Dilshad Garden, New Delhi, Delhi 110095, India
| | - Ritu Dinkar
- Department of Pharmacy, School of Medical and Allied Sciences, GD Goenka University, Gurugram, 122103, India
| | - Saurabh Shekhar
- Department of Pharmacy, School of Medical and Allied Sciences, GD Goenka University, Gurugram, 122103, India
| | - Rahul Pratap Singh
- Department of Pharmacy, School of Medical and Allied Sciences, GD Goenka University, Gurugram, 122103, India.
| |
Collapse
|
42
|
Qian S, Liu J, Liao W, Wang F. METTL3 promotes non-small-cell lung cancer growth and metastasis by inhibiting FDX1 through copper death-associated pri-miR-21-5p maturation. Epigenomics 2023; 15:1237-1255. [PMID: 38126112 DOI: 10.2217/epi-2023-0230] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023] Open
Abstract
Objective: We probed into the significance of METTL3 in the maturation process of pri-miR-21-5p. We specifically investigated its impact on the regulation of FDX1 and its involvement in the progression of non-small-cell lung cancer (NSCLC). Methods: The Cancer Genome Atlas (TCGA) identified NSCLC factors. Methylation-specific PCR (MSP), clonogenic tests and flow cytometry analyzed cells. Methylated RNA immunoprecipitation (Me-RIP) and dual-luciferase studied miR-21-5p/FDX1. Mice xenografts showed METTL3's tumorigenic effect. Results: METTL3, with high expression but low methylation in NSCLC, influenced cell behaviors. Its suppression reduced oncogenic properties. METTL3 enhanced miR-21-5p maturation, targeting FDX1 and boosting NSCLC tumorigenicity in mice. Conclusion: METTL3 may promote NSCLC development by facilitating pri-miR-21-5p maturation, upregulating miR-21-5p and targeting inhibition of FDX1.
Collapse
Affiliation(s)
- Shuai Qian
- Department of Clinical Laboratory, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, 324000, People's Republic of China
| | - Jun Liu
- Department of Clinical Laboratory, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, 324000, People's Republic of China
| | - Wenliang Liao
- Department of Clinical Laboratory, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, 324000, People's Republic of China
| | - Fengping Wang
- Department of Clinical Laboratory, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, 324000, People's Republic of China
| |
Collapse
|
43
|
Lobera ES, Varela MA, Jimenez RL, Moreno RB. miRNA as biomarker in lung cancer. Mol Biol Rep 2023; 50:9521-9527. [PMID: 37741809 PMCID: PMC10635960 DOI: 10.1007/s11033-023-08695-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 07/18/2023] [Indexed: 09/25/2023]
Abstract
Lung cancer has a high prevalence and mortality due to its late diagnosis and limited treatment, so it is essential to find biomarkers that allow a faster diagnosis and improve the survival of these patients. In this sense, biomarkers based on miRNAs have supposed a considerable advance. miRNAs, which are small RNA sequences, can regulate gene expression, so they play an essential role not only as a diagnostic biomarker but also as a therapeutic and prognostic one. Also, miRNA biomarkers can be obtained from liquid biopsies, which are less intrusive than lung biopsies, and have better accessibility, safety and repeatability, which allows using those biomarkers both for diagnosis and monitoring of patients. In this review, we highlight the importance of miRNAs and collect the existing evidence of their relationship with lung cancer.
Collapse
Affiliation(s)
- Esperanza Salcedo Lobera
- U.G.C. Medico-Quirurgica de Enfermedades Respiratorias, Hospital Regional Universitario de Malaga, Malaga, Spain
| | - Macarena Arroyo Varela
- U.G.C. Medico-Quirurgica de Enfermedades Respiratorias, Hospital Regional Universitario de Malaga, Malaga, Spain.
