1
|
Djedovic R, Radojkovic D, Stanojevic D, Savic R, Vukasinovic N, Popovac M, Bogdanovic V, Radovic C, Gogic M, Gligovic N, Stojic P, Mitrovic I. Base Characteristics, Preservation Methods, and Assessment of the Genetic Diversity of Autochthonous Breeds of Cattle, Sheep and Pigs in Serbia: A Review. Animals (Basel) 2024; 14:1894. [PMID: 38998006 PMCID: PMC11240667 DOI: 10.3390/ani14131894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 06/23/2024] [Accepted: 06/26/2024] [Indexed: 07/14/2024] Open
Abstract
Preserving local autochthonous domestic animal populations and the products derived from them is a crucial aspect of managing human utilization of the biosphere. This management approach aims to ensure sustainable benefits for both present and future generations. The diversity of autochthonous domestic animal populations plays a vital role in the functionality and sustainability of the food production system. It encompasses both productive and non-productive aspects, contributing significantly to the overall health, nutrition, and food security of the landscape by providing a wide range of animal-derived food resources. Based on the data contained in the Draft Program of Rural Development, a significant presence of more than 44 autochthonous and local breeds of domestic animals has been noted in Serbia. In order to enable the sustainable preservation of local domestic animals, the competent Ministry of Agriculture of the Republic of Serbia has, through a number of projects, implemented models for the preservation of local breeds on farms (in situ), as well as provided technical assistance to small farms that keep animal collections. It also helps the local population to procure animals, conducts product quality research, and provides opportunities to integrate conservation programs through tourism. Given that molecular characterization is a key factor for the preservation of autochthonous breeds, in the Republic of Serbia, DNA markers are used for identification and to investigate the belonging to a specific breeds or strain. All the mentioned activities led to an immediate increase in the number of animals, which is especially true for the autochthonous breeds of cattle (Busha), sheep (Sjenicka, Svrljiska, and Vlach-vitohorn) and pigs (Mangalitsa, Moravka, and Resavka) that are discussed in this paper. In addition to the significant measures undertaken to preserve animal genetic resources (AnGR), it is necessary to continue to work primarily on ex situ conservation in order to prevent the loss of their gene pools. However, regardless of the evident effort that has been made to preserve autochthonous genetic resources in Serbia, we believe that there is still a lot of room for further improvement. This primarily refers to advanced technologies that have not been applied so far, mostly related to the identification of genomic regions associated with economic traits, resistance to diseases, and adaptability to emerging climate changes. In this way, the production capacity and functional characteristics of autochthonous species and breeds of domestic animals in Serbia will be improved.
Collapse
Affiliation(s)
- Radica Djedovic
- Department of Animal Science, Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11080 Belgrade, Serbia; (D.R.); (D.S.); (R.S.); (M.P.); (V.B.); (N.G.); (I.M.)
| | - Dragan Radojkovic
- Department of Animal Science, Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11080 Belgrade, Serbia; (D.R.); (D.S.); (R.S.); (M.P.); (V.B.); (N.G.); (I.M.)
| | - Dragan Stanojevic
- Department of Animal Science, Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11080 Belgrade, Serbia; (D.R.); (D.S.); (R.S.); (M.P.); (V.B.); (N.G.); (I.M.)
| | - Radomir Savic
- Department of Animal Science, Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11080 Belgrade, Serbia; (D.R.); (D.S.); (R.S.); (M.P.); (V.B.); (N.G.); (I.M.)
| | - Natasha Vukasinovic
- Zoetis Veterinary Medicine Research and Development (VMRD), Kalamazoo, MI 49001, USA;
| | - Mladen Popovac
- Department of Animal Science, Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11080 Belgrade, Serbia; (D.R.); (D.S.); (R.S.); (M.P.); (V.B.); (N.G.); (I.M.)
| | - Vladan Bogdanovic
- Department of Animal Science, Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11080 Belgrade, Serbia; (D.R.); (D.S.); (R.S.); (M.P.); (V.B.); (N.G.); (I.M.)
| | - Cedomir Radovic
- Institute for Animal Husbandry, 11080 Belgrade, Serbia; (C.R.); (M.G.)
| | - Marija Gogic
- Institute for Animal Husbandry, 11080 Belgrade, Serbia; (C.R.); (M.G.)
| | - Nikolija Gligovic
- Department of Animal Science, Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11080 Belgrade, Serbia; (D.R.); (D.S.); (R.S.); (M.P.); (V.B.); (N.G.); (I.M.)
| | - Petar Stojic
- Institute for Science Application in Agriculture, Bulevar Despota Stefana 68b, 11000 Belgrade, Serbia;
| | - Ivan Mitrovic
- Department of Animal Science, Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11080 Belgrade, Serbia; (D.R.); (D.S.); (R.S.); (M.P.); (V.B.); (N.G.); (I.M.)
| |
Collapse
|
2
|
Matoba S, Shikata D, Shirai F, Tatebe T, Hirose M, Nakata A, Watanabe N, Hasegawa A, Ito A, Yoshida M, Ogura A. Reduction of H3K9 methylation by G9a inhibitors improves the development of mouse SCNT embryos. Stem Cell Reports 2024; 19:906-921. [PMID: 38729154 PMCID: PMC11390627 DOI: 10.1016/j.stemcr.2024.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 03/28/2024] [Accepted: 04/04/2024] [Indexed: 05/12/2024] Open
Abstract
Removal of somatic histone H3 lysine 9 trimethylation (H3K9me3) from the embryonic genome can improve the efficiency of mammalian cloning using somatic cell nuclear transfer (SCNT). However, this strategy involves the injection of histone demethylase mRNA into embryos, which is limiting because of its invasive and labor-consuming nature. Here, we report that treatment with an inhibitor of G9a (G9ai), the major histone methyltransferase that introduces H3K9me1/2 in mammals, greatly improved the development of mouse SCNT embryos. Intriguingly, G9ai caused an immediate reduction of H3K9me1/2, a secondary loss of H3K9me3 in SCNT embryos, and increased the birth rate of cloned pups about 5-fold (up to 3.9%). G9ai combined with the histone deacetylase inhibitor trichostatin A further improved this rate to 14.5%. Mechanistically, G9ai and TSA synergistically enhanced H3K9me3 demethylation and boosted zygotic genome activation. Thus, we established an easy, highly effective SCNT protocol that would enhance future cloning research and applications.
