1
|
Huang W, Zhou P, Zou X, Liu Y, Zhou L, Zhang Y. Emodin ameliorates myocardial fibrosis in mice by inactivating the ROS/PI3K/Akt/mTOR axis. Clin Exp Hypertens 2024; 46:2326022. [PMID: 38507311 DOI: 10.1080/10641963.2024.2326022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 02/26/2024] [Indexed: 03/22/2024]
Abstract
BACKGROUND Emodin is a traditional medicine that has been shown to exert anti-inflammatory and anti-oxidative effects. Previous research has indicated that emodin can alleviate myocardial remodeling and inhibit myocardial hypertrophy and fibrosis. However, the mechanism by which emodin affects myocardial fibrosis (MF) has not yet been elucidated. METHODS Fibroblasts were treated with ANGII, and a mouse model of MF was established by ligation of the left anterior descending coronary artery. Cell proliferation was examined by a Cell Counting Kit-8 (CCK8) assay. Dihydroethidium (DHE) was used to measure reactive oxygen species (ROS) levels, and Masson and Sirius red staining were used to examine changes in collagen fiber levels. PI3K was over-expressed by lentiviral transfection to verify the effect of emodin on the PI3K/AKT/mTOR signaling axis. Changes in cardiac function in each group were examined by echocardiography. RESULTS Emodin significantly inhibited fibroblast proliferation, decreased intracellular ROS levels, significantly upregulated collagen II expression, downregulated α-SMA expression, and inhibited PI3K/AKT/mTOR pathway activation in vitro. Moreover, the in vivo results were consistent with the in vitro. Emodin significantly decreased ROS levels in heart tissue and reduced collagen fibrillogenesis. Emodin could regulate the activity of PI3K to increase the expression of collagen II and downregulate α-SMA expression in part through the PI3K/AKT/mTOR pathway, and emodin significantly improved cardiac structure and function in mice. CONCLUSIONS This study revealed that emodin targeted the PI3K/AKT/mTOR pathway to inhibit the development of myocardial fibrosis and may be an antifibrotic agent for the treatment of cardiac fibrosis.
Collapse
Affiliation(s)
- Wei Huang
- Department of Vascular Surgery, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, P.R.China
| | - Peiting Zhou
- Department of biomedical engineer, General Hospital of Western Theater Command, Chengdu, P.R.China
| | - Xinyun Zou
- Department of Oncology, General Hospital of Western Theater Command, Chengdu, P.R.China
| | - Yunchuan Liu
- Department of biomedical engineer, General Hospital of Western Theater Command, Chengdu, P.R.China
| | - Longfu Zhou
- Department of biomedical engineer, General Hospital of Western Theater Command, Chengdu, P.R.China
| | - Yaolei Zhang
- School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, P.R.China
| |
Collapse
|
2
|
Zeng R, Zhang D, Zhang J, Pan Y, Liu X, Qi Q, Xu J, Xu C, Shi S, Wang J, Liu T, Dong L. Targeting lysyl oxidase like 2 attenuates OVA-induced airway remodeling partly via the AKT signaling pathway. Respir Res 2024; 25:230. [PMID: 38824593 PMCID: PMC11144323 DOI: 10.1186/s12931-024-02811-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 04/12/2024] [Indexed: 06/03/2024] Open
Abstract
BACKGROUND Airway epithelium is an important component of airway structure and the initiator of airway remodeling in asthma. The changes of extracellular matrix (ECM), such as collagen deposition and structural disturbance, are typical pathological features of airway remodeling. Thus, identifying key mediators that derived from airway epithelium and capable of modulating ECM may provide valuable insights for targeted therapy of asthma. METHODS The datasets from Gene Expression Omnibus database were analyzed to screen differentially expressed genes in airway epithelium of asthma. We collected bronchoscopic biopsies and serum samples from asthmatic and healthy subjects to assess lysyl oxidase like 2 (LOXL2) expression. RNA sequencing and various experiments were performed to determine the influences of LOXL2 knockdown in ovalbumin (OVA)-induced mouse models. The roles and mechanisms of LOXL2 in bronchial epithelial cells were explored using LOXL2 small interfering RNA, overexpression plasmid and AKT inhibitor. RESULTS Both bioinformatics analysis and further experiments revealed that LOXL2 is highly expressed in airway epithelium of asthmatics. In vivo, LOXL2 knockdown significantly inhibited OVA-induced ECM deposition and epithelial-mesenchymal transition (EMT) in mice. In vitro, the transfection experiments on 16HBE cells demonstrated that LOXL2 overexpression increases the expression of N-cadherin and fibronectin and reduces the expression of E-cadherin. Conversely, after silencing LOXL2, the expression of E-cadherin is up-regulated. In addition, the remodeling and EMT process that induced by transforming growth factor-β1 could be enhanced and weakened after LOXL2 overexpression and silencing in 16HBE cells. Combining the RNA sequencing of mouse lung tissues and experiments in vitro, LOXL2 was involved in the regulation of AKT signaling pathway. Moreover, the treatment with AKT inhibitor in vitro partially alleviated the consequences associated with LOXL2 overexpression. CONCLUSIONS Taken together, the results demonstrated that epithelial LOXL2 plays a role in asthmatic airway remodeling partly via the AKT signaling pathway and highlighted the potential of LOXL2 as a therapeutic target for airway remodeling in asthma.
