1
|
D'Aiuto L, Caldwell JK, Edwards TG, Zhou C, McDonald ML, Di Maio R, Joel WA, Hyde VR, Wallace CT, Watkins SC, Wesesky MA, Shemesh OA, Nimgaonkar VL, Bloom DC. Phosphorylated-tau associates with HSV-1 chromatin and correlates with nuclear speckles decondensation in low-density host chromatin regions. Neurobiol Dis 2025; 206:106804. [PMID: 39818277 DOI: 10.1016/j.nbd.2025.106804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 01/08/2025] [Accepted: 01/10/2025] [Indexed: 01/18/2025] Open
Abstract
Abnormal tau phosphorylation is a key mechanism in neurodegenerative diseases. Evidence implicates infectious agents, such as Herpes Simplex Virus 1 (HSV-1), as co-factors in the onset or the progression of neurodegenerative diseases, including Alzheimer's disease. This has led to divergence in the field regarding the contribution of viruses in the etiology of neurodegenerative diseases. Research indicates that viruses may function as risk factors driving neurodegenerative disease rather than playing a causative role. Investigating HSV-1 in abnormal tau phosphorylation is important for understanding the role of infectious agents in neurodegeneration. We generated cellular models of HSV-1 acute, latent infection, and viral reactivation from latency in cortical brain organoids and investigated the interplay between tau phosphorylation and HSV-1 infection by employing human induced pluripotent stem cell (iPSC)-derived monolayer neuronal cultures and brain organoids. Acute infection with HSV-1 strains 17syn+ and KOS caused nuclear accumulation of phosphorylated tau (p-tau) in neurons and neural precursor cells. Antivirals prevented nuclear accumulation of p-tau. Viral reactivation was accompanied by the nuclear translocation of p-tau. Chromatin immunoprecipitation analysis indicated an interaction of p-tau with the viral chromatin. A reduction in abundance of component of nuclear speckles and their loss of organized morphology in low-denisty host chromatin regions was observed, with strain-specific differences. HSV-1 infection was followed by an increase in the abundance of BRSKs and TAOKs, kinases known to phosphorylate tau. These findings show interaction between p-tau and HSV-1 chromatin and demonstrate the ability of HSV-1 to activate mechanisms that are observed in Alzheimer's disease.
Collapse
Affiliation(s)
- Leonardo D'Aiuto
- Department of Psychiatry, University of Pittsburgh School of Medicine, Western Psychiatric Institute and Clinic, 3811 O'Hara Street, Pittsburgh, PA 15213, United States of America.
| | - Jill K Caldwell
- Department of Psychiatry, University of Pittsburgh School of Medicine, Western Psychiatric Institute and Clinic, 3811 O'Hara Street, Pittsburgh, PA 15213, United States of America
| | - Terri G Edwards
- Department of Molecular Genetics & Microbiology, University of Florida College of Medicine, Gainesville, FL 32611, United States of America
| | - Chaoming Zhou
- Department of Neurobiology, University of Pittsburgh School of Medicine, 4074 Biomedical Science Tower 3, 3501 Fifth Avenue, Pittsburgh, PA 15213, United States of America
| | - Matthew L McDonald
- Department of Psychiatry, University of Pittsburgh School of Medicine, Western Psychiatric Institute and Clinic, 3811 O'Hara Street, Pittsburgh, PA 15213, United States of America
| | - Roberto Di Maio
- Department of Neurology, University of Pittsburgh School of Medicine, 3501 Fifth Ave, Biological Science Tower 3, Pittsburgh, PA 15260, United States of America
| | - Wood A Joel
- Department of Psychiatry, University of Pittsburgh School of Medicine, Western Psychiatric Institute and Clinic, 3811 O'Hara Street, Pittsburgh, PA 15213, United States of America
| | - Vanesa R Hyde
- Department of Neurobiology, University of Pittsburgh School of Medicine, 4074 Biomedical Science Tower 3, 3501 Fifth Avenue, Pittsburgh, PA 15213, United States of America
| | - Callen T Wallace
- Department of Cell Biology, University of Pittsburgh, 3500 Terrace Street, S362 Biomedical Science Tower (South), Pittsburgh, PA 15261, United States of America
| | - Simon C Watkins
- Department of Cell Biology, University of Pittsburgh, 3500 Terrace Street, S362 Biomedical Science Tower (South), Pittsburgh, PA 15261, United States of America
| | - Maribeth A Wesesky
- Department of Psychiatry, University of Pittsburgh School of Medicine, Western Psychiatric Institute and Clinic, 3811 O'Hara Street, Pittsburgh, PA 15213, United States of America
| | - Or A Shemesh
- Department of Neurobiology, University of Pittsburgh School of Medicine, 4074 Biomedical Science Tower 3, 3501 Fifth Avenue, Pittsburgh, PA 15213, United States of America
| | - Vishwajit L Nimgaonkar
- Department of Psychiatry, University of Pittsburgh School of Medicine, Western Psychiatric Institute and Clinic, 3811 O'Hara Street, Pittsburgh, PA 15213, United States of America
| | - David C Bloom
- Department of Molecular Genetics & Microbiology, University of Florida College of Medicine, Gainesville, FL 32611, United States of America
| |
Collapse
|
2
|
Ronan G, Yang J, Zorlutuna P. Small Extracellular Vesicles Isolated from Cardiac Tissue Matrix or Plasma Display Distinct Aging-Related Changes in Cargo Contributing to Chronic Cardiovascular Disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.06.627231. [PMID: 39713371 PMCID: PMC11661072 DOI: 10.1101/2024.12.06.627231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
Aging is a major risk factor for cardiovascular disease, the leading cause of death worldwide, and numerous other diseases, but the mechanisms of these aging-related effects remain elusive. Chronic changes in the microenvironment and paracrine signaling behaviors have been implicated, but remain understudied. Here, for the first time, we directly compare extracellular vesicles obtained from young and aged patients to identify therapeutic or disease-associated agents, and directly compare vesicles isolated from heart tissue matrix (TEVs) or plasma (PEVs). While young EVs showed notable overlap of miRNA cargo, aged EVs differed substantially, indicating differential age-related changes between TEVs and PEVs. TEVs overall were uniquely enriched in miRNAs which directly or indirectly demonstrate cardioprotective effects, with 45 potential therapeutic agents implicated in our analysis. Both populations also showed increased predisposition to disease with aging, though through different mechanisms. PEVs were largely correlated with chronic systemic inflammation, while TEVs were more related to cardiac homeostasis and local inflammation. From this, 17 protein targets unique to TEVs were implicated as aging-related changes which likely contribute to the development of cardiovascular disease.
Collapse
Affiliation(s)
- George Ronan
- Bioengineering Graduate Program, University of Notre Dame, Notre Dame, IN, 46556, USA
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Jun Yang
- Bioengineering Graduate Program, University of Notre Dame, Notre Dame, IN, 46556, USA
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Pinar Zorlutuna
- Bioengineering Graduate Program, University of Notre Dame, Notre Dame, IN, 46556, USA
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN, 46556, USA
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN, 46556, USA
- Harper Cancer Research Institute, University of Notre Dame, Notre Dame, 46556, USA
| |
Collapse
|
3
|
Perera BPU, Wang K, Wang D, Chen K, Dewald A, Sriram S, Goodrich JM, Svoboda LK, Sartor MA, Dolinoy DC. Sex and tissue-specificity of piRNA regulation in adult mice following perinatal lead (Pb) exposure. Epigenetics 2024; 19:2426952. [PMID: 39536059 PMCID: PMC11562917 DOI: 10.1080/15592294.2024.2426952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 10/17/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024] Open
Abstract
Lead (Pb) is a neurotoxicant with early life exposure linked to long-term health effects. Piwi-interacting RNAs (piRNAs) are small non-coding RNAs that associate with PIWIL proteins to induce DNA methylation. It remains unknown whether Pb exposure influences piRNA expression. This study evaluated how perinatal Pb exposure (32 ppm in drinking water) impacts piRNA expression in adult mice and assessed piRNA dysregulation as a potential mechanism for Pb-induced toxicity. Pb exposure effects on piRNA expression and associated gene repression in the germline (testis/ovary) and soma (liver and brain) were evaluated. Small RNA sequencing was used to determine differentially expressed piRNAs, RT-qPCR to examine piRNA target expression, and whole genome bisulfite sequencing to evaluate target DNA methylation status. Three piRNAs (mmpiR-1500602, mmpiR-0201406, and mmpiR-0200026) were significant after multiple testing correction (all downregulated in the male Pb-exposed brain in comparison to control; FDR < 0.05). Within piOxiDB, TAO Kinase 3 was identified as a downstream mRNA target for one of the three Pb-sensitive piRNA. The Pb-exposed male brain exhibited increased Taok3 expression (p < 0.05) and decreased DNA methylation (FDR < 0.01). The results demonstrate that perinatal Pb exposure stably influences longitudinal piRNA expression in a tissue- and sex-specific manner, potentially via DNA methylation-directed mechanisms.
Collapse
Affiliation(s)
- Bambarendage P. U. Perera
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Kai Wang
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Palmer Commons, Ann Arbor, MI, USA
| | - Dongyue Wang
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Kathleen Chen
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Alisa Dewald
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Swati Sriram
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Jaclyn M. Goodrich
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Laurie K. Svoboda
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, USA
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Maureen A. Sartor
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Palmer Commons, Ann Arbor, MI, USA
- Department of Biostatistics, University of Michigan, Ann Arbor, MI, USA
| | - Dana C. Dolinoy
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, USA
- Department of Nutritional Sciences, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
4
|
Bao X, Zhou B, Wen M. Effects of Arginine Vasopressin on Hippocampal Myelination in an Autism Rat Model: A RNA-seq and Mendelian Randomization Analysis. FRONT BIOSCI-LANDMRK 2024; 29:394. [PMID: 39614450 DOI: 10.31083/j.fbl2911394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 09/27/2024] [Accepted: 10/14/2024] [Indexed: 12/01/2024]
Abstract
BACKGROUND To explore the therapeutic role of arginine vasopressin (AVP) and its possible mechanisms in autism. METHODS Mid-trimester pregnant rats treated with valproate on embryonic day 12.5 and their offspring were selected as autism model. The autism rats were randomly assigned to autism group and AVP treatment group that given AVP by inhalation per day from postnatal days 21 to 42. The changes in social behavior and the hippocampus transcriptome were compared, and the hub genes were confirmed by quantitative real-time polymerase chain reaction (qPCR) and Mendelian randomization (MR). RESULTS 403 genes were found to be differentially expressed in the autism model, with the majority of these genes being involved in oligodendrocyte development and myelination. Only 11 genes associated with myelination exhibited statistically significant alterations following AVP treatment when compared to the autism group. Gene set enrichment, expression patterns, and weighted gene co-expression network analysis (WGCNA) analysis consistently indicated that the biological processes of oligodendrocyte development and myelination were markedly enriched in the autism group and exhibited improvement following treatment. The variation trend of various nerve cells demonstrated a notable increase in the proportion of oligodendrocytes and oligodendrocyte precursor cells in the autism group, which subsequently exhibited a significant decline following treatment. Five hub genes (MBP, PLIP, CNP, GFAP, and TAOK1) were verified by qPCR. Finally, MR studies have confirmed a causal relationship between hippocampal myelination-related gene expression and the risk of autism. CONCLUSIONS AVP could markedly enhance social interaction abilities in the autism rat model, possibly due to the significantly improved hippocampus oligodendrocytes development and myelination.
Collapse
Affiliation(s)
- Xingxing Bao
- Department of Pediatrics, Wuhan Third Hospital (Tongren Hospital of Wuhan University), 430064 Wuhan, Hubei, China
| | - Bo Zhou
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, 550004 Guiyang, Guizhou, China
- College of Pharmacy, Guizhou Medical University, 550004 Guiyang, Guizhou, China
| | - Min Wen
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, 550004 Guiyang, Guizhou, China
- College of Pharmacy, Guizhou Medical University, 550004 Guiyang, Guizhou, China
- College of Basic Medical, Guizhou Medical University, 550004 Guiyang, Guizhou, China
| |
Collapse
|
5
|
Ahuja S, Lazar IM. Proteomic insights into breast cancer response to brain cell-secreted factors. Sci Rep 2024; 14:19351. [PMID: 39169222 PMCID: PMC11339284 DOI: 10.1038/s41598-024-70386-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 08/16/2024] [Indexed: 08/23/2024] Open
Abstract
The most devastating feature of cancer cells is their ability to metastasize to distant sites in the body. HER2 + and TN breast cancers frequently metastasize to the brain and stay potentially dormant for years until favorable conditions support their proliferation. The sheltered and delicate nature of the brain prevents, however, early disease detection and effective delivery of therapeutic drugs. Moreover, the challenges associated with the acquisition of brain biopsies add compounding difficulties to exploring the mechanistic aspects of tumor development. To provide insights into the determinants of cancer cell behavior at the brain metastatic site, this study was aimed at exploring the early response of HER2 + breast cancer cells (SKBR3) to factors present in the brain perivascular niche. The neural microenvironment was simulated by using the secretome of a set of brain cells that come first in contact with the cancer cells upon crossing the blood brain barrier, i.e., endothelial cells, astrocytes, and microglia. Cytokine microarrays were used to investigate the secretome mediators of intercellular communication, and proteomic technologies for assessing the changes in the behavior of cancer cells upon exposure to the brain cell-secreted factors. The cytokines detected in the brain secretomes were supportive of inflammatory conditions, while the SKBR3 cells secreted numerous cancer-promoting growth factors that were either absent or present in lower abundance in the brain cell cultures, indicating that upon exposure the SKBR3 cells may have been deprived of favorable conditions for optimal growth. Altogether, the results suggest that the exposure of SKBR3 cells to the brain cell-secreted factors altered their growth potential and drove them toward a state of quiescence, with broader overall outcomes that affected cellular metabolism, adhesion and immune response processes. The findings of this study underscore the key role played by the neural niche in shaping the behavior of metastasized cancer cells, provide insights into the cellular cross-talk that may lead cancer cells into dormancy, and highlight novel opportunities for the development of metastatic breast cancer therapeutic strategies.
