1
|
Dasgupta A, Tripathi A, Mitra A, Ghosh P, Santra MK, Mitra D. Human microRNA miR-197-3p positively regulates HIV-1 virion infectivity through its target DDX52 by stabilizing Vif protein expression. J Biol Chem 2025; 301:108198. [PMID: 39826696 DOI: 10.1016/j.jbc.2025.108198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 01/04/2025] [Accepted: 01/12/2025] [Indexed: 01/22/2025] Open
Abstract
MicroRNAs are a part of the integral regulatory mechanisms found in eukaryotic cells that help in maintaining cellular homeostasis by modulating the expression of target genes. However, during stress conditions like viral infection, the expression profile of the microRNAs change, thereby directly modulating the expression of viral genes and/or indirectly targeting the virus by regulating the host genes. The present study intends to identify previously uncharacterized cellular microRNAs, which are significantly modulated upon HIV-1 infection. With the available microarray data of five independent studies in the NCBI GEO database, 10 common yet functionally uncharacterized microRNAs that are deregulated during HIV-1 infection in humans were identified. Their expression profiles were validated in HIV-1 infected human peripheral blood mononuclear cells and a CD4+T cell line. Among them, miR-197-3p showed significant upregulation during HIV-1 infection in all the cell types tested and was selected for further characterization. We then found that miR-197-3p increases progeny virion infectivity through restricting the expression of DDX52. Interestingly, DDX52 showed a negative impact on virion infectivity by downregulating the HIV-1 viral infectivity factor (Vif) at the protein level. Mechanistically, our study also revealed that Vif, DDX52, and APOBEC3G form a complex, which might be responsible for Vif downregulation by proteasomal degradation. Taken together, our results demonstrate that miR-197-3p is a positive regulator of HIV-1 infectivity as it enhances the progeny virion infectivity by targeting DDX52, which is a negative regulator of Vif.
Collapse
Affiliation(s)
- Anindita Dasgupta
- National Centre for Cell Science, SP Pune University Campus, Pune, Maharashtra, India
| | - Anjali Tripathi
- National Centre for Cell Science, SP Pune University Campus, Pune, Maharashtra, India
| | - Alapani Mitra
- National Centre for Cell Science, SP Pune University Campus, Pune, Maharashtra, India
| | - Payel Ghosh
- Bioinformatics Centre, SP Pune University, Pune, Maharashtra, India
| | - Manas Kumar Santra
- National Centre for Cell Science, SP Pune University Campus, Pune, Maharashtra, India
| | - Debashis Mitra
- National Centre for Cell Science, SP Pune University Campus, Pune, Maharashtra, India.
| |
Collapse
|
2
|
Morando N, Rosenzvit MC, Pando MA, Allmer J. The Role of MicroRNAs in HIV Infection. Genes (Basel) 2024; 15:574. [PMID: 38790203 PMCID: PMC11120859 DOI: 10.3390/genes15050574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 04/17/2024] [Accepted: 04/23/2024] [Indexed: 05/26/2024] Open
Abstract
MicroRNAs (miRNAs), a class of small, non-coding RNAs, play a pivotal role in regulating gene expression at the post-transcriptional level. These regulatory molecules are integral to many biological processes and have been implicated in the pathogenesis of various diseases, including Human Immunodeficiency Virus (HIV) infection. This review aims to cover the current understanding of the multifaceted roles miRNAs assume in the context of HIV infection and pathogenesis. The discourse is structured around three primary focal points: (i) elucidation of the mechanisms through which miRNAs regulate HIV replication, encompassing both direct targeting of viral transcripts and indirect modulation of host factors critical for viral replication; (ii) examination of the modulation of miRNA expression by HIV, mediated through either viral proteins or the activation of cellular pathways consequent to viral infection; and (iii) assessment of the impact of miRNAs on the immune response and the progression of disease in HIV-infected individuals. Further, this review delves into the potential utility of miRNAs as biomarkers and therapeutic agents in HIV infection, underscoring the challenges and prospects inherent to this line of inquiry. The synthesis of current evidence positions miRNAs as significant modulators of the host-virus interplay, offering promising avenues for enhancing the diagnosis, treatment, and prevention of HIV infection.
