1
|
de Araújo SA, Silva CMP, Costa CS, Ferreira CSC, Ribeiro HS, da Silva Lima A, Quintino da Rocha C, Calabrese KDS, Abreu-Silva AL, Almeida-Souza F. Leishmanicidal and immunomodulatory activity of Terminalia catappa in Leishmania amazonensisin vitro infection. Heliyon 2024; 10:e24622. [PMID: 38312642 PMCID: PMC10835263 DOI: 10.1016/j.heliyon.2024.e24622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/24/2023] [Accepted: 01/11/2024] [Indexed: 02/06/2024] Open
Abstract
Leishmaniases are infectious-parasitic diseases that impact public health around the world. Antileishmanial drugs presented toxicity and increase in parasitic resistance. Studies with natural products show an alternative to this effect, and several metabolites have demonstrated potential in the treatment of various diseases. Terminalia catappa is a plant species with promising pharmaceutical properties. The objective of this work was to evaluate the therapeutic potential of extracts and fractions of T. catappa on Leishmania amazonensis and investigate the immunomodulatory mechanisms associated with its action. In anti-Leishmania assays, the ethyl acetate fraction exhibited activity against promastigotes (IC50 86.07 ± 1.09 μg/mL) and low cytotoxicity (CC50 517.70 ± 1.68 μg/mL). The ethyl acetate fraction also inhibited the intracellular parasite (IC50 25.74 ± 1.08 μg/mL) with a selectivity index of 20.11. Treatment with T. catappa ethyl acetate fraction did not alter nitrite production by peritoneal macrophages stimulated with L. amazonensis, although there was a decrease in unstimulated macrophages treated at 50 μg/mL (p = 0.0048). The T. catappa ethyl acetate fraction at 100 μg/mL increased TNF-α levels (p = 0.0238) and downregulated HO-1 (p = 0.0030) and ferritin (p = 0.0002) gene expression in L. amazonensis-stimulated macrophages. Additionally, the total flavonoid and ellagic acid content for ethyl acetate fraction was 13.41 ± 1.86 mg QE/g and 79.25 mg/g, respectively. In conclusion, the T. catappa ethyl acetate fraction showed leishmanicidal activity against different forms of L. amazonensis and displayed immunomodulatory mechanisms, including TNF-α production and expression of pro and antioxidant genes.
Collapse
Affiliation(s)
- Sandra Alves de Araújo
- Rede Nordeste de Biotecnologia, Universidade Federal do Maranhão, São Luís, 65080-805, Brazil
| | | | | | | | | | - Aldilene da Silva Lima
- Laboratório de Química dos Produtos Naturais, Universidade Federal do Maranhão, 65080-805, São Luís, MA, Brazil
| | - Cláudia Quintino da Rocha
- Laboratório de Química dos Produtos Naturais, Universidade Federal do Maranhão, 65080-805, São Luís, MA, Brazil
| | - Kátia da Silva Calabrese
- Laboratório de Protozoologia, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, 21041-250, Brazil
| | - Ana Lucia Abreu-Silva
- Rede Nordeste de Biotecnologia, Universidade Federal do Maranhão, São Luís, 65080-805, Brazil
- Universidade Estadual do Maranhão, São Luís, 65055-310, Brazil
- Pós-graduação em Ciência Animal, Universidade Estadual do Maranhão, São Luís, 65055-310, Brazil
| | - Fernando Almeida-Souza
- Universidade Estadual do Maranhão, São Luís, 65055-310, Brazil
- Laboratório de Protozoologia, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, 21041-250, Brazil
- Pós-graduação em Ciência Animal, Universidade Estadual do Maranhão, São Luís, 65055-310, Brazil
| |
Collapse
|
2
|
Arafa FM, Osman DH, Tolba MM, Rezki N, Aouad MR, Hagar M, Osman M, Said H. Sulfadiazine analogs: anti-Toxoplasma in vitro study of sulfonamide triazoles. Parasitol Res 2023; 122:2353-2365. [PMID: 37610452 PMCID: PMC10495491 DOI: 10.1007/s00436-023-07936-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 08/03/2023] [Indexed: 08/24/2023]
Abstract
Toxoplasmosis is an infection that prevails all over the world and is caused by the obligate intracellular protozoan parasite Toxoplasma gondii (T. gondii). Promising novel compounds for the treatment of T. gondii are introduced in the current investigation. In order to test their in vitro potency against T. gondii tachyzoites, six 1,2,3-triazoles-based sulfonamide scaffolds with terminal NH2 or OH group were prepared and investigated as sulfadiazine equivalents. When compared to sulfadiazine, which served as a positive control, hybrid molecules showed much more anti-Toxoplasma activity. The results showed that the IC50 of the examined compounds 3(a-f) were recoded as 0.07492 μM, 0.07455 μM, 0.0392 μM, 0.03124 μM, 0.0533 μM, and 0.01835 μM, respectively, while the sulfadiazine exhibited 0.1852 μM. The studied 1,2,3-triazole-sulfadrug molecular conjugates 3(a-f) revealed selectivity index of 10.4, 8.9, 25.4, 21, 8.3, and 29; respectively. The current study focused on the newly synthesized amino derivatives 3(d-f), as they contain the more potent amino groups which are recognized to be essential elements and promote better biological activity. Extracellular tachyzoites underwent striking morphological alterations after 2 h of treatment as seen by scanning electron microscopy (SEM). Additionally, the intracellular tachyzoite exposed to the newly synthesized amino derivatives 3(d-f) for a 24-h period of treatment revealed damaged and altered morphology by transmission electron microscopic (TEM) indicating cytopathic effects. Moreover, compound 3f underwent the most pronounced changes, indicating that it had the strongest activity against T. gondii.