Collapse
Affiliation(s)
- Rong Zeng
- Department of Respiratory, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China
| | - Dong Zhang
- Department of Respiratory, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China
| | - Jintao Zhang
- Department of Respiratory, The First Affiliated Hospital of Shandong First Medical University, Shandong Institute of Respiratory Diseases, Jinan, China
| | - Yun Pan
- Department of Respiratory, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China
| | - Xiaofei Liu
- Department of Respiratory, Shandong Qianfoshan Hospital, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Qian Qi
- Department of Respiratory, The First Affiliated Hospital of Shandong First Medical University, Shandong Institute of Respiratory Diseases, Jinan, China
| | - Jiawei Xu
- Department of Respiratory, The First Affiliated Hospital of Shandong First Medical University, Shandong Institute of Respiratory Diseases, Jinan, China
| | - Changjuan Xu
- Department of Respiratory, Shandong Qianfoshan Hospital, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Shuochuan Shi
- Department of Respiratory, Shandong Qianfoshan Hospital, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Junfei Wang
- Department of Respiratory and Critical Care Medicine, Qilu hospital of Shandong University, Jinan, China
| | - Tian Liu
- Department of Respiratory and Critical Care Medicine, Qilu hospital of Shandong University, Jinan, China
| | - Liang Dong
- Department of Respiratory, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China.
- Department of Respiratory, The First Affiliated Hospital of Shandong First Medical University, Shandong Institute of Respiratory Diseases, Jinan, China.
| |
Collapse
|
3
|
Li H, Bian Y. Fibroblast-derived interleukin-6 exacerbates adverse cardiac remodeling after myocardial infarction. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2024; 28:285-294. [PMID: 38682176 PMCID: PMC11058547 DOI: 10.4196/kjpp.2024.28.3.285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 03/13/2024] [Accepted: 03/14/2024] [Indexed: 05/01/2024]
Abstract
Myocardial infarction is one of the leading causes of mortality globally. Currently, the pleiotropic inflammatory cytokine interleukin-6 (IL-6) is considered to be intimately related to the severity of myocardial injury during myocardial infarction. Interventions targeting IL-6 are a promising therapeutic option for myocardial infarction, but the underlying molecular mechanisms are not well understood. Here, we report the novel role of IL-6 in regulating adverse cardiac remodeling mediated by fibroblasts in a mouse model of myocardial infarction. It was found that the elevated expression of IL-6 in myocardium and cardiac fibroblasts was observed after myocardial infarction. Further, fibroblast-specific knockdown of Il6 significantly attenuated cardiac fibrosis and adverse cardiac remodeling and preserved cardiac function induced by myocardial infarction. Mechanistically, the role of Il6 contributing to cardiac fibrosis depends on signal transduction and activation of transcription (STAT)3 signaling activation. Additionally, Stat3 binds to the Il11 promoter region and contributes to the increased expression of Il11, which exacerbates cardiac fibrosis. In conclusion, these results suggest a novel role for IL-6 derived from fibroblasts in mediating Stat3 activation and substantially augmented Il11 expression in promoting cardiac fibrosis, highlighting its potential as a therapeutic target for cardiac fibrosis.
Collapse
Affiliation(s)
- Hongkun Li
- Key Laboratory of Cardiovascular Medicine and Clinical Pharmacology of Shanxi Province, The Second Affiliated Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi, China
- Department of Cardiology, The Second Affiliated Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi, China
| | - Yunfei Bian
- Key Laboratory of Cardiovascular Medicine and Clinical Pharmacology of Shanxi Province, The Second Affiliated Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi, China
- Department of Cardiology, The Second Affiliated Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi, China
| |
Collapse
|
4
|
Nam K, Dos Santos HT, Maslow FM, Small T, Shanbhag V, Petris MJ, Baker OJ. Copper chelation reduces early collagen deposition and preserves saliva secretion in irradiated salivary glands. Heliyon 2024; 10:e24368. [PMID: 38298614 PMCID: PMC10828693 DOI: 10.1016/j.heliyon.2024.e24368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 01/05/2024] [Accepted: 01/08/2024] [Indexed: 02/02/2024] Open
Abstract
Radiation therapy is a first-line treatment for head and neck cancer; however, it typically leads to hyposalivation stemming from fibrosis of the salivary gland. Current strategies to restore glandular function are dependent on the presence of residual functional salivary gland tissue, a condition commonly not met in patients with extensive fibrotic coverage of the salivary gland resulting from radiation therapy. Fibrosis is defined by the pathological accumulation of connective tissue (i.e., extracellular matrix) and excessive deposition of crosslinked (fibrillar) collagen that can impact a range of tissues and given that collagen crosslinking is necessary for fibrosis formation, inhibiting this process is a reasonable focus for developing anti-fibrotic therapies. Collagen crosslinking is catalyzed by the lysyl oxidase family of secreted copper-dependent metalloenzymes, and since that copper is an essential cofactor in all lysyl oxidase family members, we tested whether localized delivery of a copper chelator into the submandibular gland of irradiated mice could suppress collagen deposition and preserve the structure and function of this organ. Our results demonstrate that transdermal injection of tetrathiomolybdate into salivary glands significantly reduced the early deposition of fibrillar collagen in irradiated mice and preserved the integrity and function of submandibular gland epithelial tissue. Together, these studies identify copper metabolism as a novel therapeutic target to control radiation induced damage to the salivary gland and the current findings further indicate the therapeutic potential of repurposing clinically approved copper chelators as neoadjuvant treatments for radiation therapy.