Collapse
Affiliation(s)
- Nicolas Morando
- Instituto de Investigaciones Biomédicas en Retrovirus y Sida (INBIRS), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-Universidad de Buenos Aires, Buenos Aires 1121, Argentina; (N.M.); (M.A.P.)
| | - Mara Cecilia Rosenzvit
- Departamento de Microbiología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires 1121, Argentina;
- Instituto de Investigaciones en Microbiología y Parasitología Médica (IMPaM, UBA-CONICET), Universidad de Buenos Aires, Buenos Aires 1121, Argentina
| | - Maria A. Pando
- Instituto de Investigaciones Biomédicas en Retrovirus y Sida (INBIRS), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-Universidad de Buenos Aires, Buenos Aires 1121, Argentina; (N.M.); (M.A.P.)
| | - Jens Allmer
- Medical Informatics and Bioinformatics, Institute for Measurement Engineering and Sensor Technology, Hochschule Ruhr West, University of Applied Sciences, 45479 Mülheim an der Ruhr, Germany
| |
Collapse
|
3
|
Ma Y, Guo X, He Q, Liu L, Li Z, Zhao X, Gu W, Zhong Q, Li N, Yao G, Ma X. Integrated analysis of microRNA and messenger RNA expression profiles reveals functional microRNA in infectious bovine rhinotracheitis virus-induced mitochondrial damage in Madin-Darby bovine kidney cells. BMC Genomics 2024; 25:158. [PMID: 38331736 PMCID: PMC10851472 DOI: 10.1186/s12864-024-10042-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 01/22/2024] [Indexed: 02/10/2024] Open
Abstract
BACKGROUND Studies have confirmed that Infectious bovine rhinotracheitis virus (IBRV) infection induces mitochondrial damage. MicroRNAs (miRNAs) are a class of noncoding RNA molecules, which are involved in various biological processes and pathological changes associated with mitochondrial damage. It is currently unclear whether miRNAs participate in IBRV-induced mitochondrial damage in Madin-Darby bovine kidney (MDBK) cells. RESULTS In the present study, we used high-throughput sequencing technology, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis to screen for mitochondria-related miRNAs and messenger RNAs (mRNAs). In total, 279 differentially expressed miRNAs and 832 differentially expressed mRNAs were identified in 6 hours (IBRV1) versus 24 hours (IBRV2) after IBRV infection in MDBK cells. GO and KEGG enrichment analysis revealed that 42 differentially expressed mRNAs and 348 target genes of differentially expressed miRNAs were correlated with mitochondrial damage, and the miRNA-mitochondria-related target genes regulatory network was constructed to elucidate their potential regulatory relationships. Among the 10 differentially expressed miRNAs, 8 showed expression patterns consistent with the high-throughput sequencing results. Functional validation results showed that overexpression of miR-10a and miR-182 aggravated mitochondrial damage, while inhibition of miR-10a and miR-182 alleviated mitochondrial damage. CONCLUSIONS This study not only revealed the expression changes of miRNAs and mRNAs in IBRV-infected MDBK cells, but also revealed possible biological regulatory relationship between them. MiR-10a and miR-182 may have the potential to be developed as biomarkers for the diagnosis and treatment of IBRV. Together, Together, these data and analyses provide additional insights into the roles of miRNA and mRNA in IBRV-induced mitochondria damage.