| | - Rafael Larrosa Jimenez
- Department of Computer Architecture, University of Malaga, Malaga, Spain
- Andalusian Platform for Bioinformatics at SCBI, University of Malaga, Malaga, Spain
| | | |
Collapse
|
44
|
Ghaedrahmati F, Nasrolahi A, Najafi S, Mighani M, Anbiyaee O, Haybar H, Assareh AR, Kempisty B, Dzięgiel P, Azizidoost S, Farzaneh M. Circular RNAs-mediated angiogenesis in human cancers. Clin Transl Oncol 2023; 25:3101-3121. [PMID: 37039938 DOI: 10.1007/s12094-023-03178-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 03/16/2023] [Indexed: 04/12/2023]
Abstract
Circular RNAs (circRNAs) as small non-coding RNAs with cell, tissue, or organ-specific expression accomplish a broad array of functions in physiological and pathological processes such as cancer development. Angiogenesis, a complicated multistep process driving a formation of new blood vessels, speeds up tumor progression by supplying nutrients as well as energy. Abnormal expression of circRNAs reported to affect tumor development through impressing angiogenesis. Such impacts are introduced as constant with different tumorigenic features known as "hallmarks of cancer". In addition, deregulated circRNAs show possibilities to prognosis and diagnosis both in the prophecy of prognosis in malignancies and also their prejudice from healthy individuals. In the present review article, we have evaluated the angiogenic impacts and anti-angiogenic managements of circRNAs in human cancers.
Collapse
Affiliation(s)
- Farhoodeh Ghaedrahmati
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ava Nasrolahi
- Infectious Ophthalmologic Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Sajad Najafi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Mighani
- School of Medicine, Golestan University of Medical Sciences, Golestan, Iran
| | - Omid Anbiyaee
- Cardiovascular Research Center, Nemazi Hospital, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Habib Haybar
- Atherosclerosis Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ahmad Reza Assareh
- Atherosclerosis Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Bartosz Kempisty
- Institute of Veterinary Medicine, Department of Veterinary Surgery, Nicolaus Copernicus University, Torun, Poland
- Department of Human Morphology and Embryology, Division of Anatomy, Wroclaw Medical University, Wrocław, Poland
- North Carolina State University College of Agriculture and Life Sciences, Raleigh, NC, 27695, US
| | - Piotr Dzięgiel
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368, Wroclaw, Poland
| | - Shirin Azizidoost
- Atherosclerosis Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Maryam Farzaneh
- Fertility, Infertility and Perinatology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
45
|
Peter RM, Chou PJ, Shannar A, Patel K, Pan Y, Dave PD, Xu J, Sarwar MS, Kong ANT. An Update on Potential Molecular Biomarkers of Dietary Phytochemicals Targeting Lung Cancer Interception and Prevention. Pharm Res 2023; 40:2699-2714. [PMID: 37726406 DOI: 10.1007/s11095-023-03595-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 08/23/2023] [Indexed: 09/21/2023]
Abstract
Since ancient times, dietary phytochemicals are known for their medicinal properties. They are broadly classified into polyphenols, terpenoids, alkaloids, phytosterols, and organosulfur compounds. Currently, there is considerable interest in their potential health effects against various diseases, including lung cancer. Lung cancer is the leading cause of cancer deaths with an average of five-year survival rate of lung cancer patients limited to just 14%. Identifying potential early molecular biomarkers of pre-malignant lung cancer cells may provide a strong basis to develop early cancer detection and interception methods. In this review, we will discuss molecular changes, including genetic alterations, inflammation, signal transduction pathways, redox imbalance, epigenetic and proteomic signatures associated with initiation and progression of lung carcinoma. We will also highlight molecular targets of phytochemicals during lung cancer development. These targets mainly consist of cellular signaling pathways, epigenetic regulators and metabolic reprogramming. With growing interest in natural products research, translation of these compounds into new cancer prevention approaches to medical care will be urgently needed. In this context, we will also discuss the overall pharmacokinetic challenges of phytochemicals in translating to humans. Lastly, we will discuss clinical trials of phytochemicals in lung cancer patients.