Collapse
Affiliation(s)
- Shreya Ahuja
- Department of Biological Sciences, Virginia Tech, 1981 Kraft Drive, Blacksburg, VA, 24061, USA
| | - Iulia M Lazar
- Department of Biological Sciences, Virginia Tech, 1981 Kraft Drive, Blacksburg, VA, 24061, USA.
- Fralin Life Sciences Institute, Virginia Tech, 1981 Kraft Drive, Blacksburg, VA, 24061, USA.
- Carilion School of Medicine, Virginia Tech, 1981 Kraft Drive, Blacksburg, VA, 24061, USA.
- Division of Systems Biology/AIS, Virginia Tech, 1981 Kraft Drive, Blacksburg, VA, 24061, USA.
| |
Collapse
|
6
|
Song M, Qu Y, Jia H, Zhang Y, Liu S, Laster KV, Choi BY, Tian J, Gu T, Chen H, Liu K, Lee MH, Dong Z. Targeting TAOK1 with resveratrol inhibits esophageal squamous cell carcinoma growth in vitro and in vivo. Mol Carcinog 2024; 63:991-1008. [PMID: 38376345 DOI: 10.1002/mc.23703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 01/23/2024] [Accepted: 02/05/2024] [Indexed: 02/21/2024]
Abstract
The worldwide incidence and mortality rates of esophageal squamous cell carcinoma (ESCC) have increased over the last decade. Moreover, molecular targets that may benefit the therapeutics of patients with ESCC have not been fully characterized. Our study discovered that thousand and one amino-acid protein kinase 1 (TAOK1) is highly expressed in ESCC tumor tissues and cell lines. Knock-down of TAOK1 suppresses ESCC cell proliferation in vitro and patient-derived xenograft or cell-derived xenograft tumors growth in vivo. Moreover, TAOK1 overexpression promotes ESCC growth in vitro and in vivo. Additionally, we identified that the natural small molecular compound resveratrol binds to TAOK1 directly and diminishes the kinase activity of TAOK1. Targeting TAOK1 directly with resveratrol significantly inhibits cell proliferation, induces cell cycle arrest and apoptosis, and suppresses tumor growth in ESCC. Furthermore, the silencing of TAOK1 or the application of resveratrol attenuated the activation of TAOK1 downstream signaling effectors. Interestingly, combining resveratrol with paclitaxel, cisplatin, or 5-fluorouracil synergistically enhanced their therapeutic effects against ESCC. In conclusion, this work illustrates the underlying oncogenic function of TAOK1 and provides a theoretical basis for the application of targeting TAOK1 therapy to the clinical treatment of ESCC.
Collapse
Affiliation(s)
- Mengqiu Song
- Department of Pathophysiology, School of Basic Medical Sciences, College of Medicine, Zhengzhou University, Zhengzhou, Henan, China
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, China
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou, Henan, China
| | - Yingzi Qu
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, China
- The Academy of Medical Science, College of Medicine, Zhengzhou University, Zhengzhou, Henan, China
| | - Huajie Jia
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, China
- The Academy of Medical Science, College of Medicine, Zhengzhou University, Zhengzhou, Henan, China
| | - Yunqing Zhang
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, China
- The Academy of Medical Science, College of Medicine, Zhengzhou University, Zhengzhou, Henan, China
| | - Shihui Liu
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, China
- The Academy of Medical Science, College of Medicine, Zhengzhou University, Zhengzhou, Henan, China
| | | | - Bu Young Choi
- Department of Pharmaceutical Science & Engineering, Seowon University, Cheongju, South Korea
| | - Jie Tian
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, China
- The Academy of Medical Science, College of Medicine, Zhengzhou University, Zhengzhou, Henan, China
| | - Tingxuan Gu
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, China
- The Academy of Medical Science, College of Medicine, Zhengzhou University, Zhengzhou, Henan, China
| | - Hanyong Chen
- The Hormel Institute, University of Minnesota, Austin, Minnesota, USA
| | - Kangdong Liu
- Department of Pathophysiology, School of Basic Medical Sciences, College of Medicine, Zhengzhou University, Zhengzhou, Henan, China
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, China
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou, Henan, China
- The Academy of Medical Science, College of Medicine, Zhengzhou University, Zhengzhou, Henan, China
- Provincial Cooperative Innovation Center for Cancer Chemoprevention, Zhengzhou University, Zhengzhou, China
- Cancer Chemoprevention International Collaboration Laboratory, Zhengzhou, China
| | - Mee-Hyun Lee
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, China
- College of Korean Medicine, Dongshin University, Naju, Republic of Korea
| | - Zigang Dong
- Department of Pathophysiology, School of Basic Medical Sciences, College of Medicine, Zhengzhou University, Zhengzhou, Henan, China
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, China
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou, Henan, China
- The Academy of Medical Science, College of Medicine, Zhengzhou University, Zhengzhou, Henan, China
- Cancer Chemoprevention International Collaboration Laboratory, Zhengzhou, China
| |
Collapse
|
7
|
Kashihara T, Sadoshima J. Regulation of myocardial glucose metabolism by YAP/TAZ signaling. J Cardiol 2024; 83:323-329. [PMID: 38266816 DOI: 10.1016/j.jjcc.2024.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Accepted: 01/12/2024] [Indexed: 01/26/2024]
Abstract
The heart utilizes glucose and its metabolites as both energy sources and building blocks for cardiac growth and survival under both physiological and pathophysiological conditions. YAP/TAZ, transcriptional co-activators of the Hippo pathway, are key regulators of cell proliferation, survival, and metabolism in many cell types. Increasing lines of evidence suggest that the Hippo-YAP/TAZ signaling pathway is involved in the regulation of both physiological and pathophysiological processes in the heart. In particular, YAP/TAZ play a critical role in mediating aerobic glycolysis, the Warburg effect, in cardiomyocytes. Here, we summarize what is currently known about YAP/TAZ signaling in the heart by focusing on the regulation of glucose metabolism and its functional significance.
Collapse
Affiliation(s)
- Toshihide Kashihara
- Department of Molecular Pharmacology, Kitasato University School of Pharmaceutical Sciences, Tokyo, Japan
| | - Junichi Sadoshima
- Department of Cell Biology and Molecular Medicine, Rutgers New Jersey Medical School, Newark, NJ, USA.
| |
Collapse
|
8
|
Zhang X, Liu Y, Guo B, Li B, Liu H, Wang Z. Identification of key mRNAs and signaling pathways in obsessive compulsive disorder based on weighted gene co-expression network analysis and cytoHubba plugin. Brain Behav 2024; 14:e3412. [PMID: 38664915 PMCID: PMC11046038 DOI: 10.1002/brb3.3412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 01/05/2024] [Accepted: 01/09/2024] [Indexed: 04/29/2024] Open
Abstract
PURPOSE Obsessive-compulsive disorder (OCD) is a complex psychiatric disorder. Genetic and broad environmental factors are common risk factors for OCD. The purpose of this study is to explore the molecular mechanism of OCD and to find new molecular targets for the diagnosis and management of OCD. METHODS All data were downloaded from public dataset. Key modules and candidate key mRNAs were identified based on weighted gene co-expression network analysis (WGCNA). The "limma" R package was used for differential expression analysis of mRNAs. Subsequently, functional enrichment analysis of differentially expressed mRNAs (DEmRNAs) was also carried out. In addition, a diagnostic model was constructed. Finally, the infiltration level of immune cells in OCD and its correlation with multicentric key DEmRNAs were analyzed. RESULTS Green and red modules were selected as the hub modules. A total of 447 mRNAs were considered candidate key mRNAs according to GS > 0.2 and MM > 0.3. A total of 26 DEmRNAs in the same direction were identified in the GSE60190 and GSE78104 datasets. A total of 26 DEmRNAs were intersected with candidate key mRNAs in WGCNA to obtain 10 intersection DEmRNAs (HSPB1, ITPK1, CBX7, PPP1R10, TAOK1, PISD, MKNK2, RWDD1, PPA1, and RELN). However, only four DEmRNAs (HSPB1, TAOK1, MKNK2, and PPA1) predicted related drugs. Subsequently, receiver operating characteristic analysis shows that the diagnostic model has high diagnostic value. Moreover, six multicentric key DEmRNAs (SNRPF, SNRNP70, PRPF8, NOP56, EPRS, and CCT2) were screened by UpSet package. Finally, six multicentric key DEmRNAs were found to be associated with immune cells. CONCLUSION The key molecules obtained in this study lay a foundation for further research on the molecular mechanism of OCD.
Collapse
Affiliation(s)
- Xiaoming Zhang
- Department of PsychiatryBeijing Huilongguan HospitalBeijingChina
| | - Yanru Liu
- Department of PsychiatryBeijing Huilongguan HospitalBeijingChina
| | - Bin Guo
- Department of PsychiatryBeijing Huilongguan HospitalBeijingChina
| | - Binbin Li
- Department of PsychiatryBeijing Huilongguan HospitalBeijingChina
| | - Huaqing Liu
- Department of PsychiatryBeijing Huilongguan HospitalBeijingChina
| | - Zhiren Wang
- Department of PsychiatryBeijing Huilongguan HospitalBeijingChina
| |
Collapse
|
9
|
Priyanka P, Gopalakrishnan AP, Nisar M, Shivamurthy PB, George M, John L, Sanjeev D, Yandigeri T, Thomas SD, Rafi A, Dagamajalu S, Velikkakath AKG, Abhinand CS, Kanekar S, Prasad TSK, Balaya RDA, Raju R. A global phosphosite-correlated network map of Thousand And One Kinase 1 (TAOK1). Int J Biochem Cell Biol 2024; 170:106558. [PMID: 38479581 DOI: 10.1016/j.biocel.2024.106558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 02/19/2024] [Accepted: 03/09/2024] [Indexed: 03/25/2024]
Abstract
Thousand and one amino acid kinase 1 (TAOK1) is a sterile 20 family Serine/Threonine kinase linked to microtubule dynamics, checkpoint signaling, DNA damage response, and neurological functions. Molecular-level alterations of TAOK1 have been associated with neurodevelopment disorders and cancers. Despite their known involvement in physiological and pathophysiological processes, and as a core member of the hippo signaling pathway, the phosphoregulatory network of TAOK1 has not been visualized. Aimed to explore this network, we first analyzed the predominantly detected and differentially regulated TAOK1 phosphosites in global phosphoproteome datasets across diverse experimental conditions. Based on 709 qualitative and 210 quantitative differential cellular phosphoproteome datasets that were systematically assembled, we identified that phosphorylation at Ser421, Ser9, Ser965, and Ser445 predominantly represented TAOK1 in almost 75% of these datasets. Surprisingly, the functional role of all these phosphosites in TAOK1 remains unexplored. Hence, we employed a robust strategy to extract the phosphosites in proteins that significantly correlated in expression with predominant TAOK1 phosphosites. This led to the first categorization of the phosphosites including those in the currently known and predicted interactors, kinases, and substrates, that positively/negatively correlated with the expression status of each predominant TAOK1 phosphosites. Subsequently, we also analyzed the phosphosites in core proteins of the hippo signaling pathway. Based on the TAOK1 phosphoregulatory network analysis, we inferred the potential role of the predominant TAOK1 phosphosites. Especially, we propose pSer9 as an autophosphorylation and TAOK1 kinase activity-associated phosphosite and pS421, the most frequently detected phosphosite in TAOK1, as a significant regulatory phosphosite involved in the maintenance of genome integrity. Considering that the impact of all phosphosites that predominantly represent each kinase is essential for the efficient interpretation of global phosphoproteome datasets, we believe that the approach undertaken in this study is suitable to be extended to other kinases for accelerated research.
Collapse
Affiliation(s)
- Pahal Priyanka
- Centre for Integrative Omics Data Science (CIODS), Yenepoya (Deemed to be University), Mangalore 575018, India.
| | - Athira Perunelly Gopalakrishnan
- Center for Systems Biology and Molecular Medicine (CSBMM), Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore 575018, India.
| | - Mahammad Nisar
- Centre for Integrative Omics Data Science (CIODS), Yenepoya (Deemed to be University), Mangalore 575018, India.
| | | | - Mejo George
- Centre for Integrative Omics Data Science (CIODS), Yenepoya (Deemed to be University), Mangalore 575018, India.
| | - Levin John
- Centre for Integrative Omics Data Science (CIODS), Yenepoya (Deemed to be University), Mangalore 575018, India.
| | - Diya Sanjeev
- Centre for Integrative Omics Data Science (CIODS), Yenepoya (Deemed to be University), Mangalore 575018, India.
| | - Tanuja Yandigeri
- Centre for Integrative Omics Data Science (CIODS), Yenepoya (Deemed to be University), Mangalore 575018, India.
| | - Sonet D Thomas
- Center for Systems Biology and Molecular Medicine (CSBMM), Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore 575018, India.
| | - Ahmad Rafi
- Centre for Integrative Omics Data Science (CIODS), Yenepoya (Deemed to be University), Mangalore 575018, India.
| | - Shobha Dagamajalu
- Center for Systems Biology and Molecular Medicine (CSBMM), Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore 575018, India.
| | - Anoop Kumar G Velikkakath
- Center for Systems Biology and Molecular Medicine (CSBMM), Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore 575018, India.
| | - Chandran S Abhinand
- Center for Systems Biology and Molecular Medicine (CSBMM), Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore 575018, India.
| | - Saptami Kanekar
- Centre for Integrative Omics Data Science (CIODS), Yenepoya (Deemed to be University), Mangalore 575018, India.
| | | | | | - Rajesh Raju
- Centre for Integrative Omics Data Science (CIODS), Yenepoya (Deemed to be University), Mangalore 575018, India.
| |
Collapse
|
10
|
Tscherrig V, Steinfort M, Haesler V, Surbek D, Schoeberlein A, Joerger-Messerli MS. All but Small: miRNAs from Wharton's Jelly-Mesenchymal Stromal Cell Small Extracellular Vesicles Rescue Premature White Matter Injury after Intranasal Administration. Cells 2024; 13:543. [PMID: 38534387 PMCID: PMC10969443 DOI: 10.3390/cells13060543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/07/2024] [Accepted: 03/14/2024] [Indexed: 03/28/2024] Open
Abstract
White matter injury (WMI) is a common neurological issue in premature-born neonates, often causing long-term disabilities. We recently demonstrated a key beneficial role of Wharton's jelly mesenchymal stromal cell-derived small extracellular vesicles (WJ-MSC-sEVs) microRNAs (miRNAs) in WMI-related processes in vitro. Here, we studied the functions of WJ-MSC-sEV miRNAs in vivo using a preclinical rat model of premature WMI. Premature WMI was induced in rat pups through inflammation and hypoxia-ischemia. Small EVs were purified from the culture supernatant of human WJ-MSCs. The capacity of WJ-MSC-sEV-derived miRNAs to decrease microglia activation and promote oligodendrocyte maturation was evaluated by knocking down (k.d) DROSHA in WJ-MSCs, releasing sEVs containing significantly less mature miRNAs. Wharton's jelly MSC-sEVs intranasally administrated 24 h upon injury reached the brain within 1 h, remained detectable for at least 24 h, significantly reduced microglial activation, and promoted oligodendrocyte maturation. The DROSHA k.d in WJ-MSCs lowered the therapeutic capabilities of sEVs in experimental premature WMI. Our results strongly indicate the relevance of miRNAs in the therapeutic abilities of WJ-MSC-sEVs in premature WMI in vivo, opening the path to clinical application.