Collapse
Affiliation(s)
- Yingcai Ma
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, 830052, China
- Xinjiang key Laboratory of New Drug Study and Creation for Herbivorous Animal (XJ-KLNDSCHA), Xinjiang Agricultural University, Urumqi, 830052, China
| | - Xueping Guo
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, 830052, China
- Xinjiang key Laboratory of New Drug Study and Creation for Herbivorous Animal (XJ-KLNDSCHA), Xinjiang Agricultural University, Urumqi, 830052, China
| | - Qin He
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, 830052, China
- Xinjiang key Laboratory of New Drug Study and Creation for Herbivorous Animal (XJ-KLNDSCHA), Xinjiang Agricultural University, Urumqi, 830052, China
| | - Lu Liu
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, 830052, China
- Xinjiang key Laboratory of New Drug Study and Creation for Herbivorous Animal (XJ-KLNDSCHA), Xinjiang Agricultural University, Urumqi, 830052, China
| | - Zelong Li
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, 830052, China
- Xinjiang key Laboratory of New Drug Study and Creation for Herbivorous Animal (XJ-KLNDSCHA), Xinjiang Agricultural University, Urumqi, 830052, China
| | - Xiaomin Zhao
- College of Veterinary Medicine, Northwest A & F University, Yangling, 712100, China
| | - Wenxi Gu
- Institute of Animal Science, Xinjiang Academy of Animal Sciences, Urumqi, 830011, China
| | - Qi Zhong
- Institute of Animal Science, Xinjiang Academy of Animal Sciences, Urumqi, 830011, China
| | - Na Li
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, 830052, China
- Xinjiang key Laboratory of New Drug Study and Creation for Herbivorous Animal (XJ-KLNDSCHA), Xinjiang Agricultural University, Urumqi, 830052, China
| | - Gang Yao
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, 830052, China.
- Xinjiang key Laboratory of New Drug Study and Creation for Herbivorous Animal (XJ-KLNDSCHA), Xinjiang Agricultural University, Urumqi, 830052, China.
| | - Xuelian Ma
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, 830052, China.
- Xinjiang key Laboratory of New Drug Study and Creation for Herbivorous Animal (XJ-KLNDSCHA), Xinjiang Agricultural University, Urumqi, 830052, China.
| |
Collapse
|
4
|
Yin Y, Qiu Z, Lei Y, Huang J, Sun Y, Liu H, Wu W, Wang X, Shu Y, Zheng Q, Fang S. Screening and identification of specific cluster miRNAs in N2a cells infected by H7N9 virus. Virus Genes 2023; 59:716-722. [PMID: 37395889 DOI: 10.1007/s11262-023-01996-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 04/10/2023] [Indexed: 07/04/2023]
Abstract
This study aims to screen and identify specific cluster miRNAs of H7N9 virus-infected N2a cells and explore the possible pathogenesis of these miRNAs. The N2a cells are infected with H7N9 and H1N1 influenza viruses, and the cells are collected at 12, 24 and 48 h to extract total RNA. To sequence miRNAs and identify different virus-specific miRNAs, high-throughput sequencing technology is used. Fifteen H7N9 virus-specific cluster miRNAs are screened, and eight of them are included in the miRBase database. These cluster-specific miRNAs regulate many signaling pathways, such as the PI3K-Akt signaling pathway, the RAS signaling pathway, the cAMP signaling pathway, actin cytoskeleton regulation and cancer-related genes. The study provides a scientific basis for the pathogenesis of H7N9 avian influenza, which is regulated by miRNAs.
Collapse
Affiliation(s)
- Yitong Yin
- Jinan University, College of Pharmacy, Guangzhou, 510632, China
| | - Zengzhao Qiu
- National Sun yat-sen University, Public Health Hospital (Shenzhen), Shenzhen, 518107, China
| | - Yuxuan Lei
- National Sun yat-sen University, Public Health Hospital (Shenzhen), Shenzhen, 518107, China
| | - Jia Huang
- Guangdong Pharmaceutical University, Public Health College, Guangzhou, 510006, China
| | - Ying Sun
- Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China
| | - Hui Liu
- Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China
| | - Weihua Wu
- Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China
| | - Xin Wang
- Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China
| | - Yuelong Shu
- National Sun yat-sen University, Public Health Hospital (Shenzhen), Shenzhen, 518107, China
- Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College CN, Beijing, 102206, China
| | - Qing Zheng
- Jinan University, College of Pharmacy, Guangzhou, 510632, China.
| | - Shisong Fang
- Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China.