Collapse
Affiliation(s)
- Fadwa M Arafa
- Department of Medical Parasitology, Faculty of Medicine, Alexandria University, Alexandria, 21577, Egypt.
| | - Doaa Hassan Osman
- Department of Parasitology, Medical Research Institute, Alexandria University, Alexandria, 21561, Egypt
| | - Mona Mohamed Tolba
- Department of Parasitology, Medical Research Institute, Alexandria University, Alexandria, 21561, Egypt
| | - Nadjet Rezki
- Department of Chemistry, College of Science, Taibah University, Al-Madinah Al-Munawarah, 30002, Saudi Arabia
| | - Mohamed R Aouad
- Department of Chemistry, College of Science, Taibah University, Al-Madinah Al-Munawarah, 30002, Saudi Arabia
| | - Mohamed Hagar
- Department of Chemistry, Faculty of Science, Alexandria University, Alexandria, 21321, Egypt
| | - Mervat Osman
- Department of Parasitology, Medical Research Institute, Alexandria University, Alexandria, 21561, Egypt
| | - Heba Said
- Department of Parasitology, Medical Research Institute, Alexandria University, Alexandria, 21561, Egypt
| |
Collapse
|
3
|
Rabelo VWH, da Silva VD, Sanchez Nuñez ML, dos Santos Corrêa Amorim L, Buarque CD, Kuhn RJ, Abreu PA, Nunes de Palmer Paixão IC. Antiviral evaluation of 1,4-disubstituted-1,2,3-triazole derivatives against Chikungunya virus. Future Virol 2023; 18:865-880. [PMID: 37974899 PMCID: PMC10636642 DOI: 10.2217/fvl-2023-0142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 09/25/2023] [Indexed: 11/19/2023]
Abstract
Aim This work aimed to investigate the antiviral activity of two 1,4-disubstituted-1,2,3-triazole derivatives (1 and 2) against Chikungunya virus (CHIKV) replication. Materials & methods Cytotoxicity was analyzed using colorimetric assays and the antiviral potential was evaluated using plaque assays and computational tools. Results Compound 2 showed antiviral activity against CHIKV 181-25 in BHK-21 and Vero cells. Also, this compound presented a higher activity against CHIKV BRA/RJ/18 in Vero cells, like compound 1. Compound 2 exhibited virucidal activity and inhibited virus entry while compound 1 inhibited virus release. Molecular docking suggested that these derivatives inhibit nsP1 protein while compound 1 may also target capsid protein. Conclusion Both compounds exhibit promising antiviral activity against CHIKV by blocking different steps of virus replication.
Collapse
Affiliation(s)
- Vitor Won-Held Rabelo
- Programa de Pós-graduação em Ciências e Biotecnologia, Instituto de Biologia, Universidade Federal Fluminense, Niterói, RJ, CEP, 24210-201, Brazil
| | - Verônica Diniz da Silva
- Laboratório de Síntese Orgânica, Pontifícia Universidade Católica do Rio de Janeiro, Rio de Janeiro, RJ, CEP, 22451-900, Brazil
| | - Maria Leonisa Sanchez Nuñez
- Programa de Pós-graduação em Ciências e Biotecnologia, Instituto de Biologia, Universidade Federal Fluminense, Niterói, RJ, CEP, 24210-201, Brazil
| | - Leonardo dos Santos Corrêa Amorim
- Programa de Pós-graduação em Ciências e Biotecnologia, Instituto de Biologia, Universidade Federal Fluminense, Niterói, RJ, CEP, 24210-201, Brazil
- Gerência de Desenvolvimento Tecnológico, Instituto Vital Brazil, Niterói, RJ, 24230-410, Brazil
| | - Camilla Djenne Buarque
- Laboratório de Síntese Orgânica, Pontifícia Universidade Católica do Rio de Janeiro, Rio de Janeiro, RJ, CEP, 22451-900, Brazil
| | - Richard J Kuhn
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
- Purdue Institute of Inflammation, Immunology, & Infectious Disease, Purdue University, West Lafayette, IN 47907, USA
| | - Paula Alvarez Abreu
- Instituto de Biodiversidade e Sustentabilidade (NUPEM), Universidade Federal do Rio de Janeiro, Macaé, RJ, CEP, 27965-045, Brazil
| | - Izabel Christina Nunes de Palmer Paixão
- Programa de Pós-graduação em Ciências e Biotecnologia, Instituto de Biologia, Universidade Federal Fluminense, Niterói, RJ, CEP, 24210-201, Brazil
- Departamento de Biologia Celular e Molecular, Instituto de Biologia, Universidade Federal Fluminense, Niterói, RJ, CEP, 24210-201, Brazil
- Programas de Pós-graduação em Biotecnologia Marinha e de Neurologia, Universidade Federal Fluminense, Niterói, RJ, Brazil
| |
Collapse
|
4
|
Araújo SAD, Lima ADS, Rocha CQD, Previtalli-Silva H, Hardoim DDJ, Taniwaki NN, Calabrese KDS, Almeida-Souza F, Abreu-Silva AL. In Vitro Antioxidant and Antitrypanosomal Activities of Extract and Fractions of Terminalia catappa. BIOLOGY 2023; 12:895. [PMID: 37508328 PMCID: PMC10376266 DOI: 10.3390/biology12070895] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 04/29/2023] [Accepted: 05/04/2023] [Indexed: 07/30/2023]
Abstract