Collapse
Affiliation(s)
- Shogo Matoba
- Bioresource Engineering Division, Bioresource Research Center, RIKEN, Tsukuba, Ibaraki 305-0074, Japan; Cooperative Division of Veterinary Sciences, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8509, Japan.
| | - Daiki Shikata
- Bioresource Engineering Division, Bioresource Research Center, RIKEN, Tsukuba, Ibaraki 305-0074, Japan; Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan
| | - Fumiyuki Shirai
- Drug Discovery Chemistry Platform Unit, RIKEN Center for Sustainable Resource Science, Wako, Saitama 351-0198, Japan
| | - Takaki Tatebe
- Bioresource Engineering Division, Bioresource Research Center, RIKEN, Tsukuba, Ibaraki 305-0074, Japan; Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan
| | - Michiko Hirose
- Bioresource Engineering Division, Bioresource Research Center, RIKEN, Tsukuba, Ibaraki 305-0074, Japan
| | - Akiko Nakata
- Drug Discovery Seed Compounds Exploratory Unit, RIKEN Center for Sustainable Resource Science, Wako, Saitama 351-0198, Japan
| | - Naomi Watanabe
- Bioresource Engineering Division, Bioresource Research Center, RIKEN, Tsukuba, Ibaraki 305-0074, Japan; Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan
| | - Ayumi Hasegawa
- Bioresource Engineering Division, Bioresource Research Center, RIKEN, Tsukuba, Ibaraki 305-0074, Japan
| | - Akihiro Ito
- Laboratory of Cell Signaling, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan; Chemical Genomics Research Group, RIKEN Center for Sustainable Resource Science, Wako, Saitama 351-0198, Japan
| | - Minoru Yoshida
- Drug Discovery Seed Compounds Exploratory Unit, RIKEN Center for Sustainable Resource Science, Wako, Saitama 351-0198, Japan; Chemical Genomics Research Group, RIKEN Center for Sustainable Resource Science, Wako, Saitama 351-0198, Japan; Office of University Professors, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Atsuo Ogura
- Bioresource Engineering Division, Bioresource Research Center, RIKEN, Tsukuba, Ibaraki 305-0074, Japan; Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan; The Center for Disease Biology and Integrative Medicine, Faculty of Medicine, University of Tokyo, Tokyo 113-0033, Japan; Bioresource Engineering Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama 351-0198, Japan.
| |
Collapse
|
3
|
Jeong PS, Yang HJ, Jeon SB, Gwon MA, Kim MJ, Kang HG, Lee S, Park YH, Song BS, Kim SU, Koo DB, Sim BW. Luteolin supplementation during porcine oocyte maturation improves the developmental competence of parthenogenetic activation and cloned embryos. PeerJ 2023; 11:e15618. [PMID: 37377789 PMCID: PMC10292194 DOI: 10.7717/peerj.15618] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 06/01/2023] [Indexed: 06/29/2023] Open
Abstract
Luteolin (Lut), a polyphenolic compound that belongs to the flavone subclass of flavonoids, possesses anti-inflammatory, cytoprotective, and antioxidant activities. However, little is known regarding its role in mammalian oocyte maturation. This study examined the effect of Lut supplementation during in vitro maturation (IVM) on oocyte maturation and subsequent developmental competence after somatic cell nuclear transfer (SCNT) in pigs. Lut supplementation significantly increased the proportions of complete cumulus cell expansion and metaphase II (MII) oocytes, compared with control oocytes. After parthenogenetic activation or SCNT, the developmental competence of Lut-supplemented MII oocytes was significantly enhanced, as indicated by higher rates of cleavage, blastocyst formation, expanded or hatching blastocysts, and cell survival, as well as increased cell numbers. Lut-supplemented MII oocytes exhibited significantly lower levels of reactive oxygen species and higher levels of glutathione than control MII oocytes. Lut supplementation also activated lipid metabolism, assessed according to the levels of lipid droplets, fatty acids, and ATP. The active mitochondria content and mitochondrial membrane potential were significantly increased, whereas cytochrome c and cleaved caspase-3 levels were significantly decreased, by Lut supplementation. These results suggest that Lut supplementation during IVM improves porcine oocyte maturation through the reduction of oxidative stress and mitochondria-mediated apoptosis.
Collapse
Affiliation(s)
- Pil-Soo Jeong
- Futuristic Animal Resource & Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, Republic of Korea
| | - Hae-Jun Yang
- Futuristic Animal Resource & Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, Republic of Korea
| | - Se-Been Jeon
- Futuristic Animal Resource & Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, Republic of Korea
- Department of Animal Science, College of Natural Resources & Life Science, Pusan National University, Miryang, Republic of Korea
| | - Min-Ah Gwon
- Futuristic Animal Resource & Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, Republic of Korea
- Department of Biotechnology, College of Engineering, Daegu University, Gyeongsan, Republic of Korea
| | - Min Ju Kim
- Futuristic Animal Resource & Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, Republic of Korea
- Department of Animal Science, College of Natural Resources & Life Science, Pusan National University, Miryang, Republic of Korea
| | - Hyo-Gu Kang
- Futuristic Animal Resource & Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, Republic of Korea
- Department of Animal Science and Biotechnology, College of Agriculture and Life Science, Chungnam National University, Daejeon, Republic of Korea
| | - Sanghoon Lee
- Laboratory of Theriogenology, College of Veterinary Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Young-Ho Park
- Futuristic Animal Resource & Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, Republic of Korea
| | - Bong-Seok Song
- Futuristic Animal Resource & Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, Republic of Korea
| | - Sun-Uk Kim
- Futuristic Animal Resource & Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, Republic of Korea
- Department of Functional Genomics, University of Science and Technology, Daejeon, Republic of Korea
| | - Deog-Bon Koo
- Department of Biotechnology, College of Engineering, Daegu University, Gyeongsan, Republic of Korea
| | - Bo-Woong Sim
- Futuristic Animal Resource & Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, Republic of Korea
| |
Collapse
|
4
|
Tu CF, Peng SH, Chuang CK, Wong CH, Yang TS. - Invited Review - Reproductive technologies needed for the generation of precise gene-edited pigs in the pathways from laboratory to farm. Anim Biosci 2023; 36:339-349. [PMID: 36397683 PMCID: PMC9899582 DOI: 10.5713/ab.22.0389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 11/07/2022] [Indexed: 11/15/2022] Open
Abstract
Gene editing (GE) offers a new breeding technique (NBT) of sustainable value to animal agriculture. There are 3 GE working sites covering 5 feasible pathways to generate GE pigs along with the crucial intervals of GE/genotyping, microinjection/electroporation, induced pluripotent stem cells, somatic cell nuclear transfer, cryopreservation, and nonsurgical embryo transfer. The extension of NBT in the new era of pig breeding depends on the synergistic effect of GE and reproductive biotechnologies; the outcome relies not only on scientific due diligence and operational excellence but also on the feasibility of application on farms to improve sustainability.