| |
Collapse
|
5
|
Fernández-Pato A, Virseda-Berdices A, Resino S, Ryan P, Martínez-González O, Peréz-García F, Martin-Vicente M, Valle-Millares D, Brochado-Kith O, Blancas R, Martínez A, Ceballos FC, Bartolome-Sánchez S, Vidal-Alcántara EJ, Alonso D, Blanca-López N, Martinez-Acitores IR, Martin-Pedraza L, Jiménez-Sousa MÁ, Fernández-Rodríguez A. Plasma miRNA profile at COVID-19 onset predicts severity status and mortality. Emerg Microbes Infect 2022; 11:676-688. [PMID: 35130828 PMCID: PMC8890551 DOI: 10.1080/22221751.2022.2038021] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND MicroRNAs (miRNAs) have a crucial role in regulating immune response against infectious diseases, showing changes early in disease onset and before the detection of the pathogen. Thus, we aimed to analyze the plasma miRNA profile at COVID-19 onset to identify miRNAs as early prognostic biomarkers of severity and survival. METHODS AND RESULTS Plasma miRNome of 96 COVID-19 patients that developed asymptomatic/mild, moderate and severe disease was sequenced together with a group of healthy controls. Plasma immune-related biomarkers were also assessed. COVID-19 patients showed 200 significant differentially expressed (SDE) miRNAs concerning healthy controls, with upregulated putative targets of SARS-CoV-2, and inflammatory miRNAs. Among COVID-19 patients, 75 SDE miRNAs were observed in asymptomatic/mild compared to symptomatic patients, which were involved in platelet aggregation and cytokine pathways, among others. Moreover, 137 SDE miRNAs were identified between severe and moderate patients, where miRNAs targeting the SARS CoV-2 genome were the most strongly disrupted. Finally, we constructed a mortality predictive risk score (miRNA-MRS) with ten miRNAs. Patients with higher values had a higher risk of 90-days mortality (hazard ratio=4.60; p-value<0.001). Besides, the discriminant power of miRNA-MRS was significantly higher than the observed for age and gender (AUROC=0.970 vs. 0.881; p=0.042). CONCLUSIONS SARS-CoV-2 infection deeply disturbs the plasma miRNome from an early stage of COVID-19, making miRNAs highly valuable as early predictors of severity and mortality.
Collapse
Affiliation(s)
- Asier Fernández-Pato
- Unit of Viral Infection and Immunity, National Center for Microbiology CNM, Health Institute Carlos III ISCIII, Majadahonda, Madrid, Spain.,Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Ana Virseda-Berdices
- Unit of Viral Infection and Immunity, National Center for Microbiology CNM, Health Institute Carlos III ISCIII, Majadahonda, Madrid, Spain
| | - Salvador Resino
- Unit of Viral Infection and Immunity, National Center for Microbiology CNM, Health Institute Carlos III ISCIII, Majadahonda, Madrid, Spain
| | - Pablo Ryan
- Department of Infectious Diseases, Hospital Universitario Infanta Leonor, Madrid, Spain.,School of Medicine, Complutense University of Madrid, Madrid, Spain.,Gregorio Marañón Health Research Institute, Madrid, Spain
| | | | - Felipe Peréz-García
- Clinical Microbiology Department, Hospital Universitario Príncipe de Asturias, Alcalá de Henares, Spain
| | - María Martin-Vicente
- Unit of Viral Infection and Immunity, National Center for Microbiology CNM, Health Institute Carlos III ISCIII, Majadahonda, Madrid, Spain
| | - Daniel Valle-Millares
- Unit of Viral Infection and Immunity, National Center for Microbiology CNM, Health Institute Carlos III ISCIII, Majadahonda, Madrid, Spain
| | - Oscar Brochado-Kith
- Unit of Viral Infection and Immunity, National Center for Microbiology CNM, Health Institute Carlos III ISCIII, Majadahonda, Madrid, Spain
| | - Rafael Blancas
