1
|
Murali S, Aradhyam GK. Divergent roles of DRY and NPxxY motifs in selective activation of downstream signalling by the apelin receptor. Biochem J 2024; 481:1707-1722. [PMID: 39513765 DOI: 10.1042/bcj20240320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 10/24/2024] [Accepted: 11/08/2024] [Indexed: 11/15/2024]
Abstract
G protein-coupled receptors (GPCRs) serve as critical communication hubs, translating a wide range of extracellular signals into intracellular responses that govern numerous physiological processes. In class-A GPCRs, conserved motifs mediate conformational changes of the active states of the receptor, and signal transduction is achieved by selectively binding to Gα proteins and/or adapter protein, arrestin. Apelin receptor (APJR) is a class-A GPCR that regulates a wide range of intracellular signalling cascades in response to apelin and elabela peptide ligands. Understanding how conserved motifs within APJR mediate activation and signal specificity remains unexplored. This study focuses on the functional roles of the DRY and NPxxY motifs within APJR by analyzing their impact on downstream signaling pathways across the receptor's conformational ensembles. Our findings provide compelling evidence that mutations within the conserved DRY and NPxxY motifs of APJR significantly alter its conformational preferences where modification of DRY motif leads to abrogation of G-protein coupling and mutation of NPxxY motif causing abolition of β-arrestin-2 recruitment. These observations shed light on the importance of these motifs in APJR activation and its potential for functional selectivity, highlighting the role of DRY/NPxxY as conformational switches of APJR signalling.
Collapse
Affiliation(s)
- Subhashree Murali
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biological Sciences, Indian Institute of Technology Madras, Chennai, India
| | - Gopala Krishna Aradhyam
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biological Sciences, Indian Institute of Technology Madras, Chennai, India
| |
Collapse
|
2
|
French AR, Meqbil YJ, van Rijn RM. ClickArr: a novel, high-throughput assay for evaluating β-arrestin isoform recruitment. Front Pharmacol 2023; 14:1295518. [PMID: 38027002 PMCID: PMC10662323 DOI: 10.3389/fphar.2023.1295518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 10/13/2023] [Indexed: 12/01/2023] Open
Abstract
Background: Modern methods for quantifying signaling bias at G protein-coupled receptors (GPCRs) rely on using a single β-arrestin isoform. However, it is increasingly appreciated that the two β-arrestin isoforms have unique roles, requiring the ability to assess β-arrestin isoform preference. Thus, methods are needed to efficiently screen the recruitment of both β-arrestin isoforms as they compete for a target GPCR in cells. Methods: We used molecular cloning to develop fusion proteins of the δ-opioid receptor (δOR), β-arrestin 1, and β-arrestin 2 to fragments of click beetle green and click beetle red luciferases. In this assay architecture, recruitment of either β-arrestin 1 or 2 to the δOR generates a spectrally distinct bioluminescent signal, allowing us to co-transfect all three constructs into cells prior to agonist challenge. Results: We demonstrate that our new assay, named "ClickArr," is a live-cell assay that simultaneously reports the recruitment of both β-arrestin isoforms as they compete for interaction with the δOR. We further find that the partial δOR agonist TAN67 has a significant efficacy bias for β-arrestin 2 over β-arrestin 1 when recruitment is normalized to the reference agonist leu-enkephalin. We confirm that ClickArr reports this bias when run either as a high-throughput endpoint or high-throughput kinetic assay, and cross-validate this result using the PathHunter assay, an orthogonal commercial assay for reporting β-arrestin recruitment to the δOR. Conclusion: Our results suggest that agonist:GPCR complexes can have relative β-arrestin isoform bias, a novel signaling bias that may potentially open up a new dimension for drug development.