Collapse
Affiliation(s)
- Ching-Fu Tu
- Division of Animal Technology, Animal Technology Research Center, Agricultural Technology Research Institute, Hsinchu 30093,
Taiwan,Corresponding Author: Ching-Fu Tu, Tel: +886-37-585815, E-mail:
| | - Shu-Hui Peng
- Division of Animal Technology, Animal Technology Research Center, Agricultural Technology Research Institute, Hsinchu 30093,
Taiwan
| | - Chin-kai Chuang
- Division of Animal Technology, Animal Technology Research Center, Agricultural Technology Research Institute, Hsinchu 30093,
Taiwan
| | - Chi-Hong Wong
- Division of Animal Technology, Animal Technology Research Center, Agricultural Technology Research Institute, Hsinchu 30093,
Taiwan
| | - Tien-Shuh Yang
- Division of Animal Technology, Animal Technology Research Center, Agricultural Technology Research Institute, Hsinchu 30093,
Taiwan,Department of Biotechnology and Animal Science, National Ilan University, Yilan 260007,
Taiwan
| |
Collapse
|
5
|
Zhai Y, Yu H, An X, Zhang Z, Zhang M, Zhang S, Li Q, Li Z. Profiling the transcriptomic signatures and identifying the patterns of zygotic genome activation - a comparative analysis between early porcine embryos and their counterparts in other three mammalian species. BMC Genomics 2022; 23:772. [PMID: 36434523 PMCID: PMC9700911 DOI: 10.1186/s12864-022-09015-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 11/15/2022] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND The transcriptional changes around zygotic genome activation (ZGA) in preimplantation embryos are critical for studying mechanisms of embryonic developmental arrest and searching for key transcription factors. However, studies on the transcription profile of porcine ZGA are limited. RESULTS In this study, we performed RNA sequencing in porcine in vivo developed (IVV) and somatic cell nuclear transfer (SCNT) embryo at different stages and compared the transcriptional activity of porcine embryos with mouse, bovine and human embryos. The results showed that the transcriptome map of the early porcine embryos was significantly changed at the 4-cell stage, and 5821 differentially expressed genes (DEGs) in SCNT embryos failed to be reprogrammed or activated during ZGA, which mainly enrichment to metabolic pathways. c-MYC was identified as the highest expressed transcription factor during ZGA. By treating with 10,058-F4, an inhibitor of c-MYC, the cleavage rate (38.33 ± 3.4%) and blastocyst rate (23.33 ± 4.3%) of porcine embryos were significantly lower than those of the control group (50.82 ± 2.7% and 34.43 ± 1.9%). Cross-species analysis of transcriptome during ZGA showed that pigs and bovines had the highest similarity coefficient in biological processes. KEGG pathway analysis indicated that there were 10 co-shared pathways in the four species. CONCLUSIONS Our results reveal that embryos with impaired developmental competence may be arrested at an early stage of development. c-MYC helps promote ZGA and preimplantation embryonic development in pigs. Pigs and bovines have the highest coefficient of similarity in biological processes during ZGA. This study provides an important reference for further studying the reprogramming regulatory mechanism of porcine embryos during ZGA.
Collapse
Affiliation(s)
- Yanhui Zhai
- grid.64924.3d0000 0004 1760 5735Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, First Hospital, Jilin University, Changchun, 130021 China
| | - Hao Yu
- grid.64924.3d0000 0004 1760 5735College of Animal Science, Jilin University, Changchun, 130062 Jilin China
| | - Xinglan An
- grid.64924.3d0000 0004 1760 5735Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, First Hospital, Jilin University, Changchun, 130021 China
| | - Zhiren Zhang
- grid.452930.90000 0004 1757 8087Zhuhai People’s Hospital (Zhuhai hospital affiliated with Jinan University), Zhuhai, 519000 Guangdong China
| | - Meng Zhang
- grid.64924.3d0000 0004 1760 5735Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, First Hospital, Jilin University, Changchun, 130021 China
| | - Sheng Zhang
- grid.64924.3d0000 0004 1760 5735Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, First Hospital, Jilin University, Changchun, 130021 China
| | - Qi Li
- grid.64924.3d0000 0004 1760 5735Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, First Hospital, Jilin University, Changchun, 130021 China
| | - Ziyi Li
- grid.64924.3d0000 0004 1760 5735Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, First Hospital, Jilin University, Changchun, 130021 China
| |
Collapse
|
6
|
Glanzner WG, de Macedo MP, Gutierrez K, Bordignon V. Enhancement of Chromatin and Epigenetic Reprogramming in Porcine SCNT Embryos—Progresses and Perspectives. Front Cell Dev Biol 2022; 10:940197. [PMID: 35898400 PMCID: PMC9309298 DOI: 10.3389/fcell.2022.940197] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 06/20/2022] [Indexed: 12/12/2022] Open
Abstract
Over the last 25 years, cloned animals have been produced by transferring somatic cell nuclei into enucleated oocytes (SCNT) in more than 20 mammalian species. Among domestic animals, pigs are likely the leading species in the number of clones produced by SCNT. The greater interest in pig cloning has two main reasons, its relevance for food production and as its use as a suitable model in biomedical applications. Recognized progress in animal cloning has been attained over time, but the overall efficiency of SCNT in pigs remains very low, based on the rate of healthy, live born piglets following embryo transfer. Accumulating evidence from studies in mice and other species indicate that new strategies for promoting chromatin and epigenetic reprogramming may represent the beginning of a new era for pig cloning.