Chagas disease is a severe infectious and parasitic disease caused by the protozoan Trypanosoma cruzi and considered a public health problem. Chemotherapeutics are still the main means of control and treatment of the disease, however with some limitations. As an alternative treatment, plants have been pointed out due to their proven pharmacological properties. Many studies carried out with Terminalia catappa have shown several biological activities, but its effect against T. cruzi is still unknown. The objective of this work is to evaluate the therapeutic potential of extracts and fractions obtained from T. catappa on the parasite T. cruzi, in addition to analyzing its antioxidant activity. T. catappa ethyl acetate fraction were produced and submitted the chemical characterization by Liquid Chromatography Coupled to Mass Spectrometry (LC-MS). From all T. catappa extracts and fractions evaluated, the ethyl acetate and the aqueous fraction displayed the best antioxidant activity by the 2,2-diphenyl-1-picryl-hydrazyl (DPPH) radical scavenging method (IC50 of 7.77 ± 1.61 and 5.26 ± 1.26 µg/mL respectively), and by ferric ion reducing (FRAP) method (687.61 ± 0.26 and 1009.32 ± 0.13 µM of Trolox equivalent/mg extract, respectively). The ethyl acetate fraction showed remarkable T. cruzi inhibitory activity with IC50 of 8.86 ± 1.13, 24.91 ± 1.15 and 85.01 ± 1.21 µg/mL against epimastigotes, trypomastigotes and intracellular amastigotes, respectively, and showed no cytotoxicity for Vero cells (CC50 > 1000 µg/mL). The treatment of epimastigotes with the ethyl acetate fraction led to drastic ultrastructural changes such as the loss of cytoplasm organelles, cell disorganization, nucleus damage and the loss of integrity of the parasite. This effect could be due to secondary compounds present in this extract, such as luteolin, kaempferol, quercetin, ellagic acid and derivatives. The ethyl acetate fraction obtained from T. catappa leaves can be an effective alternative in the treatment and control of Chagas disease, and material for further investigations.
Collapse
Affiliation(s)
- Sandra Alves de Araújo
- Rede Nordeste de Biotecnologia, Universidade Federal do Maranhão, São Luís 65080-805, MA, Brazil
| | - Aldilene da Silva Lima
- Laboratório de Química dos Produtos Naturais, Universidade Federal do Maranhão, São Luís 65080-805, MA, Brazil
| | - Cláudia Quintino da Rocha
- Laboratório de Química dos Produtos Naturais, Universidade Federal do Maranhão, São Luís 65080-805, MA, Brazil
| | | | - Daiana de Jesus Hardoim
- Laboratório de Protozoologia, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro 21041-250, RJ, Brazil
| | - Noemi Nosomi Taniwaki
- Núcleo de Microscopia Eletrônica, Instituto Adolfo Lutz, São Paulo 01246-000, SP, Brazil
| | - Kátia da Silva Calabrese
- Laboratório de Protozoologia, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro 21041-250, RJ, Brazil
| | - Fernando Almeida-Souza
- Laboratório de Protozoologia, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro 21041-250, RJ, Brazil
- Pós-Graduação em Ciência Animal, Universidade Estadual do Maranhão, São Luís 65055-310, MA, Brazil
| | - Ana Lucia Abreu-Silva
- Rede Nordeste de Biotecnologia, Universidade Federal do Maranhão, São Luís 65080-805, MA, Brazil
- Pós-Graduação em Ciência Animal, Universidade Estadual do Maranhão, São Luís 65055-310, MA, Brazil
| |
Collapse
|
5
|
Yadav A, Kaushik CP. Synthesis and antibacterial evaluation of sulfonamide bridged disubstituted 1,2,3-triazoles. SYNTHETIC COMMUN 2022. [DOI: 10.1080/00397911.2022.2141126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Archna Yadav
- Department of Chemistry, Guru Jambheshwar University of Science and Technology, Hisar, India
| | - C. P. Kaushik
- Department of Chemistry, Guru Jambheshwar University of Science and Technology, Hisar, India
| |
Collapse
|
6
|
Brioschi MBC, Coser EM, Coelho AC, Gadelha FR, Miguel DC. Models for cytotoxicity screening of antileishmanial drugs: what has been done so far? Int J Antimicrob Agents 2022; 60:106612. [PMID: 35691601 DOI: 10.1016/j.ijantimicag.2022.106612] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 04/28/2022] [Accepted: 05/14/2022] [Indexed: 11/19/2022]
Abstract
A growing number of studies have demonstrated the in vitro potential of an impressive number of antileishmanial candidates in the past years. However, the lack of uniformity regarding the choice of cell types for cytotoxicity assays may lead to uncomparable and inconclusive data. In vitro assays relying solely on non-phagocytic cell models may not represent a realistic result as the effect of an antileishmanial agent should ideally be presented based on its cytotoxicity profile against reticuloendothelial system cells. In the present review, we have assembled studies published in the scientific literature from 2015 to 2021 that explored leishmanicidal candidates, emphasising the main host cell models used for cytotoxicity assays. The pros and cons of different host cell types as well as primary cells and cell lines are discussed in order to draw attention to the need to establish standardised protocols for preclinical testing when assessing new antileishmanial candidates.