Collapse
Affiliation(s)
- Alexander R. French
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, United States
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN, United States
| | - Yazan J. Meqbil
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, United States
- Computational Interdisciplinary Graduate Program, Purdue University, West Lafayette, IN, United States
| | - Richard M. van Rijn
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, United States
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN, United States
- Purdue Institute for Drug Discovery, Purdue University, West Lafayette, IN, United States
| |
Collapse
|
3
|
Zheng C, Javitch JA, Lambert NA, Donthamsetti P, Gurevich VV. In-Cell Arrestin-Receptor Interaction Assays. Curr Protoc 2023; 3:e890. [PMID: 37787634 PMCID: PMC10566372 DOI: 10.1002/cpz1.890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
G protein-coupled receptors (GPCRs) represent ∼30% of current drug targets. Ligand binding to these receptors activates G proteins and arrestins, which function in different signaling pathways. Given that functionally selective or biased ligands preferentially activate one of these two groups of pathways, they may be superior medications for certain disease states. The identification of such ligands requires robust drug screening assays for both G protein and arrestin activity. This unit describes protocols for assays that monitor reversible arrestin recruitment to GPCRs in living cells using either bioluminescence resonance energy transfer (BRET) or nanoluciferase complementation (NanoLuc). Two types of assays can be used: one configuration directly measures arrestin recruitment to a GPCR fused to a protein tag at its intracellular C-terminus, whereas the other configuration detects arrestin translocation to the plasma membrane in response to activation of an unmodified GPCR. Together, these assays are powerful tools for studying dynamic interactions between GPCRs and arrestins. © 2023 Wiley Periodicals LLC. Basic Protocol 1: Receptor-arrestin BRET assay to measure ligand-induced recruitment of arrestin to receptors Basic Protocol 2: Receptor-arrestin NANOBIT assay to measure ligand-induced recruitment of arrestin to receptors Alternative Protocol 1: BRET assay to measure ligand-induced recruitment of arrestin to the plasma membrane Alternative Protocol 2: NANOBIT assay to measure ligand-induced recruitment of arrestin to the plasma membrane Support Protocol 1: Optimization of polyethylenimine (PEI) concentration for transfection.
Collapse
Affiliation(s)
- Chen Zheng
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee
| | - Jonathan A. Javitch
- Departments of Psychiatry and Molecular Pharmacology and Therapeutics, Columbia University Vagelos College of Physicians and Surgeons, New York, New York
- Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, New York
| | - Nevin A. Lambert
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, Georgia
| | | | | |
Collapse
|
4
|
Bui DLH, Roach A, Li J, Bandekar SJ, Orput E, Raghavan R, Araç D, Sando RC. The adhesion GPCRs CELSR1-3 and LPHN3 engage G proteins via distinct activation mechanisms. Cell Rep 2023; 42:112552. [PMID: 37224017 PMCID: PMC10592476 DOI: 10.1016/j.celrep.2023.112552] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 03/20/2023] [Accepted: 05/05/2023] [Indexed: 05/26/2023] Open
Abstract
Adhesion G protein-coupled receptors (aGPCRs) are a large GPCR class that direct diverse fundamental biological processes. One prominent mechanism for aGPCR agonism involves autoproteolytic cleavage, which generates an activating, membrane-proximal tethered agonist (TA). How universal this mechanism is for all aGPCRs is unclear. Here, we investigate G protein induction principles of aGPCRs using mammalian latrophilin 3 (LPHN3) and cadherin EGF LAG-repeat 7-transmembrane receptors 1-3 (CELSR1-3), members of two aGPCR families conserved from invertebrates to vertebrates. LPHNs and CELSRs mediate fundamental aspects of brain development, yet CELSR signaling mechanisms are unknown. We find that CELSR1 and CELSR3 are cleavage deficient, while CELSR2 is efficiently cleaved. Despite differential autoproteolysis, CELSR1-3 all engage GαS, and CELSR1 or CELSR3 TA point mutants retain GαS coupling activity. CELSR2 autoproteolysis enhances GαS coupling, yet acute TA exposure alone is insufficient. These studies support that aGPCRs signal via multiple paradigms and provide insights into CELSR biological function.
