1
|
Todorov SD, Tagg J, Algburi A, Tiwari SK, Popov I, Weeks R, Mitrokhin OV, Kudryashov IA, Kraskevich DA, Chikindas ML. The Hygienic Significance of Microbiota and Probiotics for Human Wellbeing. Probiotics Antimicrob Proteins 2024:10.1007/s12602-024-10419-9. [PMID: 39688648 DOI: 10.1007/s12602-024-10419-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/01/2024] [Indexed: 12/18/2024]
Abstract
The human body can be viewed as a combination of ecological niches inhabited by trillions of bacteria, viruses, fungi, and parasites, all united by the microbiota concept. Human health largely depends on the nature of these relationships and how they are built and maintained. However, personal hygiene practices have historically been focused on the wholesale elimination of pathogens and "hygiene-challenging microorganisms" without considering the collateral damage to beneficial and commensal species. The microbiota can vary significantly in terms of the qualitative and quantitative composition both between different people and within one person during life, and the influence of various environmental factors, including age, nutrition, bad habits, genetic factors, physical activity, medication, and hygienic practices, facilitates these changes. Disturbance of the microbiota is a predisposing factor for the development of diseases and also greatly influences the course and severity of potential complications. Therefore, studying the composition of the microbiota of the different body systems and its appropriate correction is an urgent problem in the modern world. The application of personal hygiene products or probiotics must not compromise health through disruption of the healthy microbiota. Where changes in the composition or metabolic functions of the microbiome may occur, they must be carefully evaluated to ensure that essential biological functions are unaffected. As such, the purpose of this review is to consider the microbiota of each of the "ecological niches" of the human body and highlight the importance of the microbiota in maintaining a healthy body as well as the possibility of its modulation through the use of probiotics for the prevention and treatment of certain human diseases.
Collapse
Affiliation(s)
- Svetoslav D Todorov
- ProBacLab, Laboratório de Microbiologia de Alimentos, Departamento de Alimentos E Nutrição Experimental, Food Research Center, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, SP, 05508-000, Brazil.
- Instituto Politécnico de Viana Do Castelo, 4900-347, Viana Do Castelo, Portugal.
| | - John Tagg
- Blis Technologies, South Dunedin, 9012, New Zealand
| | - Ammar Algburi
- Department of Microbiology, College of Veterinary Medicine, University of Diyala, Baqubah, Iraq
| | - Santosh Kumar Tiwari
- Department of Genetics, Maharshi Dayanand University, Rohtak, 124001, Haryana, India
| | - Igor Popov
- Center for Agrobiotechnology, Don State Technical University, Gagarina Sq., 1344002, Rostov-On-Don, Russia
- Division of Immunobiology and Biomedicine, Center of Genetics and Life Sciences, Sirius University of Science and Technology, Federal Territory Sirius, Olimpijskij Ave., 1, Federal Territory Sirius, Sirius, 354340, Russia
- Centre for Healthy Eating & Food Innovation (HEFI), Maastricht University-Campus Venlo, Villafloraweg, 1, 5928 SZ, Venlo, The Netherlands
| | - Richard Weeks
- Health Promoting Naturals Laboratory, School of Environmental and Biological Sciences, Rutgers, the State University of New Jersey, New Brunswick, NJ, 08901, USA
| | - Oleg V Mitrokhin
- Department of General Hygiene, I.M. Sechenov First Moscow State Medical University, Moscow, 119435, Russia
| | - Ilya A Kudryashov
- Department of General Hygiene, I.M. Sechenov First Moscow State Medical University, Moscow, 119435, Russia
| | - Denis A Kraskevich
- Department of General Hygiene, I.M. Sechenov First Moscow State Medical University, Moscow, 119435, Russia
| | - Michael L Chikindas
- Center for Agrobiotechnology, Don State Technical University, Gagarina Sq., 1344002, Rostov-On-Don, Russia.
- Health Promoting Naturals Laboratory, School of Environmental and Biological Sciences, Rutgers, the State University of New Jersey, New Brunswick, NJ, 08901, USA.
- Department of General Hygiene, I.M. Sechenov First Moscow State Medical University, Moscow, 119435, Russia.
| |
Collapse
|
2
|
Souza TP, Tardelli LP, Nicoletti RA, Jacomini AM, Martins GFDM, Pinheiro LC, Tanus-Santos JE, Amaral SLD, Zago AS. Short-term Oral Nitrite Administration Decreases Arterial Stiffness in Both Trained and Sedentary Wistar Rats. Arq Bras Cardiol 2024; 121:e20230783. [PMID: 39699451 DOI: 10.36660/abc.20230783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 10/16/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND Nitric Oxide (NO) plays an important role in blood pressure (BP) regulation, acting directly on peripheral vascular resistance through vasodilation. Physical training (via eNOS/NO) and intake of nitrite have been considered major stimuli to increase NO. OBJECTIVE We examined the effects of oral nitrite administration and aerobic exercise training on BP and arterial stiffness in Wistar rats. METHODS Thirty-nine (39) young male Wistar rats were divided into the following groups (n = 9 or 10 per group): Sedentary-Control (SC), Sedentary-Nitrite (SN), Trained-Control (TC), and Trained-Nitrite (TN). They were submitted to aerobic physical training on treadmills for 8 weeks (50-60% of physical capacity, 1h/day, 5 days/week) or kept sedentary. In the last 6 days of training, oral nitrite was administered (15 mg/Kg by gavage). BP, arterial stiffness, and plasma and tissue nitrite concentrations were assessed after the training and oral nitrite administration period. The significant level was defined as p < 0.05. RESULTS Oral administration of nitrite was effective in reducing arterial stiffness values (TN, -23%; and SN, -15%). Both groups that had only one type of intervention showed lower systolic BP compared with control (TC vs. SC, -14.23; and SN vs. SC, - 12.46). CONCLUSION We conclude that short-term oral administration for 6 days and an aerobic physical training program promote several hemodynamic benefits in male Wistar rats, such as improvements in arterial stiffness and BP. These responses suggest that physical training and sodium nitrite supplementation can be alternatives for the prevention and treatment of hypertension.
Collapse
Affiliation(s)
- Thiago Pereira Souza
- Universidade Estadual Paulista (UNESP) - Departamento de Educação Física, Bauru, SP - Brasil
| | - Lidieli Pazin Tardelli
- Universidade Federal de São Carlos (UFSCar) - Programa Interinstitucional de Pós-Graduação em Ciências Fisiológicas, PIPGCF UFSCar/UNESP, São Carlos, SP - Brasil
| | | | - André Mourão Jacomini
- Universidade Estadual Paulista (UNESP) - Departamento de Educação Física, Bauru, SP - Brasil
| | | | - Lucas Cézar Pinheiro
- Universidade Federal de Santa Catarina (UFSC) - Departamento de Farmacologia, Florianópolis, SC - Brasil
| | | | - Sandra Lia do Amaral
- Universidade Estadual Paulista (UNESP) - Departamento de Educação Física, Bauru, SP - Brasil
| | - Anderson Saranz Zago
- Universidade Estadual Paulista (UNESP) - Departamento de Educação Física, Bauru, SP - Brasil
| |
Collapse
|
3
|
Sun H, Chen S, Yang C, Kuang H, Huang Y, He X, Luo W. Advances in the use of chlorhexidine for periodontitis treatment in diabetic patients: A review. Medicine (Baltimore) 2024; 103:e39627. [PMID: 39252223 PMCID: PMC11383263 DOI: 10.1097/md.0000000000039627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 08/19/2024] [Indexed: 09/11/2024] Open
Abstract
Periodontitis and diabetes mellitus exhibit a bidirectional relationship. This narrative review descriptively outlines the role of chlorhexidine in the periodontal treatment of diabetic patients, focusing on its antimicrobial mechanisms against microbial communities and its antiplaque effects. Although chlorhexidine is proven to be effective in combating microbial presence and improving gingivitis with substantial supporting evidence, its impact on glycemic control and insulin resistance in diabetic patients remains contentious. Additionally, the effectiveness of chlorhexidine as an adjunctive chemotherapeutic in the periodontal treatment of gestational diabetes has not yet been studied, highlighting a gap in research that necessitates further prospective studies and randomized controlled trials. Considering the interconnection between periodontal inflammation and glycemic levels, this article finally advocates for collaborative care between dental and medical professionals to manage periodontitis in diabetic patients effectively.