Collapse
Affiliation(s)
- Kihoon Nam
- Christopher S. Bond Life Sciences Center, United States
- School of Medicine Department of Otolaryngology-Head and Neck Surgery, United States
| | - Harim Tavares Dos Santos
- Christopher S. Bond Life Sciences Center, United States
- School of Medicine Department of Otolaryngology-Head and Neck Surgery, United States
| | - Frank M. Maslow
- Christopher S. Bond Life Sciences Center, United States
- School of Medicine Department of Otolaryngology-Head and Neck Surgery, United States
| | - Travis Small
- Christopher S. Bond Life Sciences Center, United States
- School of Medicine Department of Otolaryngology-Head and Neck Surgery, United States
| | - Vinit Shanbhag
- Christopher S. Bond Life Sciences Center, United States
- Department of Biochemistry, United States
| | - Michael J. Petris
- Christopher S. Bond Life Sciences Center, United States
- Department of Biochemistry, United States
- Department of Ophthalmology, University of Missouri, Columbia, MO, 65211, United States
| | - Olga J. Baker
- Christopher S. Bond Life Sciences Center, United States
- School of Medicine Department of Otolaryngology-Head and Neck Surgery, United States
- Department of Biochemistry, United States
| |
Collapse
|
5
|
Cano A, Eraso P, Mazón MJ, Portillo F. LOXL2 in Cancer: A Two-Decade Perspective. Int J Mol Sci 2023; 24:14405. [PMID: 37762708 PMCID: PMC10532419 DOI: 10.3390/ijms241814405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/19/2023] [Accepted: 09/20/2023] [Indexed: 09/29/2023] Open
Abstract
Lysyl Oxidase Like 2 (LOXL2) belongs to the lysyl oxidase (LOX) family, which comprises five lysine tyrosylquinone (LTQ)-dependent copper amine oxidases in humans. In 2003, LOXL2 was first identified as a promoter of tumour progression and, over the course of two decades, numerous studies have firmly established its involvement in multiple cancers. Extensive research with large cohorts of human tumour samples has demonstrated that dysregulated LOXL2 expression is strongly associated with poor prognosis in patients. Moreover, investigations have revealed the association of LOXL2 with various targets affecting diverse aspects of tumour progression. Additionally, the discovery of a complex network of signalling factors acting at the transcriptional, post-transcriptional, and post-translational levels has provided insights into the mechanisms underlying the aberrant expression of LOXL2 in tumours. Furthermore, the development of genetically modified mouse models with silenced or overexpressed LOXL2 has enabled in-depth exploration of its in vivo role in various cancer models. Given the significant role of LOXL2 in numerous cancers, extensive efforts are underway to identify specific inhibitors that could potentially improve patient prognosis. In this review, we aim to provide a comprehensive overview of two decades of research on the role of LOXL2 in cancer.
Collapse
Affiliation(s)
- Amparo Cano
- Departamento de Bioquímica UAM, Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), 28029 Madrid, Spain; (A.C.); (P.E.); (M.J.M.)
- Instituto de Investigación Sanitaria del Hospital Universitario La Paz—IdiPAZ, 28029 Madrid, Spain
- Centro de Investigación Biomédica en Red, Área de Cáncer (CIBERONC), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Pilar Eraso
- Departamento de Bioquímica UAM, Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), 28029 Madrid, Spain; (A.C.); (P.E.); (M.J.M.)
- Instituto de Investigación Sanitaria del Hospital Universitario La Paz—IdiPAZ, 28029 Madrid, Spain
| | - María J. Mazón
- Departamento de Bioquímica UAM, Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), 28029 Madrid, Spain; (A.C.); (P.E.); (M.J.M.)
- Instituto de Investigación Sanitaria del Hospital Universitario La Paz—IdiPAZ, 28029 Madrid, Spain
| | - Francisco Portillo
- Departamento de Bioquímica UAM, Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), 28029 Madrid, Spain; (A.C.); (P.E.); (M.J.M.)
- Instituto de Investigación Sanitaria del Hospital Universitario La Paz—IdiPAZ, 28029 Madrid, Spain
- Centro de Investigación Biomédica en Red, Área de Cáncer (CIBERONC), Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
6
|
Löser R, Kuchar M, Wodtke R, Neuber C, Belter B, Kopka K, Santhanam L, Pietzsch J. Lysyl Oxidases as Targets for Cancer Therapy and Diagnostic Imaging. ChemMedChem 2023; 18:e202300331. [PMID: 37565736 DOI: 10.1002/cmdc.202300331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/10/2023] [Accepted: 08/11/2023] [Indexed: 08/12/2023]
Abstract
The understanding of the contribution of the tumour microenvironment to cancer progression and metastasis, in particular the interplay between tumour cells, fibroblasts and the extracellular matrix has grown tremendously over the last years. Lysyl oxidases are increasingly recognised as key players in this context, in addition to their function as drivers of fibrotic diseases. These insights have considerably stimulated drug discovery efforts towards lysyl oxidases as targets over the last decade. This review article summarises the biochemical and structural properties of theses enzymes. Their involvement in tumour progression and metastasis is highlighted from a biochemical point of view, taking into consideration both the extracellular and intracellular action of lysyl oxidases. More recently reported inhibitor compounds are discussed with an emphasis on their discovery, structure-activity relationships and the results of their biological characterisation. Molecular probes developed for imaging of lysyl oxidase activity are reviewed from the perspective of their detection principles, performance and biomedical applications.