Collapse
|
7
|
Rim CS, Kim YS, Rim CH, Ri YJ, Choe JS, Kim DS, Kim GS, Il Ri J, Kim RC, Chen H, Xiao L, Fu Z, Pak YJ, Jong UM. Effect of roscovitine pretreatment for increased utilization of small follicle-derived oocytes on developmental competence of somatic cell nuclear transfer embryos in pigs. Anim Reprod Sci 2022; 241:106987. [DOI: 10.1016/j.anireprosci.2022.106987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 04/23/2022] [Accepted: 05/01/2022] [Indexed: 11/25/2022]
|
8
|
Chen PR, Uh K, Redel BK, Reese ED, Prather RS, Lee K. Production of Pigs From Porcine Embryos Generated in vitro. FRONTIERS IN ANIMAL SCIENCE 2022. [DOI: 10.3389/fanim.2022.826324] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Generating porcine embryos in vitro is a critical process for creating genetically modified pigs as agricultural and biomedical models; however, these embryo technologies have been scarcely applied by the swine industry. Currently, the primary issue with in vitro-produced porcine embryos is low pregnancy rate after transfer and small litter size, which may be exasperated by micromanipulation procedures. Thus, in this review, we discuss improvements that have been made to the in vitro porcine embryo production system to increase the number of live piglets per pregnancy as well as abnormalities in the embryos and piglets that may arise from in vitro culture and manipulation techniques. Furthermore, we examine areas related to embryo production and transfer where improvements are warranted that will have direct applications for increasing pregnancy rate after transfer and the number of live born piglets per litter.
Collapse
|
9
|
Strategies to Improve the Efficiency of Somatic Cell Nuclear Transfer. Int J Mol Sci 2022; 23:ijms23041969. [PMID: 35216087 PMCID: PMC8879641 DOI: 10.3390/ijms23041969] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 02/07/2022] [Accepted: 02/08/2022] [Indexed: 01/04/2023] Open
Abstract
Mammalian oocytes can reprogram differentiated somatic cells into a totipotent state through somatic cell nuclear transfer (SCNT), which is known as cloning. Although many mammalian species have been successfully cloned, the majority of cloned embryos failed to develop to term, resulting in the overall cloning efficiency being still low. There are many factors contributing to the cloning success. Aberrant epigenetic reprogramming is a major cause for the developmental failure of cloned embryos and abnormalities in the cloned offspring. Numerous research groups attempted multiple strategies to technically improve each step of the SCNT procedure and rescue abnormal epigenetic reprogramming by modulating DNA methylation and histone modifications, overexpression or repression of embryonic-related genes, etc. Here, we review the recent approaches for technical SCNT improvement and ameliorating epigenetic modifications in donor cells, oocytes, and cloned embryos in order to enhance cloning efficiency.
Collapse
|
10
|
A Dystrophin Exon-52 Deleted Miniature Pig Model of Duchenne Muscular Dystrophy and Evaluation of Exon Skipping. Int J Mol Sci 2021; 22:ijms222313065. [PMID: 34884867 PMCID: PMC8657897 DOI: 10.3390/ijms222313065] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 11/24/2021] [Accepted: 11/25/2021] [Indexed: 12/12/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is a lethal X-linked recessive disorder caused by mutations in the DMD gene and the subsequent lack of dystrophin protein. Recently, phosphorodiamidate morpholino oligomer (PMO)-antisense oligonucleotides (ASOs) targeting exon 51 or 53 to reestablish the DMD reading frame have received regulatory approval as commercially available drugs. However, their applicability and efficacy remain limited to particular patients. Large animal models and exon skipping evaluation are essential to facilitate ASO development together with a deeper understanding of dystrophinopathies. Using recombinant adeno-associated virus-mediated gene targeting and somatic cell nuclear transfer, we generated a Yucatan miniature pig model of DMD with an exon 52 deletion mutation equivalent to one of the most common mutations seen in patients. Exon 52-deleted mRNA expression and dystrophin deficiency were confirmed in the skeletal and cardiac muscles of DMD pigs. Accordingly, dystrophin-associated proteins failed to be recruited to the sarcolemma. The DMD pigs manifested early disease onset with severe bodywide skeletal muscle degeneration and with poor growth accompanied by a physical abnormality, but with no obvious cardiac phenotype. We also demonstrated that in primary DMD pig skeletal muscle cells, the genetically engineered exon-52 deleted pig DMD gene enables the evaluation of exon 51 or 53 skipping with PMO and its advanced technology, peptide-conjugated PMO. The results show that the DMD pigs developed here can be an appropriate large animal model for evaluating in vivo exon skipping efficacy.
Collapse
|
11
|
Fang X, Tanga BM, Bang S, Seong G, Saadeldin IM, Lee S, Cho J. Oviduct epithelial cells-derived extracellular vesicles improve preimplantation developmental competence of in vitro produced porcine parthenogenetic and cloned embryos. Mol Reprod Dev 2021; 89:54-65. [PMID: 34843136 DOI: 10.1002/mrd.23550] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 11/22/2021] [Accepted: 11/23/2021] [Indexed: 12/15/2022]
Abstract
Extracellular vesicles (EVs) carry bioactive cargoes involved in the early preimplantation development. This study investigated the effects of EVs obtained from an oviductal epithelial cell (OEC) conditioned medium on the developmental competence of in parthenogenetic activation (PA) and somatic cell nuclear transfer (SCNT) porcine embryos. The OEC-EV-treated group showed significant increases in blastocyst formation and hatching rates compared to the control group (40.8% ± 2.2% and 20.1% ± 2.1% vs. 24.9% ± 2.0% and 5.3% ± 1.1%; p < 0.05), respectively. The 7 day OEC-EVs treatment group significantly increased blastocyst formation rate than the 3 day and 0 day-groups (45.0 ± 0.8 vs. 33.0 ± 0.7 and 26.7 ± 0.5; p < 0.05), respectively. SCNT revealed that the OEC-EV increased blastocyst formation rate compared to that of oviductal fluid EVs (OF-EVs) (35.4% ± 1.4% vs. 29.3% ± 1.3%; p < 0.05). Reactive oxygen species levels, apoptosis, and blastocyst lipid content were significantly decreased in the OEC-EVs group compared with the control group. OEC-EV group showed a significantly decreased BAX and increased BCL2, SOD1, POU5F1, SOX2, NANOG, GATA6, PNPLA2, LIPE, and MGLL gene expression than the control group (p < 0.05). In conclusion, OEC-EVs supplementation in embryo culture media improved the quality of porcine embryos, potentially helping porcine-cloned embryonic development possibly through transfer of messenger RNA and proteins to the early embryos.