Collapse
Affiliation(s)
- Honglan Sun
- Key Laboratory of Emergency and Trauma of Ministry of Education, Department of Stomatology, Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan Province, China
- School of Stomatology, Hainan Medical University, Haikou, Hainan Province, China
| | - Shizhao Chen
- Key Laboratory of Emergency and Trauma of Ministry of Education, Department of Stomatology, Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan Province, China
- School of Stomatology, Hainan Medical University, Haikou, Hainan Province, China
| | - Chao Yang
- Research and Development Department, Shenzhen Uni-medica Technology Co., Ltd, Shenzhen, Guangdong Province, China
| | - Huifang Kuang
- Key Laboratory of Emergency and Trauma of Ministry of Education, Department of Stomatology, Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan Province, China
- School of Stomatology, Hainan Medical University, Haikou, Hainan Province, China
| | - Yuqi Huang
- Key Laboratory of Emergency and Trauma of Ministry of Education, Department of Stomatology, Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan Province, China
- School of Stomatology, Hainan Medical University, Haikou, Hainan Province, China
| | - Xiaoning He
- School of Stomatology, Hainan Medical University, Haikou, Hainan Province, China
| | - Wen Luo
- Key Laboratory of Emergency and Trauma of Ministry of Education, Department of Stomatology, Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan Province, China
- School of Stomatology, Hainan Medical University, Haikou, Hainan Province, China
| |
Collapse
|
4
|
Hao Y, Hao Z, Zeng X, Lin Y. Gut microbiota and metabolites of cirrhotic portal hypertension: a novel target on the therapeutic regulation. J Gastroenterol 2024; 59:788-797. [PMID: 39028343 DOI: 10.1007/s00535-024-02134-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 07/06/2024] [Indexed: 07/20/2024]
Abstract
BACKGROUND The regulatory role of gut microbiota and gut-derived metabolites through the gut-liver axis in the development of cirrhotic portal hypertension (PH) has received increasing attention. METHODS The review summarized a series of investigations on effects of metabolites derived from microbiota and medicines targeting microbiome including rifaximin, VSL#3, statins, propranolol, FXR agonists as well as drugs derived from bile acids (BAs) on PH progression. RESULTS Patients with PH exhibit alterations in gut microbial richness and differential overall microbiota community, and several results clearly displayed the correlation of PH with enrichment of Veillonella dispar or depletion of Clostridiales, Peptostreptococcaceae, Alistipes putredinis, Roseburia faecis and Clostridium cluster IV. The gut-derived metabolites including hydrogen sulfide, tryptophan metabolites, butyric acid, secondary BAs and phenylacetic acid (PAA) participate in a range of pathophysiology process of PH through modulating intrahepatic vascular resistance and portal blood flow associated with the formation and progression of PH. Established and emerging drugs targeting on bacterial translocation and intestinal eubiosis are gradually identified as potential strategies for treatments of liver cirrhosis and PH by modulating intestinal inflammation, splanchnic arterial vasodilation and endothelial dysfunction. CONCLUSIONS Future explorations should further characterize the alteration of the fecal microbiome and metabolite profiles in PH and elucidate the regulatory mechanism of the intestinal microbiome, gut-derived metabolites and gut microbiota targeted pharmaceutical treatments involved in PH.
Collapse
Affiliation(s)
- Yarong Hao
- Department of Gastroenterology, Shanghai Changzheng Hospital, Naval Medical University, 415 Fengyang Road, Shanghai, 200003, China
| | - Zhiyuan Hao
- Department of Gastroenterology, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai, 200120, China
| | - Xin Zeng
- Department of Gastroenterology, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai, 200120, China.
| | - Yong Lin
- Department of Gastroenterology, Shanghai Changzheng Hospital, Naval Medical University, 415 Fengyang Road, Shanghai, 200003, China.
| |
Collapse
|
5
|
Jeong J, Ahn K, Yun K, Kim M, Choi Y, Han M, Mun S, Kim YT, Lee KE, Kim MY, Ahn Y, Han K. Exploring oral bacterial compositional network in two oral disease groups using a convergent approach of NGS-molecular diagnostics. Genes Genomics 2024; 46:881-898. [PMID: 38847972 DOI: 10.1007/s13258-024-01526-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 05/26/2024] [Indexed: 08/17/2024]
Abstract
BACKGROUND Since most of the commonly known oral diseases are explained in link with balance of microbial community, an accurate bacterial taxonomy profiling for determining bacterial compositional network is essential. However, compared to intestinal microbiome, research data pool related to oral microbiome is small, and general 16S rRNA screening method has a taxonomy misclassification issue in confirming complex bacterial composition at the species level. OBJECTIVE Present study aimed to explore bacterial compositional networks at the species level within saliva of 39 oral disease patients (Dental Caries group: n = 26 and Periodontitis group: n = 13) through comparison with public Korean-specific healthy oral microbiome data. METHODS Here, we applied comprehensive molecular diagnostics based on qRT-PCR and Sanger sequencing methods to complement the technical limitations of NGS-based 16S V3-V4 amplicon sequencing technology. RESULTS As a result of microbiome profiling at the genus level, relative frequencies of many nitrate-reducing bacteria within each oral disease group were found to be significantly low compared to the healthy group. In addition, the molecular diagnostics-based bacterial identification method allowed the determination of the correct taxonomy of screened primary colonizers (Streptococcus and Actinomyces unclassification clusters) for each oral disease. Finally, as with the results of microbiome profiling at the genus level, many core-species classified within the saliva of each oral disease group were also related to nitrate-reduction, and it was estimated that various pathogens associated with each disease formed a bacterial network with the core-species. CONCLUSION Our study introduced a novel approach that can compensate for the difficulty of identifying an accurate bacterial compositional network at the species level due to unclear taxonomy classification by using the convergent approach of NGS-molecular diagnostics. Ultimately, we suggest that our experimental approach and results could be potential reference materials for researchers who intend to prevent oral disease by determining the correlation between oral health and bacterial compositional network according to the changes in the relative frequency for nitrate-reducing species.
Collapse
Affiliation(s)
- Jinuk Jeong
- Department of Bioconvergence Engineering, Dankook University, Yongin, 16890, Republic of Korea
| | - Kung Ahn
- HuNbiome Co., Ltd, R&D Center, Gasan Digital 1-Ro, Geumcheon-Gu, Seoul, Korea
| | - Kyeongeui Yun
- HuNbiome Co., Ltd, R&D Center, Gasan Digital 1-Ro, Geumcheon-Gu, Seoul, Korea
- Department of Microbiology, College of Science & Technology, Dankook University, Cheonan, 31116, Republic of Korea
| | - Minseo Kim
- Department of Microbiology, College of Science & Technology, Dankook University, Cheonan, 31116, Republic of Korea
| | - Yeseul Choi
- Department of Microbiology, College of Science & Technology, Dankook University, Cheonan, 31116, Republic of Korea
| | - Miyang Han
- Department of Microbiology, College of Science & Technology, Dankook University, Cheonan, 31116, Republic of Korea
| | - Seyoung Mun
- College of Science & Technology, Dankook University, Cheonan, 31116, Republic of Korea
- Smart Animal Bio Institute, Dankook University, Cheonan, Republic of Korea
- Center for Bio-Medical Engineering Core Facility, Dankook University, Cheonan, Republic of Korea
| | - Yeon-Tae Kim
- Department of Periodontology, Daejeon Dental Hospital, Institute of Wonkwang Dental Research, Wonkwang University College of Dentistry, Daejeon, Korea
| | - Kyung Eun Lee
- Department of Oral Medicine, Department of Anesthesiology, School of Dentistry, Jeonbuk National University, Jeonju, 54896, Korea
| | - Moon-Young Kim
- Department of Oral and Maxillofacial Surgery, College of Dentistry, Dankook University, Cheonan, 31116, Korea
| | - Yongju Ahn
- HuNbiome Co., Ltd, R&D Center, Gasan Digital 1-Ro, Geumcheon-Gu, Seoul, Korea.
| | - Kyudong Han
- Department of Bioconvergence Engineering, Dankook University, Yongin, 16890, Republic of Korea.
- HuNbiome Co., Ltd, R&D Center, Gasan Digital 1-Ro, Geumcheon-Gu, Seoul, Korea.
- Department of Microbiology, College of Science & Technology, Dankook University, Cheonan, 31116, Republic of Korea.
- College of Science & Technology, Dankook University, Cheonan, 31116, Republic of Korea.
- Smart Animal Bio Institute, Dankook University, Cheonan, Republic of Korea.
- Center for Bio-Medical Engineering Core Facility, Dankook University, Cheonan, Republic of Korea.
| |
Collapse
|
6
|
Nie M, Huang P, Peng P, Shen D, Zhao L, Jiang D, Shen Y, Wei L, Bible PW, Yang J, Wang J, Wu Y. Efficacy of photodynamic therapy as an adjunct to scaling and root planing on clinical parameters and microbial composition in subgingival plaque of periodontitis patients: A split-mouth randomized clinical trial. J Periodontol 2024; 95:535-549. [PMID: 38501762 DOI: 10.1002/jper.23-0195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 12/28/2023] [Accepted: 12/29/2023] [Indexed: 03/20/2024]
Abstract
BACKGROUND The aim of this study was to assess the efficacy of photodynamic therapy (PDT) as an adjunct to scaling and root planing (SRP) on clinical parameters and microbial composition in subgingival plaque of periodontitis patients. METHODS Seventeen patients were included in this split-mouth randomized clinical trial. Sites with probing pocket depth (PPD) ≥5 mm in combination with bleeding on probing in different quadrants were randomized into the control group, the group with a single PDT application right after SRP, and the group with three repeated PDT applications 1 week after SRP. The subgingival plaque was collected for 16S rRNA gene sequencing at baseline, Week 2, and Week 8. RESULTS Seventeen patients with 60 sites completed this 8-week follow-up, and 157 subgingival plaques were successfully analyzed by sequencing. Significant improvements were observed in two primary outcomes: PPD at Week 8 and subgingival microbial composition. Compared to the control group, the repeated-PDT group showed a notable improvement in PPD, substantial alterations in the microbial profile, including a reduction in α-diversity and anaerobic bacteria, and an increase in aerobic bacteria at Week 2. Secondary outcomes, such as clinical attachment level and sulcus bleeding index, also showed improvement at Week 8. Furthermore, both the single- and repeated-PDT groups exhibited a decrease in periodontopathogens and an increase in beneficial bacteria compared with baseline. CONCLUSION PDT promotes changes in the microbial composition of periodontitis patients' subgingival plaque in a direction favorable to periodontal health, and repeated PDT is a promising adjunctive therapy for periodontal treatment.