Collapse
Affiliation(s)
- Duy Lan Huong Bui
- Department of Pharmacology, Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN 37240, USA
| | - Andrew Roach
- Department of Pharmacology, Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN 37240, USA
| | - Jingxian Li
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637, USA
| | - Sumit J Bandekar
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637, USA
| | - Elizabeth Orput
- Department of Pharmacology, Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN 37240, USA
| | - Ritika Raghavan
- Department of Pharmacology, Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN 37240, USA
| | - Demet Araç
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637, USA
| | - Richard C Sando
- Department of Pharmacology, Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN 37240, USA.
| |
Collapse
|
5
|
Exploring the signaling space of a GPCR using bivalent ligands with a rigid oligoproline backbone. Proc Natl Acad Sci U S A 2021; 118:2108776118. [PMID: 34810259 PMCID: PMC8640787 DOI: 10.1073/pnas.2108776118] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/25/2021] [Indexed: 01/14/2023] Open
Abstract
G protein–coupled receptors (GPCRs) are major players in cellular signal transmission. In this work, we have used rigid oligoproline backbones derivatized with two ligands at defined distances to induce GPCR dimer formation as a way to alter its signaling profile. We show that bivalent ligands at distances of 20 and 30 Å induce dimers of the GRPR receptor with different signaling responses. In addition, a nondimer–inducing bivalent ligand (with 10-Å distance between agonists) also induces different signaling patterns, most likely due to allosteric effects. These findings identify bivalent ligands with a stiff oligoproline backbone as tools to explore the natural signaling space of GPCRs. G protein–coupled receptors (GPCRs) are one of the most important drug–target classes in pharmaceutical industry. Their diversity in signaling, which can be modulated with drugs, permits the design of more effective and better-tolerated therapeutics. In this work, we have used rigid oligoproline backbones to generate bivalent ligands for the gastrin-releasing peptide receptor (GRPR) with a fixed distance between their recognition motifs. This allows the stabilization of GPCR dimers irrespective of their physiological occurrence and relevance, thus expanding the space for medicinal chemistry. Specifically, we observed that compounds presenting agonists or antagonists at 20- and 30-Å distance induce GRPR dimerization. Furthermore, we found that 1) compounds with two agonists at 20- and 30-Å distance that induce dimer formation show bias toward Gq efficacy, 2) dimers with 20- and 30-Å distance have different potencies toward β-arrestin-1 and β-arrestin-2, and 3) the divalent agonistic ligand with 10-Å distance specifically reduces Gq potency without affecting β-arrestin recruitment, pointing toward an allosteric effect. In summary, we show that rigid oligoproline backbones represent a tool to develop ligands with biased GPCR signaling.
Collapse
|
6
|
Yasuda K, Nishikawa M, Mano H, Takano M, Kittaka A, Ikushiro S, Sakaki T. Development of In Vitro and In Vivo Evaluation Systems for Vitamin D Derivatives and Their Application to Drug Discovery. Int J Mol Sci 2021; 22:ijms222111839. [PMID: 34769269 PMCID: PMC8584323 DOI: 10.3390/ijms222111839] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/25/2021] [Accepted: 10/26/2021] [Indexed: 12/30/2022] Open
Abstract
We have developed an in vitro system to easily examine the affinity for vitamin D receptor (VDR) and CYP24A1-mediated metabolism as two methods of assessing vitamin D derivatives. Vitamin D derivatives with high VDR affinity and resistance to CYP24A1-mediated metabolism could be good therapeutic agents. This system can effectively select vitamin D derivatives with these useful properties. We have also developed an in vivo system including a Cyp27b1-gene-deficient rat (a type I rickets model), a Vdr-gene-deficient rat (a type II rickets model), and a rat with a mutant Vdr (R270L) (another type II rickets model) using a genome editing method. For Cyp27b1-gene-deficient and Vdr mutant (R270L) rats, amelioration of rickets symptoms can be used as an index of the efficacy of vitamin D derivatives. Vdr-gene-deficient rats can be used to assess the activities of vitamin D derivatives specialized for actions not mediated by VDR. One of our original vitamin D derivatives, which displays high affinity VDR binding and resistance to CYP24A1-dependent metabolism, has shown good therapeutic effects in Vdr (R270L) rats, although further analysis is needed.