Collapse
Affiliation(s)
- Vera Tscherrig
- Department of Obstetrics and Feto-maternal Medicine, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland; (M.S.)
- Department for BioMedical Research (DBMR), University of Bern, 3008 Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences (GCB), University of Bern, 3012 Bern, Switzerland
| | - Marel Steinfort
- Department of Obstetrics and Feto-maternal Medicine, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland; (M.S.)
- Department for BioMedical Research (DBMR), University of Bern, 3008 Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences (GCB), University of Bern, 3012 Bern, Switzerland
| | - Valérie Haesler
- Department of Obstetrics and Feto-maternal Medicine, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland; (M.S.)
- Department for BioMedical Research (DBMR), University of Bern, 3008 Bern, Switzerland
| | - Daniel Surbek
- Department of Obstetrics and Feto-maternal Medicine, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland; (M.S.)
- Department for BioMedical Research (DBMR), University of Bern, 3008 Bern, Switzerland
| | - Andreina Schoeberlein
- Department of Obstetrics and Feto-maternal Medicine, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland; (M.S.)
- Department for BioMedical Research (DBMR), University of Bern, 3008 Bern, Switzerland
| | - Marianne Simone Joerger-Messerli
- Department of Obstetrics and Feto-maternal Medicine, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland; (M.S.)
- Department for BioMedical Research (DBMR), University of Bern, 3008 Bern, Switzerland
| |
Collapse
|
11
|
Yeh TH, Tu KC, Wang HY, Chen JY. From Acute to Chronic: Unraveling the Pathophysiological Mechanisms of the Progression from Acute Kidney Injury to Acute Kidney Disease to Chronic Kidney Disease. Int J Mol Sci 2024; 25:1755. [PMID: 38339031 PMCID: PMC10855633 DOI: 10.3390/ijms25031755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 01/28/2024] [Accepted: 01/30/2024] [Indexed: 02/12/2024] Open
Abstract
This article provides a thorough overview of the biomarkers, pathophysiology, and molecular pathways involved in the transition from acute kidney injury (AKI) and acute kidney disease (AKD) to chronic kidney disease (CKD). It categorizes the biomarkers of AKI into stress, damage, and functional markers, highlighting their importance in early detection, prognosis, and clinical applications. This review also highlights the links between renal injury and the pathophysiological mechanisms underlying AKI and AKD, including renal hypoperfusion, sepsis, nephrotoxicity, and immune responses. In addition, various molecules play pivotal roles in inflammation and hypoxia, triggering maladaptive repair, mitochondrial dysfunction, immune system reactions, and the cellular senescence of renal cells. Key signaling pathways, such as Wnt/β-catenin, TGF-β/SMAD, and Hippo/YAP/TAZ, promote fibrosis and impact renal function. The renin-angiotensin-aldosterone system (RAAS) triggers a cascade leading to renal fibrosis, with aldosterone exacerbating the oxidative stress and cellular changes that promote fibrosis. The clinical evidence suggests that RAS inhibitors may protect against CKD progression, especially post-AKI, though more extensive trials are needed to confirm their full impact.
Collapse
Affiliation(s)
- Tzu-Hsuan Yeh
- Division of Nephrology, Department of Internal Medicine, Chi Mei Medical Center, Tainan 71004, Taiwan; (T.-H.Y.); (H.-Y.W.)
| | - Kuan-Chieh Tu
- Division of Cardiology, Department of Internal Medicine, Chi Mei Medical Center, Tainan 71004, Taiwan;
| | - Hsien-Yi Wang
- Division of Nephrology, Department of Internal Medicine, Chi Mei Medical Center, Tainan 71004, Taiwan; (T.-H.Y.); (H.-Y.W.)
- Department of Sport Management, College of Leisure and Recreation Management, Chia Nan University of Pharmacy and Science, Tainan 71710, Taiwan
| | - Jui-Yi Chen
- Division of Nephrology, Department of Internal Medicine, Chi Mei Medical Center, Tainan 71004, Taiwan; (T.-H.Y.); (H.-Y.W.)
- Department of Health and Nutrition, Chia Nan University of Pharmacy and Science, Tainan 71710, Taiwan
| |
Collapse
|
12
|
Poirier A, Ormonde JVS, Aubry I, Abidin BM, Feng CH, Martinez-Cordova Z, Hincapie AM, Wu C, Pérez-Quintero LA, Wang CL, Gingras AC, Madrenas J, Tremblay ML. The induction of SHP-1 degradation by TAOK3 ensures the responsiveness of T cells to TCR stimulation. Sci Signal 2024; 17:eadg4422. [PMID: 38166031 DOI: 10.1126/scisignal.adg4422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 12/01/2023] [Indexed: 01/04/2024]
Abstract
Thousand-and-one-amino acid kinase 3 (TAOK3) is a serine and threonine kinase that belongs to the STE-20 family of kinases. Its absence reduces T cell receptor (TCR) signaling and increases the interaction of the tyrosine phosphatase SHP-1, a major negative regulator of proximal TCR signaling, with the kinase LCK, a component of the core TCR signaling complex. Here, we used mouse models and human cell lines to investigate the mechanism by which TAOK3 limits the interaction of SHP-1 with LCK. The loss of TAOK3 decreased the survival of naïve CD4+ T cells by dampening the transmission of tonic and ligand-dependent TCR signaling. In mouse T cells, Taok3 promoted the secretion of interleukin-2 (IL-2) in response to TCR activation in a manner that depended on Taok3 gene dosage and on Taok3 kinase activity. TCR desensitization in Taok3-/- T cells was caused by an increased abundance of Shp-1, and pharmacological inhibition of Shp-1 rescued the activation potential of these T cells. TAOK3 phosphorylated threonine-394 in the phosphatase domain of SHP-1, which promoted its ubiquitylation and proteasomal degradation. The loss of TAOK3 had no effect on the abundance of SHP-2, which lacks a residue corresponding to SHP-1 threonine-394. Modulation of SHP-1 abundance by TAOK3 thus serves as a rheostat for TCR signaling and determines the activation threshold of T lymphocytes.
Collapse
Affiliation(s)
- Alexandre Poirier
- Goodman Cancer Institute, McGill University, Montréal, H3A 1A3 Québec, Canada
- Faculty of Medicine and Health Sciences, Division of Experimental Medicine, McGill University, Montréal, Québec, Canada
| | - João Vitor Silva Ormonde
- Brazilian Biosciences National Laboratory, Center for Research in Energy and Materials (LNBio - CNPEM), Campinas, São Paulo, Brazil
| | - Isabelle Aubry
- Goodman Cancer Institute, McGill University, Montréal, H3A 1A3 Québec, Canada
- Department of Biochemistry, McGill University, Montréal, Québec, Canada
| | - Belma Melda Abidin
- Goodman Cancer Institute, McGill University, Montréal, H3A 1A3 Québec, Canada
| | - Chu-Han Feng
- Goodman Cancer Institute, McGill University, Montréal, H3A 1A3 Québec, Canada
- Department of Microbiology and Immunology, McGill University, Montréal, Québec, Canada
| | - Zuzet Martinez-Cordova
- Goodman Cancer Institute, McGill University, Montréal, H3A 1A3 Québec, Canada
- Department of Microbiology and Immunology, McGill University, Montréal, Québec, Canada
| | - Ana Maria Hincapie
- Goodman Cancer Institute, McGill University, Montréal, H3A 1A3 Québec, Canada
- Department of Biochemistry, McGill University, Montréal, Québec, Canada
| | - Chenyue Wu
- Department of Microbiology and Immunology, McGill University, Montréal, Québec, Canada
| | | | - Chia-Lin Wang
- NYU Langone Medical Center, 660 1st Ave, Fl 5, New York City, NY 10016, USA
| | - Anne Claude Gingras
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Joaquín Madrenas
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 40095, USA
| | - Michel L Tremblay
- Goodman Cancer Institute, McGill University, Montréal, H3A 1A3 Québec, Canada
- Department of Biochemistry, McGill University, Montréal, Québec, Canada
- Faculty of Medicine, McGill University, Montréal, Québec, Canada
| |
Collapse
|
13
|
Ma X, Mandausch FJ, Wu Y, Sahoo VK, Ma W, Leoni G, Hostiuc M, Wintgens JP, Qiu J, Kannaiyan N, Rossner MJ, Wehr MC. Comprehensive split TEV based protein-protein interaction screening reveals TAOK2 as a key modulator of Hippo signalling to limit growth. Cell Signal 2024; 113:110917. [PMID: 37813295 DOI: 10.1016/j.cellsig.2023.110917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 09/29/2023] [Accepted: 10/06/2023] [Indexed: 10/11/2023]
Abstract
The conserved Hippo signalling pathway plays a crucial role in tumour formation by limiting tissue growth and proliferation. At the core of this pathway are tumour suppressor kinases STK3/4 and LATS1/2, which limit the activity of the oncogene YAP1, the primary downstream effector. Here, we employed a split TEV-based protein-protein interaction screen to assess the physical interactions among 28 key Hippo pathway components and potential upstream modulators. This screen led us to the discovery of TAOK2 as pivotal modulator of Hippo signalling, as it binds to the pathway's core kinases, STK3/4 and LATS1/2, and leads to their phosphorylation. Specifically, our findings revealed that TAOK2 binds to and phosphorylates LATS1, resulting in the reduction of YAP1 phosphorylation and subsequent transcription of oncogenes. Consequently, this decrease led to a decrease in cell proliferation and migration. Interestingly, a correlation was observed between reduced TAOK2 expression and decreased patient survival time in certain types of human cancers, including lung and kidney cancer as well as glioma. Moreover, in cellular models corresponding to these cancer types the downregulation of TAOK2 by CRISPR inhibition led to reduced phosphorylation of LATS1 and increased proliferation rates, supporting TAOK2's role as tumour suppressor gene. By contrast, overexpression of TAOK2 in these cellular models lead to increased phospho-LATS1 but reduced cell proliferation. As TAOK2 is a druggable kinase, targeting TAOK2 could serve as an attractive pharmacological approach to modulate cell growth and potentially offer strategies for combating cancer.
Collapse
Affiliation(s)
- Xiao Ma
- Research Group Cell Signalling, Department of Psychiatry and Psychotherapy, LMU University Hospital, LMU Munich, Nussbaumstr. 7, 80336 Munich, Germany
| | - Fiona J Mandausch
- Research Group Cell Signalling, Department of Psychiatry and Psychotherapy, LMU University Hospital, LMU Munich, Nussbaumstr. 7, 80336 Munich, Germany
| | - Yuxin Wu
- Research Group Cell Signalling, Department of Psychiatry and Psychotherapy, LMU University Hospital, LMU Munich, Nussbaumstr. 7, 80336 Munich, Germany
| | - Vivek K Sahoo
- Systasy Bioscience GmbH, Balanstr. 6, 81669, Munich, Germany
| | - Wenbo Ma
- Research Group Cell Signalling, Department of Psychiatry and Psychotherapy, LMU University Hospital, LMU Munich, Nussbaumstr. 7, 80336 Munich, Germany
| | - Giovanna Leoni
- Systasy Bioscience GmbH, Balanstr. 6, 81669, Munich, Germany
| | - Madalina Hostiuc
- Research Group Cell Signalling, Department of Psychiatry and Psychotherapy, LMU University Hospital, LMU Munich, Nussbaumstr. 7, 80336 Munich, Germany
| | - Jan P Wintgens
- Research Group Cell Signalling, Department of Psychiatry and Psychotherapy, LMU University Hospital, LMU Munich, Nussbaumstr. 7, 80336 Munich, Germany
| | - Jiajun Qiu
- Department of Otolaryngology Head & Neck Surgery, The Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | | | - Moritz J Rossner
- Systasy Bioscience GmbH, Balanstr. 6, 81669, Munich, Germany; Section of Molecular Neurobiology, Department of Psychiatry and Psychotherapy, University Hospital, Ludwig Maximilian University of Munich, Nussbaumstr. 7, 80336 Munich, Germany
| | - Michael C Wehr
- Research Group Cell Signalling, Department of Psychiatry and Psychotherapy, LMU University Hospital, LMU Munich, Nussbaumstr. 7, 80336 Munich, Germany; Systasy Bioscience GmbH, Balanstr. 6, 81669, Munich, Germany.
| |
Collapse
|
14
|
Jiang Y, MacNeil LT. Simple model systems reveal conserved mechanisms of Alzheimer's disease and related tauopathies. Mol Neurodegener 2023; 18:82. [PMID: 37950311 PMCID: PMC10638731 DOI: 10.1186/s13024-023-00664-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 10/04/2023] [Indexed: 11/12/2023] Open
Abstract
The lack of effective therapies that slow the progression of Alzheimer's disease (AD) and related tauopathies highlights the need for a more comprehensive understanding of the fundamental cellular mechanisms underlying these diseases. Model organisms, including yeast, worms, and flies, provide simple systems with which to investigate the mechanisms of disease. The evolutionary conservation of cellular pathways regulating proteostasis and stress response in these organisms facilitates the study of genetic factors that contribute to, or protect against, neurodegeneration. Here, we review genetic modifiers of neurodegeneration and related cellular pathways identified in the budding yeast Saccharomyces cerevisiae, the nematode Caenorhabditis elegans, and the fruit fly Drosophila melanogaster, focusing on models of AD and related tauopathies. We further address the potential of simple model systems to better understand the fundamental mechanisms that lead to AD and other neurodegenerative disorders.