- Critical Care Department, Hospital Universitario del Tajo, Aranjuez, Spain
| | - Amalia Martínez
- Department of Infectious Diseases, Hospital Universitario Infanta Leonor, Madrid, Spain
| | - Francisco C Ceballos
- Unit of Viral Infection and Immunity, National Center for Microbiology CNM, Health Institute Carlos III ISCIII, Majadahonda, Madrid, Spain
| | - Sofía Bartolome-Sánchez
- Unit of Viral Infection and Immunity, National Center for Microbiology CNM, Health Institute Carlos III ISCIII, Majadahonda, Madrid, Spain
| | - Erick Joan Vidal-Alcántara
- Unit of Viral Infection and Immunity, National Center for Microbiology CNM, Health Institute Carlos III ISCIII, Majadahonda, Madrid, Spain
| | - David Alonso
- Internal Medicine Service, Hospital Universitario Príncipe de Asturias, Alcalá de Henares, Spain
| | | | | | - Laura Martin-Pedraza
- Department of Infectious Diseases, Hospital Universitario Infanta Leonor, Madrid, Spain
| | - María Ángeles Jiménez-Sousa
- Unit of Viral Infection and Immunity, National Center for Microbiology CNM, Health Institute Carlos III ISCIII, Majadahonda, Madrid, Spain
| | - Amanda Fernández-Rodríguez
- Unit of Viral Infection and Immunity, National Center for Microbiology CNM, Health Institute Carlos III ISCIII, Majadahonda, Madrid, Spain
| |
Collapse
|
6
|
Braicu C. Functional Genomics in Health and Disease. Int J Mol Sci 2021; 22:ijms222312944. [PMID: 34884749 PMCID: PMC8657478 DOI: 10.3390/ijms222312944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 11/17/2021] [Indexed: 11/25/2022] Open
Affiliation(s)
- Cornelia Braicu
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 23 Marinescu Street, 400337 Cluj-Napoca, Romania
| |
Collapse
|
7
|
Valle-Millares D, Brochado-Kith Ó, Martín-Carbonero L, Domínguez-Domínguez L, Ryan P, De los Santos I, De la Fuente S, Castro JM, Lagarde M, Cuevas G, Mayoral-Muñoz M, Matarranz M, Díez V, Gómez-Sanz A, Martínez-Román P, Crespo-Bermejo C, Palladino C, Muñoz-Muñoz M, Jiménez-Sousa MA, Resino S, Briz V, Fernández-Rodríguez A, (COVIHEP) OBOMGOVCHIV. Different HCV Exposure Drives Specific miRNA Profile in PBMCs of HIV Patients. Biomedicines 2021; 9:biomedicines9111627. [PMID: 34829855 PMCID: PMC8615810 DOI: 10.3390/biomedicines9111627] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/27/2021] [Accepted: 11/01/2021] [Indexed: 12/11/2022] Open
Abstract
Micro RNAs (miRNAs) are essential players in HIV and HCV infections, as both viruses modulate cellular miRNAs and interact with the miRNA-mediated host response. We aim to analyze the miRNA profile of HIV patients with different exposure to HCV to explore specific signatures in the miRNA profile of PBMCs for each type of infection. We massively sequenced small RNAs of PBMCs from 117 HIV+ infected patients: 45 HIV+ patients chronically infected with HCV (HIV/HCV+), 36 HIV+ that spontaneously clarified HCV after acute infection (HIV/HCV-) and 36 HIV+ patients without previous HCV infection (HIV). Thirty-two healthy patients were used as healthy controls (HC). Differential expression analysis showed significantly differentially expressed (SDE) miRNAs in HIV/HCV+ (n = 153), HIV/HCV- (n = 169) and HIV (n = 153) patients. We found putative dysregulated pathways, such as infectious-related and PI3K signaling pathways, common in all contrasts. Specifically, putatively targeted genes involved in antifolate resistance (HIV/HV+), cancer-related pathways (HIV/HCV-) and HIF-signaling (HIV) were identified, among others. Our findings revealed that HCV strongly influences the expression profile of PBMCs from HIV patients through the disruption of its miRNome. Thus, different HCV exposure can be identified by specific miRNA signatures in PBMCs.