Collapse
Affiliation(s)
- Mariana B C Brioschi
- Department of Animal Biology-Parasitology Section, Biology Institute, State University of Campinas-UNICAMP, Campinas, São Paulo, Brazil
| | - Elizabeth M Coser
- Department of Animal Biology-Parasitology Section, Biology Institute, State University of Campinas-UNICAMP, Campinas, São Paulo, Brazil
| | - Adriano C Coelho
- Department of Animal Biology-Parasitology Section, Biology Institute, State University of Campinas-UNICAMP, Campinas, São Paulo, Brazil
| | - Fernanda R Gadelha
- Department of Biochemistry and Tissue Biology, Biology Institute, State University of Campinas-UNICAMP, Campinas, São Paulo, Brazil
| | - Danilo C Miguel
- Department of Animal Biology-Parasitology Section, Biology Institute, State University of Campinas-UNICAMP, Campinas, São Paulo, Brazil.
| |
Collapse
|
7
|
Gaspar FV, Azevedo MF, Carneiro LS, Ribeiro SB, Esteves PM, Buarque CD. 1,3-Dipolar cycloaddition reactions of enaminones and azides: Synthesis of 4-acyl-1,2,3-triazoles and mechanistic studies. Tetrahedron 2022. [DOI: 10.1016/j.tet.2022.132856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
8
|
Almeida-Souza F, da Silva VD, Taniwaki NN, Hardoim DDJ, Mendonça Filho AR, Moreira WFDF, Buarque CD, Calabrese KDS, Abreu-Silva AL. Nitric Oxide Induction in Peritoneal Macrophages by a 1,2,3-Triazole Derivative Improves Its Efficacy upon Leishmania amazonensis In Vitro Infection. J Med Chem 2021; 64:12691-12704. [PMID: 34427442 DOI: 10.1021/acs.jmedchem.1c00725] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
1,2,3-Triazole is one of the most flexible chemical scaffolds broadly used in various fields. Here, we report the antileishmanial activity of 1,2,3-triazole derivatives, the ultrastructural alterations induced by their treatment, and the nitric oxide (NO) modulation effect on their efficacy against Leishmania amazonensis in vitro infection. After the screening of eleven compounds, compound 4 exhibited better results against L. amazonensis promastigotes (IC50 = 15.52 ± 3.782 μM) and intracellular amastigotes (IC50 = 4.10 ± 1.136 μM), 50% cytotoxicity concentration at 84.01 ± 3.064 μM against BALB/c peritoneal macrophages, and 20.49-fold selectivity for the parasite over the cells. Compound 4 induced ultrastructural mitochondrial alterations and lipid inclusions in L. amazonensis promastigotes, upregulated tumor necrosis factor α, interleukin (IL)-1β, IL-6, IL-12, and IL-10 messenger RNA expressions, and enhanced the NO production, verified by nitrite (p = 0.0095) and inducible nitric oxide synthase expression (p = 0.0049) quantification, which played an important role in its activity against intramacrophagic L. amazonensis. In silico prediction in association with antileishmanial activity results showed compound 4 as a hit compound with promising potential for further studies of new leishmaniasis treatment options.
Collapse
Affiliation(s)
- Fernando Almeida-Souza
- Laboratório de Anatomopatologia, Departamento de Patologia, Universidade Estadual do Maranhão, 65055-310 São Luís, Maranhão, Brazil.,Laboratório de Imunomodulação e Protozoologia, Instituto Oswaldo Cruz, Fiocruz, 21040-900 Rio de Janeiro, Brazil
| | - Verônica Diniz da Silva
- Laboratório de Síntese Orgânica, Pontifícia Universidade Católica, 22451-900 Rio de Janeiro, Rio de Janeiro, Brazil
| | - Noemi Nosomi Taniwaki
- Núcleo de Microscopia Eletrônica, Instituto Adolfo Lutz, 01246-000 São Paulo, São Paulo, Brazil
| | - Daiana de Jesus Hardoim
- Laboratório de Imunomodulação e Protozoologia, Instituto Oswaldo Cruz, Fiocruz, 21040-900 Rio de Janeiro, Brazil
| | - Ailésio Rocha Mendonça Filho
- Laboratório de Anatomopatologia, Departamento de Patologia, Universidade Estadual do Maranhão, 65055-310 São Luís, Maranhão, Brazil
| | | | - Camilla Djenne Buarque
- Laboratório de Síntese Orgânica, Pontifícia Universidade Católica, 22451-900 Rio de Janeiro, Rio de Janeiro, Brazil
| | - Kátia da Silva Calabrese
- Laboratório de Imunomodulação e Protozoologia, Instituto Oswaldo Cruz, Fiocruz, 21040-900 Rio de Janeiro, Brazil
| | - Ana Lucia Abreu-Silva
- Laboratório de Anatomopatologia, Departamento de Patologia, Universidade Estadual do Maranhão, 65055-310 São Luís, Maranhão, Brazil
| |
Collapse
|
9
|
Silva-Silva JV, Moragas-Tellis CJ, Chagas MDSDS, de Souza PVR, de Souza CDSF, Hardoim DDJ, Taniwaki NN, Moreira DDL, Dutra Behrens M, Calabrese KDS, Almeida-Souza F. Antileishmanial Activity of Flavones-Rich Fraction From Arrabidaea chica Verlot (Bignoniaceae). Front Pharmacol 2021; 12:703985. [PMID: 34354593 PMCID: PMC8329660 DOI: 10.3389/fphar.2021.703985] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 07/06/2021] [Indexed: 12/15/2022] Open
Abstract
Acknowledging the need of identifying new compounds for the treatment of leishmaniasis, this study aimed to evaluate, from in vitro trials, the activity of flavones from Arrabidaea chica against L. amazonensis. The chromatographic profiles of the hydroethanolic extract and a flavone-rich fraction (ACFF) from A. chica were determined by high-performance liquid chromatography coupled with a diode-array UV-Vis detector (HPLC-DAD-UV) and electrospray ionization mass spectrometry in tandem (LC-ESI-MS-MS). The flavones luteolin (1) and apigenin (2), isolated from chromatographic techniques and identified by Nuclear Magnetic Resonance of 1H and 13C, were also quantified in ACFF, showing 190.7 mg/g and apigenin 12.4 mg/g, respectively. The other flavones were identified by comparing their spectroscopic data with those of the literature. The in vitro activity was assayed against promastigotes and intramacrophagic amastigote forms of L. amazonensis. Cytotoxicity tests were performed with peritoneal macrophages of BALB/c mice. Nitrite quantification was performed with Griess reagent. Ultrastructural investigations were obtained by transmission electron microscopy. Anti-Leishmania assays indicated that the IC50 values for ACFF, apigenin, and luteolin were obtained at 40.42 ± 0.10 and 31.51 ± 1.13 μg/mL against promastigotes, respectively. ACFF and luteolin have concentration-dependent cytotoxicity. ACFF and luteolin also inhibited the intra-macrophagic parasite (IC50 3.575 ± 1.13 and 11.78 ± 1.24 μg/mL, respectively), with a selectivity index of 11.44 for ACFF. Promastigotes exposed to ACFF and luteolin exhibited ultrastructural changes, such as intense cytoplasm vacuolization and mitochondrial swelling. These findings data evidence the antileishmanial action of flavone-rich fractions of A. chica against L. amazonensis, encouraging further studies.