Collapse
Affiliation(s)
- Yuwei Jiang
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Canada
| | - Lesley T MacNeil
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Canada.
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Canada.
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, 1280 Main St W, Hamilton, ON, L8S 4K1, Canada.
| |
Collapse
|
15
|
Ahuja S, Lazar IM. Proteomic Insights into Metastatic Breast Cancer Response to Brain Cell-Secreted Factors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.22.563488. [PMID: 37961261 PMCID: PMC10634729 DOI: 10.1101/2023.10.22.563488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
The most devastating feature of cancer cells is their ability to metastasize to distant sites in the body. HER2+ and triple negative breast cancers frequently metastasize to the brain and stay potentially dormant for years, clinging to the microvasculature, until favorable environmental conditions support their proliferation. The sheltered and delicate nature of the brain prevents, however, early disease detection, diagnosis, and effective delivery of therapeutic drugs. Moreover, the challenges associated with the acquisition of brain tissues and biopsies add compounding difficulties to exploring the mechanistic aspects of tumor development, leading to slow progress in understanding the drivers of disease progression and response to therapy. To provide insights into the determinants of cancer cell behavior at the brain metastatic site, this study was aimed at exploring the growth and initial response of HER2+ breast cancer cells (SKBR3) to factors present in the brain perivascular niche. The neural microenvironment conditions were simulated by using the secretome of a set of brain cells that come first in contact with the cancer cells upon crossing the blood brain barrier, i.e., human endothelial cells (HBEC5i), human astrocytes (NHA) and human microglia (HMC3) cells. Cytokine microarrays were used to investigate the cell secretomes and explore the mediators responsible for cell-cell communication, and proteomic technologies for assessing the changes in the behavior of cancer cells upon exposure to the brain cell-secreted factors. The results of the study suggest that the exposure of SKBR3 cells to the brain secretomes altered their growth potential and drove them towards a state of quiescence. The cytokines, growth factors and enzymes detected in the brain cell-conditioned medium were supportive of mostly inflammatory conditions, indicating a collective functional contribution to cell activation, defense, inflammatory responses, chemotaxis, adhesion, angiogenesis, and ECM organization. The SKBR3 cells, on the other hand, secreted numerous cancer-promoting growth factors that were either absent or present in lower abundance in the brain cell culture media, suggesting that upon exposure the SKBR3 cells were deprived of favorable environmental conditions required for optimal growth. The findings of this study underscore the key role played by the neural niche in shaping the behavior of metastasized cancer cells, providing insights into the cancer-host cell cross-talk that contributes to driving metastasized cancer cells into dormancy and into the opportunities that exist for developing novel therapeutic strategies that target the brain metastases of breast cancer.
Collapse
Affiliation(s)
- Shreya Ahuja
- Department of Biological Sciences, Virginia Tech 1981 Kraft Drive, Blacksburg, VA 24061
| | - Iulia M. Lazar
- Department of Biological Sciences, Virginia Tech 1981 Kraft Drive, Blacksburg, VA 24061
- Fralin Life Sciences Institute, Virginia Tech 1981 Kraft Drive, Blacksburg, VA 24061
- Carilion School of Medicine, Virginia Tech 1981 Kraft Drive, Blacksburg, VA 24061
- Division of Systems Biology/AIS, Virginia Tech 1981 Kraft Drive, Blacksburg, VA 24061
| |
Collapse
|
16
|
Krstulović L, Mišković Špoljarić K, Rastija V, Filipović N, Bajić M, Glavaš-Obrovac L. Novel 1,2,3-Triazole-Containing Quinoline-Benzimidazole Hybrids: Synthesis, Antiproliferative Activity, In Silico ADME Predictions, and Docking. Molecules 2023; 28:6950. [PMID: 37836794 PMCID: PMC10574761 DOI: 10.3390/molecules28196950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/03/2023] [Accepted: 10/04/2023] [Indexed: 10/15/2023] Open
Abstract
The newly synthesized quinoline-benzimidazole hybrids containing two types of triazole-methyl-phenoxy linkers were characterized via NMR and elemental analysis. Additional derivatization was achieved by introducing bromine at the C-2 position of the phenoxy core. These novel hybrids were tested for their effects on the growth of the non-tumor cell line MRC-5 (human fetal lung fibroblasts), leukemia and lymphoma cell lines: Hut78, THP-1 and HL-60, and carcinoma cell lines: HeLa and CaCo-2. The results obtained, presented as the concentration that achieves 50% inhibition of cell growth (IC50 value), show that the compounds tested affect tumor cell growth differently depending on the cell line and the dose applied (IC50 ranged from 0.2 to >100 µM). The quinoline-benzimidazole hybrids tested, including 7-chloro-4-(4-{[4-(5-methoxy-1H-1,3-benzo[d]imidazol-2-yl)phenoxy]methyl}-1H-1,2,3-triazol-1-yl)quinoline 9c, 2-(3-bromo-4-{[1-(7-chloroquinolin-4-yl)-1H-1,2,3-triazol-4-yl]methoxy}phenyl)-N-propyl-1H-benzo[d]imidazol-5-carboximidamide trihydrochloride 10e, 2-{4-[(1-{2-[(7-chloroquinolin-4-yl)amino]ethyl}-1H-1,2,3-triazol-4-yl)methoxy]phenyl}-N-propyl-1H-benzo[d]imidazol-5-carboximidamide trihydrochloride 14e and 2-{3-bromo-4-[(1-{2-[(7-chloroquinolin-4-yl)amino]ethyl}-1H-1,2,3-triazol-4-yl)methoxy]phenyl}-N-propyl-1H-benzo[d]imidazol-5-carboximidamide trihydrochloride 15e, arrested the cell cycle of lymphoma (HuT78) cells. The calculated ADMET properties showed that the synthesized compounds violated at most two of Lipinski's rules, making them potential drug candidates, but mainly for parenteral use due to low gastrointestinal absorption. The quinoline-benzimidazole hybrid 14e, which was shown to be a potent and selective inhibitor of lymphoma cell line growth, obtained the highest binding energy (-140.44 kcal/mol), by docking to the TAO2 kinase domain (PDB: 2GCD).
Collapse
Affiliation(s)
- Luka Krstulović
- Department of Chemistry and Biochemistry, Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, 10000 Zagreb, Croatia;
| | - Katarina Mišković Špoljarić
- Department of Medicinal Chemistry, Biochemistry and Clinical Chemistry, Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, Josipa Huttlera 4, 31000 Osijek, Croatia;
| | - Vesna Rastija
- Faculty of Agrobiotechnical Sciences Osijek, Josip Juraj Strossmayer University of Osijek, Vladimira Preloga 1, 31000 Osijek, Croatia;
| | - Nikolina Filipović
- Department of Chemistry, Josip Juraj Strossmayer University of Osijek, Cara Hadrijana 8a, 31000 Osijek, Croatia;
| | - Miroslav Bajić
- Department of Chemistry and Biochemistry, Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, 10000 Zagreb, Croatia;
| | - Ljubica Glavaš-Obrovac
- Department of Medicinal Chemistry, Biochemistry and Clinical Chemistry, Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, Josipa Huttlera 4, 31000 Osijek, Croatia;
| |
Collapse
|
17
|
Anandakrishnan M, Ross KE, Chen C, Shanker V, Cowart J, Wu CH. KSFinder-a knowledge graph model for link prediction of novel phosphorylated substrates of kinases. PeerJ 2023; 11:e16164. [PMID: 37818330 PMCID: PMC10561642 DOI: 10.7717/peerj.16164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 09/01/2023] [Indexed: 10/12/2023] Open
Abstract
Background Aberrant protein kinase regulation leading to abnormal substrate phosphorylation is associated with several human diseases. Despite the promise of therapies targeting kinases, many human kinases remain understudied. Most existing computational tools predicting phosphorylation cover less than 50% of known human kinases. They utilize local feature selection based on protein sequences, motifs, domains, structures, and/or functions, and do not consider the heterogeneous relationships of the proteins. In this work, we present KSFinder, a tool that predicts kinase-substrate links by capturing the inherent association of proteins in a network comprising 85% of the known human kinases. We also postulate the potential role of two understudied kinases based on their substrate predictions from KSFinder. Methods KSFinder learns the semantic relationships in a phosphoproteome knowledge graph using a knowledge graph embedding algorithm and represents the nodes in low-dimensional vectors. A multilayer perceptron (MLP) classifier is trained to discern kinase-substrate links using the embedded vectors. KSFinder uses a strategic negative generation approach that eliminates biases in entity representation and combines data from experimentally validated non-interacting protein pairs, proteins from different subcellular locations, and random sampling. We assess KSFinder's generalization capability on four different datasets and compare its performance with other state-of-the-art prediction models. We employ KSFinder to predict substrates of 68 "dark" kinases considered understudied by the Illuminating the Druggable Genome program and use our text-mining tool, RLIMS-P along with manual curation, to search for literature evidence for the predictions. In a case study, we performed functional enrichment analysis for two dark kinases - HIPK3 and CAMKK1 using their predicted substrates. Results KSFinder shows improved performance over other kinase-substrate prediction models and generalized prediction ability on different datasets. We identified literature evidence for 17 novel predictions involving an understudied kinase. All of these 17 predictions had a probability score ≥0.7 (nine at >0.9, six at 0.8-0.9, and two at 0.7-0.8). The evaluation of 93,593 negative predictions (probability ≤0.3) identified four false negatives. The top enriched biological processes of HIPK3 substrates relate to the regulation of extracellular matrix and epigenetic gene expression, while CAMKK1 substrates include lipid storage regulation and glucose homeostasis. Conclusions KSFinder outperforms the current kinase-substrate prediction tools with higher kinase coverage. The strategically developed negatives provide a superior generalization ability for KSFinder. We predicted substrates of 432 kinases, 68 of which are understudied, and hypothesized the potential functions of two dark kinases using their predicted substrates.
Collapse
Affiliation(s)
- Manju Anandakrishnan
- Center for Bioinformatics and Computational Biology, University of Delware, Newark, DE, United States of America
| | - Karen E. Ross
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Washington, DC, United States of America
| | - Chuming Chen
- Center for Bioinformatics and Computational Biology, University of Delware, Newark, DE, United States of America
| | - Vijay Shanker
- Center for Bioinformatics and Computational Biology, University of Delware, Newark, DE, United States of America
| | - Julie Cowart
- Center for Bioinformatics and Computational Biology, University of Delware, Newark, DE, United States of America
| | - Cathy H. Wu
- Center for Bioinformatics and Computational Biology, University of Delware, Newark, DE, United States of America
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Washington, DC, United States of America
| |
Collapse
|
18
|
Sun M, Li Z, Wang X, Zhao M, Chu Y, Zhang Z, Fang K, Zhao Z, Feng A, Leng Z, Shi J, Zhang L, Chen T, Xu M. TAOK3 Facilitates Esophageal Squamous Cell Carcinoma Progression and Cisplatin Resistance Through Augmenting Autophagy Mediated by IRGM. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2300864. [PMID: 37705061 PMCID: PMC10582451 DOI: 10.1002/advs.202300864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 08/02/2023] [Indexed: 09/15/2023]
Abstract
Esophageal squamous cell carcinoma (ESCC) is one of the deadliest cancers because of its robust aggressive phenotype and chemoresistance. TAO kinase belongs to mitogen-activated protein kinases, which mediate drug resistance in multiple cancers. However, the role of TAO kinase in ESCC progression and chemoresistance has never been explored. Here, it is reported that TAOK3 augments cell autophagy and further promotes ESCC progression and chemoresistance. Mechanistically, TAOK3 phosphorylates KMT2C at S4588 and strengthens the interaction between KMT2C and ETV5. Consequently, the nuclear translocation of KMT2C is increased, and the transcription of autophagy-relevant gene IRGM is further upregulated. Additionally, the inhibitor SBI-581 can significantly suppress cell autophagy mediated by TAOK3 and synergizes with cisplatin to treat ESCC in vitro and in vivo.