Collapse
Affiliation(s)
- Daniel Valle-Millares
- Unit of Viral Infection and Immunity, National Center for Microbiology, Institute of Health Carlos III, 28220 Majadahonda, Madrid, Spain; (D.V.-M.); (Ó.B.-K.); (A.G.-S.); (P.M.-R.); (M.A.J.-S.); (S.R.)
| | - Óscar Brochado-Kith
- Unit of Viral Infection and Immunity, National Center for Microbiology, Institute of Health Carlos III, 28220 Majadahonda, Madrid, Spain; (D.V.-M.); (Ó.B.-K.); (A.G.-S.); (P.M.-R.); (M.A.J.-S.); (S.R.)
| | - Luz Martín-Carbonero
- Hospital La Paz Institute for Health Research (IdiPAZ), 28046 Madrid, Spain; (L.M.-C.); (J.M.C.); (M.M.-M.)
| | - Lourdes Domínguez-Domínguez
- VIH Servicio de Medicina Interna Research Institute Hospital 12 de Octubre (i+12), 28041 Madrid, Spain; (L.D.-D.); (M.L.); (M.M.)
| | - Pablo Ryan
- Department of Infectious Diseases, Infanta Leonor Teaching Hospital, 28031 Madrid, Spain; (P.R.); (G.C.); (V.D.)
| | - Ignacio De los Santos
- Internal Medicine Servicie Hospital Universitario de La Princesa, 28006 Madrid, Spain;
| | - Sara De la Fuente
- Internal Medicine Service Hospital Puerta de Hierro, 28222 Madrid, Spain;
| | - Juan M. Castro
- Hospital La Paz Institute for Health Research (IdiPAZ), 28046 Madrid, Spain; (L.M.-C.); (J.M.C.); (M.M.-M.)
| | - María Lagarde
- VIH Servicio de Medicina Interna Research Institute Hospital 12 de Octubre (i+12), 28041 Madrid, Spain; (L.D.-D.); (M.L.); (M.M.)
| | - Guillermo Cuevas
- Department of Infectious Diseases, Infanta Leonor Teaching Hospital, 28031 Madrid, Spain; (P.R.); (G.C.); (V.D.)
| | - Mario Mayoral-Muñoz
- Hospital La Paz Institute for Health Research (IdiPAZ), 28046 Madrid, Spain; (L.M.-C.); (J.M.C.); (M.M.-M.)
| | - Mariano Matarranz
- VIH Servicio de Medicina Interna Research Institute Hospital 12 de Octubre (i+12), 28041 Madrid, Spain; (L.D.-D.); (M.L.); (M.M.)
| | - Victorino Díez
- Department of Infectious Diseases, Infanta Leonor Teaching Hospital, 28031 Madrid, Spain; (P.R.); (G.C.); (V.D.)
| | - Alicia Gómez-Sanz
- Unit of Viral Infection and Immunity, National Center for Microbiology, Institute of Health Carlos III, 28220 Majadahonda, Madrid, Spain; (D.V.-M.); (Ó.B.-K.); (A.G.-S.); (P.M.-R.); (M.A.J.-S.); (S.R.)
| | - Paula Martínez-Román
- Unit of Viral Infection and Immunity, National Center for Microbiology, Institute of Health Carlos III, 28220 Majadahonda, Madrid, Spain; (D.V.-M.); (Ó.B.-K.); (A.G.-S.); (P.M.-R.); (M.A.J.-S.); (S.R.)
| | - Celia Crespo-Bermejo
- Laboratory of Reference and Research on Viral Hepatitis, National Center for Microbiology, Institute of Health Carlos III, 28220 Majadahonda, Madrid, Spain; (C.C.-B.); (V.B.)
| | - Claudia Palladino
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal;
| | - María Muñoz-Muñoz
- Department of Animal Genetics, Instituto Nacional de Investigación y Alimentación Agraria y Alimentaria (INIA), 28040 Madrid, Spain;
| | - María A. Jiménez-Sousa
- Unit of Viral Infection and Immunity, National Center for Microbiology, Institute of Health Carlos III, 28220 Majadahonda, Madrid, Spain; (D.V.-M.); (Ó.B.-K.); (A.G.-S.); (P.M.-R.); (M.A.J.-S.); (S.R.)
| | - Salvador Resino
- Unit of Viral Infection and Immunity, National Center for Microbiology, Institute of Health Carlos III, 28220 Majadahonda, Madrid, Spain; (D.V.-M.); (Ó.B.-K.); (A.G.-S.); (P.M.-R.); (M.A.J.-S.); (S.R.)
| | - Verónica Briz
- Laboratory of Reference and Research on Viral Hepatitis, National Center for Microbiology, Institute of Health Carlos III, 28220 Majadahonda, Madrid, Spain; (C.C.-B.); (V.B.)
| | - Amanda Fernández-Rodríguez
- Unit of Viral Infection and Immunity, National Center for Microbiology, Institute of Health Carlos III, 28220 Majadahonda, Madrid, Spain; (D.V.-M.); (Ó.B.-K.); (A.G.-S.); (P.M.-R.); (M.A.J.-S.); (S.R.)