Collapse
Affiliation(s)
- Min Nie
- Department of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Periodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, China
| | - Peien Huang
- Department of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Peiyao Peng
- State Key Laboratory of Ophthalmology, Sun Yat-sen University, Guangzhou, China
| | - Daonan Shen
- Department of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Lei Zhao
- Department of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Duan Jiang
- Department of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yuqin Shen
- Department of Periodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, China
| | - Lai Wei
- Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Paul W Bible
- College of Arts and Sciences of Marian University, Indianapolis, Indiana, USA
| | - Jingmei Yang
- Department of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jun Wang
- Department of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yafei Wu
- Department of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
7
|
Suslov AV, Panas A, Sinelnikov MY, Maslennikov RV, Trishina AS, Zharikova TS, Zharova NV, Kalinin DV, Pontes-Silva A, Zharikov YO. Applied physiology: gut microbiota and antimicrobial therapy. Eur J Appl Physiol 2024; 124:1631-1643. [PMID: 38683402 DOI: 10.1007/s00421-024-05496-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 04/22/2024] [Indexed: 05/01/2024]
Abstract
The gut microbiota plays an important role in maintaining human health and in the pathogenesis of several diseases. Antibiotics are among the most commonly prescribed drugs and have a significant impact on the structure and function of the gut microbiota. The understanding that a healthy gut microbiota prevents the development of many diseases has also led to its consideration as a potential therapeutic target. At the same time, any factor that alters the gut microbiota becomes important in this approach. Exercise and antibacterial therapy have a direct effect on the microbiota. The review reflects the current state of publications on the mechanisms of intestinal bacterial involvement in the pathogenesis of cardiovascular, metabolic, and neurodegenerative diseases. The physiological mechanisms of the influence of physical activity on the composition of the gut microbiota are considered. The mechanisms of the common interface between exercise and antibacterial therapy will be considered using the example of several socially important diseases. The aim of the study is to show the physiological relationship between the effects of exercise and antibiotics on the gut microbiota.
Collapse
Affiliation(s)
- Andrey V Suslov
- Russian National Centre of Surgery, Avtsyn Research Institute of Human Morphology, Moscow, 117418, Russia
- Pirogov Russian National Research Medical University (RNRMU), Moscow, 117997, Russia
| | - Alin Panas
- N.V. Sklifosovsky Institute of Clinical Medicine, I.M. Sechenov First Moscow State Medical University (Sechenov University), St. Trubetskaya, 8, Bld. 2, Moscow, 119991, Russia
| | - Mikhail Y Sinelnikov
- Department of Oncology, Radiotherapy and Reconstructive Surgery, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, 119048, Russia
| | - Roman V Maslennikov
- Department of Internal Medicine, Gastroenterology and Hepatology, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, 119435, Russia
| | - Aleksandra S Trishina
- N.V. Sklifosovsky Institute of Clinical Medicine, I.M. Sechenov First Moscow State Medical University (Sechenov University), St. Trubetskaya, 8, Bld. 2, Moscow, 119991, Russia
| | - Tatyana S Zharikova
- Department of Human Anatomy and Histology, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, 125009, Russia
- Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Nataliya V Zharova
- Department of Human Anatomy and Histology, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, 125009, Russia
| | - Dmitry V Kalinin
- Pathology Department, A.V. Vishnevsky National Medical Research Center of Surgery, Moscow, 115093, Russia
| | - André Pontes-Silva
- Postgraduate Program in Physical Therapy (PPGFT), Department of Physical Therapy (DFisio), Universidade Federal de São Carlos (UFSCar), São Carlos (SP), Brazil.
| | - Yury O Zharikov
- Department of Human Anatomy and Histology, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, 125009, Russia
| |
Collapse
|
8
|
Blancas-Luciano BE, Becker-Fauser I, Zamora-Chimal J, Jiménez-García L, Lara-Martínez R, Pérez-Torres A, González del Pliego M, Aguirre-Benítez EL, Fernández-Presas AM. Cystatin C: immunoregulation role in macrophages infected with Porphyromonas gingivalis. PeerJ 2024; 12:e17252. [PMID: 38708345 PMCID: PMC11067906 DOI: 10.7717/peerj.17252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 03/26/2024] [Indexed: 05/07/2024] Open
Abstract
Background Periodontitis is a chronic infectious disease, characterized by an exacerbated inflammatory response and a progressive loss of the supporting tissues of the teeth. Porphyromonas gingivalis is a key etiologic agent in periodontitis. Cystatin C is an antimicrobial salivary peptide that inhibits the growth of P. gingivalis. This study aimed to evaluate the antimicrobial activity of this peptide and its effect on cytokine production, nitric oxide (NO) release, reactive oxygen species (ROS) production, and programmed cell death in human macrophages infected with P. gingivalis. Methods Monocyte-derived macrophages generated from peripheral blood were infected with P. gingivalis (MOI 1:10) and stimulated with cystatin C (2.75 µg/ml) for 24 h. The intracellular localization of P. gingivalis and cystatin C was determined by immunofluorescence and transmission electron microscopy (TEM). The intracellular antimicrobial activity of cystatin C in macrophages was assessed by counting Colony Forming Units (CFU). ELISA assay was performed to assess inflammatory (TNFα, IL-1β) and anti-inflammatory (IL-10) cytokines. The production of nitrites and ROS was analyzed by Griess reaction and incubation with 2',7'-dichlorodihydrofluorescein diacetate (H2DCFDA), respectively. Programmed cell death was assessed with the TUNEL assay, Annexin-V, and caspase activity was also determined. Results Our results showed that cystatin C inhibits the extracellular growth of P. gingivalis. In addition, this peptide is internalized in the infected macrophage, decreases the intracellular bacterial load, and reduces the production of inflammatory cytokines and NO. Interestingly, peptide treatment increased ROS production and substantially decreased bacterial-induced macrophage apoptosis. Conclusions Cystatin C has antimicrobial and immuno-regulatory activity in macrophages infected with P. gingivalis. These findings highlight the importance of understanding the properties of cystatin C for its possible therapeutic use against oral infections such as periodontitis.
Collapse
Affiliation(s)
- Blanca Esther Blancas-Luciano
- Posgrado en Ciencias Biológicas, Unidad de Posgrado, Circuito de Posgrados, Ciudad Universitaria, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
- Departamento de Microbiología y Parasitologia, Facultad de Medicina, Ciudad Universitaria, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Ingeborg Becker-Fauser
- Unidad de Investigación en Medicina Experimental, Hospital General de México, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Jaime Zamora-Chimal
- Unidad de Investigación en Medicina Experimental, Hospital General de México, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Luis Jiménez-García
- Departamento de Biología Celular. Facultad de Ciencias, Ciudad Universitaria, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Reyna Lara-Martínez
- Departamento de Biología Celular. Facultad de Ciencias, Ciudad Universitaria, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Armando Pérez-Torres
- Departamento de Biología Celular y Tisular, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Margarita González del Pliego
- Departamento de Embriología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Elsa Liliana Aguirre-Benítez
- Departamento de Embriología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Ana María Fernández-Presas
- Departamento de Microbiología y Parasitologia, Facultad de Medicina, Ciudad Universitaria, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
- Centro de Investigación en Ciencias de la Salud, Huixquilucan, Universidad Anáhuac, Estado de México, México
| |
Collapse
|
9
|
Hogue T, Hampton‐Marcell J, Carroll IM, Purdom T, Colleran H, Exford TJ, Brown M, Cook MD. Gut microbiota are differentially correlated with blood pressure status in African American collegiate athletes: A pilot study. Physiol Rep 2024; 12:e15982. [PMID: 38514894 PMCID: PMC10957718 DOI: 10.14814/phy2.15982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 03/05/2024] [Accepted: 03/06/2024] [Indexed: 03/23/2024] Open
Abstract
Hypertension (HTN) is common among athletes and the most recent epidemiologic data reports that cardiovascular (CV) sudden death is significantly greater in African Americans (AAs). Gut microbial dysbiosis (a poorly diverse stool microbial profile) has been associated with HTN in sedentary people but microbial characteristics of athletes with HTN are unknown. Our purpose was to differentiate microbiome characteristics associated with BP status in AA collegiate athletes. Thirty AA collegiate athletes were stratified by normal BP (systolic BP (SBP) ≤130 mmHg; n = 15) and HTN (SBP ≥130 mmHg; n = 15). 16S rRNA gene sequencing was performed on stool samples to identify microbes at the genus level. We did not observe any significant differences in alpha diversity, but beta diversity was different between groups. Principal coordinate analysis was significantly different (PERMANOVA, p < 0.05, R = 0.235) between groups. Spearman rank correlations showed a significant (p < 0.05) correlation between systolic BP and abundances for Adlercreutzia (R = 0.64), Coprococcus (R = 0.49), Granulicatella (R = 0.63), and Veillonella (R = 0.41). Gut microbial characteristics were associated with differentially abundant microbial genus' and BP status. These results will direct future studies to define the functions of these microbes associated with BP in athletes.