Collapse
Affiliation(s)
- Mingchuang Sun
- Endoscopy CenterDepartment of GastroenterologyShanghai East HospitalSchool of MedicineTongji UniversityShanghai200120China
| | - Zhaoxing Li
- Endoscopy CenterDepartment of GastroenterologyShanghai East HospitalSchool of MedicineTongji UniversityShanghai200120China
| | - Xiaoyuan Wang
- Endoscopy CenterDepartment of GastroenterologyShanghai East HospitalSchool of MedicineTongji UniversityShanghai200120China
| | - Meirong Zhao
- Shanghai East HospitalJinzhou Medical UniversityLiaoning121001China
| | - Yuan Chu
- Endoscopy CenterDepartment of GastroenterologyShanghai East HospitalSchool of MedicineTongji UniversityShanghai200120China
| | - Zehua Zhang
- Endoscopy CenterDepartment of GastroenterologyShanghai East HospitalSchool of MedicineTongji UniversityShanghai200120China
| | - Kang Fang
- Endoscopy CenterDepartment of GastroenterologyShanghai East HospitalSchool of MedicineTongji UniversityShanghai200120China
| | - Ziying Zhao
- Endoscopy CenterDepartment of GastroenterologyShanghai East HospitalSchool of MedicineTongji UniversityShanghai200120China
| | - Anqi Feng
- Endoscopy CenterDepartment of GastroenterologyShanghai East HospitalSchool of MedicineTongji UniversityShanghai200120China
| | - Zhuyun Leng
- Endoscopy CenterDepartment of GastroenterologyShanghai East HospitalSchool of MedicineTongji UniversityShanghai200120China
| | - Jianing Shi
- Endoscopy CenterDepartment of GastroenterologyShanghai East HospitalSchool of MedicineTongji UniversityShanghai200120China
| | - Li Zhang
- Department of PathologyShanghai East HospitalSchool of MedicineTongji UniversityShanghai200120China
| | - Tao Chen
- Endoscopy CenterDepartment of GastroenterologyShanghai East HospitalSchool of MedicineTongji UniversityShanghai200120China
| | - Meidong Xu
- Endoscopy CenterDepartment of GastroenterologyShanghai East HospitalSchool of MedicineTongji UniversityShanghai200120China
| |
Collapse
|
19
|
Zhang R, Shen Q, Wang Y, Deng X, Fan J, Gu X, Fan M, Wei K, Cheng C, Zhang W, Zhang X, Liu X. Corylifol A ameliorates muscle atrophy by inhibiting TAOK1/p38-MAPK/FoxO3 pathway in cancer cachexia. J Cachexia Sarcopenia Muscle 2023; 14:2098-2113. [PMID: 37439183 PMCID: PMC10570114 DOI: 10.1002/jcsm.13288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 05/02/2023] [Accepted: 05/22/2023] [Indexed: 07/14/2023] Open
Abstract
BACKGROUND Corylifol A (CYA) is one of the main active components of Psoralea corylifolia L. CYA had been reported to have ameliorating effects on dexamethasone-induced atrophy of C2C12 mouse skeletal myotubes, but its effects on cancer cachexia were unclear. Here, we checked the influence of CYA on muscle atrophy in cancer cachexia mice and tried to clarify its mechanisms. METHODS C26 tumour-bearing mice were applied as the animal model to examine the effects of CYA in attenuating cachexia symptoms. The in vitro cell models of TNF-α-induced C2C12 myotubes or ad-mRFP-GFP-LC3B-transfected C2C12 myotubes were used to check the influence of CYA on myotube atrophy based on both ubiquitin proteasome system (UPS) and autophagy-lysosome system. The possible direct targets of CYA were searched using the biotin-streptavidin pull-down assay and then confirmed using the Microscale thermophoresis binding assay. The levels of related signal proteins in both in vitro and in vivo experiments were examined using western blotting and immunocytochemical assay. RESULTS The administration of CYA prevented body weight loss and muscle wasting in C26 tumour-bearing mice without affecting tumour growth. At the end of the experiment, the body weight of mice treated with 30 mg/kg of CYA (23.59 ± 0.94 g) was significantly higher than that of the C26 model group (21.66 ± 0.56 g) with P < 0.05. The values of gastrocnemius muscle weight/body weight of mice treated with 15 or 30 mg/kg CYA (0.53 ± 0.02% and 0.54 ± 0.01%, respectively) were both significantly higher than that of the C26 model group (0.45 ± 0.01%) with P < 0.01. CYA decreased both UPS-mediated protein degradation and autophagy in muscle tissues of C26 tumour-bearing mice as well as in C2C12 myotubes treated with TNF-α. The thousand-and-one amino acid kinase 1 (TAOK1) was found to be the direct binding target of CYA. CYA inhibited the activation of TAOK1 and its downstream p38-MAPK pathway thus decreased the level and nuclear location of FoxO3. siRNA knockdown of TAOK1 or regulation of the p38-MAPK pathway using activator or inhibitor could affect the ameliorating effects of CYA on myotube atrophy. CONCLUSIONS CYA ameliorates cancer cachexia muscle atrophy by decreasing both UPS degradation and autophagy. The ameliorating effects of CYA on muscle atrophy might be based on its binding with TAOK1 and inhibiting the TAOK1/p38-MAPK/FoxO3 pathway.
Collapse
Affiliation(s)
- Ruiqin Zhang
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine ResearchShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Qiang Shen
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine ResearchShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Yueping Wang
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine ResearchShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Xue Deng
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine ResearchShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Jialing Fan
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine ResearchShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Xiaofan Gu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular EngineeringEast China Normal UniversityShanghaiChina
| | - Meng Fan
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular EngineeringEast China Normal UniversityShanghaiChina
| | - Kun Wei
- School of Chemical EngineeringSichuan University of Science & EngineeringSichuanChina
| | - Chun‐Ru Cheng
- School of Chemical EngineeringSichuan University of Science & EngineeringSichuanChina
| | - Wei‐Dong Zhang
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine ResearchShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Xiong‐wen Zhang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular EngineeringEast China Normal UniversityShanghaiChina
| | - Xuan Liu
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine ResearchShanghai University of Traditional Chinese MedicineShanghaiChina
| |
Collapse
|
20
|
Tscherrig V, Cottagnoud S, Haesler V, Renz P, Surbek D, Schoeberlein A, Joerger-Messerli MS. MicroRNA Cargo in Wharton's Jelly MSC Small Extracellular Vesicles: Key Functionality to In Vitro Prevention and Treatment of Premature White Matter Injury. Stem Cell Rev Rep 2023; 19:2447-2464. [PMID: 37523115 PMCID: PMC10579138 DOI: 10.1007/s12015-023-10595-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/12/2023] [Indexed: 08/01/2023]
Abstract
Preterm birth is the leading cause of childhood morbidity and mortality and can result in white matter injury (WMI), leading to long-term neurological disabilities with global health burden. Mesenchymal stromal cell-derived small extracellular vesicles (MSC-sEV) are a promising therapeutic agent for treating perinatal neurological injury. They carry microRNAs (miRNAs) predicted to be involved in the onset of premature WMI. We hypothesize that miRNAs have a key function in the beneficial effects of MSC-sEV. We isolated MSC from umbilical cord tissue, the Wharton's jelly (WJ), and purified small extracellular vesicles (sEV) from WJ-MSC culture supernatant by ultracentrifugation and size exclusion chromatography. The miRNA content was quantified by real-time polymerase chain reaction. A luciferase gene assay validated silencing of TP53 and TAOK1, which we previously identified as predicted target genes of MSC-sEV miRNAs by Next Generation Sequencing and pathway enrichment analysis. The impact of sEV miRNAs on oligodendroglial maturation and neuronal apoptosis was evaluated using an in vitro oxygen-glucose deprivation model (OGD/R) by knocking-down DROSHA in WJ-MSC, which initiates miRNA processing. WJ-MSC-sEV contained miRNAs involved in WMI, namely hsa-miR-22-3p, hsa-miR-21-5p, hsa-miR-27b-3p, and the hsa-let-7 family. The luciferase assay strongly indicated an inhibitory effect of sEV miRNAs on the gene expression of TP53 and TAOK1. Small EV initiated oligodendrocyte maturation and reduced OGD/R-mediated neuronal apoptosis. Knocking-down DROSHA in WJ-MSC reduced the expression of sEV miRNAs and led to the loss of their beneficial effects. Our in vitro study strongly indicates the key function of miRNAs in the therapeutic potential of WJ-MSC-sEV in premature WMI.
Collapse
Affiliation(s)
- Vera Tscherrig
- Department of Obstetrics and Feto-maternal Medicine, University Women's Hospital, Inselspital, Bern University Hospital, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences (GCB), University of Bern, Bern, Switzerland
- Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Sophie Cottagnoud
- Department of Obstetrics and Feto-maternal Medicine, University Women's Hospital, Inselspital, Bern University Hospital, Bern, Switzerland
- Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Valérie Haesler
- Department of Obstetrics and Feto-maternal Medicine, University Women's Hospital, Inselspital, Bern University Hospital, Bern, Switzerland
- Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Patricia Renz
- Department of Obstetrics and Feto-maternal Medicine, University Women's Hospital, Inselspital, Bern University Hospital, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences (GCB), University of Bern, Bern, Switzerland
- Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Daniel Surbek
- Department of Obstetrics and Feto-maternal Medicine, University Women's Hospital, Inselspital, Bern University Hospital, Bern, Switzerland
- Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Andreina Schoeberlein
- Department of Obstetrics and Feto-maternal Medicine, University Women's Hospital, Inselspital, Bern University Hospital, Bern, Switzerland
- Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Marianne Simone Joerger-Messerli
- Department of Obstetrics and Feto-maternal Medicine, University Women's Hospital, Inselspital, Bern University Hospital, Bern, Switzerland.
- Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland.
| |
Collapse
|
21
|
Wang J, Li W, Li Z, Xue Z, Zhang Y, Yuan Y, Shi Y, Shan S, Han W, Li F, Qiu Z. Taok1 haploinsufficiency leads to autistic-like behaviors in mice via the dorsal raphe nucleus. Cell Rep 2023; 42:113078. [PMID: 37656623 DOI: 10.1016/j.celrep.2023.113078] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 07/11/2023] [Accepted: 08/16/2023] [Indexed: 09/03/2023] Open
Abstract
Strong evidence from human genetic studies associates the thousand and one amino acid kinase 1 (TAOK1) gene with autism spectrum disorder (ASD). In this work, we discovered a de novo frameshifting mutation in TAOK1 within a Chinese ASD cohort. We found that Taok1 haploinsufficiency induces autistic-like behaviors in mice. Importantly, we observed a significant enrichment of Taok1 in the dorsal raphe nucleus (DRN). The haploinsufficiency of Taok1 considerably restrained the activation of DRN neurons during social interactions, leading to the aberrant phosphorylation of numerous proteins. Intriguingly, the genetic deletion of Taok1 in VGlut3-positive neurons of DRN resulted in mice exhibiting autistic-like behaviors. Ultimately, reintroducing wild-type Taok1, but not its kinase-dead variant, into the DRN of adult mice effectively mitigated the autistic-like behaviors associated with Taok1 haploinsufficiency. This work suggests that Taok1, through its influence in the DRN, regulates social interaction behaviors, providing critical insights into the etiology of ASD.
Collapse
Affiliation(s)
- Jincheng Wang
- Songjiang Research Institute, Songjiang District Central Hospital, Institute of Autism & MOE-Shanghai Key Laboratory for Children's Environmental Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Weike Li
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Zimeng Li
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Zhenyu Xue
- Department of Anesthesiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuefang Zhang
- Songjiang Research Institute, Songjiang District Central Hospital, Institute of Autism & MOE-Shanghai Key Laboratory for Children's Environmental Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yiting Yuan
- Songjiang Research Institute, Songjiang District Central Hospital, Institute of Autism & MOE-Shanghai Key Laboratory for Children's Environmental Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuhan Shi
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Shifang Shan
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Wenjian Han
- Songjiang Research Institute, Songjiang District Central Hospital, Institute of Autism & MOE-Shanghai Key Laboratory for Children's Environmental Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fei Li
- MOE-Shanghai Key Laboratory for Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zilong Qiu
- Songjiang Research Institute, Songjiang District Central Hospital, Institute of Autism & MOE-Shanghai Key Laboratory for Children's Environmental Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China; MOE-Shanghai Key Laboratory for Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Clinic Neuroscience Center, Department of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
22
|
Maes B, Fayazpour F, Catrysse L, Lornet G, Van De Velde E, De Wolf C, De Prijck S, Van Moorleghem J, Vanheerswynghels M, Deswarte K, Descamps B, Vanhove C, Van der Schueren B, Vangoitsenhoven R, Hammad H, Janssens S, Lambrecht BN. STE20 kinase TAOK3 regulates type 2 immunity and metabolism in obesity. J Exp Med 2023; 220:e20210788. [PMID: 37347461 PMCID: PMC10287548 DOI: 10.1084/jem.20210788] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 03/31/2023] [Accepted: 06/02/2023] [Indexed: 06/23/2023] Open
Abstract
Healthy adipose tissue (AT) contains ST2+ Tregs, ILC2s, and alternatively activated macrophages that are lost in mice or humans on high caloric diet. Understanding how this form of type 2 immunity is regulated could improve treatment of obesity. The STE20 kinase Thousand And One amino acid Kinase-3 (TAOK3) has been linked to obesity in mice and humans, but its precise function is unknown. We found that ST2+ Tregs are upregulated in visceral epididymal white AT (eWAT) of Taok3-/- mice, dependent on IL-33 and the kinase activity of TAOK3. Upon high fat diet feeding, metabolic dysfunction was attenuated in Taok3-/- mice. ST2+ Tregs disappeared from eWAT in obese wild-type mice, but this was not the case in Taok3-/- mice. Mechanistically, AT Taok3-/- Tregs were intrinsically more responsive to IL-33, through higher expression of ST2, and expressed more PPARγ and type 2 cytokines. Thus, TAOK3 inhibits adipose tissue Tregs and regulates immunometabolism under excessive caloric intake.
