1
|
Pavić V, Viljetić B, Blažetić S, Labak I, Has-Schön E, Heffer M. Temperature-Induced Seasonal Dynamics of Brain Gangliosides in Rainbow Trout ( Oncorhynchus mykiss Walbaum) and Common Carp ( Cyprinus carpio L.). Life (Basel) 2024; 14:1273. [PMID: 39459573 PMCID: PMC11509357 DOI: 10.3390/life14101273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 10/02/2024] [Accepted: 10/05/2024] [Indexed: 10/28/2024] Open
Abstract
This study aimed to determine the expression and distribution of gangliosides in specific regions of the brains of rainbow trout (Oncorhynchus mykiss Walbaum) and common carp (Cyprinus carpio L.) with regard to seasonal temperature changes. Seasonal changes in ganglioside expression and distribution within the species were expected. The natural ecosystems of these fishes differ significantly due to their distinct habitat preferences, geographic distributions, and environmental requirements. Based on the fact that the common carp is eurythermic and adapts to a wide range of temperatures, while the rainbow trout is stenothermic and thrives in a narrower temperature range, it was expected that these species would exhibit distinct patterns of ganglioside modification as part of their adaptive response to temperature fluctuations. Immunohistochemistry using specific antibodies for the major brain gangliosides (GM1, GD1a, GD1b, GT1b), along with the Svennerholm method for quantifying sialic acid bound to gangliosides, revealed that cold acclimatization led to an increase in polysialylated gangliosides in the common carp brain and an increase in trisialogangliosides in the rainbow trout brain. Immunohistochemical analysis also identified region-specific changes in ganglioside expression, suggesting specific functional roles in neuronal adaptation. These results supported the hypothesis that the composition and distribution of brain gangliosides change in response to seasonal thermal shifts as part of the adaptive response. The results underscore the importance of gangliosides in neuronal function and adaptation to environmental stimuli, with implications for understanding fish resilience to temperature changes. This study offers valuable insights into species' temperature adaptation, with implications for physiological and ecological management and improved aquaculture practices. Future research could expand the species scale, study molecular mechanisms and regulatory pathways in ganglioside metabolism, and examine ganglioside interactions with membrane proteins and lipids for a deeper understanding of thermal adaptation.
Collapse
Affiliation(s)
- Valentina Pavić
- Department of Biology, Josip Juraj Strossmayer University of Osijek, Ulica cara Hadrijana 8A, 31000 Osijek, Croatia; (V.P.); (S.B.); (E.H.-S.)
| | - Barbara Viljetić
- Department of Chemistry, Biochemistry and Clinical Chemistry, School of Medicine, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia;
| | - Senka Blažetić
- Department of Biology, Josip Juraj Strossmayer University of Osijek, Ulica cara Hadrijana 8A, 31000 Osijek, Croatia; (V.P.); (S.B.); (E.H.-S.)
| | - Irena Labak
- Department of Biology, Josip Juraj Strossmayer University of Osijek, Ulica cara Hadrijana 8A, 31000 Osijek, Croatia; (V.P.); (S.B.); (E.H.-S.)
| | - Elizabeta Has-Schön
- Department of Biology, Josip Juraj Strossmayer University of Osijek, Ulica cara Hadrijana 8A, 31000 Osijek, Croatia; (V.P.); (S.B.); (E.H.-S.)