Collapse
Affiliation(s)
- Xun Fang
- Laboratory of Theriogenology, College of Veterinary Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Bereket Molla Tanga
- Laboratory of Theriogenology, College of Veterinary Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Seonggyu Bang
- Laboratory of Theriogenology, College of Veterinary Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Gyeonghwan Seong
- Laboratory of Theriogenology, College of Veterinary Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Islam M Saadeldin
- Laboratory of Theriogenology, College of Veterinary Medicine, Chungnam National University, Daejeon, Republic of Korea.,Research Institute of Veterinary Medicine, Chungnam National University, Daejeon, Republic of Korea.,Department of Physiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Sanghoon Lee
- Laboratory of Theriogenology, College of Veterinary Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Jongki Cho
- Laboratory of Theriogenology, College of Veterinary Medicine, Chungnam National University, Daejeon, Republic of Korea
| |
Collapse
|
12
|
Ex Situ Conservation and Genetic Rescue of Endangered Polish Cattle and Pig Breeds with the Aid of Modern Reproductive Biotechnology – A Review. ANNALS OF ANIMAL SCIENCE 2021. [DOI: 10.2478/aoas-2021-0046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Abstract
The development and optimization of reproductive biotechnology – specifically semen cryopreservation, spermatological diagnostics, and intraspecies cloning by somatic cell nuclear transfer (SCNT) – have become essential techniques to conserve the genetic resources and establish genetic reserves of endangered or vanishing native Polish livestock breeds. Moreover, this biotechnology is necessary for perpetuating biological diversity and enhancing genetic variability as well as for restoring and reintroducing breeds into anthropogenic agricultural ecosystems. On the one hand, the purpose of our paper is to interpret recent efforts aimed at the ex situ conservation of native cattle and pig breeds. On the other, it emphasizes the prominent role played by the National Research Institute of Animal Production (NRIAP) in maintaining biodiversity in agricultural environmental niches. Furthermore, our paper provides an overview of the conventional and modern strategies of the banking and cryopreservation of germplasm-carrier biological materials and somatic cell lines, spermatological diagnostics, and semen-based and SCNT-mediated assisted reproductive technologies (ART s). These are the most reliable and powerful tools for ex situ protection of the genetic resources of endangered breeds of livestock, especially cattle and pigs.
Collapse
|
13
|
Jeong PS, Yang HJ, Park SH, Gwon MA, Joo YE, Kim MJ, Kang HG, Lee S, Park YH, Song BS, Kim SU, Koo DB, Sim BW. Combined Chaetocin/Trichostatin A Treatment Improves the Epigenetic Modification and Developmental Competence of Porcine Somatic Cell Nuclear Transfer Embryos. Front Cell Dev Biol 2021; 9:709574. [PMID: 34692674 PMCID: PMC8526721 DOI: 10.3389/fcell.2021.709574] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 09/15/2021] [Indexed: 01/03/2023] Open
Abstract
Developmental defects in somatic cell nuclear transfer (SCNT) embryos are principally attributable to incomplete epigenetic reprogramming. Small-molecule inhibitors such as histone methyltransferase inhibitors (HMTi) and histone deacetylase inhibitors (HDACi) have been used to improve reprogramming efficiency of SCNT embryos. However, their possible synergistic effect on epigenetic reprogramming has not been studied. In this study, we explored whether combined treatment with an HMTi (chaetocin) and an HDACi (trichostatin A; TSA) synergistically enhanced epigenetic reprogramming and the developmental competence of porcine SCNT embryos. Chaetocin, TSA, and the combination significantly increased the cleavage and blastocyst formation rate, hatching/hatched blastocyst rate, and cell numbers and survival rate compared to control embryos. In particular, the combined treatment improved the rate of development to blastocysts more so than chaetocin or TSA alone. TSA and combined chaetocin/TSA significantly reduced the H3K9me3 levels and increased the H3K9ac levels in SCNT embryos, although chaetocin alone significantly reduced only the H3K9me3 levels. Moreover, these inhibitors also decreased global DNA methylation in SCNT embryos. In addition, the expression of zygotic genome activation- and imprinting-related genes was increased by chaetocin or TSA, and more so by the combination, to levels similar to those of in vitro-fertilized embryos. These results suggest that combined chaetocin/TSA have synergistic effects on improving the developmental competences by regulating epigenetic reprogramming and correcting developmental potential-related gene expression in porcine SCNT embryos. Therefore, these strategies may contribute to the generation of transgenic pigs for biomedical research.