Collapse
Affiliation(s)
- Bastiaan Maes
- Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
- Laboratory for Endoplasmic Reticulum Stress and Inflammation, VIB-UGent Center for Inflammation Research, Ghent, Belgium
| | - Farzaneh Fayazpour
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
- Laboratory for Endoplasmic Reticulum Stress and Inflammation, VIB-UGent Center for Inflammation Research, Ghent, Belgium
| | - Leen Catrysse
- Cellular and Molecular (Patho)Physiology, VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Guillaume Lornet
- Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium
| | - Evelien Van De Velde
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
- Laboratory for Endoplasmic Reticulum Stress and Inflammation, VIB-UGent Center for Inflammation Research, Ghent, Belgium
| | - Caroline De Wolf
- Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Sofie De Prijck
- Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Justine Van Moorleghem
- Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Manon Vanheerswynghels
- Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Kim Deswarte
- Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Benedicte Descamps
- Department of Electronics and Information Systems, IBiTech-MEDISIP-Infinity Lab, Ghent University, Ghent, Belgium
| | - Christian Vanhove
- Department of Electronics and Information Systems, IBiTech-MEDISIP-Infinity Lab, Ghent University, Ghent, Belgium
| | - Bart Van der Schueren
- Department of Chronic Diseases and Metabolism, Clinical and Experimental Endocrinology, KU Leuven, Leuven, Belgium
- Department of Endocrinology, University Hospitals Leuven, Leuven, Belgium
| | - Roman Vangoitsenhoven
- Department of Chronic Diseases and Metabolism, Clinical and Experimental Endocrinology, KU Leuven, Leuven, Belgium
- Department of Endocrinology, University Hospitals Leuven, Leuven, Belgium
| | - Hamida Hammad
- Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Sophie Janssens
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
- Laboratory for Endoplasmic Reticulum Stress and Inflammation, VIB-UGent Center for Inflammation Research, Ghent, Belgium
| | - Bart N. Lambrecht
- Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
- Department of Pulmonary Medicine, Erasmus University Medical Center Rotterdam, Rotterdam Netherlands
| |
Collapse
|
23
|
Poirier A, Wu C, Hincapie AM, Martinez-Cordova Z, Abidin BM, Tremblay ML. TAOK3 limits age-associated inflammation by negatively modulating macrophage differentiation and their production of TNFα. Immun Ageing 2023; 20:31. [PMID: 37400834 DOI: 10.1186/s12979-023-00350-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 06/06/2023] [Indexed: 07/05/2023]
Abstract
BACKGROUND Human aging is characterized by a state of chronic inflammation, termed inflammaging, for which the causes are incompletely understood. It is known, however, that macrophages play a driving role in establishing inflammaging by promoting pro-inflammatory rather than anti-inflammatory responses. Numerous genetic and environmental risk factors have been implicated with inflammaging, most of which are directly linked to pro-inflammatory mediators IL-6, IL1Ra, and TNFα. Genes involved in the signaling and production of those molecules have also been highlighted as essential contributors. TAOK3 is a serine/threonine kinase of the STE-20 kinase family that has been associated with an increased risk of developing auto-immune conditions in several genome-wide association studies (GWAS). Yet, the functional role of TAOK3 in inflammation has remained unexplored. RESULTS We found that mice deficient in the serine/Threonine kinase Taok3 developed severe inflammatory disorders with age, which was more pronounced in female animals. Further analyses revealed a drastic shift from lymphoid to myeloid cells in the spleens of those aged mice. This shift was accompanied by hematopoietic progenitor cells skewing in Taok3-/- mice that favored myeloid lineage commitment. Finally, we identified that the kinase activity of the enzyme plays a vital role in limiting the establishment of proinflammatory responses in macrophages. CONCLUSIONS Essentially, Taok3 deficiency promotes the accumulation of monocytes in the periphery and their adoption of a pro-inflammatory phenotype. These findings illustrate the role of Taok3 in age-related inflammation and highlight the importance of genetic risk factors in this condition.
Collapse
Affiliation(s)
- Alexandre Poirier
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montréal, Québec, Canada
- Faculty of Medicine and Health Sciences, Division of Experimental Medicine, McGill University, Montréal, Québec, Canada
| | - Chenyue Wu
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montréal, Québec, Canada
- Department of Microbiology and Immunology, McGill University, Montréal, Québec, Canada
| | - Ana Maria Hincapie
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montréal, Québec, Canada
- Department of Biochemistry, McGill University, Montréal, Québec, Canada
| | - Zuzet Martinez-Cordova
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montréal, Québec, Canada
| | - Belma Melda Abidin
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montréal, Québec, Canada
| | - Michel L Tremblay
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montréal, Québec, Canada.
- Faculty of Medicine and Health Sciences, Division of Experimental Medicine, McGill University, Montréal, Québec, Canada.
- Department of Microbiology and Immunology, McGill University, Montréal, Québec, Canada.
- Department of Biochemistry, McGill University, Montréal, Québec, Canada.
- Faculty of Medicine, McGill University, Montréal, Québec, Canada.
- McGill University, Rosalind and Morris Goodman Cancer Institute, 1160 Pine Avenue West, Montréal, Québec, H3A 1A3, Canada.
| |
Collapse
|
24
|
Wu X, Zhou C, Li X, Lin J, Aguila LCR, Wen F, Wang L. Genome-wide identification and immune response analysis of mitogen-activated protein kinase cascades in tea geometrid, Ectropis grisescens Warren (Geometridae, Lepidoptera). BMC Genomics 2023; 24:344. [PMID: 37349677 DOI: 10.1186/s12864-023-09446-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 06/13/2023] [Indexed: 06/24/2023] Open
Abstract
BACKGROUND Tea geometrid Ectropis grisescens (Geometridae: Lepidoptera), is one of the most destructive defoliators in tea plantations in China. The MAPK cascade is known to be an evolutionarily conserved signaling module, acting as pivotal cores of host-pathogen interactions. Although the chromosome-level reference genome of E. grisescens was published, the whole MAPK cascade gene family has not been fully identified yet, especially the expression patterns of MAPK cascade gene family members upon an ecological biopesticide, Metarhizium anisopliae, remains to be understood. RESULTS In this study, we have identified 19 MAPK cascade gene family members in E. grisescens, including 5 MAPKs, 4 MAP2Ks, 8 MAP3Ks, and 2 MAP4Ks. The molecular evolution characteristics of the whole Eg-MAPK cascade gene family, including gene structures, protein structural organization, chromosomal localization, orthologs construction and gene duplication, were systematically investigated. Our results showed that the members of Eg-MAPK cascade gene family were unevenly distributed in 13 chromosomes, and the clustered members in each group shared similar structures of the genes and proteins. Gene expression data revealed that MAPK cascade genes were expressed in all four developmental stages of E. grisescens and were fairly and evenly distributed in four different larva tissues. Importantly, most of the MAPK cascade genes were induced or constitutively expressed upon M. anisopliae infection. CONCLUSIONS In summary, the present study was one of few studies on MAPK cascade gene in E. grisescens. The characterization and expression profiles of Eg-MAPK cascades genes might help develop new ecofriendly biological insecticides to protect tea trees.
Collapse
Affiliation(s)
- Xiaozhu Wu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops; Key Laboratory of Biopesticides and Chemical Biology, Ministry of Education, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- School of Biological Science and Food Engineering, Chuzhou University, Chuzhou, 239099, China
| | - Chenghua Zhou
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops; Key Laboratory of Biopesticides and Chemical Biology, Ministry of Education, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xiaofang Li
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops; Key Laboratory of Biopesticides and Chemical Biology, Ministry of Education, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Jingyi Lin
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops; Key Laboratory of Biopesticides and Chemical Biology, Ministry of Education, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Luis Carlos Ramos Aguila
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops; Key Laboratory of Biopesticides and Chemical Biology, Ministry of Education, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Feng Wen
- School of Pharmacy and Life Science, Jiujiang University, Jiujiang, 332000, China.
| | - Liande Wang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops; Key Laboratory of Biopesticides and Chemical Biology, Ministry of Education, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| |
Collapse
|
25
|
Wei X, Huang G, Liu J, Ge J, Zhang W, Mei Z. An update on the role of Hippo signaling pathway in ischemia-associated central nervous system diseases. Biomed Pharmacother 2023; 162:114619. [PMID: 37004330 DOI: 10.1016/j.biopha.2023.114619] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 03/26/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023] Open
Abstract
The most frequent reason of morbidity and mortality in the world, cerebral ischemia sets off a chain of molecular and cellular pathologies that associated with some central nervous system (CNS) disorders mainly including ischemic stroke, Alzheimer's disease (AD), Parkinson's disease (PD), epilepsy and other CNS diseases. In recent times, despite significant advancements in the treatment of the pathological processes underlying various neurological illnesses, effective therapeutic approaches that are specifically targeted to minimizing the damage of such diseases remain absent. Hippo signaling pathway, characterized by enzyme linked reactions between MSTI/2, LAST1/2, and YAP or TAZ proteins, controls cell division, survival, and differentiation, as well as being engaged in a variety of biological activities, such as the development and transformation of the nervous system. Recently, accumulating studies demonstrated that Hippo pathway takes part in the processes of ischemic stroke, AD, PD, etc., including but not limited to oxidative stress, inflammatory response, blood-brain barrier damage, mitochondrial disorders, and neural cells death. Thus, it's crucial to understand the molecular basis of the Hippo signaling pathway for determining potential new therapeutic targets against ischemia-associated CNS diseases. Here, we discuss latest advances in the deciphering of the Hippo signaling pathway and highlight the therapeutic potential of targeting the pathway in treating ischemia-associated CNS diseases.
Collapse
|
26
|
Xia Y, Andersson E, Anand SK, Cansby E, Caputo M, Kumari S, Porosk R, Kilk K, Nair S, Marschall HU, Blüher M, Mahlapuu M. Silencing of STE20-type kinase TAOK1 confers protection against hepatocellular lipotoxicity through metabolic rewiring. Hepatol Commun 2023; 7:02009842-202304010-00004. [PMID: 36930872 PMCID: PMC10027040 DOI: 10.1097/hc9.0000000000000037] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 11/19/2022] [Indexed: 03/19/2023] Open
Abstract
BACKGROUND NAFLD has become the leading cause of chronic liver disease worldwide afflicting about one quarter of the adult population. NASH is a severe subtype of NAFLD, which in addition to hepatic steatosis connotes liver inflammation and hepatocyte ballooning. In light of the exponentially increasing prevalence of NAFLD, it is imperative to gain a better understanding of its molecular pathogenesis. The aim of this study was to examine the potential role of STE20-type kinase TAOK1 -a hepatocellular lipid droplet-associated protein-in the regulation of liver lipotoxicity and NAFLD etiology. METHODS The correlation between TAOK1 mRNA expression in liver biopsies and the severity of NAFLD was evaluated in a cohort of 62 participants. Immunofluorescence microscopy was applied to describe the subcellular localization of TAOK1 in human and mouse hepatocytes. Metabolic reprogramming and oxidative/endoplasmic reticulum stress were investigated in immortalized human hepatocytes, where TAOK1 was overexpressed or silenced by small interfering RNA, using functional assays, immunofluorescence microscopy, and colorimetric analysis. Migration, invasion, and epithelial-mesenchymal transition were examined in TAOK1-deficient human hepatoma-derived cells. Alterations in hepatocellular metabolic and pro-oncogenic signaling pathways were assessed by immunoblotting. RESULTS We observed a positive correlation between the TAOK1 mRNA abundance in human liver biopsies and key hallmarks of NAFLD (i.e., hepatic steatosis, inflammation, and ballooning). Furthermore, we found that TAOK1 protein fully colocalized with intracellular lipid droplets in human and mouse hepatocytes. The silencing of TAOK1 alleviated lipotoxicity in cultured human hepatocytes by accelerating lipid catabolism (mitochondrial β-oxidation and triacylglycerol secretion), suppressing lipid anabolism (fatty acid influx and lipogenesis), and mitigating oxidative/endoplasmic reticulum stress, and the opposite changes were detected in TAOK1-overexpressing cells. We also found decreased proliferative, migratory, and invasive capacity, as well as lower epithelial-mesenchymal transition in TAOK1-deficient human hepatoma-derived cells. Mechanistic studies revealed that TAOK1 knockdown inhibited ERK and JNK activation and repressed acetyl-CoA carboxylase (ACC) protein abundance in human hepatocytes. CONCLUSIONS Together, we provide the first experimental evidence supporting the role of hepatic lipid droplet-decorating kinase TAOK1 in NAFLD development through mediating fatty acid partitioning between anabolic and catabolic pathways, regulating oxidative/endoplasmic reticulum stress, and modulating metabolic and pro-oncogenic signaling.