Collapse
Affiliation(s)
- Kaori Yasuda
- Department of Pharmaceutical Engineering, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu 939-0398, Toyama, Japan; (K.Y.); (H.M.)
| | - Miyu Nishikawa
- Department of Biotechnology, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu 939-0398, Toyama, Japan; (M.N.); (S.I.)
| | - Hiroki Mano
- Department of Pharmaceutical Engineering, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu 939-0398, Toyama, Japan; (K.Y.); (H.M.)
| | - Masashi Takano
- Faculty of Pharmaceutical Sciences, Teikyo University, Tokyo 173-8605, Japan; (M.T.); (A.K.)
| | - Atsushi Kittaka
- Faculty of Pharmaceutical Sciences, Teikyo University, Tokyo 173-8605, Japan; (M.T.); (A.K.)
| | - Shinichi Ikushiro
- Department of Biotechnology, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu 939-0398, Toyama, Japan; (M.N.); (S.I.)
| | - Toshiyuki Sakaki
- Department of Pharmaceutical Engineering, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu 939-0398, Toyama, Japan; (K.Y.); (H.M.)
- Correspondence:
| |
Collapse
|
7
|
Substance P Serves as a Balanced Agonist for MRGPRX2 and a Single Tyrosine Residue Is Required for β-Arrestin Recruitment and Receptor Internalization. Int J Mol Sci 2021; 22:ijms22105318. [PMID: 34070125 PMCID: PMC8158387 DOI: 10.3390/ijms22105318] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/14/2021] [Accepted: 05/15/2021] [Indexed: 12/13/2022] Open
Abstract
The neuropeptide substance P (SP) mediates neurogenic inflammation and pain and contributes to atopic dermatitis in mice through the activation of mast cells (MCs) via Mas-related G protein-coupled receptor (GPCR)-B2 (MrgprB2, human ortholog MRGPRX2). In addition to G proteins, certain MRGPRX2 agonists activate an additional signaling pathway that involves the recruitment of β-arrestins, which contributes to receptor internalization and desensitization (balanced agonists). We found that SP caused β-arrestin recruitment, MRGPRX2 internalization, and desensitization. These responses were independent of G proteins, indicating that SP serves as a balanced agonist for MRGPRX2. A tyrosine residue in the highly conserved NPxxY motif contributes to the activation and internalization of many GPCRs. We have previously shown that Tyr279 of MRGPRX2 is essential for G protein-mediated signaling and degranulation. To assess its role in β-arrestin-mediated MRGPRX2 regulation, we replaced Tyr279 in the NPxxY motif of MRGPRX2 with Ala (Y279A). Surprisingly, we found that, unlike the wild-type receptor, Y279A mutant of MRGPRX2 was resistant to SP-induced β-arrestin recruitment and internalization. This study reveals the novel findings that activation of MRGPRX2 by SP is regulated by β-arrestins and that a highly conserved tyrosine residue within MRGPRX2’s NPxxY motif contributes to both G protein- and β-arrestin-mediated responses.
Collapse
|
8
|
Smith JS, Pack TF. Noncanonical interactions of G proteins and β‐arrestins: from competitors to companions. FEBS J 2021; 288:2550-2561. [DOI: 10.1111/febs.15749] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 12/02/2020] [Accepted: 02/02/2021] [Indexed: 12/30/2022]
Affiliation(s)
- Jeffrey S. Smith
- Department of Dermatology Massachusetts General Hospital Boston MA USA
- Department of Dermatology Brigham and Women's Hospital Boston MA USA
- Department of Dermatology Beth Israel Deaconess Medical Center Boston MA USA
- Dermatology Program Boston Children's Hospital Boston MA USA
- Harvard Medical School Boston MA USA
| | | |
Collapse
|