Collapse
Affiliation(s)
- Taylor Hogue
- Department of KinesiologyNorth Carolina Agriculture and Technical State UniversityGreensboroNorth CarolinaUSA
| | | | - Ian M. Carroll
- Department of NutritionUniversity of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
| | - Troy Purdom
- Department of KinesiologyNorth Carolina Agriculture and Technical State UniversityGreensboroNorth CarolinaUSA
| | - Heather Colleran
- Department of NutritionNorth Carolina Agriculture and Technical State UniversityGreensboroNorth CarolinaUSA
| | - T. J. Exford
- Education & Research DepartmentDayton VA Medical CenterDaytonOhioUSA
| | - Michael Brown
- Department of KinesiologyUniversity of MarylandCollege ParkMarylandUSA
| | - Marc D. Cook
- Department of KinesiologyNorth Carolina Agriculture and Technical State UniversityGreensboroNorth CarolinaUSA
- Center for Integrative Health Disparity & Equity Research (CIHDER)North Carolina Agricultural and Technical State UniversityGreensboroNorth CarolinaUSA
| |
Collapse
|
10
|
Moran SP, Rosier BT, Henriquez FL, Burleigh MC. The effects of nitrate on the oral microbiome: a systematic review investigating prebiotic potential. J Oral Microbiol 2024; 16:2322228. [PMID: 38420038 PMCID: PMC10901185 DOI: 10.1080/20002297.2024.2322228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 02/15/2024] [Indexed: 03/02/2024] Open
Abstract
Background Nitrate (NO3-) has been suggested as a prebiotic for oral health. Evidence indicates dietary nitrate and nitrate supplements can increase the proportion of bacterial genera associated with positive oral health whilst reducing bacteria implicated in oral disease(s). In contrast, chlorhexidine-containing mouthwashes, which are commonly used to treat oral infections, promote dysbiosis of the natural microflora and may induce antimicrobial resistance. Methods A systematic review of the literature was undertaken, surrounding the effects of nitrate on the oral microbiota. Results Overall, n = 12 in vivo and in vitro studies found acute and chronic nitrate exposure increased (representatives of) health-associated Neisseria and Rothia (67% and 58% of studies, respectively) whilst reducing periodontal disease-associated Prevotella (33%). Additionally, caries-associated Veillonella and Streptococcus decreased (25% for both genera). Nitrate also altered oral microbiome metabolism, causing an increase in pH levels (n = 5), which is beneficial to limit caries development. Secondary findings highlighted the benefits of nitrate for systemic health (n = 5). Conclusions More clinical trials are required to confirm the impact of nitrate on oral communities. However, these findings support the hypothesis that nitrate could be used as an oral health prebiotic. Future studies should investigate whether chlorhexidine-containing mouthwashes could be replaced or complemented by a nitrate-rich diet or nitrate supplementation.
Collapse
Affiliation(s)
- Siobhan P. Moran
- School of Health and Life Sciences, University of the West of Scotland, Blantyre, UK
| | - Bob T. Rosier
- Department of Health and Genomics, Center for Advanced Research in Public Health, FISABIO Foundation, Valencia, Spain
| | - Fiona L. Henriquez
- School of Health and Life Sciences, University of the West of Scotland, Blantyre, UK
| | - Mia C. Burleigh
- School of Health and Life Sciences, University of the West of Scotland, Blantyre, UK
| |
Collapse
|
11
|
Ye HL, Zhi MF, Chen BY, Lin WZ, Li YL, Huang SJ, Zhou LJ, Xu S, Zhang J, Zhang WC, Feng Q, Duan SZ. Alterations of oral and gut viromes in hypertension and/or periodontitis. mSystems 2024; 9:e0116923. [PMID: 38108668 PMCID: PMC10804974 DOI: 10.1128/msystems.01169-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 11/07/2023] [Indexed: 12/19/2023] Open
Abstract
The microbiota plays an important role in both hypertension (HTN) and periodontitis (PD), and PD exacerbates the development of HTN by oral and gut microbiota. Previous studies have focused on exploring the importance of the bacteriome in HTN and PD but overlooked the impact of the virome, which is also a member of the microbiota. We collected 180 samples of subgingival plaques, saliva, and feces from a cohort of healthy subjects (nHTNnPD), subjects with HTN (HTNnPD) or PD (PDnHTN), and subjects with both HTN and PD (HTNPD). We performed metagenomic sequencing to assess the roles of the oral and gut viromes in HTN and PD. The HTNnPD, PDnHTN, and HTNPD groups all showed significantly distinct beta diversity from the nHTNnPD group in saliva. We analyzed alterations in oral and gut viral composition in HTN and/or PD and identified significantly changed viruses in each group. Many viruses across three sites were significantly associated with blood pressure and other clinical parameters. Combined with these clinical associations, we found that Gillianvirus in subgingival plaques was negatively associated with HTN and that Torbevirus in saliva was positively associated with HTN. We found that Pepyhexavirus from subgingival plaques was indicated to be transferred to the gut. We finally evaluated viral-bacterial transkingdom interactions and found that viruses and bacteria may cooperate to affect HTN and PD. Correspondingly, HTN and PD may synergize to improve communications between viruses and bacteria.IMPORTANCEPeriodontitis (PD) and hypertension (HTN) are both highly prevalent worldwide and cause serious adverse outcomes. Increasing studies have shown that PD exacerbates HTN by oral and gut microbiota. Previous studies have focused on exploring the importance of the bacteriome in HTN and PD but overlooked the impact of the virome, even though viruses are common inhabitants in humans. Alterations in oral and gut viral diversity and composition contribute to diseases. The present study, for the first time, profiled the oral and gut viromes in HTN and/or PD. We identified key indicator viruses and their clinical implications in HTN and/or PD. We also investigated interactions between viruses and bacteria. This work improved the overall understanding of the viromes in HTN and PD, providing vital insights into the role of the virome in the development of HTN and PD.
Collapse
Affiliation(s)
- Hui-Lin Ye
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People’s Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Center for Stomatology, Shanghai Key Laboratory of Stomatology, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Meng-Fan Zhi
- Department of Human Microbiome, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, China
| | - Bo-Yan Chen
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People’s Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Center for Stomatology, Shanghai Key Laboratory of Stomatology, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Wen-Zhen Lin
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People’s Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Center for Stomatology, Shanghai Key Laboratory of Stomatology, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Yu-Lin Li
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People’s Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Center for Stomatology, Shanghai Key Laboratory of Stomatology, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Shi-Jia Huang
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People’s Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Center for Stomatology, Shanghai Key Laboratory of Stomatology, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Lu-Jun Zhou
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People’s Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Center for Stomatology, Shanghai Key Laboratory of Stomatology, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Shuo Xu
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People’s Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Center for Stomatology, Shanghai Key Laboratory of Stomatology, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Jun Zhang
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People’s Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Center for Stomatology, Shanghai Key Laboratory of Stomatology, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Wu-Chang Zhang
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People’s Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Center for Stomatology, Shanghai Key Laboratory of Stomatology, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Qiang Feng
- Department of Human Microbiome, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, China
| | - Sheng-Zhong Duan
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People’s Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Center for Stomatology, Shanghai Key Laboratory of Stomatology, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
| |
Collapse
|
12
|
Chopra A, Franco-Duarte R, Rajagopal A, Choowong P, Soares P, Rito T, Eberhard J, Jayasinghe TN. Exploring the presence of oral bacteria in non-oral sites of patients with cardiovascular diseases using whole metagenomic data. Sci Rep 2024; 14:1476. [PMID: 38233502 PMCID: PMC10794416 DOI: 10.1038/s41598-023-50891-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 12/27/2023] [Indexed: 01/19/2024] Open
Abstract
Cardiovascular diseases (CVDs) encompass various conditions affecting the heart and its blood vessels and are often linked with oral microbes. Our data analysis aimed to identify oral bacteria from other non-oral sites (i.e., gut, arterial plaque and cultured blood) that could be linked with CVDs. Taxonomic profiling identified bacteria to the species level and compared with the Human Oral Microbiome Database (HOMD). The oral bacteria in the gut, cultured blood and arterial plaque samples were catalogued, with their average frequency calculated for each sample. Additionally, data were filtered by comparison with the Human Microbiome Project (HMP) database. We identified 17,243 microbial species, of which 410 were present in the HOMD database and further denominated as "oral", and were found in at least one gut sample, but only 221 and 169 species were identified in the cultured blood and plaque samples, respectively. Of the 410 species, 153 were present solely in oral-associated environments after comparison with the HMP database, irrespective of their presence in other body sites. Our results suggest a potential connection between the presence of specific species of oral bacterial and occurrence of CVDs. Detecting these oral bacterial species in non-oral sites of patients with CVDs could help uncover the link between oral health and general health, including cardiovascular conditions via bacterial translocation.