Collapse
Affiliation(s)
- Ying Xia
- Department of Chemistry and Molecular Biology, Sahlgrenska University Hospital, University of Gothenburg, Gothenburg, Sweden
| | - Emma Andersson
- Department of Chemistry and Molecular Biology, Sahlgrenska University Hospital, University of Gothenburg, Gothenburg, Sweden
| | - Sumit K Anand
- Department of Chemistry and Molecular Biology, Sahlgrenska University Hospital, University of Gothenburg, Gothenburg, Sweden
| | - Emmelie Cansby
- Department of Chemistry and Molecular Biology, Sahlgrenska University Hospital, University of Gothenburg, Gothenburg, Sweden
| | - Mara Caputo
- Department of Chemistry and Molecular Biology, Sahlgrenska University Hospital, University of Gothenburg, Gothenburg, Sweden
| | - Sima Kumari
- Department of Chemistry and Molecular Biology, Sahlgrenska University Hospital, University of Gothenburg, Gothenburg, Sweden
| | - Rando Porosk
- Department of Biochemistry, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Kalle Kilk
- Department of Biochemistry, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Syam Nair
- Institute of Neuroscience and Physiology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Hanns-Ulrich Marschall
- Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska University Hospital, University of Gothenburg, Gothenburg, Sweden
| | - Matthias Blüher
- Helmholtz Institute for Metabolic, Obesity, and Vascular Research (HI-MAG) of the Helmholtz Zentrum München, University Hospital Leipzig, University of Leipzig, Leipzig, Germany
| | - Margit Mahlapuu
- Department of Chemistry and Molecular Biology, Sahlgrenska University Hospital, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
27
|
Activation of Transposable Elements in Human Skeletal Muscle Fibers upon Statin Treatment. Int J Mol Sci 2022; 24:ijms24010244. [PMID: 36613689 PMCID: PMC9820482 DOI: 10.3390/ijms24010244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/18/2022] [Accepted: 11/29/2022] [Indexed: 12/25/2022] Open
Abstract
High cholesterol levels have been linked to a high risk of cardiovascular diseases, and preventative pharmacological care to lower cholesterol levels is critically important. Statins, which are hydroxymethylglutaryl-coenzyme A (HMG-CoA) reductase inhibitors, are drugs used to reduce the endogenous cholesterol synthesis, thus minimizing its pathophysiological effects. Despite the proven benefits, statins therapy is known to cause a number of skeletal muscle disorders, including myalgia, myopathy and myositis. The mechanisms underlying such statin-induced side effects are unknown. Recently, a group of genes and molecular pathways has been described to participate in statin-induced myopathy, caused by either simvastatin or rosuvastatin, although the mechanism by which changes in gene regulation occur was not studied. Transposable Elements (TEs), repetitive elements that move within the genome, are known to play regulatory roles in gene expression; however, their role in statin-induced muscle damage has not been studied. We analyzed the expression of TEs in human skeletal fiber cells treated with either simvastatin or rosuvastatin, as well as their respective controls, and identified TEs that change their expression in response to the treatment. We found that simvastatin resulted in >1000 differentially expressed (DE) TEs, whereas rosuvastatin resulted in only 27 DE TEs. Using network analysis tools, we predicted the impact of the DE TEs on the expression of genes and found that amongst the genes potentially modulated by TEs, there are some previously associated to statin-linked myopathy pathways (e.g., AKT3). Overall, our results indicate that TEs may be a key player in the statin-induced muscle side effects.
Collapse
|
28
|
Genetic Alterations and Deregulation of Hippo Pathway as a Pathogenetic Mechanism in Bone and Soft Tissue Sarcoma. Cancers (Basel) 2022; 14:cancers14246211. [PMID: 36551696 PMCID: PMC9776600 DOI: 10.3390/cancers14246211] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/13/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
The Hippo pathway is an evolutionarily conserved modulator of developmental biology with a key role in tissue and organ size regulation under homeostatic conditions. Like other signaling pathways with a significant role in embryonic development, the deregulation of Hippo signaling contributes to oncogenesis. Central to the Hippo pathway is a conserved cascade of adaptor proteins and inhibitory kinases that converge and regulate the activity of the oncoproteins YAP and TAZ, the final transducers of the pathway. Elevated levels and aberrant activation of YAP and TAZ have been described in many cancers. Though most of the studies describe their pervasive activation in epithelial neoplasms, there is increasing evidence pointing out its relevance in mesenchymal malignancies as well. Interestingly, somatic or germline mutations in genes of the Hippo pathway are scarce compared to other signaling pathways that are frequently disrupted in cancer. However, in the case of sarcomas, several examples of genetic alteration of Hippo members, including gene fusions, have been described during the last few years. Here, we review the current knowledge of Hippo pathway implication in sarcoma, describing mechanistic hints recently reported in specific histological entities and how these alterations represent an opportunity for targeted therapy in this heterogeneous group of neoplasm.
Collapse
|
29
|
Yu L, Yang C, Shang N, Ding H, Zhu J, Zhu Y, Tan H, Zhang Y. Paternal De Novo Variant of TAOK1 in a Fetus With Structural Brain Abnormalities. Front Genet 2022; 13:836853. [PMID: 35928450 PMCID: PMC9343781 DOI: 10.3389/fgene.2022.836853] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 05/30/2022] [Indexed: 11/13/2022] Open
Abstract
A dilated lateral ventricle is a relatively common finding on prenatal ultrasound, and the causes are complex. We aimed to explore the etiology of a fetus with a dilated lateral ventricle. Trio whole-exome sequencing was performed to detect causative variants. A de novo variant of TAOK1 (NM_020791.2: c.227A>G) was detected in the proband and evaluated for potential functional impacts using a variety of prediction tools. Droplet digital polymerase chain reaction was used to exclude the parental mosaicism and to verify the phasing of the de novo variant. Based on peripheral blood analysis, the parents did not exhibit mosaicism at this site, and the de novo variant was paternally derived. Here, we describe a fetus with a de novo likely pathogenic variant of TAOK1 who had a dilated lateral ventricle and a series of particular phenotypes. This case expands the clinical spectrum of TAOK1-associated disorders. We propose a method for solving genetic disorders in which the responsible genes have not yet gone through ClinGen curation, particularly for prenatal cases.
Collapse
Affiliation(s)
- Lihua Yu
- Medical Genetics Centre, Guangdong Women and Children Hospital, Guangzhou, China
| | - Chaoxiang Yang
- Department of Radiology, Guangdong Women and Children Hospital, Guangzhou, China
| | - Ning Shang
- Department of Ultrasound, Guangdong Women and Children Hospital, Guangzhou, China
| | - Hongke Ding
- Medical Genetics Centre, Guangdong Women and Children Hospital, Guangzhou, China
| | - Juan Zhu
- Medical Genetics Centre, Guangdong Women and Children Hospital, Guangzhou, China
| | - Yuanyuan Zhu
- Aegicare (Shenzhen) Technology Co., Ltd., Shenzhen, China
| | - Haowen Tan
- Aegicare (Shenzhen) Technology Co., Ltd., Shenzhen, China
| | - Yan Zhang
- Medical Genetics Centre, Guangdong Women and Children Hospital, Guangzhou, China
| |
Collapse
|
30
|
β-Arrestin2 Is Critically Involved in the Differential Regulation of Phosphosignaling Pathways by Thyrotropin-Releasing Hormone and Taltirelin. Cells 2022; 11:cells11091473. [PMID: 35563779 PMCID: PMC9103620 DOI: 10.3390/cells11091473] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 04/22/2022] [Accepted: 04/25/2022] [Indexed: 12/17/2022] Open
Abstract
In recent years, thyrotropin-releasing hormone (TRH) and its analogs, including taltirelin (TAL), have demonstrated a range of effects on the central nervous system that represent potential therapeutic agents for the treatment of various neurological disorders, including neurodegenerative diseases. However, the molecular mechanisms of their actions remain poorly understood. In this study, we investigated phosphosignaling dynamics in pituitary GH1 cells affected by TRH and TAL and the putative role of β-arrestin2 in mediating these effects. Our results revealed widespread alterations in many phosphosignaling pathways involving signal transduction via small GTPases, MAP kinases, Ser/Thr- and Tyr-protein kinases, Wnt/β-catenin, and members of the Hippo pathway. The differential TRH- or TAL-induced phosphorylation of numerous proteins suggests that these ligands exhibit some degree of biased agonism at the TRH receptor. The different phosphorylation patterns induced by TRH or TAL in β-arrestin2-deficient cells suggest that the β-arrestin2 scaffold is a key factor determining phosphorylation events after TRH receptor activation. Our results suggest that compounds that modulate kinase and phosphatase activity can be considered as additional adjuvants to enhance the potential therapeutic value of TRH or TAL.
Collapse
|
31
|
Liu Q, Cui Y, Ding N, Zhou C. Knockdown of circ_0003928 ameliorates high glucose-induced dysfunction of human tubular epithelial cells through the miR-506-3p/HDAC4 pathway in diabetic nephropathy. Eur J Med Res 2022; 27:55. [PMID: 35392987 PMCID: PMC8991937 DOI: 10.1186/s40001-022-00679-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 03/20/2022] [Indexed: 11/10/2022] Open
Abstract
Background Previous data have indicated the importance of circular RNA (circRNA) in the pathogenesis of diabetic nephropathy (DN). The study is designed to investigate the effects of circ_0003928 on oxidative stress and apoptosis of high glucose (HG)-treated human tubular epithelial cells (HK-2) and the underlying mechanism. Methods The DN cell model was established by inducing HK-2 cells using 30 mmol/L D-glucose. RNA expression of circ_0003928, miR-506-3p and histone deacetylase 4 (HDAC4) was detected by quantitative real-time polymerase chain reaction. Cell viability and proliferation were investigated by cell counting kit-8 and 5-Ethynyl-29-deoxyuridine (EdU) assays, respectively. Oxidative stress was evaluated by commercial kits. Caspase 3 activity and cell apoptotic rate were assessed by a caspase 3 activity assay and flow cytometry analysis, respectively. Protein expression was detected by Western blotting analysis. The interactions among circ_0003928, miR-506-3p and HDAC4 were identified by dual-luciferase reporter and RNA pull-down assays. Results Circ_0003928 and HDAC4 expression were significantly upregulated, while miR-506-3p was downregulated in the serum of DN patients and HG-induced HK-2 cells. HG treatment inhibited HK-2 cell proliferation, but induced oxidative stress and cell apoptosis; however, these effects were reversed after circ_0003928 depletion. Circ_0003928 acted as a miR-506-3p sponge, and HDAC4 was identified as a target gene of miR-506-3p. Moreover, the circ_0003928/miR-506-3p/HDAC4 axis regulated HG-induced HK-2 cell dysfunction. Conclusion Circ_0003928 acted as a sponge for miR-506-3p to regulate HG-induced oxidative stress and apoptosis of HK-2 cells through HDAC4, which suggested that circ_0003928 might be helpful in the therapy of DN. Supplementary Information The online version contains supplementary material available at 10.1186/s40001-022-00679-y.
Collapse
Affiliation(s)
- Qiong Liu
- Department of Nephrology, Hebei General Hospital, Shijiazhuang, China
| | - Yuanyuan Cui
- Department of Endocrine Rheumatology and Immunology, People's Hospital of Gaotang County, Gaotang, China
| | - Nan Ding
- Department of Clinical Laboratory, Hebei General Hospital, Shijiazhuang, China
| | - Changxue Zhou
- Department of Kidney Internal Medicine, Zaozhuang Municipal Hospital, No. 41 Longtou Road, Central District, Zaozhuang, 277100, China.
| |
Collapse
|
32
|
Xia Y, Caputo M, Cansby E, Anand SK, Sütt S, Henricsson M, Porosk R, Marschall HU, Blüher M, Mahlapuu M. STE20-type kinase TAOK3 regulates hepatic lipid partitioning. Mol Metab 2021; 54:101353. [PMID: 34634521 PMCID: PMC8567304 DOI: 10.1016/j.molmet.2021.101353] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 10/01/2021] [Accepted: 10/05/2021] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVE Nonalcoholic fatty liver disease (NAFLD), defined by excessive lipid storage in hepatocytes, has recently emerged as a leading global cause of chronic liver disease. The aim of this study was to examine the role of STE20-type protein kinase TAOK3, which has previously been shown to associate with hepatic lipid droplets, in the initiation and aggravation of human NAFLD. METHODS The correlation between TAOK3 mRNA expression and the severity of NAFLD was investigated in liver biopsies from 62 individuals. In immortalized human hepatocytes, intracellular fat deposition, lipid metabolism, and oxidative and endoplasmic reticulum stress were analyzed when TAOK3 was overexpressed or knocked down by small interfering RNA. Subcellular localization of TAOK3 was characterized in human and mouse hepatocytes by immunofluorescence microscopy. RESULTS We found that the TAOK3 transcript levels in human liver biopsies were positively correlated with the key lesions of NAFLD (i.e., hepatic steatosis, inflammation, and ballooning). Overexpression of TAOK3 in cultured human hepatocytes exacerbated lipid storage by inhibiting β-oxidation and triacylglycerol secretion while enhancing lipid synthesis. Conversely, silencing of TAOK3 attenuated lipid deposition in human hepatocytes by stimulating mitochondrial fatty acid oxidation and triacylglycerol efflux while suppressing lipogenesis. We also found aggravated or decreased oxidative/endoplasmic reticulum stress in human hepatocytes with increased or reduced TAOK3 levels, respectively. The subcellular localization of TAOK3 in human and mouse hepatocytes was confined to intracellular lipid droplets. CONCLUSIONS This study provides the first evidence that hepatic lipid droplet-coating kinase TAOK3 is a critical regulatory node controlling liver lipotoxicity and susceptibility to NAFLD.
Collapse
Affiliation(s)
- Ying Xia
- Department of Chemistry and Molecular Biology, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Mara Caputo
- Department of Chemistry and Molecular Biology, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Emmelie Cansby
- Department of Chemistry and Molecular Biology, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Sumit Kumar Anand
- Department of Chemistry and Molecular Biology, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Silva Sütt
- Department of Chemistry and Molecular Biology, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Marcus Henricsson
- Biomarker Discovery and Development, Research and Early Development, Cardiovascular, Renal, and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden; Department of Molecular and Clinical Medicine/Wallenberg Laboratory, Institute of Medicine, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Rando Porosk
- Department of Biochemistry, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Hanns-Ulrich Marschall
- Department of Molecular and Clinical Medicine/Wallenberg Laboratory, Institute of Medicine, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Matthias Blüher
- Department of Medicine, University of Leipzig, Leipzig, Germany
| | - Margit Mahlapuu
- Department of Chemistry and Molecular Biology, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden.
| |
Collapse
|
33
|
Béziat V, Casanova JL, Jouanguy E. Human genetic and immunological dissection of papillomavirus-driven diseases: new insights into their pathogenesis. Curr Opin Virol 2021; 51:9-15. [PMID: 34555675 DOI: 10.1016/j.coviro.2021.09.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 08/26/2021] [Accepted: 09/03/2021] [Indexed: 12/23/2022]
Abstract
Human papillomaviruses (HPVs) are responsible for cutaneous and mucosal lesions. Persistent HPV infection remains a leading cause of uterine cancer in women, but also of cutaneous squamous cell carcinoma in patients with epidermodysplasia verruciformis (EV), and of rare and devastating benign tumors, such as 'tree-man' syndrome. HPV infections are usually asymptomatic or benign in the general population. Severe manifestations in otherwise healthy subjects can attest to inherited immunodeficiencies. The human genetic dissection of these cases has identified critical components of the immune response to HPVs, including the non-redundant roles of keratinocyte-intrinsic immunity in controlling β-HPVs, and of T cell-dependent adaptive immunity for controlling all HPV types. A key role of the CD28 T-cell costimulation pathway in controlling common warts due to HPVs was recently discovered. This review summarizes the state of the art in the human genetics of HPV infection, focusing on two key affected cell types: keratinocytes and T cells.