| | - Marija Heffer
- Department of Medical Biology, School of Medicine, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia;
| |
Collapse
|
2
|
Zhang F, Li K, Zhang W, Zhao Z, Chang F, Du J, Zhang X, Bao K, Zhang C, Shi L, Liu Z, Dai X, Chen C, Wang DW, Xian Z, Jiang H, Ai D. Ganglioside GM3 Protects Against Abdominal Aortic Aneurysm by Suppressing Ferroptosis. Circulation 2024; 149:843-859. [PMID: 38018467 DOI: 10.1161/circulationaha.123.066110] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 11/06/2023] [Indexed: 11/30/2023]
Abstract
BACKGROUND Abdominal aortic aneurysm (AAA) is a potentially life-threatening vascular condition, but approved medical therapies to prevent AAA progression and rupture are currently lacking. Sphingolipid metabolism disorders are associated with the occurrence and development of AAA. It has been discovered that ganglioside GM3, a sialic acid-containing type of glycosphingolipid, plays a protective role in atherosclerosis, which is an important risk factor for AAA; however, the potential contribution of GM3 to AAA development has not been investigated. METHODS We performed a metabolomics study to evaluated GM3 level in plasma of human patients with AAA. We profiled GM3 synthase (ST3GAL5) expression in the mouse model of aneurysm and human AAA tissues through Western blotting and immunofluorescence staining. RNA sequencing, affinity purification and mass spectrometry, proteomic analysis, surface plasmon resonance analysis, and functional studies were used to dissect the molecular mechanism of GM3-regulating ferroptosis. We conditionally deleted and overexpressed St3gal5 in smooth muscle cells (SMCs) in vivo to investigate its role in AAA. RESULTS We found significantly reduced plasma levels of GM3 in human patients with AAA. GM3 content and ST3GAL5 expression were decreased in abdominal aortic vascular SMCs in patients with AAA and an AAA mouse model. RNA sequencing analysis showed that ST3GAL5 silencing in human aortic SMCs induced ferroptosis. We showed that GM3 interacted directly with the extracellular domain of TFR1 (transferrin receptor 1), a cell membrane protein critical for cellular iron uptake, and disrupted its interaction with holo-transferrin. SMC-specific St3gal5 knockout exacerbated iron accumulation at lesion sites and significantly promoted AAA development in mice, whereas GM3 supplementation suppressed lipid peroxidation, reduced iron deposition in aortic vascular SMCs, and markedly decreased AAA incidence. CONCLUSIONS Together, these results suggest that GM3 dysregulation promotes ferroptosis of vascular SMCs in AAA. Furthermore, GM3 may constitute a new therapeutic target for AAA.
Collapse
Affiliation(s)
- Fangni Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Tianjin Institute of Cardiology, The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Second Hospital of Tianjin Medical University, Tianjin Medical University, China (F.Z., D.A.)
- Department of Physiology and Pathophysiology (F.Z., K.L., W.Z., Z.Z., F.C., J.D., X.Z., D.A.)
| | - Kan Li
- Department of Physiology and Pathophysiology (F.Z., K.L., W.Z., Z.Z., F.C., J.D., X.Z., D.A.)
| | - Wenhui Zhang
- Department of Physiology and Pathophysiology (F.Z., K.L., W.Z., Z.Z., F.C., J.D., X.Z., D.A.)
| | - Ziyan Zhao
- Department of Physiology and Pathophysiology (F.Z., K.L., W.Z., Z.Z., F.C., J.D., X.Z., D.A.)
| | - Fangyuan Chang
- Department of Physiology and Pathophysiology (F.Z., K.L., W.Z., Z.Z., F.C., J.D., X.Z., D.A.)
| | - Jie Du
- Department of Physiology and Pathophysiology (F.Z., K.L., W.Z., Z.Z., F.C., J.D., X.Z., D.A.)
- Beijing Anzhen Hospital, Capital Medical University, China (J.D.)
- The Key Laboratory of Remodeling Cardiovascular Diseases, Ministry of Education, China (J.D.)
- Collaborative Innovation Center for Cardiovascular Disorders, Beijing, China (J.D.)
- Beijing Institute of Heart, Lung and Blood Vessel Diseases, China (J.D.)
| | - Xu Zhang
- Department of Physiology and Pathophysiology (F.Z., K.L., W.Z., Z.Z., F.C., J.D., X.Z., D.A.)
| | - Kaiwen Bao
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences (K.B., C.Z., L.S.), Tianjin Medical University, China
| | - Chunyong Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences (K.B., C.Z., L.S.), Tianjin Medical University, China
| | - Lei Shi
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences (K.B., C.Z., L.S.), Tianjin Medical University, China
| | - Zongwei Liu
- Department of Vascular Surgery, Tianjin Medical University General Hospital, China (Z.L., X.D.)
| | - Xiangchen Dai
- Department of Vascular Surgery, Tianjin Medical University General Hospital, China (Z.L., X.D.)
| | - Chen Chen
- Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China (C.C., D.W.W.)
| | - Dao Wen Wang
- Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China (C.C., D.W.W.)
| | - Zhong Xian
- Experimental Research Center, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing Anzhen Hospital, Capital Medical University, China (Z.X., H.J.)
| | - Hongfeng Jiang
- Experimental Research Center, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing Anzhen Hospital, Capital Medical University, China (Z.X., H.J.)
| | - Ding Ai
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Tianjin Institute of Cardiology, The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Second Hospital of Tianjin Medical University, Tianjin Medical University, China (F.Z., D.A.)