Collapse
Affiliation(s)
- Aditi Chopra
- Department of Periodontology, Manipal College of Dental Sciences, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Ricardo Franco-Duarte
- Department of Biology, CBMA (Center of Molecular and Environmental Biology), University of Minho, Braga, Portugal
- Institute of Science and Innovation for Biosustainability (IB-S), University of Minho, Braga, Portugal
| | - Anjale Rajagopal
- Department of Periodontology, Manipal College of Dental Sciences, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Phannaphat Choowong
- School of Dentistry, Faculty of Medicine and Health, The University of Sydney, University of Sydney, Sydney, Australia
| | - Pedro Soares
- Department of Biology, CBMA (Center of Molecular and Environmental Biology), University of Minho, Braga, Portugal
- Institute of Science and Innovation for Biosustainability (IB-S), University of Minho, Braga, Portugal
| | - Teresa Rito
- Department of Biology, CBMA (Center of Molecular and Environmental Biology), University of Minho, Braga, Portugal
- Institute of Science and Innovation for Biosustainability (IB-S), University of Minho, Braga, Portugal
| | - Joerg Eberhard
- School of Dentistry, Faculty of Medicine and Health, The University of Sydney, University of Sydney, Sydney, Australia
| | - Thilini N Jayasinghe
- School of Dentistry, Faculty of Medicine and Health, The University of Sydney, University of Sydney, Sydney, Australia.
- The Charles Perkins Centre, The University of Sydney, University of Sydney, Sydney, Australia.
| |
Collapse
|
13
|
Chen L, Chen J, Huang Y, Wu Y, Li J, Ni W, Lu Y, Li Z, Zhao C, Kong S, Zhou H, Qu X. Changes of the gut microbiota composition and short chain fatty acid in patients with atrial fibrillation. PeerJ 2023; 11:e16228. [PMID: 38084144 PMCID: PMC10710774 DOI: 10.7717/peerj.16228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 09/12/2023] [Indexed: 12/18/2023] Open
Abstract
Background With the establishment of the cardiac-gut axis concept, increasing evidence has suggested the involvement and important regulatory role of the gut microbiota (GM) and short chain fatty acid (SCFA) in cardiovascular diseases. However, the relationship between GM and atrial fibrillation (AF) is still poorly understood. Objectives The aim of this study was to investigate whether there were differences in GM and SCFA between AF patients and healthy controls. Methods In this study, we enrolled 30 hospitalized patients with AF and 30 matched patients with sinus rhythm (SR). GM species in fecal samples were evaluated through amplicon sequencing targeting the 16Sribosomal RNA gene. The feces SCFAs were describe step by step the quantitative analysis using gas chromatography-mass spectrometry (GC-MS). GM species richness, diversity, differential abundance of individual taxa between AF and SR were analyzed. Results AF patients showed decreased species richness and α-diversity compared to SR patients, but there was no statistical difference. The phylogenetic diversity was significant decreased in AF group. The β-diversity indexes revealed significant differences in GM community structure between the AF group and the SR group. After investigated the individual taxa, AF group showed altered relative abundance in several taxa compared to the SR group. linear discriminant analysis (LDA) effect size (LEfSe) analysis revealed, a significant decrease in Bifidobacterium and a greater abundance of Lactobacillus, Fusobacterium, Haemophilus in AF group compared with the SR group. The abundance of haemophilus was negative correlated with isovaleric acid and isobutyric acid. Conclusions In AF patients, the GM phylogenetic diversity and β-diversity decreased, the relative abundance altered in several taxa and the bacterial community structure changed as well as the SCFA level. GM and SCFA dysbiosis might play a crucial part in the occurrence and development of AF.
Collapse
Affiliation(s)
| | - Jinxin Chen
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yuheng Huang
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yanran Wu
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Junfeng Li
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Weicheng Ni
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yucheng Lu
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zhenzhen Li
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Chuhuan Zhao
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Shuting Kong
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Hao Zhou
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiang Qu
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
14
|
Antonello G, Blostein F, Bhaumik D, Davis E, Gögele M, Melotti R, Pramstaller P, Pattaro C, Segata N, Foxman B, Fuchsberger C. Smoking and salivary microbiota: a cross-sectional analysis of an Italian alpine population. Sci Rep 2023; 13:18904. [PMID: 37919319 PMCID: PMC10622503 DOI: 10.1038/s41598-023-42474-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 09/11/2023] [Indexed: 11/04/2023] Open
Abstract
The oral microbiota plays an important role in the exogenous nitrate reduction pathway and is associated with heart and periodontal disease and cigarette smoking. We describe smoking-related changes in oral microbiota composition and resulting potential metabolic pathway changes that may explain smoking-related changes in disease risk. We analyzed health information and salivary microbiota composition among 1601 Cooperative Health Research in South Tyrol participants collected 2017-2018. Salivary microbiota taxa were assigned from amplicon sequences of the 16S-V4 rRNA and used to describe microbiota composition and predict metabolic pathways. Aerobic taxa relative abundance decreased with daily smoking intensity and increased with years since cessation, as did inferred nitrate reduction. Former smokers tended to be more similar to Never smokers than to Current smokers, especially those who had quit for longer than 5 years. Cigarette smoking has a consistent, generalizable association on oral microbiota composition and predicted metabolic pathways, some of which associate in a dose-dependent fashion. Smokers who quit for longer than 5 years tend to have salivary microbiota profiles comparable to never smokers.
Collapse
Affiliation(s)
- Giacomo Antonello
- Institute for Biomedicine, Eurac Research - Affiliated Institute of the University of Lübeck, Bolzano, Italy.
- Department of Cellular, Computational and Integrative Biology, University of Trento, Trento, Italy.
| | - Freida Blostein
- School of Public Health - Epidemiology, University of Michigan, Ann Arbor, MI, USA
| | - Deesha Bhaumik
- School of Public Health - Epidemiology, University of Michigan, Ann Arbor, MI, USA
| | - Elyse Davis
- School of Public Health - Epidemiology, University of Michigan, Ann Arbor, MI, USA
| | - Martin Gögele
- Institute for Biomedicine, Eurac Research - Affiliated Institute of the University of Lübeck, Bolzano, Italy
| | - Roberto Melotti
- Institute for Biomedicine, Eurac Research - Affiliated Institute of the University of Lübeck, Bolzano, Italy
| | - Peter Pramstaller
- Institute for Biomedicine, Eurac Research - Affiliated Institute of the University of Lübeck, Bolzano, Italy
| | - Cristian Pattaro
- Institute for Biomedicine, Eurac Research - Affiliated Institute of the University of Lübeck, Bolzano, Italy
| | - Nicola Segata
- Department of Cellular, Computational and Integrative Biology, University of Trento, Trento, Italy
| | - Betsy Foxman
- School of Public Health - Epidemiology, University of Michigan, Ann Arbor, MI, USA.
| | - Christian Fuchsberger
- Institute for Biomedicine, Eurac Research - Affiliated Institute of the University of Lübeck, Bolzano, Italy.
| |
Collapse
|
15
|
Brookes Z, Teoh L, Cieplik F, Kumar P. Mouthwash Effects on the Oral Microbiome: Are They Good, Bad, or Balanced? Int Dent J 2023; 73 Suppl 2:S74-S81. [PMID: 37867065 PMCID: PMC10690560 DOI: 10.1016/j.identj.2023.08.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 08/21/2023] [Indexed: 10/24/2023] Open
Abstract
This narrative review describes the oral microbiome, and its role in oral health and disease, before considering the impact of commonly used over-the-counter (OTC) mouthwashes on oral bacteria, viruses, bacteriophages, and fungi that make up these microbial communities in different niches of the mouth. Whilst certain mouthwashes have proven antimicrobial actions and clinical effectiveness supported by robust evidence, this review reports more recent metagenomics evidence, suggesting that mouthwashes such as chlorhexidine may cause "dysbiosis," whereby certain species of bacteria are killed, leaving others, sometimes unwanted, to predominate. There is little known about the effects of mouthwashes on fungi and viruses in the context of the oral microbiome (virome) in vivo, despite evidence that they "kill" certain viral pathogens ex vivo. Evidence for mouthwashes, much like antibiotics, is also emerging with regards to antimicrobial resistance, and this should further be considered in the context of their widespread use by clinicians and patients. Therefore, considering the potential of currently available OTC mouthwashes to alter the oral microbiome, this article finally proposes that the ideal mouthwash, whilst combatting oral disease, should "balance" antimicrobial communities, especially those associated with health. Which antimicrobial mouthwash best fits this ideal remains uncertain.