Collapse
Affiliation(s)
- Vivien Béziat
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale (INSERM) UMR-1163, Necker Hospital for Sick Children, Paris, France; University of Paris, Imagine Institute, Paris, France; St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, USA.
| | - Jean-Laurent Casanova
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale (INSERM) UMR-1163, Necker Hospital for Sick Children, Paris, France; University of Paris, Imagine Institute, Paris, France; St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, USA; Howard Hughes Medical Institute, New York, USA
| | - Emmanuelle Jouanguy
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale (INSERM) UMR-1163, Necker Hospital for Sick Children, Paris, France; University of Paris, Imagine Institute, Paris, France; St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, USA
| |
Collapse
|
34
|
Gawlińska K, Gawliński D, Borczyk M, Korostyński M, Przegaliński E, Filip M. A Maternal High-Fat Diet during Early Development Provokes Molecular Changes Related to Autism Spectrum Disorder in the Rat Offspring Brain. Nutrients 2021; 13:3212. [PMID: 34579089 PMCID: PMC8467420 DOI: 10.3390/nu13093212] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/11/2021] [Accepted: 09/14/2021] [Indexed: 12/23/2022] Open
Abstract
Autism spectrum disorder (ASD) is a disruptive neurodevelopmental disorder manifested by abnormal social interactions, communication, emotional circuits, and repetitive behaviors and is more often diagnosed in boys than in girls. It is postulated that ASD is caused by a complex interaction between genetic and environmental factors. Epigenetics provides a mechanistic link between exposure to an unbalanced maternal diet and persistent modifications in gene expression levels that can lead to phenotype changes in the offspring. To better understand the impact of the early development environment on the risk of ASD in offspring, we assessed the effect of maternal high-fat (HFD), high-carbohydrate, and mixed diets on molecular changes in adolescent and young adult offspring frontal cortex and hippocampus. Our results showed that maternal HFD significantly altered the expression of 48 ASD-related genes in the frontal cortex of male offspring. Moreover, exposure to maternal HFD led to sex- and age-dependent changes in the protein levels of ANKRD11, EIF4E, NF1, SETD1B, SHANK1 and TAOK2, as well as differences in DNA methylation levels in the frontal cortex and hippocampus of the offspring. Taken together, it was concluded that a maternal HFD during pregnancy and lactation periods can lead to abnormal brain development within the transcription and translation of ASD-related genes mainly in male offspring.
Collapse
Affiliation(s)
- Kinga Gawlińska
- Maj Institute of Pharmacology Polish Academy of Sciences, Department of Drug Addiction Pharmacology, Smętna Street 12, 31-343 Kraków, Poland; (K.G.); (E.P.); (M.F.)
| | - Dawid Gawliński
- Maj Institute of Pharmacology Polish Academy of Sciences, Department of Drug Addiction Pharmacology, Smętna Street 12, 31-343 Kraków, Poland; (K.G.); (E.P.); (M.F.)
| | - Małgorzata Borczyk
- Maj Institute of Pharmacology Polish Academy of Sciences, Laboratory of Pharmacogenomics, Department of Molecular Neuropharmacology, Smętna Street 12, 31-343 Kraków, Poland; (M.B.); (M.K.)
| | - Michał Korostyński
- Maj Institute of Pharmacology Polish Academy of Sciences, Laboratory of Pharmacogenomics, Department of Molecular Neuropharmacology, Smętna Street 12, 31-343 Kraków, Poland; (M.B.); (M.K.)
| | - Edmund Przegaliński
- Maj Institute of Pharmacology Polish Academy of Sciences, Department of Drug Addiction Pharmacology, Smętna Street 12, 31-343 Kraków, Poland; (K.G.); (E.P.); (M.F.)
| | - Małgorzata Filip
- Maj Institute of Pharmacology Polish Academy of Sciences, Department of Drug Addiction Pharmacology, Smętna Street 12, 31-343 Kraków, Poland; (K.G.); (E.P.); (M.F.)
| |
Collapse
|
35
|
Maes B, Smole U, Vanderkerken M, Deswarte K, Van Moorleghem J, Vergote K, Vanheerswynghels M, De Wolf C, De Prijck S, Debeuf N, Pavie B, Toussaint W, Janssens S, Savvides S, Lambrecht BN, Hammad H. The STE20 kinase TAOK3 controls the development house dust mite-induced asthma in mice. J Allergy Clin Immunol 2021; 149:1413-1427.e2. [PMID: 34506849 DOI: 10.1016/j.jaci.2021.08.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 07/14/2021] [Accepted: 08/03/2021] [Indexed: 11/26/2022]
Abstract
BACKGROUND The most common endotype of asthma is type 2-high asthma, which is sometimes driven by adaptive allergen-specific TH2 lymphocytes that react to allergens presented by dendritic cells (DCs), or sometimes by an innate immune response dominated by type 2 innate lymphocytes (ILC2s). Understanding the underlying pathophysiology of asthma is essential to improve patient-tailored therapy. The STE20 kinase thousand-and-one kinase 3 (TAOK3) controls key features in the biology of DCs and lymphocytes, but to our knowledge, its potential usefulness as a target for asthma therapy has not yet been addressed. OBJECTIVE We examined if and how loss of Taok3 affects the development of house dust mite (HDM)-driven allergic asthma in an in vivo mouse model. METHODS Wild-type Taok3+/+ and gene-deficient Taok3-/- mice were sensitized and challenged with HDM, and bronchoalveolar lavage fluid composition, mediastinal lymph node cytokine production, lung histology, and bronchial hyperreactivity measured. Conditional Taok3fl/fl mice were crossed to tissue- and cell-specific specific deletor Cre mice to understand how Taok3 acted on asthma susceptibility. Kinase-dead (KD) Taok3KD mice were generated to probe for the druggability of this pathway. Activation of HDM-specific T cells was measured in adoptively transferred HDM-specific T-cell receptor-transgenic CD4+ T cells. ILC2 biology was assessed by in vivo and in vitro IL-33 stimulation assays in Taok3-/- and Taok3+/+, Taok3KD, and Red5-Cre Taok3fl/fl mice. RESULTS Taok3-/- mice failed to mount salient features of asthma, including airway eosinophilia, TH2 cytokine production, IgE secretion, airway goblet cell metaplasia, and bronchial hyperreactivity compared to controls. This was due to intrinsic loss of Taok3 in hematopoietic and not epithelial cells. Loss of Taok3 resulted in hampered HDM-induced lung DC migration to the draining lymph nodes and defective priming of HDM-specific TH2 cells. Strikingly, HDM and IL-33-induced ILC2 proliferation and function were also severely affected in Taok3-deficient and Taok3KD mice. CONCLUSIONS Absence of Taok3 or loss of its kinase activity protects from HDM-driven allergic asthma as a result of defects in both adaptive DC-mediated TH2 activation and innate ILC2 function. This identifies Taok3 as an interesting drug target, justifying further testing as a new treatment for type 2-high asthma.
Collapse
Affiliation(s)
- Bastiaan Maes
- Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium; Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium; Laboratory of ER Stress and Inflammation, VIB-UGent Center for Inflammation Research, Ghent, Belgium
| | - Ursula Smole
- Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium; Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Matthias Vanderkerken
- Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium; Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Kim Deswarte
- Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium; Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Justine Van Moorleghem
- Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium; Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Karl Vergote
- Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium; Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Manon Vanheerswynghels
- Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium; Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Caroline De Wolf
- Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium; Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Sofie De Prijck
- Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium; Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Nincy Debeuf
- Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium; Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Benjamin Pavie
- VIB Bioimaging Core, VIB-UGent Center for Inflammation Research, Ghent, Belgium; Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Wendy Toussaint
- Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium; Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Sophie Janssens
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium; Laboratory of ER Stress and Inflammation, VIB-UGent Center for Inflammation Research, Ghent, Belgium
| | - Savvas Savvides
- Unit for Structural Biology, VIB-UGent Center for Inflammation Research, Ghent, Belgium; Unit for Structural Biology, Department of Biochemistry and Microbiology, Ghent, Belgium
| | - Bart N Lambrecht
- Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium; Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium; Department of Pulmonary Medicine, Erasmus University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Hamida Hammad
- Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium; Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium.
| |
Collapse
|
36
|
Gawlińska K, Gawliński D, Kowal-Wiśniewska E, Jarmuż-Szymczak M, Filip M. Alteration of the Early Development Environment by Maternal Diet and the Occurrence of Autistic-like Phenotypes in Rat Offspring. Int J Mol Sci 2021; 22:ijms22189662. [PMID: 34575826 PMCID: PMC8472469 DOI: 10.3390/ijms22189662] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/30/2021] [Accepted: 09/03/2021] [Indexed: 12/13/2022] Open
Abstract
Epidemiological and preclinical studies suggest that maternal obesity increases the risk of autism spectrum disorder (ASD) in offspring. Here, we assessed the effects of exposure to modified maternal diets limited to pregnancy and lactation on brain development and behavior in rat offspring of both sexes. Among the studied diets, a maternal high-fat diet (HFD) disturbed the expression of ASD-related genes (Cacna1d, Nlgn3, and Shank1) and proteins (SHANK1 and TAOK2) in the prefrontal cortex of male offspring during adolescence. In addition, a maternal high-fat diet induced epigenetic changes by increasing cortical global DNA methylation and the expression of miR-423 and miR-494. As well as the molecular changes, behavioral studies have shown male-specific disturbances in social interaction and an increase in repetitive behavior during adolescence. Most of the observed changes disappeared in adulthood. In conclusion, we demonstrated the contribution of a maternal HFD to the predisposition to an ASD-like phenotype in male adolescent offspring, while a protective effect occurred in females.
Collapse
Affiliation(s)
- Kinga Gawlińska
- Department of Drug Addiction Pharmacology, Maj Institute of Pharmacology Polish Academy of Sciences, Smętna Street 12, 31-343 Kraków, Poland; (D.G.); (M.F.)
- Correspondence:
| | - Dawid Gawliński
- Department of Drug Addiction Pharmacology, Maj Institute of Pharmacology Polish Academy of Sciences, Smętna Street 12, 31-343 Kraków, Poland; (D.G.); (M.F.)
| | - Ewelina Kowal-Wiśniewska
- Institute of Human Genetics, Polish Academy of Sciences, Strzeszyńska 32, 60-479 Poznań, Poland; (E.K.-W.); (M.J.-S.)
| | - Małgorzata Jarmuż-Szymczak
- Institute of Human Genetics, Polish Academy of Sciences, Strzeszyńska 32, 60-479 Poznań, Poland; (E.K.-W.); (M.J.-S.)
| | - Małgorzata Filip
- Department of Drug Addiction Pharmacology, Maj Institute of Pharmacology Polish Academy of Sciences, Smętna Street 12, 31-343 Kraków, Poland; (D.G.); (M.F.)
| |
Collapse
|
37
|
Tucker JA, Martin MP. Recent Advances in Kinase Drug Discovery Part I: The Editors' Take. Int J Mol Sci 2021; 22:ijms22147560. [PMID: 34299180 PMCID: PMC8306870 DOI: 10.3390/ijms22147560] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 07/13/2021] [Indexed: 12/16/2022] Open
Abstract
This special issue on Advances in Kinase Drug Discovery provides a selection of research articles and topical reviews covering all aspects of drug discovery targeting the phosphotransferase enzyme family [...].
Collapse
Affiliation(s)
- Julie A. Tucker
- Department of Biology, York Biomedical Research Institute, University of York, Heslington, York YO10 5DD, UK
- Correspondence: (J.A.T.); (M.P.M.)
| | - Mathew P. Martin
- Cancer Research UK Newcastle Drug Discovery Unit, Newcastle University Centre for Cancer, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Paul O’Gorman Building, Newcastle upon Tyne NE2 4HH, UK
- Correspondence: (J.A.T.); (M.P.M.)
| |
Collapse
|
38
|
Hu C, Feng P, Yang Q, Xiao L. Clinical and Neurobiological Aspects of TAO Kinase Family in Neurodevelopmental Disorders. Front Mol Neurosci 2021; 14:655037. [PMID: 33867937 PMCID: PMC8044823 DOI: 10.3389/fnmol.2021.655037] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 03/04/2021] [Indexed: 12/20/2022] Open
Abstract
Despite the complexity of neurodevelopmental disorders (NDDs), from their genotype to phenotype, in the last few decades substantial progress has been made in understanding their pathophysiology. Recent accumulating evidence shows the relevance of genetic variants in thousand and one (TAO) kinases as major contributors to several NDDs. Although it is well-known that TAO kinases are a highly conserved family of STE20 kinase and play important roles in multiple biological processes, the emerging roles of TAO kinases in neurodevelopment and NDDs have yet to be intensively discussed. In this review article, we summarize the potential roles of the TAO kinases based on structural and biochemical analyses, present the genetic data from clinical investigations, and assess the mechanistic link between the mutations of TAO kinases, neuropathology, and behavioral impairment in NDDs. We then offer potential perspectives from basic research to clinical therapies, which may contribute to fully understanding how TAO kinases are involved in NDDs.
Collapse
Affiliation(s)
- Chun Hu
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, South China Normal University, Guangzhou, China.,Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, China
| | - Pan Feng
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, South China Normal University, Guangzhou, China.,Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, China
| | - Qian Yang
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, South China Normal University, Guangzhou, China.,Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, China
| | - Lin Xiao
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, South China Normal University, Guangzhou, China.,Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, China
| |
Collapse
|