Collapse
Affiliation(s)
- Reik Löser
- Institute of Radiopharmaceutical Cancer Research Helmholtz-Zentrum Dresden Rossendorf, Bautzner Landstraße 400, 01328, Dresden, Germany
- Faculty of Chemistry and Food Chemistry, School of Science, Technische Universität Dresden, Mommsenstraße 4, 01069, Dresden, Germany
| | - Manuela Kuchar
- Institute of Radiopharmaceutical Cancer Research Helmholtz-Zentrum Dresden Rossendorf, Bautzner Landstraße 400, 01328, Dresden, Germany
| | - Robert Wodtke
- Institute of Radiopharmaceutical Cancer Research Helmholtz-Zentrum Dresden Rossendorf, Bautzner Landstraße 400, 01328, Dresden, Germany
| | - Christin Neuber
- Institute of Radiopharmaceutical Cancer Research Helmholtz-Zentrum Dresden Rossendorf, Bautzner Landstraße 400, 01328, Dresden, Germany
| | - Birgit Belter
- Institute of Radiopharmaceutical Cancer Research Helmholtz-Zentrum Dresden Rossendorf, Bautzner Landstraße 400, 01328, Dresden, Germany
| | - Klaus Kopka
- Institute of Radiopharmaceutical Cancer Research Helmholtz-Zentrum Dresden Rossendorf, Bautzner Landstraße 400, 01328, Dresden, Germany
- Faculty of Chemistry and Food Chemistry, School of Science, Technische Universität Dresden, Mommsenstraße 4, 01069, Dresden, Germany
| | - Lakshmi Santhanam
- Departments of Anesthesiology and Critical Care Medicine and Biomedical Engineering, Johns Hopkins University, Baltimore, MD, 21287, USA
| | - Jens Pietzsch
- Institute of Radiopharmaceutical Cancer Research Helmholtz-Zentrum Dresden Rossendorf, Bautzner Landstraße 400, 01328, Dresden, Germany
- Faculty of Chemistry and Food Chemistry, School of Science, Technische Universität Dresden, Mommsenstraße 4, 01069, Dresden, Germany
| |
Collapse
|
7
|
Poe A, Martinez Yus M, Wang H, Santhanam L. Lysyl oxidase like-2 in fibrosis and cardiovascular disease. Am J Physiol Cell Physiol 2023; 325:C694-C707. [PMID: 37458436 PMCID: PMC10635644 DOI: 10.1152/ajpcell.00176.2023] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 07/12/2023] [Accepted: 07/12/2023] [Indexed: 09/01/2023]
Abstract
Fibrosis is an important and essential reparative response to injury that, if left uncontrolled, results in the excessive synthesis, deposition, remodeling, and stiffening of the extracellular matrix, which is deleterious to organ function. Thus, the sustained activation of enzymes that catalyze matrix remodeling and cross linking is a fundamental step in the pathology of fibrotic diseases. Recent studies have implicated the amine oxidase lysyl oxidase like-2 (LOXL2) in this process and established significantly elevated expression of LOXL2 as a key component of profibrotic conditions in several organ systems. Understanding the relationship between LOXL2 and fibrosis as well as the mechanisms behind these relationships can offer significant insights for developing novel therapies. Here, we summarize the key findings that demonstrate the link between LOXL2 and fibrosis and inflammation, examine current therapeutics targeting LOXL2 for the treatment of fibrosis, and discuss future directions for experiments and biomedical engineering.
Collapse
Affiliation(s)
- Alan Poe
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, United States
| | - Marta Martinez Yus
- Department of Anesthesiology and CCM, Johns Hopkins University, Baltimore, Maryland, United States
| | - Huilei Wang
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, United States
| | - Lakshmi Santhanam
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, United States
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland, United States
- Department of Anesthesiology and CCM, Johns Hopkins University, Baltimore, Maryland, United States
| |
Collapse
|
8
|
Cheng WC, Lawson C, Liu HH, Wilkie L, Dobromylskyj M, Luis Fuentes V, Dudhia J, Connolly DJ. Exploration of Mediators Associated with Myocardial Remodelling in Feline Hypertrophic Cardiomyopathy. Animals (Basel) 2023; 13:2112. [PMID: 37443910 DOI: 10.3390/ani13132112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/16/2023] [Accepted: 06/17/2023] [Indexed: 07/15/2023] Open
Abstract
Hypertrophic cardiomyopathy (HCM) affects both humans and cats and exhibits considerable interspecies similarities that are exemplified by underlying pathological processes and clinical presentation to the extent that developments in the human field may have direct relevance to the feline disease. Characteristic changes on histological examination include cardiomyocyte hypertrophy and interstitial and replacement fibrosis. Clinically, HCM is characterised by significant diastolic dysfunction due to a reduction in ventricular compliance and relaxation associated with extracellular matrix (ECM) remodelling and the development of ventricular hypertrophy. Studies in rodent models and human HCM patients have identified key protein mediators implicated in these pathological changes, including lumican, lysyl oxidase and TGF-β isoforms. We therefore sought to quantify and describe the cellular location of these mediators in the left ventricular myocardium of cats with HCM and investigate their relationship with the quantity and structural composition of the ECM. We identified increased myocardial content of lumican, LOX and TGF-β2 mainly attributed to their increased expression within cardiomyocytes in HCM cats compared to control cats. Furthermore, we found strong correlations between the expressions of these mediators that is compatible with their role as important components of cellular pathways promoting remodelling of the left ventricular myocardium. Fibrosis and hypertrophy are important pathological changes in feline HCM, and a greater understanding of the mechanisms driving this pathology may facilitate the identification of potential therapies.