Collapse
Affiliation(s)
- Zoë Brookes
- Peninsula Dental School, Plymouth University, Plymouth, UK.
| | - Leanne Teoh
- Melbourne Dental School, The University of Melbourne, Carlton, Victoria, Australia
| | - Fabian Cieplik
- Department of Conservative Dentistry and Periodontology, University Hospital Regensburg, Regensburg, Germany
| | - Purnima Kumar
- Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, USA
| |
Collapse
|
16
|
Dain CP, Ganapathi S, Ranjithkumar A, Geevar Z, Harikrishnan S, Ammu JV. Prevalence and Risk Factors of Periodontal Disease among Rural and Urban Residents of a South Indian City: A Cross-Sectional Study. J Int Soc Prev Community Dent 2023; 13:458-468. [PMID: 38304530 PMCID: PMC10829280 DOI: 10.4103/jispcd.jispcd_77_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 10/30/2023] [Accepted: 11/02/2023] [Indexed: 02/03/2024] Open
Abstract
Background The prevalence of oral diseases has been increasing alarmingly in the state of Kerala. Screening for periodontal disease (PD) is crucial due to its negative impact on oral and overall health. Since the occurrence and severity of PD depend on its risk factors, a structured survey in randomly selected districts in the state can be a valuable tool for policymakers to envisage strategies to enhance oral health care and control shared systemic illnesses. Data on the prevalence and risk factors of PD among the residents of the Thiruvananthapuram district of Kerala is not currently available in the public domain. This data could also be representative of the other 13 districts with more or less similar topographical, cultural, and lifestyle characteristics. Aim To study the prevalence of PD and its risk factors among the residents of the Thiruvananthapuram district of Kerala and to compare the urban-rural differences. Materials and Methods In this community-based cross-sectional study, a multistage cluster random sampling method was used to select the participants. Among the 1285 participants, 560 were from urban areas, and 725 were from rural areas. A modification of the Ramfjord PD index was used to assess periodontal health. The epidemiological risk factors were evaluated using sociodemographic data, personal histories, and physical and biochemical parameters. Multivariate logistic regression was used to determine the relationship of PD with independent variables. Mediation analysis was performed to examine the mediating effects of independent factors. Results The rural population (61.4%) had a higher frequency of PD than the urban (35.5%) and an overall prevalence of 50%. Aging, poor oral hygiene, and low educational level (EL) were significant risk factors for PD in urban and rural settings, with hypertension only being significant in the latter. A higher odds ratio (9.07-29.68) with a confidence interval of (5.45-48.94) for poor oral hygiene was noted. Poor oral hygiene and tobacco use had mediating effects between low EL and PD. Conclusions In this study, the overall prevalence of PD was 50%, with the rural population being more afflicted. Poor oral hygiene has been identified as a modifiable risk factor for PD in urban and rural populations. Poor oral hygiene and tobacco use have been demonstrated to be mediators of the strong link between low EL and PD. Therefore, this study reiterates the need for better oral health awareness and treatment facilities to minimize the impact of the above risk factors on the periodontium. A shared risk relationship between PD and hypertension in the rural population emphasizes the need for an integrated approach to public health by including oral health as part of noncommunicable disease prevention and intervention programs.
Collapse
Affiliation(s)
- Chacko Pearl Dain
- Department of Oral and Maxillofacial Surgery, Government Dental College, Medical College, Thiruvananthapuram, India
| | - Sanjay Ganapathi
- Sree Chitra Tirunal Institute for Medical Sciences and Technology (Institute of National Importance under the Government of India), Thiruvananthapuram, India
| | | | | | - Sivadasanpillai Harikrishnan
- Sree Chitra Tirunal Institute for Medical Sciences and Technology (Institute of National Importance under the Government of India), Thiruvananthapuram, India
| | - Jayanthi Viswanathan Ammu
- Division of Biostatistics and Cancer Epidemiology, Regional Cancer Centre, Thiruvananthapuram, Kerala, India
| |
Collapse
|
17
|
Liu H, Huang Y, Huang M, Wang M, Ming Y, Chen W, Chen Y, Tang Z, Jia B. From nitrate to NO: potential effects of nitrate-reducing bacteria on systemic health and disease. Eur J Med Res 2023; 28:425. [PMID: 37821966 PMCID: PMC10566198 DOI: 10.1186/s40001-023-01413-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 09/29/2023] [Indexed: 10/13/2023] Open
Abstract
Current research has described improving multisystem disease and organ function through dietary nitrate (DN) supplementation. They have provided some evidence that these floras with nitrate (NO3-) reductase are mediators of the underlying mechanism. Symbiotic bacteria with nitrate reductase activity (NRA) are found in the human digestive tract, including the mouth, esophagus and gastrointestinal tract (GT). Nitrate in food can be converted to nitrite under the tongue or in the stomach by these symbiotic bacteria. Then, nitrite is transformed to nitric oxide (NO) by non-enzymatic synthesis. NO is currently recognized as a potent bioactive agent with biological activities, such as vasodilation, regulation of cardiomyocyte function, neurotransmission, suppression of platelet agglutination, and prevention of vascular smooth muscle cell proliferation. NO also can be produced through the conventional L-arginine-NO synthase (L-NOS) pathway, whereas endogenous NO production by L-arginine is inhibited under hypoxia-ischemia or disease conditions. In contrast, exogenous NO3-/NO2-/NO activity is enhanced and becomes a practical supplemental pathway for NO in the body, playing an essential role in various physiological activities. Moreover, many diseases (such as metabolic or geriatric diseases) are primarily associated with disorders of endogenous NO synthesis, and NO generation from the exogenous NO3-/NO2-/NO route can partially alleviate the disease progression. The imbalance of NO in the body may be one of the potential mechanisms of disease development. Therefore, the impact of these floras with nitrate reductase on host systemic health through exogenous NO3-/NO2-/NO pathway production of NO or direct regulation of floras ecological balance is essential (e.g., regulation of body homeostasis, amelioration of diseases, etc.). This review summarizes the bacteria with nitrate reductase in humans, emphasizing the relationship between the metabolic processes of this microflora and host systemic health and disease. The potential effects of nitrate reduction bacteria on human health and disease were also highlighted in disease models from different human systems, including digestive, cardiovascular, endocrine, nervous, respiratory, and urinary systems, providing innovative ideas for future disease diagnosis and treatment based on nitrate reduction bacteria.
Collapse
Affiliation(s)
- Hongyu Liu
- Department of Oral Surgery, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Yisheng Huang
- Department of Oral Surgery, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Mingshu Huang
- Department of Oral Surgery, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Min Wang
- Department of Oral Surgery, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Yue Ming
- Department of Oral Surgery, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Weixing Chen
- Department of Oral Surgery, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Yuanxin Chen
- Department of Oral Surgery, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Zhengming Tang
- Department of Oral Surgery, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Bo Jia
- Department of Oral Surgery, School of Stomatology, Southern Medical University, Guangzhou, China.
| |
Collapse
|
18
|
Blancas-Luciano BE, Zamora-Chimal J, da Silva-de Rosenzweig PG, Ramos-Mares M, Fernández-Presas AM. Macrophages immunomodulation induced by Porphyromonas gingivalis and oral antimicrobial peptides. Odontology 2023; 111:778-792. [PMID: 36897441 PMCID: PMC10492884 DOI: 10.1007/s10266-023-00798-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 02/21/2023] [Indexed: 03/11/2023]
Abstract
Porphyromonas gingivalis is a keystone pathogen associated with periodontitis development, a chronic inflammatory pathology characterized by the destruction of the supporting teeth structure. Macrophages are recruited cells in the inflammatory infiltrate from patients with periodontitis. They are activated by the P. gingivalis virulence factors arsenal, promoting an inflammatory microenvironment characterized by cytokine production (TNF-α, IL-1β, IL-6), prostaglandins, and metalloproteinases (MMPs) that foster the tissular destruction characteristic of periodontitis. Furthermore, P. gingivalis suppresses the generation of nitric oxide, a potent antimicrobial molecule, through its degradation, and incorporating its byproducts as a source of energy. Oral antimicrobial peptides can contribute to controlling the disease due to their antimicrobial and immunoregulatory activity, which allows them to maintain homeostasis in the oral cavity. This study aimed to analyze the immunopathological role of macrophages activated by P. gingivalis in periodontitis and suggested using antimicrobial peptides as therapeutic agents to treat the disease.
Collapse
Affiliation(s)
- Blanca Esther Blancas-Luciano
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Col. Universidad Nacional Autónoma de México, Av. Universidad 3000, CP 04510, Mexico City, Mexico
- Posgrado en Ciencias Biológicas, Unidad de Posgrado, Ciudad Universitaria, Edificio D, 1° Piso, Mexico City, Mexico
| | - Jaime Zamora-Chimal
- Unidad de Investigación en Medicina Experimental, Universidad Nacional Autónoma de México, Hospital General de México, Dr. Balmis, 148 Col. Doctores, Del. Cuauhtémoc, C.P. 06726, Mexico City, Mexico
| | - Pablo Gomes da Silva-de Rosenzweig
- Centro de Investigación en Ciencias de la Salud (CICSA), FCS, Universidad Anáhuac México Campus Norte, Huixquilucan, State of Mexico, Mexico
| | - Mariana Ramos-Mares
- Centro de Investigación en Ciencias de la Salud (CICSA), FCS, Universidad Anáhuac México Campus Norte, Huixquilucan, State of Mexico, Mexico
| | - Ana María Fernández-Presas
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Col. Universidad Nacional Autónoma de México, Av. Universidad 3000, CP 04510, Mexico City, Mexico.