Collapse
Affiliation(s)
- João Victor Silva-Silva
- Laboratory of Immunomodulation and Protozoology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Carla Junqueira Moragas-Tellis
- Laboratory of Natural Products for Public Health, Pharmaceutical Techonology Institute - Farmanguinhos, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Maria do Socorro Dos Santos Chagas
- Laboratory of Natural Products for Public Health, Pharmaceutical Techonology Institute - Farmanguinhos, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Paulo Victor Ramos de Souza
- Laboratory of Natural Products for Public Health, Pharmaceutical Techonology Institute - Farmanguinhos, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil.,Student on Postgraduate Program in Translational Research in Drugs and Medicines, Farmanguinhos, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | | | - Daiana de Jesus Hardoim
- Laboratory of Immunomodulation and Protozoology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | | | - Davyson de Lima Moreira
- Laboratory of Natural Products for Public Health, Pharmaceutical Techonology Institute - Farmanguinhos, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Maria Dutra Behrens
- Laboratory of Natural Products for Public Health, Pharmaceutical Techonology Institute - Farmanguinhos, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Kátia da Silva Calabrese
- Laboratory of Immunomodulation and Protozoology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Fernando Almeida-Souza
- Laboratory of Immunomodulation and Protozoology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil.,Postgraduate in Animal Science, State University of Maranhão, São Luís, Brazil
| |
Collapse
|
10
|
Silva-Silva JV, Moragas-Tellis CJ, Chagas MSS, Souza PVR, Moreira DL, de Souza CSF, Teixeira KF, Cenci AR, de Oliveira AS, Almeida-Souza F, Behrens MD, Calabrese KS. Carajurin: a anthocyanidin from Arrabidaea chica as a potential biological marker of antileishmanial activity. Biomed Pharmacother 2021; 141:111910. [PMID: 34323692 DOI: 10.1016/j.biopha.2021.111910] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/01/2021] [Accepted: 07/06/2021] [Indexed: 11/29/2022] Open
Abstract
Leishmaniasis is a group of neglected tropical diseases whose treatment with antimonials bears limitations and has changed little in over 80 years. Medicinal plants have been evaluated as a therapeutic alternative for leishmaniasis. Arrabidaea chica is popularly used as a wound healing and antiparasitic agent, especially as leishmanicidal agent. This study examined the leishmanicidal activity of a crude extract (ACCE), an anthocyanidin-rich fraction (ACAF), and three isolated anthocyanidins from A. chica: carajurin, 3'-hydroxy-carajurone, and carajurone. We evaluated the antileishmanial activity against promastigote and intracellular amastigote forms of Leishmania amazonensis and determined cytotoxicity in BALB/c peritoneal macrophages, as well as nitrite quantification, using the Griess method. Molecular docking was carried out to evaluate interactions of carajurin at the nitric oxide synthase enzyme. All compounds were active against promastigotes after 72 h, with IC50 values of 101.5 ± 0.06 μg/mL for ACCE and 4.976 ± 1.09 μg/mL for ACAF. Anthocyanidins carajurin, 3'-hydroxy-carajurone, and carajurone had IC50 values of 3.66 ± 1.16, 22.70 ± 1.20, and 28.28 ± 0.07 μg/mL, respectively. The cytotoxicity assay after 72 h showed results ranging from 9.640 to 66.74 µg/mL for anthocyanidins. ACAF and carajurin showed selectivity against intracellular amastigote forms (SI> 10), with low cytotoxicity within 24 h, a statistically significant reduction in all infection parameters, and induced nitrite production. Molecular docking studies were developed to understand a possible mechanism of activation of the nitric oxide synthase enzyme, which leads to an increase in the production of nitric oxide observed in the other experiments reported. These results encourage us to suggest carajurin as a biological marker of A. chica.