Collapse
Affiliation(s)
- Pil-Soo Jeong
- Futuristic Animal Resource and Research Center (FARRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, South Korea.,Department of Biotechnology, College of Engineering, Daegu University, Gyeongsan, South Korea
| | - Hae-Jun Yang
- Futuristic Animal Resource and Research Center (FARRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, South Korea
| | - Soo-Hyun Park
- Futuristic Animal Resource and Research Center (FARRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, South Korea.,Department of Animal Science, College of Natural Resources and Life Science, Pusan National University, Miryang, South Korea
| | - Min Ah Gwon
- Futuristic Animal Resource and Research Center (FARRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, South Korea.,Department of Biotechnology, College of Engineering, Daegu University, Gyeongsan, South Korea
| | - Ye Eun Joo
- Futuristic Animal Resource and Research Center (FARRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, South Korea.,Department of Animal Science, College of Natural Resources and Life Science, Pusan National University, Miryang, South Korea
| | - Min Ju Kim
- Futuristic Animal Resource and Research Center (FARRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, South Korea.,Department of Animal Science, College of Natural Resources and Life Science, Pusan National University, Miryang, South Korea
| | - Hyo-Gu Kang
- Futuristic Animal Resource and Research Center (FARRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, South Korea.,Department of Animal Science and Biotechnology, College of Agriculture and Life Science, Chungnam National University, Daejeon, South Korea
| | - Sanghoon Lee
- Futuristic Animal Resource and Research Center (FARRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, South Korea
| | - Young-Ho Park
- Futuristic Animal Resource and Research Center (FARRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, South Korea
| | - Bong-Seok Song
- Futuristic Animal Resource and Research Center (FARRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, South Korea
| | - Sun-Uk Kim
- Futuristic Animal Resource and Research Center (FARRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, South Korea.,Department of Functional Genomics, University of Science and Technology, Daejeon, South Korea
| | - Deog-Bon Koo
- Department of Biotechnology, College of Engineering, Daegu University, Gyeongsan, South Korea
| | - Bo-Woong Sim
- Futuristic Animal Resource and Research Center (FARRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, South Korea
| |
Collapse
|
14
|
Wu X, Zhao H, Lai J, Zhang N, Shi J, Zhou R, Su Q, Zheng E, Xu Z, Huang S, Hong L, Gu T, Yang J, Yang H, Cai G, Wu Z, Li Z. Interleukin 17D Enhances the Developmental Competence of Cloned Pig Embryos by Inhibiting Apoptosis and Promoting Embryonic Genome Activation. Animals (Basel) 2021; 11:ani11113062. [PMID: 34827794 PMCID: PMC8614321 DOI: 10.3390/ani11113062] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 10/19/2021] [Accepted: 10/20/2021] [Indexed: 12/11/2022] Open
Abstract
Simple Summary The cloning technique is important for animal husbandry and biomedicine because it can be used to clone superior breeding livestock and produce multipurpose genetically modified animals. However, the success rate of cloning currently is very low due to the low developmental efficiency of cloned embryos, which limits the application of cloning. The low developmental competence is related to the excessive cell death in cloned embryos. Interleukin 17D (IL17D) is required for the normal development of mouse embryos by inhibiting cell death. This study aimed to investigate whether IL17D can improve cloned pig embryo development by inhibiting cell death. Addition of IL17D protein to culture medium decreased the cell death level and improved the developmental ability of cloned pig embryos. IL17D treatment enhanced cloned pig embryo development by regulating cell death-associated gene pathways and promoting genome-wide gene expression, which is probably via up-regulating the expression of a gene called GADD45B. This study provided a new approach to improve the pig cloning efficiency by adding IL17D protein to the culture medium of cloned pig embryos. Abstract Cloned animals generated by the somatic cell nuclear transfer (SCNT) approach are valuable for the farm animal industry and biomedical science. Nevertheless, the extremely low developmental efficiency of cloned embryos hinders the application of SCNT. Low developmental competence is related to the higher apoptosis level in cloned embryos than in fertilization-derived counterparts. Interleukin 17D (IL17D) expression is up-regulated during early mouse embryo development and is required for normal development of mouse embryos by inhibiting apoptosis. This study aimed to investigate whether IL17D plays roles in regulating pig SCNT embryo development. Supplementation of IL17D to culture medium improved the developmental competence and decreased the cell apoptosis level in cloned porcine embryos. The transcriptome data indicated that IL17D activated apoptosis-associated pathways and promoted global gene expression at embryonic genome activation (EGA) stage in treated pig SCNT embryos. Treating pig SCNT embryos with IL17D up-regulated expression of GADD45B, which is functional in inhibiting apoptosis and promoting EGA. Overexpression of GADD45B enhanced the developmental efficiency of cloned pig embryos. These results suggested that IL17D treatment enhanced the developmental ability of cloned pig embryos by suppressing apoptosis and promoting EGA, which was related to the up-regulation of GADD45B expression. This study demonstrated the roles of IL17D in early development of porcine SCNT embryos and provided a new approach to improve the developmental efficiency of cloned porcine embryos.
Collapse
Affiliation(s)
- Xiao Wu
- National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China; (X.W.); (H.Z.); (J.L.); (N.Z.); (E.Z.); (Z.X.); (S.H.); (L.H.); (T.G.); (J.Y.); (H.Y.); (G.C.)
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
| | - Huaxing Zhao
- National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China; (X.W.); (H.Z.); (J.L.); (N.Z.); (E.Z.); (Z.X.); (S.H.); (L.H.); (T.G.); (J.Y.); (H.Y.); (G.C.)
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
| | - Junkun Lai
- National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China; (X.W.); (H.Z.); (J.L.); (N.Z.); (E.Z.); (Z.X.); (S.H.); (L.H.); (T.G.); (J.Y.); (H.Y.); (G.C.)
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
| | - Ning Zhang
- National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China; (X.W.); (H.Z.); (J.L.); (N.Z.); (E.Z.); (Z.X.); (S.H.); (L.H.); (T.G.); (J.Y.); (H.Y.); (G.C.)
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
| | - Junsong Shi
- Guangdong Wens Pig Breeding Technology Co., Ltd., Yunfu 527499, China; (J.S.); (R.Z.); (Q.S.)
| | - Rong Zhou
- Guangdong Wens Pig Breeding Technology Co., Ltd., Yunfu 527499, China; (J.S.); (R.Z.); (Q.S.)
| | - Qiaoyun Su
- Guangdong Wens Pig Breeding Technology Co., Ltd., Yunfu 527499, China; (J.S.); (R.Z.); (Q.S.)
| | - Enqin Zheng
- National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China; (X.W.); (H.Z.); (J.L.); (N.Z.); (E.Z.); (Z.X.); (S.H.); (L.H.); (T.G.); (J.Y.); (H.Y.); (G.C.)
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
| | - Zheng Xu
- National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China; (X.W.); (H.Z.); (J.L.); (N.Z.); (E.Z.); (Z.X.); (S.H.); (L.H.); (T.G.); (J.Y.); (H.Y.); (G.C.)
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
| | - Sixiu Huang
- National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China; (X.W.); (H.Z.); (J.L.); (N.Z.); (E.Z.); (Z.X.); (S.H.); (L.H.); (T.G.); (J.Y.); (H.Y.); (G.C.)