- Department of Physiology and Pathophysiology (F.Z., K.L., W.Z., Z.Z., F.C., J.D., X.Z., D.A.)
| |
Collapse
|
3
|
Guo Z. Ganglioside GM1 and the Central Nervous System. Int J Mol Sci 2023; 24:ijms24119558. [PMID: 37298512 DOI: 10.3390/ijms24119558] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/18/2023] [Accepted: 05/04/2023] [Indexed: 06/12/2023] Open
Abstract
GM1 is one of the major glycosphingolipids (GSLs) on the cell surface in the central nervous system (CNS). Its expression level, distribution pattern, and lipid composition are dependent upon cell and tissue type, developmental stage, and disease state, which suggests a potentially broad spectrum of functions of GM1 in various neurological and neuropathological processes. The major focus of this review is the roles that GM1 plays in the development and activities of brains, such as cell differentiation, neuritogenesis, neuroregeneration, signal transducing, memory, and cognition, as well as the molecular basis and mechanisms for these functions. Overall, GM1 is protective for the CNS. Additionally, this review has also examined the relationships between GM1 and neurological disorders, such as Alzheimer's disease, Parkinson's disease, GM1 gangliosidosis, Huntington's disease, epilepsy and seizure, amyotrophic lateral sclerosis, depression, alcohol dependence, etc., and the functional roles and therapeutic applications of GM1 in these disorders. Finally, current obstacles that hinder more in-depth investigations and understanding of GM1 and the future directions in this field are discussed.
Collapse
Affiliation(s)
- Zhongwu Guo
- Department of Chemistry, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
4
|
Zakharova IO, Bayunova LV, Derkach KV, Ilyasov IO, Morina IY, Shpakov AO, Avrova NF. Effects of Intranasally Administered Insulin and Gangliosides on Hypothalamic Signaling and Expression of Hepatic Gluconeogenesis Genes in Rats with Type 2 Diabetes Mellitus. J EVOL BIOCHEM PHYS+ 2022. [DOI: 10.1134/s0022093022060072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
5
|
Zakharova IO, Bayunova LV, Derkach KV, Ilyasov IO, Shpakov AO, Avrova NF. Effects of Intranasally Administered Insulin and Gangliosides on Metabolic Parameters and Activity of the Hepatic Insulin System in Rats with Type 2 Diabetes Mellitus. J EVOL BIOCHEM PHYS+ 2022. [DOI: 10.1134/s0022093022020077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
6
|
Damian M, Louet M, Gomes AAS, M'Kadmi C, Denoyelle S, Cantel S, Mary S, Bisch PM, Fehrentz JA, Catoire LJ, Floquet N, Banères JL. Allosteric modulation of ghrelin receptor signaling by lipids. Nat Commun 2021; 12:3938. [PMID: 34168117 PMCID: PMC8225672 DOI: 10.1038/s41467-021-23756-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 05/07/2021] [Indexed: 02/05/2023] Open
Abstract
The membrane is an integral component of the G protein-coupled receptor signaling machinery. Here we demonstrate that lipids regulate the signaling efficacy and selectivity of the ghrelin receptor GHSR through specific interactions and bulk effects. We find that PIP2 shifts the conformational equilibrium of GHSR away from its inactive state, favoring basal and agonist-induced G protein activation. This occurs because of a preferential binding of PIP2 to specific intracellular sites in the receptor active state. Another lipid, GM3, also binds GHSR and favors G protein activation, but mostly in a ghrelin-dependent manner. Finally, we find that not only selective interactions but also the thickness of the bilayer reshapes the conformational repertoire of GHSR, with direct consequences on G protein selectivity. Taken together, this data illuminates the multifaceted role of the membrane components as allosteric modulators of how ghrelin signal could be propagated.
Collapse
Affiliation(s)
- Marjorie Damian
- IBMM, UMR 5247, CNRS, Université de Montpellier, ENSCM, Montpellier, France
| | - Maxime Louet
- IBMM, UMR 5247, CNRS, Université de Montpellier, ENSCM, Montpellier, France
| | - Antoniel Augusto Severo Gomes
- IBMM, UMR 5247, CNRS, Université de Montpellier, ENSCM, Montpellier, France
- Laboratório de Física Biológica, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Céline M'Kadmi
- IBMM, UMR 5247, CNRS, Université de Montpellier, ENSCM, Montpellier, France
| | - Séverine Denoyelle
- IBMM, UMR 5247, CNRS, Université de Montpellier, ENSCM, Montpellier, France
| | - Sonia Cantel
- IBMM, UMR 5247, CNRS, Université de Montpellier, ENSCM, Montpellier, France
| | - Sophie Mary
- IBMM, UMR 5247, CNRS, Université de Montpellier, ENSCM, Montpellier, France
| | - Paulo M Bisch
- Laboratório de Física Biológica, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | | | - Laurent J Catoire
- Laboratoire de Biologie Physico-Chimique des Protéines Membranaires, UMR 7099, CNRS, Université de Paris, Institut de Biologie Physico-Chimique (FRC 550), Paris, France
| | - Nicolas Floquet
- IBMM, UMR 5247, CNRS, Université de Montpellier, ENSCM, Montpellier, France
| | - Jean-Louis Banères
- IBMM, UMR 5247, CNRS, Université de Montpellier, ENSCM, Montpellier, France.