Collapse
Affiliation(s)
- João Victor Silva-Silva
- Laboratory of Immunomodulation and Protozoology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, Brazil.
| | - Carla J Moragas-Tellis
- Laboratory of Natural Products for Public Health, Pharmaceutical Technology Institute - Farmanguinhos, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, Brazil.
| | - Maria S S Chagas
- Laboratory of Natural Products for Public Health, Pharmaceutical Technology Institute - Farmanguinhos, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, Brazil.
| | - Paulo Victor R Souza
- Laboratory of Natural Products for Public Health, Pharmaceutical Technology Institute - Farmanguinhos, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, Brazil; Student on Postgraduate Program in Translational Research in Drugs and Medicines, Farmanguinhos, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, Brazil.
| | - Davyson L Moreira
- Laboratory of Natural Products for Public Health, Pharmaceutical Technology Institute - Farmanguinhos, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, Brazil; Research Directorate of the Rio de Janeiro Botanical Garden Research Institute, Jardim Botânico, Rio de Janeiro, RJ, 22460-030, Brazil.
| | - Celeste S F de Souza
- Laboratory of Immunomodulation and Protozoology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, Brazil.
| | - Kerolain F Teixeira
- Department of Exact Sciences and Education. Federal University of Santa Catarina, Blumenau, SC, Brazil.
| | - Arthur R Cenci
- Department of Exact Sciences and Education. Federal University of Santa Catarina, Blumenau, SC, Brazil.
| | - Aldo S de Oliveira
- Department of Exact Sciences and Education. Federal University of Santa Catarina, Blumenau, SC, Brazil.
| | - Fernando Almeida-Souza
- Laboratory of Immunomodulation and Protozoology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, Brazil; Postgraduate Program in Animal Science, State University of Maranhão, São Luis, MA, Brazil.
| | - Maria D Behrens
- Laboratory of Natural Products for Public Health, Pharmaceutical Technology Institute - Farmanguinhos, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, Brazil.
| | - Kátia S Calabrese
- Laboratory of Immunomodulation and Protozoology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
11
|
Carneiro LSA, Almeida-Souza F, Lopes YSC, Novas RCV, Santos KBA, Ligiero CBP, Calabrese KDS, Buarque CD. Synthesis of 3-aryl-4-(N-aryl)aminocoumarins via photoredox arylation and the evaluation of their biological activity. Bioorg Chem 2021; 114:105141. [PMID: 34328862 DOI: 10.1016/j.bioorg.2021.105141] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/22/2021] [Accepted: 06/29/2021] [Indexed: 01/02/2023]
Abstract
A new series of 3-aryl-4-(N-aryl)aminocoumarins was synthesized in two steps starting from the natural product 4-hydroxycoumarin using the photoredox catalysis for the key step. These conditions reactions allowed to make CC bonds is up to 95% yields in mild conditions, easy operation, in an environmentally benign way, and are compatible with several patterns of substitution. The biological activity of the new compounds was tested in vitro against MCF-7, MDA-MB-231, and CCD-1072Sk cancer cell lines, as soon as to promastigotes and intracellular amastigotes of Leishmania amazonensis. Compounds 17d, 17s and 17x showed activity against promastigote forms (IC50 = 5.96 ± 3.210, 9.05 ± 2.855 and 5.65 ± 2.078 μM respectively), and compound 17x presented the best activity against L. amazonensis amastigote intracellular form (IC50 = 9.6 ± 1.148 μM), no BALB/c peritoneal macrophage cytotoxicity at assayed concentrations (CC50 > 600 μM), and high selectivity to parasites over the mammalian cells (Selectivity Index > 62.2). There was no expressive activity for the cancer cell lines. Single crystal X-ray diffraction analysis was employed for structural elucidation of compounds 17a and 17s. In silico analyses of physicochemical, pharmacokinetic, and toxicological properties suggest that compound 17x is a potential candidate for anti-leishmaniasis drugs.
Collapse
Affiliation(s)
- Leonardo S A Carneiro
- Departmento de Química, Pontifícia Universidade Católica do Rio de Janeiro (PUC-Rio), Rua Marquês de São Vicente 225, sala 576L, Gávea, Rio de Janeiro, RJ 20551-031, Brazil
| | - Fernando Almeida-Souza
- Pós-graduação em Ciência Animal, Universidade Estadual do Maranhão (UEMA), Cidade Universitária Paulo VI, São Luís, MA 65055-310, Brazil; Laboratório de Imunomodulação e Protozoologia, Instituto Oswaldo Cruz (Fiocruz), Av. Brasil 4365, Manguinhos, Rio de Janeiro, RJ, 21040-900, Brazil
| | - Yanne S C Lopes
- Departmento de Química, Pontifícia Universidade Católica do Rio de Janeiro (PUC-Rio), Rua Marquês de São Vicente 225, sala 576L, Gávea, Rio de Janeiro, RJ 20551-031, Brazil
| | - Rachel C V Novas
- Departmento de Química, Pontifícia Universidade Católica do Rio de Janeiro (PUC-Rio), Rua Marquês de São Vicente 225, sala 576L, Gávea, Rio de Janeiro, RJ 20551-031, Brazil
| | - Kaique B A Santos
- Laboratório de Imunomodulação e Protozoologia, Instituto Oswaldo Cruz (Fiocruz), Av. Brasil 4365, Manguinhos, Rio de Janeiro, RJ, 21040-900, Brazil
| | - Carolina B P Ligiero
- Instituto de Química, Universidade Federal do Rio de Janeiro (UFRJ), Av. Athos da Silveira Ramos, 149, CT, Bl. A-622, Cid. Universitária, Ilha do Fundão, Rio de Janeiro, RJ 21941-909, Brazil
| | - Kátia da S Calabrese
- Laboratório de Imunomodulação e Protozoologia, Instituto Oswaldo Cruz (Fiocruz), Av. Brasil 4365, Manguinhos, Rio de Janeiro, RJ, 21040-900, Brazil
| | - Camilla D Buarque
- Departmento de Química, Pontifícia Universidade Católica do Rio de Janeiro (PUC-Rio), Rua Marquês de São Vicente 225, sala 576L, Gávea, Rio de Janeiro, RJ 20551-031, Brazil.