- Faculty of Medicine, Universidad Alfonso X el Sabio, Avenida Universidad 1, 28691 Villanueva de la Cañada, Madrid, Spain
- Correspondence: ; Tel.: +34-918-223-892
| | | |
Collapse
|
8
|
HIV-1 Tat and cocaine impact astrocytic energy reservoir influence on miRNA epigenetic regulation. Genomics 2021; 113:3461-3475. [PMID: 34418497 DOI: 10.1016/j.ygeno.2021.08.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 08/10/2021] [Accepted: 08/16/2021] [Indexed: 12/13/2022]
Abstract
Astrocytes are the primary regulator of energy metabolism in the central nervous system (CNS), and impairment of astrocyte's energy resource may trigger neurodegeneration. HIV infections and cocaine use are known to alter epigenetic modification, including miRNAs, which can target gene expression post-transcriptionally. However, miRNA-mediated astrocyte energy metabolism has not been delineated in HIV infection and cocaine abuse. Using next-generation sequencing (NGS), we identified a total of 1900 miRNAs, 64 were upregulated and 68 miRNAs were downregulated in the astrocytes by HIV-1 Tat with cocaine exposure. Moreover, miR-4727-3p, miR-5189-5p, miR-5090, and miR-6810-5p expressions were significantly impacted, and their gene targets were identified as VAMP2, NFIB, PPM1H, MEIS1, and PSD93 through the bioinformatic approach. In addition, the astrocytes treated with the nootropic drug piracetam protects these miRNAs. These findings provide evidence that the miRNAs in the astrocytes may be a potential biomarker and therapeutic target for HIV and cocaine abuse-induced neurodegeneration.
Collapse
|
9
|
Al Bitar S, Ballouz T, Doughan S, Gali-Muhtasib H, Rizk N. Potential role of micro ribonucleic acids in screening for anal cancer in human papilloma virus and human immunodeficiency virus related malignancies. World J Gastrointest Pathophysiol 2021; 12:59-83. [PMID: 34354849 PMCID: PMC8316837 DOI: 10.4291/wjgp.v12.i4.59] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/24/2021] [Accepted: 05/19/2021] [Indexed: 02/06/2023] Open
Abstract
Despite advances in antiretroviral treatment (ART), human immunodeficiency virus (HIV) continues to be a major global public health issue owing to the increased mortality rates related to the prevalent oncogenic viruses among people living with HIV (PLWH). Human papillomavirus (HPV) is the most common sexually transmitted viral disease in both men and women worldwide. High-risk or oncogenic HPV types are associated with the development of HPV-related malignancies, including cervical, penile, and anal cancer, in addition to oral cancers. The incidence of anal squamous cell cancers is increasing among PLWH, necessitating the need for reliable screening methods in this population at risk. In fact, the currently used screening methods, including the Pap smear, are invasive and are neither sensitive nor specific. Investigators are interested in circulatory and tissue micro ribonucleic acids (miRNAs), as these small non-coding RNAs are ideal biomarkers for early detection and prognosis of cancer. Multiple miRNAs are deregulated during HIV and HPV infection and their deregulation contributes to the pathogenesis of disease. Here, we will review the molecular basis of HIV and HPV co-infections and focus on the pathogenesis and epidemiology of anal cancer in PLWH. The limitations of screening for anal cancer and the need for a reliable screening program that involves specific miRNAs with diagnostic and therapeutic values is also discussed.