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
| | - Linjun Hong
- National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China; (X.W.); (H.Z.); (J.L.); (N.Z.); (E.Z.); (Z.X.); (S.H.); (L.H.); (T.G.); (J.Y.); (H.Y.); (G.C.)
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
| | - Ting Gu
- National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China; (X.W.); (H.Z.); (J.L.); (N.Z.); (E.Z.); (Z.X.); (S.H.); (L.H.); (T.G.); (J.Y.); (H.Y.); (G.C.)
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
| | - Jie Yang
- National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China; (X.W.); (H.Z.); (J.L.); (N.Z.); (E.Z.); (Z.X.); (S.H.); (L.H.); (T.G.); (J.Y.); (H.Y.); (G.C.)
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
| | - Huaqiang Yang
- National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China; (X.W.); (H.Z.); (J.L.); (N.Z.); (E.Z.); (Z.X.); (S.H.); (L.H.); (T.G.); (J.Y.); (H.Y.); (G.C.)
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
| | - Gengyuan Cai
- National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China; (X.W.); (H.Z.); (J.L.); (N.Z.); (E.Z.); (Z.X.); (S.H.); (L.H.); (T.G.); (J.Y.); (H.Y.); (G.C.)
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
| | - Zhenfang Wu
- National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China; (X.W.); (H.Z.); (J.L.); (N.Z.); (E.Z.); (Z.X.); (S.H.); (L.H.); (T.G.); (J.Y.); (H.Y.); (G.C.)
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China
- Correspondence: (Z.W.); (Z.L.)
| | - Zicong Li
- National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China; (X.W.); (H.Z.); (J.L.); (N.Z.); (E.Z.); (Z.X.); (S.H.); (L.H.); (T.G.); (J.Y.); (H.Y.); (G.C.)
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China
- Correspondence: (Z.W.); (Z.L.)
| |
Collapse
|
15
|
Chen PR, Redel BK, Kerns KC, Spate LD, Prather RS. Challenges and Considerations during In Vitro Production of Porcine Embryos. Cells 2021; 10:cells10102770. [PMID: 34685749 PMCID: PMC8535139 DOI: 10.3390/cells10102770] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/12/2021] [Accepted: 10/13/2021] [Indexed: 02/02/2023] Open
Abstract
Genetically modified pigs have become valuable tools for generating advances in animal agriculture and human medicine. Importantly, in vitro production and manipulation of embryos is an essential step in the process of creating porcine models. As the in vitro environment is still suboptimal, it is imperative to examine the porcine embryo culture system from several angles to identify methods for improvement. Understanding metabolic characteristics of porcine embryos and considering comparisons with other mammalian species is useful for optimizing culture media formulations. Furthermore, stressors arising from the environment and maternal or paternal factors must be taken into consideration to produce healthy embryos in vitro. In this review, we progress stepwise through in vitro oocyte maturation, fertilization, and embryo culture in pigs to assess the status of current culture systems and address points where improvements can be made.
Collapse
Affiliation(s)
- Paula R. Chen
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211, USA
| | | | - Karl C. Kerns
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| | - Lee D. Spate
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211, USA
- National Swine Resource and Research Center, University of Missouri, Columbia, MO 65211, USA
| | - Randall S. Prather
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211, USA
- National Swine Resource and Research Center, University of Missouri, Columbia, MO 65211, USA
- Correspondence:
| |
Collapse
|
16
|
Structures and Biological Activities of Diketopiperazines from Marine Organisms: A Review. Mar Drugs 2021; 19:md19080403. [PMID: 34436242 PMCID: PMC8398661 DOI: 10.3390/md19080403] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 07/16/2021] [Accepted: 07/18/2021] [Indexed: 12/12/2022] Open
Abstract
Diketopiperazines are potential structures with extensive biological functions, which have attracted much attention of natural product researchers for a long time. These compounds possess a stable six-membered ring, which is an important pharmacophore. The marine organisms have especially been proven to be a wide source for discovering diketopiperazine derivatives. In recent years, more and more interesting bioactive diketopiperazines had been found from various marine habitats. This review article is focused on the new 2,5-diketopiperazines derived from marine organisms (sponges and microorganisms) reported from the secondary half-year of 2014 to the first half of the year of 2021. We will comment their chemical structures, biological activities and sources. The objective is to assess the merit of these compounds for further study in the field of drug discovery.
Collapse
|
17
|
Contextualizing Autophagy during Gametogenesis and Preimplantation Embryonic Development. Int J Mol Sci 2021; 22:ijms22126313. [PMID: 34204653 PMCID: PMC8231133 DOI: 10.3390/ijms22126313] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/27/2021] [Accepted: 04/27/2021] [Indexed: 01/05/2023] Open
Abstract
Mammals face environmental stressors throughout their lifespan, which may jeopardize cellular homeostasis. Hence, these organisms have acquired mechanisms to cope with stressors by sensing, repairing the damage, and reallocating resources to increase the odds of long-term survival. Autophagy is a pro-survival lysosome-mediated cytoplasm degradation pathway for organelle and macromolecule recycling. Furthermore, autophagy efflux increases, and this pathway becomes idiosyncratic depending upon developmental and environmental contexts. Mammalian germ cells and preimplantation embryos are attractive models for dissecting autophagy due to their metastable phenotypes during differentiation and exposure to varying environmental cues. The aim of this review is to explore autophagy during mammalian gametogenesis, fertilization and preimplantation embryonic development by contemplating its physiological role during development, under key stressors, and within the scope of assisted reproduction technologies.