| |
Collapse
|
7
|
Yu H, Gadi MR, Bai Y, Zhang L, Li L, Yin J, Wang PG, Chen X. Chemoenzymatic Total Synthesis of GM3 Gangliosides Containing Different Sialic Acid Forms and Various Fatty Acyl Chains. J Org Chem 2021; 86:8672-8682. [PMID: 34152144 DOI: 10.1021/acs.joc.1c00450] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Gangliosides are sialic acid-containing glycosphingolipids that have been found in the cell membranes of all vertebrates. Their important biological functions are contributed by both the glycan and the ceramide lipid components. GM3 is a major ganglioside and a precursor for many other more complex gangliosides. To obtain structurally diverse GM3 gangliosides containing various sialic acid forms and different fatty acyl chains in low cost, an improved process was developed to chemically synthesize lactosyl sphingosine from an inexpensive l-serine derivative. It was then used to obtain GM3 sphingosines from diverse modified sialic acid precursors by an efficient one-pot multienzyme sialylation system containing Pasteurella multocida sialyltransferase 3 (PmST3) with in situ generation of sugar nucleotides. A highly effective chemical acylation and facile C18-cartridge purification process was then used to install fatty acyl chains of varying lengths and different modifications. The chemoenzymatic method represents a powerful total synthetic strategy to access a library of structurally defined GM3 gangliosides to explore their functions.
Collapse
Affiliation(s)
- Hai Yu
- Department of Chemistry, University of California, One Shields Avenue, Davis, California 95616, United States
| | - Madhusudhan Reddy Gadi
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30303, United States
| | - Yuanyuan Bai
- Department of Chemistry, University of California, One Shields Avenue, Davis, California 95616, United States
| | - Libo Zhang
- Department of Chemistry, University of California, One Shields Avenue, Davis, California 95616, United States
| | - Lei Li
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30303, United States
| | - Jun Yin
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30303, United States.,Center for Diagnostics & Therapeutics, Georgia State University, Atlanta, Georgia 30303, United States
| | - Peng G Wang
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30303, United States
| | - Xi Chen
- Department of Chemistry, University of California, One Shields Avenue, Davis, California 95616, United States
| |
Collapse
|
8
|
Gut microbiota, determined by dietary nutrients, drive modification of the plasma lipid profile and insulin resistance. iScience 2021; 24:102445. [PMID: 33997711 PMCID: PMC8105675 DOI: 10.1016/j.isci.2021.102445] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 03/13/2021] [Accepted: 04/14/2021] [Indexed: 12/12/2022] Open
Abstract
The gut microbiota metabolizes the nutrients to produce various metabolites that play crucial roles in host metabolism. However, the links between the microbiota established by different nutrients and the microbiota-influenced changes in the plasma lipids remain unclear. Diets rich in cornstarch, fructose, branched chain amino acids, soybean oil (SO), or lard established a unique microbiota and had influence on glucose metabolism, which was partially reproduced by transferring the microbiota. Comparison of plasma lipidomic analysis between germ-free and colonized mice revealed significant impacts of the microbiota on various lipid classes, and of note, the microbiota established by the SO diet, which was associated with the greatest degree of glucose intolerance, caused the maximum alteration of the plasma lipid profile. Thus, the gut microbiota composed of dietary nutrients was associated with dynamic changes in the lipids potentially having differential effects on glucose metabolism. Diets with different nutrient compositions differentially affect glucose metabolism Gut microbiota established by soybean oil-rich (SO) diet impairs glucose metabolism Gut microbiota established by diets has dynamic effects on the plasma lipid profile SO diet has the greatest impact on the plasma lipid profile through gut microbiota
Collapse
|
9
|
Mucke HA. Patent highlights October-November 2020. Pharm Pat Anal 2021; 10:51-58. [PMID: 33594903 DOI: 10.4155/ppa-2021-0003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 01/29/2021] [Indexed: 11/17/2022]
Abstract
A snapshot of noteworthy recent developments in the patent literature of relevance to pharmaceutical and medical research and development.
Collapse
|