| |
Collapse
|
19
|
Murugesan S, Al Khodor S. Salivary microbiome and hypertension in the Qatari population. J Transl Med 2023; 21:454. [PMID: 37422685 PMCID: PMC10329805 DOI: 10.1186/s12967-023-04247-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 06/06/2023] [Indexed: 07/10/2023] Open
Abstract
BACKGROUND The prevalence of hypertension in Qatar is 33 percent of the adult population. It is postulated that the salivary microbiome can regulate blood pressure (BP). However, limited investigations exist to prove this hypothesis. Therefore, we examined the difference in the salivary microbiome composition between hypertensive and normotensive Qatari subjects. METHODS A total of 1190 Qatar Genome Project (QGP) participants (Mean age = 43 years) were included in this study. BP for all participants was classified into Normal (n = 357), Stage1 (n = 336), and Stage2: (n = 161) according to the American Heart Association guidelines. 16S-rRNA libraries were sequenced and analyzed using QIIME-pipeline, and PICRUST was used to predict functional metabolic routes. Machine Learning (ML) strategies were applied to identify salivary microbiome-based predictors of hypertension. RESULTS Differential abundant analysis (DAA) revealed that Bacteroides and Atopobium were the significant members of the hypertensive groups. Alpha and beta diversity indices indicated dysbiosis between the normotensive and hypertensive groups. ML-based prediction models revealed that these markers could predict hypertension with an AUC (Area under the curve) of 0.89. Functional predictive analysis disclosed that Cysteine and Methionine metabolism and the sulphur metabolic pathways involving the renin-angiotensin system were significantly higher in the normotensive group. Therefore, members of Bacteroides and Atopobium can serve as predictors of hypertension. Likewise, Prevotella, Neisseria, and Haemophilus can be the protectors that regulate BP via nitric acid synthesis and regulation of the renin-angiotensin system. CONCLUSION It is one of the first studies to assess salivary microbiome and hypertension as disease models in a large cohort of the Qatari population. Further research is needed to confirm these findings and validate the mechanisms involved.
Collapse
Affiliation(s)
- Selvasankar Murugesan
- Maternal and Child Health Division, Research Department, Sidra Medicine, 26999, Doha, Qatar
| | - Souhaila Al Khodor
- Maternal and Child Health Division, Research Department, Sidra Medicine, 26999, Doha, Qatar.
| |
Collapse
|
20
|
Torres-Sánchez ED, Salazar-Flores J, Gómez-Sandoval JR, Lomeli-Martinez SM. Membrane Fluidity and Oxidative Stress in Patients with Periodontitis. APPLIED SCIENCES 2023; 13:4546. [DOI: 10.3390/app13074546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
Periodontitis leads to the destruction of dental tissue through polymicrobial interactions, inflammation, and increased oxidative stress. The aim of this study was to measure the levels of nitrates (NO3−), malondialdehyde (MDA), and membranal fluidity (MF) in the gingival tissue of subjects with or without periodontitis. A total of 120 participants from the Dentistry School of the University of Guadalajara were investigated. The study was approved by the ethics committee of our institution, with the registration number of CI-01221. The clinical parameters measured were probing depth (PD), clinical attachment level (CAL), and bleeding on probing (BoP). NO3− was measured using the Greiss reaction, while MDA was determined colorimetrically with the FR12 Kit (Oxford Biomedical Research). Membrane fluidity (MF) was measured using the quotient Ie/Im according to the method of Ortiz and collaborators. The Student t-test, Spearman correlation, and chi-square are used to calculate the results. The results showed higher levels of PD, CAL, and BoP in patients. There was a positive correlation between MF and PD. Moreover, MDA was positively correlated with PD and CAL. Increases in PD resulted in higher levels of NO3−, MDA, and MF. Similarly, increases in CAL resulted in higher levels of MDA and MF in patients. We conclude that PD and CAL facilitated the progression of periodontitis through increases in MDA and MF.
Collapse
Affiliation(s)
- Erandis Dheni Torres-Sánchez
- Department of Medical and Life Sciences, Centro Universitario de la Ciénega, University of Guadalajara, Ocotlán 47810, Jalisco, Mexico
| | - Joel Salazar-Flores
- Department of Medical and Life Sciences, Centro Universitario de la Ciénega, University of Guadalajara, Ocotlán 47810, Jalisco, Mexico
| | - Juan Ramón Gómez-Sandoval
- Periodontics Specialty Program, Department of Integrated Dentistry Clinics, Centro Universitario de Ciencias de la Salud, University of Guadalajara, Guadalajara 44340, Jalisco, Mexico
| | - Sarah M. Lomeli-Martinez
- Department of Medical and Life Sciences, Centro Universitario de la Ciénega, University of Guadalajara, Ocotlán 47810, Jalisco, Mexico
- Periodontics Specialty Program, Department of Integrated Dentistry Clinics, Centro Universitario de Ciencias de la Salud, University of Guadalajara, Guadalajara 44340, Jalisco, Mexico
- Institute of Research in Dentistry, Department of Integral Dental Clinics, Centro Universitario de Ciencias de la Salud, University of Guadalajara, Guadalajara 44340, Jalisco, Mexico
- Department of Wellbeing and Sustainable Development, Centro Universitario del Norte, Universidad de Guadalajara, Colotlán 46200, Jalisco, Mexico
| |
Collapse
|
21
|
The Role of the Oral Microbiome in the Development of Diseases. Int J Mol Sci 2023; 24:ijms24065231. [PMID: 36982305 PMCID: PMC10048844 DOI: 10.3390/ijms24065231] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 03/01/2023] [Accepted: 03/07/2023] [Indexed: 03/12/2023] Open
Abstract
Periodontal disease (PD) is a complex and infectious illness that begins with a disruption of bacterial homeostasis. This disease induces a host inflammatory response, leading to damage of the soft and connective tooth-supporting tissues. Moreover, in advanced cases, it can contribute to tooth loss. The aetiological factors of PDs have been widely researched, but the pathogenesis of PD has still not been totally clarified. There are a number of factors that have an effect on the aetiology and pathogenesis of PD. It is purported that microbiological, genetic susceptibility and lifestyle can determine the development and severity of the disease. The human body’s defence response to the accumulation of plaque and its enzymes is known to be a major factor for PD. The oral cavity is colonised by a characteristic and complex microbiota that grows as diverse biofilms on all mucosal and dental surfaces. The aim of this review was to provide the latest updates in the literature regarding still-existing problems with PD and to highlight the role of the oral microbiome in periodontal health and disease. Better awareness and knowledge of the causes of dysbiosis, environmental risk factors and periodontal therapy can reduce the growing worldwide prevalence of PDs. The promotion of good oral hygiene, limiting smoking, alcohol consumption and exposure to stress and comprehensive treatment to decrease the pathogenicity of oral biofilm can help reduce PD as well as other diseases. Evidence linking disorders of the oral microbiome to various systemic diseases has increased the understanding of the importance of the oral microbiome in regulating many processes in the human body and, thus, its impact on the development of many diseases.
Collapse
|
22
|
Liu K, Yang L, Wang X, Huang Q, Tuerhong K, Yang M, Zhang R, Li Y, Yang S. Electroacupuncture regulates macrophage, neutrophil, and oral microbiota to alleviate alveolar bone loss and inflammation in experimental ligature-induced periodontitis. J Clin Periodontol 2023; 50:368-379. [PMID: 36356944 DOI: 10.1111/jcpe.13748] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 10/12/2022] [Accepted: 11/04/2022] [Indexed: 11/12/2022]
Abstract
AIM Electroacupuncture (EA) regulates distant body physiology through somatic sensory autonomic reflexes, balances the microbiome, and can promote the release of immune cells into bloodstream, thereby inhibiting severe systemic inflammation. This makes it possible to use EA as an integrated treatment for periodontitis. MATERIALS AND METHODS In this study, EA was applied to the ST36 acupoints in a ligature-induced periodontitis (LIP) mouse model. Then the effects of EA on periodontal myeloid cells, cytokines, and the microbiome were comprehensively analysed using flow cytometry, quantitative Polymerase Chain Reaction (PCR), and 16 S sequencing. RESULTS Results demonstrated that EA could significantly relieve periodontal bone resorption. EA also suppressed the infiltration of macrophages and neutrophils, reduced gene expression of the pro-inflammatory cytokines IL-1β, IL-6, IL-17 and TNF-α, and increased expression of the anti-inflammatory factors IL-4 and IL-10 in periodontal tissues. Moreover, composition of the periodontal microbiome was regulated by EA, finding that complex of microbiota, including supragingival Veillonella, subgingival Streptococcus, and subgingival Erysipelatoclostridium, were significantly reduced. Meanwhile, nitrate and nitrate-related activities of subgingival microbiota were reversed. Network analysis revealed close relationships among Veillonella, Streptococcus, and Bacteroides. CONCLUSIONS Our study indicates that EA can effectively alleviate inflammation and bone resorption in LIP mice, potentially via the regulation of myeloid cells, cytokines, and periodontal microbiome.