Collapse
Affiliation(s)
- Wan-Ching Cheng
- Department of Clinical Science and Services, Royal Veterinary College, Hatfield AL9 7TA, UK
| | - Charlotte Lawson
- Department of Comparative Biomedical Sciences, Royal Veterinary College, London NW1 0TU, UK
| | - Hui-Hsuan Liu
- Department of Comparative Biomedical Sciences, Royal Veterinary College, London NW1 0TU, UK
| | - Lois Wilkie
- Department of Clinical Science and Services, Royal Veterinary College, Hatfield AL9 7TA, UK
| | | | - Virginia Luis Fuentes
- Department of Clinical Science and Services, Royal Veterinary College, Hatfield AL9 7TA, UK
| | - Jayesh Dudhia
- Department of Clinical Science and Services, Royal Veterinary College, Hatfield AL9 7TA, UK
| | - David J Connolly
- Department of Clinical Science and Services, Royal Veterinary College, Hatfield AL9 7TA, UK
| |
Collapse
|
9
|
Fertala J, Wang ML, Rivlin M, Beredjiklian PK, Abboud J, Arnold WV, Fertala A. Extracellular Targets to Reduce Excessive Scarring in Response to Tissue Injury. Biomolecules 2023; 13:biom13050758. [PMID: 37238628 DOI: 10.3390/biom13050758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/24/2023] [Accepted: 04/25/2023] [Indexed: 05/28/2023] Open
Abstract
Excessive scar formation is a hallmark of localized and systemic fibrotic disorders. Despite extensive studies to define valid anti-fibrotic targets and develop effective therapeutics, progressive fibrosis remains a significant medical problem. Regardless of the injury type or location of wounded tissue, excessive production and accumulation of collagen-rich extracellular matrix is the common denominator of all fibrotic disorders. A long-standing dogma was that anti-fibrotic approaches should focus on overall intracellular processes that drive fibrotic scarring. Because of the poor outcomes of these approaches, scientific efforts now focus on regulating the extracellular components of fibrotic tissues. Crucial extracellular players include cellular receptors of matrix components, macromolecules that form the matrix architecture, auxiliary proteins that facilitate the formation of stiff scar tissue, matricellular proteins, and extracellular vesicles that modulate matrix homeostasis. This review summarizes studies targeting the extracellular aspects of fibrotic tissue synthesis, presents the rationale for these studies, and discusses the progress and limitations of current extracellular approaches to limit fibrotic healing.
Collapse
Affiliation(s)
- Jolanta Fertala
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Mark L Wang
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
- Rothman Institute of Orthopaedics, Thomas Jefferson University Hospital, Philadelphia, PA 19107, USA
| | - Michael Rivlin
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
- Rothman Institute of Orthopaedics, Thomas Jefferson University Hospital, Philadelphia, PA 19107, USA
| | - Pedro K Beredjiklian
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
- Rothman Institute of Orthopaedics, Thomas Jefferson University Hospital, Philadelphia, PA 19107, USA
| | - Joseph Abboud
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
- Rothman Institute of Orthopaedics, Thomas Jefferson University Hospital, Philadelphia, PA 19107, USA
| | - William V Arnold
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
- Rothman Institute of Orthopaedics, Thomas Jefferson University Hospital, Philadelphia, PA 19107, USA
| | - Andrzej Fertala
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
10
|
Ali SA, Bommaraju S, Patwa J, Khare P, Rachamalla M, Niyogi S, Datusalia AK. Melatonin Attenuates Extracellular Matrix Accumulation and Cardiac Injury Manifested by Copper. Biol Trace Elem Res 2022:10.1007/s12011-022-03509-8. [PMID: 36449149 DOI: 10.1007/s12011-022-03509-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 11/24/2022] [Indexed: 12/02/2022]
Abstract
Copper-induced cardiac injury is not widely reported in spite of its ability to cause oxidative damage and tissue injury. Structural and morphological changes in the cardiac tissue are triggered via oxidative stress and inflammatory responses following copper exposure. The varied and unavoidable exposure of copper through contaminated food and water warrants a safe and effective agent against its harmful effects. Since the heart is highly sensitive to changes in the redox balance, the present study was undertaken to examine the protective effects of melatonin against copper-induced cardiac injury. Sprague Dawley (SD) rats were exposed to 100 ppm of elemental copper via drinking water for 4 months. The cardiac tissue was evaluated for various biochemical, histological, and protein expression studies. Animals exposed to copper exhibited induced oxidative stress and cardiac injury compared to normal control. To this end, we found that melatonin treatment ameliorated copper-induced alterations in tissue oxidative variables like ROS, nitrate, MDA, and GSH. In addition, histological examinations unravelled decreased cardiac muscle dilation, atrophy, and cardiomyopathy in melatonin-treated rats. Furthermore, melatonin-treated rats were associated with reduced tissue copper levels, collagen deposition, α-SMA, and increased HO-1 expression as compared to rats exposed exclusively to copper. Moreover, the levels of NF-κB and cardiac markers such as CK-MB, cTnI, and cTnT were found to be decreased in the melatonin-treated animals. Altogether, melatonin-triggered increase in antioxidant capacity resulting in reduced aggregation of ECM components demonstrates the therapeutic potential of melatonin in the treatment of cardiac injury and tissue fibrosis.
Collapse
Affiliation(s)
- Syed Afroz Ali
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research-Raebareli, Lucknow, 226002, India
| | - Sumadhura Bommaraju
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research-Raebareli, Lucknow, 226002, India
| | - Jayant Patwa
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research-Raebareli, Lucknow, 226002, India
| | - Puja Khare
- Crop Production and Protection Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, 226015, India
| | - Mahesh Rachamalla
- Department of Biology, University of Saskatchewan, Saskatoon, Canada
| | - Som Niyogi
- Department of Biology, University of Saskatchewan, Saskatoon, Canada
- Toxicology Centre, University of Saskatchewan, Saskatoon, Canada
| | - Ashok Kumar Datusalia
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research-Raebareli, Lucknow, 226002, India.