| |
Collapse
|
12
|
Gontijo VS, Colombo FA, Ferreira Espuri P, Freitas PGD, Nunes JB, Alves LB, Veloso MP, Alves RB, Freitas RP, Marques MJ. In vivo evaluation of anti-Leishmania activity of alkyltriazoles and alkylphosphocholines by oral route. Exp Parasitol 2021; 226-227:108123. [PMID: 34144040 DOI: 10.1016/j.exppara.2021.108123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 06/04/2021] [Accepted: 06/05/2021] [Indexed: 10/21/2022]
Abstract
The failures in the treatment of leishmaniasis is an increasing problem around the world, especially related to resistance. Thus, we describe the synthesis and in vivo anti-Leishmania activity of alkylphosphocholine and alkyltriazoles; besides, their likely action mechanisms stem from some eventual inhibition of parasite enzymes using computational tools. These compounds were tested in an in vivo hamster model infected with Leishmania Leishmania infantum chagasi. Fifty days after parasite inoculation, the two compounds 12-azidedodecylphosphocholine (3) and 3-(1-(12-fluorododecyl)-1H-1,2,3-triazol-1-yl)propano-1-ol (9), were separately administered once a day as oral suspensions (25 and 12.5 mg/kg/day, respectively) during ten days, and their efficacy was compared to the reference compound pentavalent antimonial Glucantime (GLU). Compound 3 significantly reduced the number of parasites in the spleen (4.93 × 102 amastigotes/g) and liver (4.52 × 103 amastigotes/g). Compound 9 reduced the number of amastigotes in the spleen to 1.30 × 104 and 1.36 × 103 amastigotes/g in the liver. GLU was the most effective overall treatment (7.50 × 101 and 2.28 × 102 amastigotes/g in the spleen and liver, respectively). The high activity levels of these compounds in vivo may stem from their high in vitro leishmanicidal activity and lipophilicity. The in silico absorption, distribution, metabolism, and excretion studies also showed some anti-Leishmania potential. Compound 9 had more lipophilic characteristics than those of compound 3. In silico studies of the nine enzymes of compounds 3 and 9 showed significant evidence of interactions with nicotimidase and tyrosine aminotransferase, demonstrating possible inhibition enzymes present in L. (L.) infantum chagasi. These compounds could be a promising template for developing a new class of leishmanicidal agents, by oral route, and deserve further investigation to explore different therapeutic regimens.
Collapse
Affiliation(s)
- Vanessa Silva Gontijo
- Departamento de Química, ICEx, UFMG, Av. Pres. Antônio Carlos, 6627, Pampulha, Belo Horizonte, MG, 31270-901, Brazil.
| | - Fabio Antônio Colombo
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Ciências Farmacêuticas, Universidade Federal de Alfenas, Rua Gabriel Monteiro da Silva, 700- Centro, 37130-001, Alfenas, MG, Brazil
| | - Patrícia Ferreira Espuri
- Departamento de Patologia e Parasitologia, Instituto de Ciências Biomédicas, Universidade Federal de Alfenas, Rua Gabriel Monteiro da Silva, 700- Centro, 37130-001, Alfenas, MG, Brazil
| | - Poliany Graziella de Freitas
- Laboratório de Modelagem Molecular e Simulação Computacional, MolMod-CS, Universidade Federal de Alfenas, Rua Gabriel Monteiro da Silva, 700- Centro, 37130-001, Alfenas, MG, Brazil
| | - Juliana Barbosa Nunes
- Laboratório de Patologia de Moléstias Infecciosas, Departamento de Patologia, Faculdade de Medicina FMUSP, Universidade de São Paulo, Av. Dr. Arnaldo, 455. Cerqueira César, São Paulo, 01246-903, São Paulo, SP, Brazil
| | - Levy Bueno Alves
- Laboratório de Modelagem Molecular e Simulação Computacional, MolMod-CS, Universidade Federal de Alfenas, Rua Gabriel Monteiro da Silva, 700- Centro, 37130-001, Alfenas, MG, Brazil
| | - Márcia Paranho Veloso
- Laboratório de Modelagem Molecular e Simulação Computacional, MolMod-CS, Universidade Federal de Alfenas, Rua Gabriel Monteiro da Silva, 700- Centro, 37130-001, Alfenas, MG, Brazil
| | - Rosemeire Brondi Alves
- Departamento de Química, ICEx, UFMG, Av. Pres. Antônio Carlos, 6627, Pampulha, Belo Horizonte, MG, 31270-901, Brazil
| | - Rossimiriam Pereira Freitas
- Departamento de Química, ICEx, UFMG, Av. Pres. Antônio Carlos, 6627, Pampulha, Belo Horizonte, MG, 31270-901, Brazil
| | - Marcos José Marques
- Departamento de Patologia e Parasitologia, Instituto de Ciências Biomédicas, Universidade Federal de Alfenas, Rua Gabriel Monteiro da Silva, 700- Centro, 37130-001, Alfenas, MG, Brazil.