Collapse
Affiliation(s)
- Rebecca Mary Peter
- Graduate Program in Pharmaceutical Science, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Pochung Jordan Chou
- Graduate Program in Pharmaceutical Science, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Ahmad Shannar
- Graduate Program in Pharmaceutical Science, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Komal Patel
- Graduate Program in Pharmaceutical Science, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Yuxin Pan
- Graduate Program in Pharmaceutical Science, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Parv Dushyant Dave
- Graduate Program in Pharmaceutical Science, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Jiawei Xu
- Graduate Program in Pharmaceutical Science, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Md Shahid Sarwar
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Ah-Ng Tony Kong
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA.
| |
Collapse
|
46
|
Stephens EKH, Guayco Sigcha J, Lopez-Loo K, Yang IA, Marshall HM, Fong KM. Biomarkers of lung cancer for screening and in never-smokers-a narrative review. Transl Lung Cancer Res 2023; 12:2129-2145. [PMID: 38025810 PMCID: PMC10654441 DOI: 10.21037/tlcr-23-291] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 10/19/2023] [Indexed: 12/01/2023]
Abstract
Background and Objective Lung cancer is the leading cause of cancer-related mortality worldwide, partially attributed to late-stage diagnoses. In order to mitigate this, lung cancer screening (LCS) of high-risk patients is performed using low dose computed tomography (CT) scans, however this method is burdened by high false-positive rates and radiation exposure for patients. Further, screening programs focus on individuals with heavy smoking histories, and as such, never-smokers who may otherwise be at risk of lung cancer are often overlooked. To resolve these limitations, biomarkers have been posited as potential supplements or replacements to low-dose CT, and as such, a large body of research in this area has been produced. However, comparatively little information exists on their clinical efficacy and how this compares to current LCS strategies. Methods Here we conduct a search and narrative review of current literature surrounding biomarkers of lung cancer to supplement LCS, and biomarkers of lung cancer in never-smokers (LCINS). Key Content and Findings Many potential biomarkers of lung cancer have been identified with varying levels of sensitivity, specificity, clinical efficacy, and supporting evidence. Of the markers identified, multi-target panels of circulating microRNAs, lipids, and metabolites are likely the most clinically efficacious markers to aid current screening programs, as these provide the highest sensitivity and specificity for lung cancer detection. However, circulating lipid and metabolite levels are known to vary in numerous systemic pathologies, highlighting the need for further validation in large cohort randomised studies. Conclusions Lung cancer biomarkers is a fast-expanding area of research and numerous biomarkers with potential clinical applications have been identified. However, in all cases the level of evidence supporting clinical efficacy is not yet at a level at which it can be translated to clinical practice. The priority now should be to validate existing candidate markers in appropriate clinical contexts and work to integrating these into clinical practice.
Collapse
Affiliation(s)
- Edward K. H. Stephens
- UQ Thoracic Research Centre, Faculty of Medicine, The University of Queensland, Brisbane, Australia
| | - Jazmin Guayco Sigcha
- UQ Thoracic Research Centre, Faculty of Medicine, The University of Queensland, Brisbane, Australia
| | - Kenneth Lopez-Loo
- UQ Thoracic Research Centre, Faculty of Medicine, The University of Queensland, Brisbane, Australia
| | - Ian A. Yang
- UQ Thoracic Research Centre, Faculty of Medicine, The University of Queensland, Brisbane, Australia
- Department of Thoracic Medicine, The Prince Charles Hospital, Brisbane, Australia
| | - Henry M. Marshall
- UQ Thoracic Research Centre, Faculty of Medicine, The University of Queensland, Brisbane, Australia
- Department of Thoracic Medicine, The Prince Charles Hospital, Brisbane, Australia
| | - Kwun M. Fong
- UQ Thoracic Research Centre, Faculty of Medicine, The University of Queensland, Brisbane, Australia
- Department of Thoracic Medicine, The Prince Charles Hospital, Brisbane, Australia
| |
Collapse
|
47
|
Liu Y, Zhou Y, Chen P. Lung cancer organoids: models for preclinical research and precision medicine. Front Oncol 2023; 13:1293441. [PMID: 37941550 PMCID: PMC10628480 DOI: 10.3389/fonc.2023.1293441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 09/27/2023] [Indexed: 11/10/2023] Open
Abstract
Lung cancer is a malignancy with high incidence and mortality rates globally, and it has a 5-year survival rate of only 10%-20%. The significant heterogeneity in clinical presentation, histological features, multi-omics findings, and drug sensitivity among different lung cancer patients necessitate the development of personalized treatment strategies. The current precision medicine for lung cancer, primarily based on pathological and genomic multi-omics testing, fails to meet the needs of patients with clinically refractory lung cancer. Lung cancer organoids (LCOs) are derived from tumor cells within tumor tissues and are generated through three-dimensional tissue culture, enabling them to faithfully recapitulate in vivo tumor characteristics and heterogeneity. The establishment of a series of LCOs biobanks offers promising platforms for efficient screening and identification of novel targets for anti-tumor drug discovery. Moreover, LCOs provide supplementary decision-making factors to enhance the current precision medicine for lung cancer, thereby addressing the limitations associated with pathology-guided approaches in managing refractory lung cancer. This article presents a comprehensive review on the construction methods and potential applications of LCOs in both preclinical and clinical research. It highlights the significance of LCOs in biomarker exploration, drug resistance investigation, target identification, clinical precision drug screening, as well as microfluidic technology-based high-throughput drug screening strategies. Additionally, it discusses the current limitations and future prospects of this field.