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research-Raebareli, Lucknow, 226002, India.
| |
Collapse
|
11
|
Pan-Lysyl Oxidase Inhibitor PXS-5505 Ameliorates Multiple-Organ Fibrosis by Inhibiting Collagen Crosslinks in Rodent Models of Systemic Sclerosis. Int J Mol Sci 2022; 23:ijms23105533. [PMID: 35628342 PMCID: PMC9146019 DOI: 10.3390/ijms23105533] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 05/06/2022] [Accepted: 05/13/2022] [Indexed: 01/09/2023] Open
Abstract
Systemic sclerosis (SSc) is characterised by progressive multiple organ fibrosis leading to morbidity and mortality. Lysyl oxidases play a vital role in the cross-linking of collagens and subsequent build-up of fibrosis in the extracellular matrix. As such, their inhibition provides a novel treatment paradigm for SSc. A novel small molecule pan-lysyl oxidase inhibitor, PXS-5505, currently in clinical development for myelofibrosis treatment was evaluated using in vivo rodent models resembling the fibrotic conditions in SSc. Both lysyl oxidase and lysyl oxidase-like 2 (LOXL2) expression were elevated in the skin and lung of SSc patients. The oral application of PXS-5505 inhibited lysyl oxidase activity in the skin and LOXL2 activity in the lung. PXS-5505 exhibited anti-fibrotic effects in the SSc skin mouse model, reducing dermal thickness and α-smooth muscle actin. Similarly, in the bleomycin-induced mouse lung model, PXS-5505 reduced pulmonary fibrosis toward normal levels, mediated by its ability to normalise collagen/elastin crosslink formation. PXS-5505 also reduced fibrotic extent in models of the ischaemia-reperfusion heart, the unilateral ureteral obstruction kidney, and the CCl4-induced fibrotic liver. PXS-5505 consistently demonstrates potent anti-fibrotic efficacy in multiple models of organ fibrosis relevant to the pathogenesis of SSc, suggesting that it may be efficacious as a novel approach for treating SSc.
Collapse
|
12
|
Sun B, Gao J, Yang L, Huang S, Cao X. Depletion of LOXL2 improves respiratory capacity: From air-breathing fish to mammal under hypoxia. Int J Biol Macromol 2022; 209:563-575. [PMID: 35413319 DOI: 10.1016/j.ijbiomac.2022.04.040] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 04/05/2022] [Accepted: 04/05/2022] [Indexed: 11/30/2022]
Abstract
Air-breathing fish are fascinating because of their ability to survive under hypoxia for a long time by using air-breathing organs (ABOs). Fish ABOs are thought to resemble the mammal lung all along. However, the link between the two has not been studied in depth. Here, we reported a markedly improved respiratory capacity in mice under hypoxia by inhibiting lysyl oxidase-like 2 (LOXL2), inspired from the intestinal air-breathing of loach (Misgurnus anguillicaudatus). Moreover, a posterior intestine (an ABO) transcriptome analysis revealed that the deletion of Loxl2b obviously inhibited PI3K-AKT and TGF-β signaling, meanwhile, induced VEGF signaling, which could cause vasodilation and angiogenesis to improve the air-breathing ability of loach. The same phenomenon was found in LOXL2-inhibition mice under hypoxia, which significantly prolonged their living period relative to wild-type (WT) mice. In addition, compared with WT loach, Loxl2b-/- loach presented enhanced anaerobic metabolism, which could also make itself to better survive in hypoxic environment. This should be the magic of air-breathing fish! Supplied from air-breathing fish, this study provides a novel means of improving respiratory capacity in mammal under hypoxia.
Collapse
Affiliation(s)
- Bing Sun
- College of Fisheries, Engineering Research Center of Green development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Jian Gao
- College of Fisheries, Engineering Research Center of Green development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China; College of Fisheries, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, China
| | - Lijuan Yang
- College of Fisheries, Engineering Research Center of Green development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China; College of Fisheries, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, China
| | - Songqian Huang
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, the University of Tokyo, Bunkyo, Tokyo 113-8657, Japan
| | - Xiaojuan Cao
- College of Fisheries, Engineering Research Center of Green development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China; College of Fisheries, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
13
|
Murphy ME, Narasimhan A, Adrian A, Kumar A, Green CL, Soto-Palma C, Henpita C, Camell C, Morrow CS, Yeh CY, Richardson CE, Hill CM, Moore DL, Lamming DW, McGregor ER, Simmons HA, Pak HH, Bai H, Denu JM, Clark J, Simcox J, Chittimalli K, Dahlquist K, Lee KA, Calubag M, Bouska M, Yousefzadeh MJ, Sonsalla M, Babygirija R, Yuan R, Tsuji T, Rhoads T, Menon V, Jarajapu YP, Zhu Y. Metabolism in the Midwest: research from the Midwest Aging Consortium at the 49 th Annual Meeting of the American Aging Association. GeroScience 2022; 44:39-52. [PMID: 34714522 PMCID: PMC8554732 DOI: 10.1007/s11357-021-00479-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 10/19/2021] [Indexed: 11/25/2022] Open
Affiliation(s)
- Michaela E Murphy
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, 53705, USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI, 53705, USA
- Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Akilavalli Narasimhan
- Institute On the Biology of Aging and Metabolism, University of Minnesota, Minneapolis, MN, USA
| | - Alexis Adrian
- Department of Urology, University of Wisconsin-Madison, Madison, WI, 53705, USA
- Molecular and Cellular Pharmacology Program, University of Wisconsin-Madison, Madison, WI, 53705, USA
- U54 George M. O'Brien Center for Benign Urology Research, Madison, WI, 53705, USA
| | - Ankur Kumar
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, IA, 50011, USA
| | - Cara L Green
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, 53705, USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI, 53705, USA
| | - Carolina Soto-Palma