Collapse
|
18
|
Lee AR, Park JH, Shim SH, Hong K, La H, Park KS, Lee DR. Genome stabilization by RAD51-stimulatory compound 1 enhances efficiency of somatic cell nuclear transfer-mediated reprogramming and full-term development of cloned mouse embryos. Cell Prolif 2021; 54:e13059. [PMID: 34021643 PMCID: PMC8249786 DOI: 10.1111/cpr.13059] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 04/24/2021] [Accepted: 05/04/2021] [Indexed: 12/11/2022] Open
Abstract
OBJECTIVES The genetic instability and DNA damage arise during transcription factor-mediated reprogramming of somatic cells, and its efficiency may be reduced due to abnormal chromatin remodelling. The efficiency in somatic cell nuclear transfer (SCNT)-mediated reprogramming is also very low, and it is caused by development arrest of most reconstituted embryos. MATERIALS AND METHODS Whether the repair of genetic instability or double-strand breaks (DSBs) during SCNT reprogramming may play an important role in embryonic development, we observed and analysed the effect of Rad 51, a key modulator of DNA damage response (DDR) in SCNT-derived embryos. RESULTS Here, we observed that the activity of Rad 51 is lower in SCNT eggs than in conventional IVF and found a significantly lower level of DSBs in SCNT embryos during reprogramming. To address this difference, supplementation with RS-1, an activator of Rad51, during the activation of SCNT embryos can increase RAD51 expression and DSB foci and thereby increased the efficiency of SCNT reprogramming. Through subsequent single-cell RNA-seq analysis, we observed the reactivation of a large number of genes that were not expressed in SCNT-2-cell embryos by the upregulation of DDR, which may be related to overcoming the developmental block. Additionally, there may be an independent pathway involving histone demethylase that can reduce reprograming-resistance regions. CONCLUSIONS This technology can contribute to the production of comparable cell sources for regenerative medicine.
Collapse
Affiliation(s)
- Ah Reum Lee
- Department of Biomedical Science, CHA University, Seongnam, Gyunggi-do, Korea.,CHA Advanced Research Institute, CHA University, Seongnam, Gyunggi-do, Korea
| | - Ji-Hoon Park
- Department of Biomedical Science, CHA University, Seongnam, Gyunggi-do, Korea
| | - Sung Han Shim
- Department of Biomedical Science, CHA University, Seongnam, Gyunggi-do, Korea
| | - Kwonho Hong
- Department of Stem Cell and Regenerative Biology, Konkuk University, Gwangjin-gu, Seoul, Korea
| | - Hyeonwoo La
- Department of Stem Cell and Regenerative Biology, Konkuk University, Gwangjin-gu, Seoul, Korea
| | - Kyung-Soon Park
- Department of Biomedical Science, CHA University, Seongnam, Gyunggi-do, Korea
| | - Dong Ryul Lee
- Department of Biomedical Science, CHA University, Seongnam, Gyunggi-do, Korea.,CHA Advanced Research Institute, CHA University, Seongnam, Gyunggi-do, Korea
| |
Collapse
|
19
|
Cao L, Dai X, Huang S, Shen K, Shi D, Li X. Inhibition of Suv39h1/2 expression improves the early development of Debao porcine somatic cell nuclear transfer embryos. Reprod Domest Anim 2021; 56:992-1003. [PMID: 33890331 DOI: 10.1111/rda.13942] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 04/17/2021] [Indexed: 12/31/2022]
Abstract
Suppressor of variegation 3-9 homolog (Suv39h)1 and 2, Histone H3 lysine 9 trimethylation (H3K9me3)-specific methyltransferases, are mainly involved in regulating the dynamic changes of H3K9me3. Regulating Suv39h expression influences the early development of mice somatic cell nuclear transfer (SCNT) embryos, there are few reports concerning their features in domestic animals. The aim of the present study was to characterize the Suv39h function in early development of Debao porcine SCNT embryos. The global level of H3K9me3 and the expression profiles of Suv39h1/2 in porcine early embryos were analysed by immunohistochemistry and qRT-PCR methods, respectively. Their roles in cell proliferation and histone modification of Debao porcine foetal fibroblast cells (PFFs), and developmental competence of porcine SCNT embryos were investigated by shRNA technology. The methylation levels of H3K9me3 and the expression patterns of Suv39h1 and Suv39h2 were similar (p < .05), and both of them displayed higher levels in Debao porcine SCNT embryos compared with that in PA embryos. The global levels of H3K9me3 and the expressions of G9a, HDAC1 and DNMT1 were decreased by combined inhibition of Suv39h1 and Suv39h2 (p < .05), while the expression of HAT1 was increased (p < .05). Downregulation of Suv39h1/2 also promoted cell proliferation and resulted in a significant increase in the expression of CyclinA2, CyclinB and PCNA in PFFs (p < .05). Furthermore, the use of donor somatic nuclei which depleted H3K9me3 by inhibiting Suv39h1/2 expression markedly increased the cleavage rate, the blastocyst rate and the total cell number of blastocysts of Debao porcine SCNT embryos (p < .05). Altogether, the above results indicate that H3K9me3 levels and Suv39h1/2 expressions display similar patterns in porcine early embryo, and low levels of them are critical to cell proliferation of PFFs and early development of SCNT embryos.
Collapse
Affiliation(s)
- Lihua Cao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, China
| | - Xiaoli Dai
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, China
| | - Shihai Huang
- College of Life Science and Technology, Guangxi University, Nanning, China
| | - Kaiyuan Shen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, China
| | - Deshun Shi
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, China
| | - Xiangping Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, China
| |
Collapse
|
20
|
Manipulating the Epigenome in Nuclear Transfer Cloning: Where, When and How. Int J Mol Sci 2020; 22:ijms22010236. [PMID: 33379395 PMCID: PMC7794987 DOI: 10.3390/ijms22010236] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 12/24/2020] [Accepted: 12/25/2020] [Indexed: 12/20/2022] Open
Abstract
The nucleus of a differentiated cell can be reprogrammed to a totipotent state by exposure to the cytoplasm of an enucleated oocyte, and the reconstructed nuclear transfer embryo can give rise to an entire organism. Somatic cell nuclear transfer (SCNT) has important implications in animal biotechnology and provides a unique model for studying epigenetic barriers to successful nuclear reprogramming and for testing novel concepts to overcome them. While initial strategies aimed at modulating the global DNA methylation level and states of various histone protein modifications, recent studies use evidence-based approaches to influence specific epigenetic mechanisms in a targeted manner. In this review, we describe-based on the growing number of reports published during recent decades-in detail where, when, and how manipulations of the epigenome of donor cells and reconstructed SCNT embryos can be performed to optimize the process of molecular reprogramming and the outcome of nuclear transfer cloning.
Collapse
|