Collapse
Affiliation(s)
- Yajing Liu
- School of Pharmacy, Qingdao University, Qingdao, China
- Research and Development Department, NanoPeptide (Qingdao) Biotechnology Ltd., Qingdao, China
| | - Yanbing Zhou
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Pu Chen
- Research and Development Department, NanoPeptide (Qingdao) Biotechnology Ltd., Qingdao, China
- Department of Chemical Engineering and Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, ON, Canada
| |
Collapse
|
48
|
Wang L, Zhang Y, Song Z, Liu Q, Fan D, Song X. Ginsenosides: a potential natural medicine to protect the lungs from lung cancer and inflammatory lung disease. Food Funct 2023; 14:9137-9166. [PMID: 37801293 DOI: 10.1039/d3fo02482b] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/07/2023]
Abstract
Lung cancer is the malignancy with the highest morbidity and mortality. Additionally, pulmonary inflammatory diseases, such as pneumonia, acute lung injury, chronic obstructive pulmonary disease (COPD), and pulmonary fibrosis (PF), also have high mortality rates and can promote the development and progression of lung cancer. Unfortunately, available treatments for them are limited, so it is critical to search for effective drugs and treatment strategies to protect the lungs. Ginsenosides, the main active components of ginseng, have been shown to have anti-cancer and anti-inflammatory activities. In this paper, we focus on the beneficial effects of ginsenosides on lung diseases and their molecular mechanisms. Firstly, the molecular mechanism of ginsenosides against lung cancer was summarized in detail, mainly from the points of view of proliferation, apoptosis, autophagy, angiogenesis, metastasis, drug resistance and immunity. In in vivo and in vitro lung cancer models, ginsenosides Rg3, Rh2 and CK were reported to have strong anti-lung cancer effects. Then, in the models of pneumonia and acute lung injury, the protective effect of Rb1 was particularly remarkable, followed by Rg3 and Rg1, and its molecular mechanism was mainly associated with targeting NF-κB, Nrf2, MAPK and PI3K/Akt pathways to alleviate inflammation, oxidative stress and apoptosis. Additionally, ginsenosides may also have a potential health-promoting effect in the improvement of COPD, asthma and PF. Furthermore, to overcome the low bioavailability of CK and Rh2, the development of nanoparticles, micelles, liposomes and other nanomedicine delivery systems can significantly improve the efficacy of targeted lung cancer treatment. To conclude, ginsenosides can be used as both anti-lung cancer and lung protective agents or adjuvants and have great potential for future clinical applications.
Collapse
Affiliation(s)
- Lina Wang
- Department of Pharmaceutical Engineering, Northwest University, 229 Taibai North Road, Xi'an, 710069, China.
| | - Yanxin Zhang
- Department of Pharmaceutical Engineering, Northwest University, 229 Taibai North Road, Xi'an, 710069, China.
| | - Zhimin Song
- Department of Pharmaceutical Engineering, Northwest University, 229 Taibai North Road, Xi'an, 710069, China.
| | - Qingchao Liu
- Department of Pharmaceutical Engineering, Northwest University, 229 Taibai North Road, Xi'an, 710069, China.
| | - Daidi Fan
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, 229 Taibai North Road, Xi'an 710069, China.
- Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, 229 Taibai North Road, Xi'an 710069, China
- Biotechnology & Biomedicine Research Institute, Northwest University, 229 Taibai North Road, Xi'an 710069, China
| | - Xiaoping Song
- Department of Pharmaceutical Engineering, Northwest University, 229 Taibai North Road, Xi'an, 710069, China.
| |
Collapse
|
49
|
Jin Y, Zhang Y, Huang A, Chen Y, Wang J, Liu N, Wang X, Gong Y, Wang W, Pan J. Overexpression of SERPINA3 suppresses tumor progression by modulating SPOP/NF‑κB in lung cancer. Int J Oncol 2023; 63:96. [PMID: 37417362 PMCID: PMC10552721 DOI: 10.3892/ijo.2023.5544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 06/23/2023] [Indexed: 07/08/2023] Open
Abstract
The pathogenesis mechanism of lung cancer is very complex, with high incidence and mortality. Serpin family A member 3 (SERPINA3) expression levels were reduced in the sera of patients with lung cancer and may be a candidate diagnostic and prognostic survival biomarker in lung cancer, as previously reported. However, the detailed biological functions of SERPINA3 in the pathogenesis of lung cancer remain unknown. In the present study, it was aimed to explore the effects of SERPINA3 on the occurrence of lung cancer. SERPINA3 expression was assessed using bioinformatics database analysis and experimental detection. Then, the biological effects of SERPINA3 were investigated in a cell culture system and a xenograft model of human lung cancer. The potential regulatory mechanism of SERPINA3 in lung cancer was explored by data‑independent acquisition mass spectrometry (DIA‑MS) detection and further validated by western blotting (WB). The results indicated that SERPINA3 expression levels were significantly downregulated in lung cancer tissues and cell lines. At the cellular level, it was revealed that overexpressed SERPINA3 inhibited cell growth, proliferation, migration and invasion and promoted the apoptosis of lung cancer cells. Moreover, overexpressed SERPINA3 enhanced the sensitivity of lung cancer cells to osimertinib. In vivo, a xenograft model of human lung cancer was established with BALB/c nude mice. After the injection of A549 cells, the tumor growth of the tumor‑bearing mice in the SERPINA3‑overexpressing group increased more slowly, and the tumor volume was smaller than that in the empty‑vector group. Mechanistically, a total of 65 differentially expressed proteins were identified. It was found that the speckle‑type POZ protein (SPOP) was significantly upregulated in SERPINA3‑overexpressing H157 cells using DIA‑MS detection and analysis. WB validation showed that SPOP expression increased, and NF‑kappaB (NF‑κB) p65 was inhibited in cell lines and tumor tissues of mice when SERPINA3 was overexpressed. The present findings suggest that SERPINA3 is involved in the development of lung cancer and has an antineoplastic role in lung cancer.