- Institute On the Biology of Aging and Metabolism, University of Minnesota, Minneapolis, MN, USA
| | - Chathurika Henpita
- Institute On the Biology of Aging and Metabolism, University of Minnesota, Minneapolis, MN, USA
| | - Christina Camell
- Institute On the Biology of Aging and Metabolism, University of Minnesota, Minneapolis, MN, USA
| | - Christopher S Morrow
- Department of Neuroscience, University of Wisconsin - Madison, Madison, WI, 53705, USA
| | - Chung-Yang Yeh
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, 53705, USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI, 53705, USA
| | - Claire E Richardson
- Department of Genetics, University of Wisconsin - Madison, Madison, WI, 53706, USA
| | - Cristal M Hill
- Neurosignaling Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA, 70809, USA
| | - Darcie L Moore
- Department of Neuroscience, University of Wisconsin - Madison, Madison, WI, 53705, USA
| | - Dudley W Lamming
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, 53705, USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI, 53705, USA
- Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, WI, 53705, USA
- Cellular and Molecular Biology Program, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Eric R McGregor
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, 53705, USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI, 53705, USA
- Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Heather A Simmons
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, 53175, USA
| | - Heidi H Pak
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, 53705, USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI, 53705, USA
- Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Hua Bai
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, IA, 50011, USA
| | - John M Denu
- Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, WI, 53705, USA
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI, USA
- Wisconsin Institute for Discovery, Madison, WI, USA
| | - Josef Clark
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, 53705, USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI, 53705, USA
| | - Judith Simcox
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Kishore Chittimalli
- Department of Pharmaceutical Sciences, College of Health Professions, North Dakota State University, Fargo, ND, 58105, USA
| | - Korbyn Dahlquist
- Institute On the Biology of Aging and Metabolism, University of Minnesota, Minneapolis, MN, USA
| | - Kyoo-A Lee
- Institute On the Biology of Aging and Metabolism, University of Minnesota, Minneapolis, MN, USA
| | - Mariah Calubag
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, 53705, USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI, 53705, USA
- Cellular and Molecular Biology Program, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Mark Bouska
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, IA, 50011, USA
| | - Matthew J Yousefzadeh
- Institute On the Biology of Aging and Metabolism, University of Minnesota, Minneapolis, MN, USA
| | - Michelle Sonsalla
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, 53705, USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI, 53705, USA
| | - Reji Babygirija
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, 53705, USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI, 53705, USA
- Cellular and Molecular Biology Program, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Rong Yuan
- Department of Medical Microbiology, Immunology, and Cell Biology, Southern Illinois School of Medicine, Springfield, IL, USA
- Department of Internal Medicine, Southern Illinois University School of Medicine, Springfield, IL, 62794, USA
| | - Tadataka Tsuji
- Section On Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Timothy Rhoads
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, 53705, USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI, 53705, USA
| | - Vinal Menon
- Institute On the Biology of Aging and Metabolism, University of Minnesota, Minneapolis, MN, USA
| | - Yagna Pr Jarajapu
- Department of Pharmaceutical Sciences, College of Health Professions, North Dakota State University, Fargo, ND, 58105, USA
| | - Yun Zhu
- Department of Medical Microbiology, Immunology, and Cell Biology, Southern Illinois School of Medicine, Springfield, IL, USA.
- Department of Internal Medicine, Southern Illinois University School of Medicine, Springfield, IL, 62794, USA.
| |
Collapse
|
14
|
Bouska MJ, Bai H. Loxl2 is a mediator of cardiac aging in Drosophila melanogaster, genetically examining the role of aging clock genes. G3 (BETHESDA, MD.) 2022; 12:jkab381. [PMID: 34734976 PMCID: PMC8727986 DOI: 10.1093/g3journal/jkab381] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 10/23/2021] [Indexed: 11/12/2022]
Abstract
Transcriptomic, proteomic, and methylation aging clocks demonstrate that aging has a predictable preset program, while transcriptome trajectory turning points indicate that the 20-40 age range in humans is the likely stage at which the progressive loss of homeostatic control, and in turn aging, begins to have detrimental effects. Turning points in this age range overlapping with human aging clock genes revealed five candidates that we hypothesized could play a role in aging or age-related physiological decline. To examine these gene's effects on lifespan and health-span, we utilized whole body and heart-specific gene knockdown of human orthologs in Drosophila melanogaster. Whole body lysyl oxidase like 2 (Loxl2), fz3, and Glo1 RNAi positively affected lifespan as did heart-specific Loxl2 knockdown. Loxl2 inhibition concurrently reduced age-related cardiac arrythmia and collagen (Pericardin) fiber width. Loxl2 binds several transcription factors in humans and RT-qPCR confirmed that a conserved transcriptional target CDH1 (Drosophila CadN2) has expression levels which correlate with Loxl2 reduction in Drosophila. These results point to conserved pathways and multiple mechanisms by which inhibition of Loxl2 can be beneficial to heart health and organismal aging.