| |
Collapse
|
13
|
Antiprotozoal and Antibacterial Activity of Ravenelin, a Xanthone Isolated from the Endophytic Fungus Exserohilum rostratum. Molecules 2021; 26:molecules26113339. [PMID: 34199336 PMCID: PMC8199546 DOI: 10.3390/molecules26113339] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/10/2021] [Accepted: 05/11/2021] [Indexed: 11/29/2022] Open
Abstract
The natural compound ravenelin was isolated from the biomass extracts of Exserohilum rostratum fungus, and its antimicrobial, antiplasmodial, and trypanocidal activities were evaluated. Ravenelin was isolated by column chromatography and HPLC and identified by NMR and MS. The susceptibility of Gram-positive and Gram-negative bacteria strains to ravenelin was determined by microbroth dilution assay. Cytotoxicity was evaluated in hepatocarcinoma cells (HepG2) and BALB/c peritoneal macrophages by using MTT. SYBR Green I-based assay was used in the asexual stages of Plasmodium falciparum. Trypanocidal activity was tested against the epimastigote and intracellular amastigote forms of Trypanosoma cruzi. Ravenelin was active against Gram-positive bacteria strains, with emphasis on Bacillus subtilis (MIC value of 7.5 µM). Ravenelin’s antiparasitic activities were assessed against both the epimastigote (IC50 value of 5 ± 1 µM) and the intracellular amastigote forms of T. cruzi (IC50 value of 9 ± 2 µM), as well as against P. falciparum (IC50 value of 3.4 ± 0.4 µM). Ravenelin showed low cytotoxic effects on both HepG2 (CC50 > 50 µM) and peritoneal macrophage (CC50 = 185 ± 1 µM) cells with attractive selectivity for the parasites (SI values > 15). These findings indicate that ravenelin is a natural compound with both antibacterial and antiparasitic activities, and considerable selectivity indexes. Therefore, ravenelin is an attractive candidate for hit-to-lead development.
Collapse
|
14
|
Inhibitory Effect of Catechin-Rich Açaí Seed Extract on LPS-Stimulated RAW 264.7 Cells and Carrageenan-Induced Paw Edema. Foods 2021; 10:foods10051014. [PMID: 34066479 PMCID: PMC8148186 DOI: 10.3390/foods10051014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/03/2021] [Accepted: 02/04/2021] [Indexed: 11/17/2022] Open
Abstract
Açaí berry is a fruit from the tree commonly known as açaízeiro (Euterpe oleracea Mart.) originated from the Amazonian region and widely consumed in Brazil. There are several reports of the anti-inflammatory activity of its pulp and few data about the seed's potential in inflammation control. This work aimed to evaluate the effect of catechin-rich açaí extract on lipopolysaccharide (LPS)-stimulated RAW 264.7 cells and carrageenan-induced paw edema. The treatment with E. oleracea ethyl acetate extract (EO-ACET) was used in an in vitro model performed with macrophages stimulated by LPS, in which pro-inflammatory markers were evaluated, and in an in vivo model of acute inflammation, in which edema inhibition was evaluated. EO-ACET showed an absence of endotoxins, and did not display cytotoxic effects in RAW 264.7 cells. LPS-stimulated cells treated with EO-ACET displayed low levels of nitrite and interleukins (IL's), IL-1β, IL-6 and IL-12, when compared to untreated cells. EO-ACET treatment was able to inhibit carrageenan-induced paw edema at 500 and 1000 mg/kg, in which no acute inflammatory reaction or low mast cell counts were observed by histology at the site of inoculation of λ-carrageenan. These findings provide more evidence to support further studies with E. oleracea seeds for the treatment of inflammation.
Collapse
|
15
|
Mondêgo-Oliveira R, de Sá Sousa JC, Moragas-Tellis CJ, de Souza PVR, dos Santos Chagas MDS, Behrens MD, Jesús Hardoim DD, Taniwaki NN, Chometon TQ, Bertho AL, Calabrese KDS, Almeida-Souza F, Abreu-Silva AL. Vernonia brasiliana (L.) Druce induces ultrastructural changes and apoptosis-like death of Leishmania infantum promastigotes. Biomed Pharmacother 2021; 133:111025. [DOI: 10.1016/j.biopha.2020.111025] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 11/08/2020] [Accepted: 11/15/2020] [Indexed: 12/13/2022] Open
|
16
|
Aniba rosaeodora (Var. amazonica Ducke) Essential Oil: Chemical Composition, Antibacterial, Antioxidant and Antitrypanosomal Activity. Antibiotics (Basel) 2020; 10:antibiotics10010024. [PMID: 33396612 PMCID: PMC7824638 DOI: 10.3390/antibiotics10010024] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 12/21/2020] [Accepted: 12/28/2020] [Indexed: 12/12/2022] Open
Abstract
Aniba rosaeodora is one of the most widely used plants in the perfumery industry, being used as medicinal plant in the Brazilian Amazon. This work aimed to evaluate the chemical composition of A. rosaeodora essential oil and its biological activities. A. rosaeodora essential oil presented linalool (93.60%) as its major compound. The A. rosaeodora essential oil and linalool showed activity against all the bacteria strains tested, standard strains and marine environment bacteria, with the lower minimum inhibitory concentration being observed for S. aureus. An efficient antioxidant activity of A. rosaeodora essential oil and linalool (EC50: 15.46 and 6.78 µg/mL, respectively) was evidenced by the inhibition of the 2,2-azinobis- (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radical. The antitrypanosomal activity of A. rosaeodora essential oil and linalool was observed at high concentrations against epimatigote forms (inhibitory concentration for 50% of parasites (IC50): 150.5 ± 1.08 and 198.6 ± 1.12 µg/mL, respectively), and even higher against intracellular amastigotes of T. cruzi (IC50: 911.6 ± 1.15 and 249.6 ± 1.18 µg/mL, respectively). Both A. rosaeodora essential oil and linalool did not exhibit a cytotoxic effect in BALB/c peritoneal macrophages, and both reduced nitrite levels in unstimulated cells revealing a potential effect in NO production. These data revealed the pharmacological potential of A. rosaeodora essential oil and linalool, encouraging further studies.
Collapse
|