Collapse
Affiliation(s)
- Yanxia Jin
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, College of Life Sciences, Hubei Normal University, Huangshi, Hubei 435002
| | - Yueyang Zhang
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, College of Life Sciences, Hubei Normal University, Huangshi, Hubei 435002
| | - Ankang Huang
- Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu 215002, P.R. China
| | - Ying Chen
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, College of Life Sciences, Hubei Normal University, Huangshi, Hubei 435002
| | - Jinsong Wang
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, College of Life Sciences, Hubei Normal University, Huangshi, Hubei 435002
| | - Na Liu
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, College of Life Sciences, Hubei Normal University, Huangshi, Hubei 435002
| | - Xianping Wang
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, College of Life Sciences, Hubei Normal University, Huangshi, Hubei 435002
| | - Yongsheng Gong
- Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu 215002, P.R. China
| | - Weidong Wang
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, College of Life Sciences, Hubei Normal University, Huangshi, Hubei 435002
| | - Jicheng Pan
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, College of Life Sciences, Hubei Normal University, Huangshi, Hubei 435002
| |
Collapse
|
50
|
Wang T, Guo H, Zhang L, Yu M, Li Q, Zhang J, Tang Y, Zhang H, Zhan J. FERM domain-containing protein FRMD6 activates the mTOR signaling pathway and promotes lung cancer progression. Front Med 2023; 17:714-728. [PMID: 37060526 DOI: 10.1007/s11684-022-0959-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 08/18/2022] [Indexed: 04/16/2023]
Abstract
FRMD6, a member of the 4.1 ezrin-radixin-moesin domain-containing protein family, has been reported to inhibit tumor progression in multiple cancers. Here, we demonstrate the involvement of FRMD6 in lung cancer progression. We find that FRMD6 is overexpressed in lung cancer tissues relative to in normal lung tissues. In addition, the enhanced expression of FRMD6 is associated with poor outcomes in patients with lung squamous cell carcinoma (n = 75, P = 0.0054) and lung adenocarcinoma (n = 94, P = 0.0330). Cell migration and proliferation in vitro and tumor formation in vivo are promoted by FRMD6 but are suppressed by the depletion of FRMD6. Mechanistically, FRMD6 interacts and colocalizes with mTOR and S6K, which are the key molecules of the mTOR signaling pathway. FRMD6 markedly enhances the interaction between mTOR and S6K, subsequently increasing the levels of endogenous pS6K and downstream pS6 in lung cancer cells. Furthermore, knocking out FRMD6 inhibits the activation of the mTOR signaling pathway in Frmd6-/- gene KO MEFs and mice. Altogether, our results show that FRMD6 contributes to lung cancer progression by activating the mTOR signaling pathway.
Collapse
Affiliation(s)
- Tianzhuo Wang
- Program for Cancer and Cell Biology, Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Beijing, 100191, China
- Peking University International Cancer Institute, Beijing, 100191, China
- MOE Key Laboratory of Carcinogenesis and Translational Research and State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, Beijing, 100191, China
| | - Huiying Guo
- Program for Cancer and Cell Biology, Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Beijing, 100191, China
- Peking University International Cancer Institute, Beijing, 100191, China
- MOE Key Laboratory of Carcinogenesis and Translational Research and State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, Beijing, 100191, China
| | - Lei Zhang
- Program for Cancer and Cell Biology, Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Beijing, 100191, China
- Peking University International Cancer Institute, Beijing, 100191, China
- MOE Key Laboratory of Carcinogenesis and Translational Research and State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, Beijing, 100191, China
| | - Miao Yu
- Program for Cancer and Cell Biology, Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Beijing, 100191, China
- Peking University International Cancer Institute, Beijing, 100191, China
- MOE Key Laboratory of Carcinogenesis and Translational Research and State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, Beijing, 100191, China
| | - Qianchen Li
- Program for Cancer and Cell Biology, Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Beijing, 100191, China
- Peking University International Cancer Institute, Beijing, 100191, China
- MOE Key Laboratory of Carcinogenesis and Translational Research and State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, Beijing, 100191, China
| | - Jing Zhang
- Program for Cancer and Cell Biology, Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Beijing, 100191, China
- Peking University International Cancer Institute, Beijing, 100191, China
- MOE Key Laboratory of Carcinogenesis and Translational Research and State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, Beijing, 100191, China
| | - Yan Tang
- Program for Cancer and Cell Biology, Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Beijing, 100191, China
- Peking University International Cancer Institute, Beijing, 100191, China
- MOE Key Laboratory of Carcinogenesis and Translational Research and State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, Beijing, 100191, China
| | - Hongquan Zhang
- Program for Cancer and Cell Biology, Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Beijing, 100191, China
- Peking University International Cancer Institute, Beijing, 100191, China
- MOE Key Laboratory of Carcinogenesis and Translational Research and State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, Beijing, 100191, China
| | - Jun Zhan
- Program for Cancer and Cell Biology, Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Beijing, 100191, China.
- Peking University International Cancer Institute, Beijing, 100191, China.
- MOE Key Laboratory of Carcinogenesis and Translational Research and State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, Beijing, 100191, China.
| |
Collapse
|