Collapse
Affiliation(s)
- Samar Al Bitar
- Department of Biology, American University of Beirut, Beirut 1107 2020, Lebanon
| | - Tala Ballouz
- Department of Internal Medicine, American University of Beirut Medical Center, Beirut 1107 2020, Lebanon
| | - Samer Doughan
- Department of Surgery, American University of Beirut Medical Center, Beirut 1107 2020, Lebanon
| | - Hala Gali-Muhtasib
- Department of Biology and Center for Drug Discovery, American University of Beirut, Beirut 1107 2020, Lebanon
| | - Nesrine Rizk
- Department of Internal Medicine, American University of Beirut Medical Center, Beirut 1107 2020, Lebanon
| |
Collapse
|
10
|
Horváth M, Nagy G, Zsindely N, Bodai L, Horváth P, Vágvölgyi C, Nosanchuk JD, Tóth R, Gácser A. Oral Epithelial Cells Distinguish between Candida Species with High or Low Pathogenic Potential through MicroRNA Regulation. mSystems 2021; 6:6/3/e00163-21. [PMID: 33975967 PMCID: PMC8125073 DOI: 10.1128/msystems.00163-21] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Oral epithelial cells monitor microbiome composition and initiate immune response upon dysbiosis, as in the case of Candida imbalances. Candida species, such as C. albicans and C. parapsilosis, are the most prevalent yeasts in the oral cavity. Comparison of healthy oral epithelial cell responses revealed that while C. albicans infection robustly activated inflammation cascades, C. parapsilosis primarily activated various inflammation-independent pathways. In posttranscriptional regulatory processes, several miRNAs were altered by both species. For C. parapsilosis, the dose of yeast cells directly correlated with changes in transcriptomic responses with higher fungal burdens inducing significantly different and broader changes. MicroRNAs (miRNAs) associated with carbohydrate metabolism-, hypoxia-, and vascular development-related responses dominated with C. parapsilosis infection, whereas C. albicans altered miRNAs linked to inflammatory responses. Subsequent analyses of hypoxia-inducible factor 1α (HIF1-α) and hepatic stellate cell (HSC) activation pathways predicted target genes through which miRNA-dependent regulation of yeast-specific functions may occur, which also supported the observed species-specific responses. Our findings suggest that C. parapsilosis is recognized as a commensal at low doses by the oral epithelium; however, increased fungal burden activates different pathways, some of which overlap with the inflammatory processes robustly induced by C. albicans IMPORTANCE A relatively new topic within the field of immunology involves the role of miRNAs in innate as well as adaptive immune response regulation. In recent years, posttranscriptional regulation of host-pathogenic fungal interactions through miRNAs was also suggested. Our study reveals that the distinct nature of human oral epithelial cell responses toward C. parapsilosis and C. albicans is possibly due to species-specific fine-tuning of host miRNA regulatory processes. The findings of this study also shed new light on the nature of early host cell transcriptional responses to the presence of C. parapsilosis and highlight the species' potential inflammation-independent host activation processes. These findings contribute to our better understanding of how miRNA deregulation at the oral immunological barrier, in noncanonical immune cells, may discriminate between fungal species, particularly Candida species with high or low pathogenic potential.
Collapse
Affiliation(s)
- Márton Horváth
- Department of Microbiology, University of Szeged, Szeged, Hungary
| | - Gábor Nagy
- Department of Biochemistry and Molecular Biology, University of Szeged, Szeged, Hungary
| | - Nóra Zsindely
- Department of Microbiology, University of Szeged, Szeged, Hungary
| | - László Bodai
- Department of Biochemistry and Molecular Biology, University of Szeged, Szeged, Hungary
| | - Péter Horváth
- Synthetic and Systems Biology Unit, Biological Research Centre (BRC), Szeged, Hungary
- Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, Finland
| | - Csaba Vágvölgyi
- Department of Microbiology, University of Szeged, Szeged, Hungary
| | - Joshua D Nosanchuk
- Department of Medicine (Infectious Diseases), Albert Einstein College of Medicine, Bronx, New York, USA
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Renáta Tóth
- Department of Microbiology, University of Szeged, Szeged, Hungary
| | - Attila Gácser
- Department of Microbiology, University of Szeged, Szeged, Hungary
- MTA-SZTE Lendület Mycobiome Research Group, University of Szeged, Szeged, Hungary
| |
Collapse
|