Collapse
Affiliation(s)
- Mark J Bouska
- Department of Genetics, Development, & Cell Biology, Iowa State University, Ames, IA 50011, USA
| | - Hua Bai
- Department of Genetics, Development, & Cell Biology, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|
15
|
Yi X, Zhou Y, Chen Y, Feng X, Liu C, Jiang DS, Geng J, Li X, Jiang X, Fang ZM. The Expression Patterns and Roles of Lysyl Oxidases in Aortic Dissection. Front Cardiovasc Med 2021; 8:692856. [PMID: 34307505 PMCID: PMC8292648 DOI: 10.3389/fcvm.2021.692856] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 06/11/2021] [Indexed: 12/13/2022] Open
Abstract
Background: Lysyl oxidases (LOXs), including LOX, LOXL1, LOXL2, LOXL3, and LOXL4, catalyze the formation of a cross-link between elastin (ELN) and collagen. Multiple LOX mutations have been shown to be associated with the occurrence of aortic dissection (AD) in humans, and LOX-knockout mice died during the perinatal period due to aortic aneurysm and rupture. However, the expression levels and roles of other LOX members in AD remain unknown. Methods: A total of 33 aorta samples of AD and 15 normal aorta were collected for LOXs mRNA and protein levels detection. We also analyzed the datasets of AD in GEO database through bioinformatics methods. LOXL2 and LOXL3 were knocked down in primary cultured human aortic smooth muscle cells (HASMCs) via lentivirus. Results: Here, we show that the protein levels of LOXL2 and LOXL3 are upregulated, while LOXL4 is downregulated in AD subjects compared with non-AD subjects, but comparable protein levels of LOX and LOXL1 are detected. Knockdown of LOXL2 suppressed MMP2 expression, the phosphorylation of AKT (p-AKT) and S6 (p-S6), but increased the mono-, di-, tri-methylation of H3K4 (H3K4me1/2/3), H3K9me3, and p-P38 levels in HASMCs. These results indicate that LOXL2 is involved in regulation of the extracellular matrix (ECM) in HASMCs. In contrast, LOXL3 knockdown inhibited PCNA and cyclin D1, suppressing HASMC proliferation. Our results suggest that in addition to LOX, LOXL2 and LOXL3 are involved in the pathological process of AD by regulating ECM and the proliferation of HASMCs, respectively. Furthermore, we found that LOXL2 and LOXL4 was inhibited by metformin and losartan in HASMCs, which indicated that LOXL2 and LOXL4 are the potential targets that involved in the therapeutic effects of metformin and losartan on aortic or aneurysm expansion. Conclusions: Thus, differential regulation of LOXs might be a novel strategy to prevent or treat AD.
Collapse
Affiliation(s)
- Xin Yi
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Yi Zhou
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Yue Chen
- Division of Cardiothoracic and Vascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xin Feng
- Division of Cardiothoracic and Vascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chang Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Ding-Sheng Jiang
- Division of Cardiothoracic and Vascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jing Geng
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Xiaoyan Li
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Xuejun Jiang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Ze-Min Fang
- Division of Cardiothoracic and Vascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
16
|
Prince E, Chen Z, Khuu N, Kumacheva E. Nanofibrillar Hydrogel Recapitulates Changes Occurring in the Fibrotic Extracellular Matrix. Biomacromolecules 2021; 22:2352-2362. [PMID: 33783190 DOI: 10.1021/acs.biomac.0c01714] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Fibrosis is a pathological condition that leads to excessive deposition of collagen and increased tissue stiffness. Understanding the mechanobiology of fibrotic tissue necessitates the development of effective in vitro models that recapitulate its properties and structure; however, hydrogels that are currently used for this purpose fail to mimic the filamentous structure and mechanical properties of the fibrotic extracellular matrix (ECM). Here, we report a nanofibrillar hydrogel composed of cellulose nanocrystals and gelatin, which addresses this challenge. By altering the composition of the hydrogel, we mimicked the changes in structure, mechanical properties, and chemistry of fibrotic ECM. Furthermore, we decoupled the variations in hydrogel structure, properties, and ligand concentration. We demonstrate that this biocompatible hydrogel supports the three-dimensional culture of cells relevant to fibrotic diseases. This versatile hydrogel can be used for in vitro studies of fibrosis of different tissues, thus enabling the development of novel treatments for fibrotic diseases.
Collapse
Affiliation(s)
- Elisabeth Prince
- Department of Chemistry, University of Toronto, 80 Saint George Street, Toronto, Ontario, Canada M5S 3H6
| | - Zhengkun Chen
- Department of Chemistry, University of Toronto, 80 Saint George Street, Toronto, Ontario, Canada M5S 3H6
| | - Nancy Khuu
- Department of Chemistry, University of Toronto, 80 Saint George Street, Toronto, Ontario, Canada M5S 3H6
| | - Eugenia Kumacheva
- Department of Chemistry, University of Toronto, 80 Saint George Street, Toronto, Ontario, Canada M5S 3H6.,Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario, Canada M5S 3E5.,Institute of Biomaterials and Biomedical Engineering, University of Toronto, 4 Taddle Creek Road, Toronto, Ontario, Canada M5S 3G9
| |
Collapse
|
17
|
Ameliorating Fibrotic Phenotypes of Keloid Dermal Fibroblasts through an Epidermal Growth Factor-Mediated Extracellular Matrix Remodeling. Int J Mol Sci 2021; 22:ijms22042198. [PMID: 33672186 PMCID: PMC7926382 DOI: 10.3390/ijms22042198] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 02/18/2021] [Accepted: 02/20/2021] [Indexed: 12/22/2022] Open
Abstract
Keloid and hypertrophic scars are skin fibrosis-associated disorders that exhibit an uncontrollable proliferation of fibroblasts and their subsequent contribution to the excessive accumulation of extracellular matrix (ECM) in the dermis. In this study, to elucidate the underlying mechanisms, we investigated the pivotal roles of epidermal growth factor (EGF) in modulating fibrotic phenotypes of keloid and hypertrophic dermal fibroblasts. Our initial findings revealed the molecular signatures of keloid dermal fibroblasts and showed the highest degree of skin fibrosis markers, ECM remodeling, anabolic collagen-cross-linking enzymes, such as lysyl oxidase (LOX) and four LOX-like family enzymes, migration ability, and cell–matrix traction force, at cell–matrix interfaces. Furthermore, we observed significant EGF-mediated downregulation of anabolic collagen-cross-linking enzymes, resulting in amelioration of fibrotic phenotypes and a decrease in cell motility measured according to the cell–matrix traction force. These findings offer insight into the important roles of EGF-mediated cell–matrix interactions at the cell–matrix interface, as well as ECM remodeling. Furthermore, the results suggest their contribution to the reduction of fibrotic phenotypes in keloid dermal fibroblasts, which could lead to the development of therapeutic modalities to prevent or reduce scar tissue formation.
Collapse
|