Collapse
Affiliation(s)
- Kehao Liu
- Department of Prosthodontics, College of Stomatology, Chongqing Medical University, Chongqing, China
| | - Liangjie Yang
- Department of Prosthodontics, College of Stomatology, Chongqing Medical University, Chongqing, China
| | - Xu Wang
- Department of Prosthodontics, College of Stomatology, Chongqing Medical University, Chongqing, China
| | - Qi Huang
- Department of Prosthodontics, College of Stomatology, Chongqing Medical University, Chongqing, China
| | - Kamoran Tuerhong
- Department of Prosthodontics, College of Stomatology, Chongqing Medical University, Chongqing, China
| | - Mingcong Yang
- Department of Prosthodontics, College of Stomatology, Chongqing Medical University, Chongqing, China
| | - Rong Zhang
- Neuroscience Research Institute, Peking University, Beijing, China.,Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing, China.,Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing, China.,Key Laboratory for Neuroscience, Ministry of Education, Beijing, China.,Key Laboratory for Neuroscience, Ministry of Health, Beijing, China.,Autism Research Center of Peking University Health Science Center, Beijing, China
| | - Yuzhou Li
- Department of Prosthodontics, College of Stomatology, Chongqing Medical University, Chongqing, China.,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China.,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
| | - Sheng Yang
- Department of Prosthodontics, College of Stomatology, Chongqing Medical University, Chongqing, China.,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China.,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
| |
Collapse
|
23
|
Chen BY, Lin WZ, Li YL, Bi C, Du LJ, Liu Y, Zhou LJ, Liu T, Xu S, Shi CJ, Zhu H, Wang YL, Sun JY, Liu Y, Zhang WC, Zhang Z, Zhang HL, Zhu YQ, Duan SZ. Characteristics and Correlations of the Oral and Gut Fungal Microbiome with Hypertension. Microbiol Spectr 2023; 11:e0195622. [PMID: 36475759 PMCID: PMC9927468 DOI: 10.1128/spectrum.01956-22] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 11/09/2022] [Indexed: 12/13/2022] Open
Abstract
The mycobiome is an essential constituent of the human microbiome and is associated with various diseases. However, the role of oral and gut fungi in hypertension (HTN) remains largely unexplored. In this study, saliva, subgingival plaques, and feces were collected from 36 participants with HTN and 24 healthy controls for metagenomic sequencing. The obtained sequences were analyzed using the Kraken2 taxonomic annotation pipeline to assess fungal composition and diversity. Correlations between oral and gut fungi and clinic parameters, between fungi within the same sample types, and between different sample types were identified by Spearman's correlation analysis. Overall, the subgingival fungal microbiome had substantially higher alpha diversity than the salivary and fecal fungal microbiomes. The fungal microbiomes of the three sample types displayed distinct beta diversity from each other. Oral fungi but not gut fungi in HTN had beta diversity significantly different from that of controls. Among the fungi shared in the oral cavity and gut, Exophiala was the genus with the most notable changes. Exophiala spinifera was the most abundant salivary species in HTN. Some fungal species directly correlated with blood pressure, including gut Exophiala xenobiotica and Exophiala mesophila. The markedly impaired ecological cocorrelation networks of oral and gut fungi in HTN suggested compromised association among fungal species. Most fungi were shared in the oral cavity and gut, and their correlations suggested the potential interplays between oral and gut fungi. In conclusion, the oral cavity and intestine have unique fungal ecological environments. The fungal enrichment and ecology in HTN, the correlations between oral and gut fungi, and the associations between oral and gut fungi and clinical parameters suggest an important role that the fungal microbiome may play in HTN. IMPORTANCE Our study fills the gap in human studies investigating the oral and gut fungal microbiota in association with blood pressure. It characterizes the diversity and composition of the oral and gut fungal microbiome in human subjects, elucidates the dysbiosis of fungal ecology in a hypertensive population, and establishes oral-gut fungal correlations and fungus-clinical parameter correlations. Targeting fungi in the oral cavity and/or gut may provide novel strategies for the prevention and treatment of hypertension.
Collapse
Affiliation(s)
- Bo-Yan Chen
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People’s Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Center for Stomatology, Shanghai Key Laboratory of Stomatology, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Wen-Zhen Lin
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People’s Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Center for Stomatology, Shanghai Key Laboratory of Stomatology, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
- Department of General Dentistry, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yu-Lin Li
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People’s Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Center for Stomatology, Shanghai Key Laboratory of Stomatology, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Chao Bi
- Department of Stomatology, First Affiliated Hospital, Anhui Medical University, Hefei, China
| | - Lin-Juan Du
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People’s Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Center for Stomatology, Shanghai Key Laboratory of Stomatology, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Yuan Liu
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People’s Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Center for Stomatology, Shanghai Key Laboratory of Stomatology, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Lu-Jun Zhou
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People’s Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Center for Stomatology, Shanghai Key Laboratory of Stomatology, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
- Department of General Dentistry, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ting Liu
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People’s Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Center for Stomatology, Shanghai Key Laboratory of Stomatology, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Shuo Xu
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People’s Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Center for Stomatology, Shanghai Key Laboratory of Stomatology, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Chao-Ji Shi
- National Center for Stomatology, Shanghai Key Laboratory of Stomatology, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hong Zhu
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People’s Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Center for Stomatology, Shanghai Key Laboratory of Stomatology, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Yong-Li Wang
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People’s Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Center for Stomatology, Shanghai Key Laboratory of Stomatology, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Jian-Yong Sun
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People’s Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Center for Stomatology, Shanghai Key Laboratory of Stomatology, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Yan Liu
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People’s Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Center for Stomatology, Shanghai Key Laboratory of Stomatology, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Wu-Chang Zhang
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People’s Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Center for Stomatology, Shanghai Key Laboratory of Stomatology, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Zhiyuan Zhang
- National Center for Stomatology, Shanghai Key Laboratory of Stomatology, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hui-li Zhang
- Department of Cardiology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ya-Qin Zhu
- National Center for Stomatology, Shanghai Key Laboratory of Stomatology, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
- Department of General Dentistry, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Sheng-Zhong Duan
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People’s Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Center for Stomatology, Shanghai Key Laboratory of Stomatology, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
| |
Collapse
|
24
|
Yamasaki H, Imai H, Tanaka A, Otaki JM. Pleiotropic Functions of Nitric Oxide Produced by Ascorbate for the Prevention and Mitigation of COVID-19: A Revaluation of Pauling's Vitamin C Therapy. Microorganisms 2023; 11:397. [PMID: 36838362 PMCID: PMC9963342 DOI: 10.3390/microorganisms11020397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/30/2023] [Accepted: 01/31/2023] [Indexed: 02/08/2023] Open
Abstract
Linus Pauling, who was awarded the Nobel Prize in Chemistry, suggested that a high dose of vitamin C (l-ascorbic acid) might work as a prevention or treatment for the common cold. Vitamin C therapy was tested in clinical trials, but clear evidence was not found at that time. Although Pauling's proposal has been strongly criticized for a long time, vitamin C therapy has continued to be tested as a treatment for a variety of diseases, including coronavirus infectious disease 2019 (COVID-19). The pathogen of COVID-19, SARS-CoV-2, belongs to the β-coronavirus lineage, which includes human coronavirus, severe acute respiratory syndrome (SARS), and Middle East respiratory syndrome (MERS). This review intends to shed new light on vitamin C antiviral activity that may prevent SARS-CoV-2 infection through the chemical production of nitric oxide (NO). NO is a gaseous free radical that is largely produced by the enzyme NO synthase (NOS) in cells. NO produced by upper epidermal cells contributes to the inactivation of viruses and bacteria contained in air or aerosols. In addition to enzymatic production, NO can be generated by the chemical reduction of inorganic nitrite (NO2-), an alternative mechanism for NO production in living organisms. Dietary vitamin C, largely contained in fruits and vegetables, can reduce the nitrite in saliva to produce NO in the oral cavity when chewing foods. In the stomach, salivary nitrite can also be reduced to NO by vitamin C secreted from the epidermal cells of the stomach. The strong acidic pH of gastric juice facilitates the chemical reduction of salivary nitrite to produce NO. Vitamin C contributes in multiple ways to the host innate immune system as a first-line defense mechanism against pathogens. Highlighting chemical NO production by vitamin C, we suggest that controversies on the therapeutic effects of vitamin C in previous clinical trials may partly be due to less appreciation of the pleiotropic functions of vitamin C as a universal bioreductant.
Collapse
Affiliation(s)
- Hideo Yamasaki
- Faculty of Science, University of the Ryukyus, Nishihara 903-0213, Okinawa, Japan
| | | | | | | |
Collapse
|
25
|
Janket SJ, Lee C, Surakka M, Jangam TG, Van Dyke TE, Baird AE, Meurman JH. Oral hygiene, mouthwash usage and cardiovascular mortality during 18.8 years of follow-up. Br Dent J 2023:10.1038/s41415-023-5507-4. [PMID: 36737459 PMCID: PMC9897600 DOI: 10.1038/s41415-023-5507-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 11/01/2022] [Indexed: 02/05/2023]
Abstract
Aim(s) We tested the following hypotheses: would better oral hygiene self-care (OHS) influence cardiovascular (CVD) mortality? Will using mouthwash in addition to OHS affect CVD mortality? How does mouthwash usage impact the oral microbes?Design and methods Among 354 dentate subjects from the Kuopio Oral Health and Heart study, the association of OHS with CVD mortality was assessed using Cox regression analyses, adjusting for age, sex, smoking, dyslipidemia, diabetes, hypertension and education. Additionally, whether using mouthwash would affect this relationship was evaluated.Results In the multivariable-adjusted models, OHS was associated with a 51% reduction in the risk of CVD mortality (hazard ratio [HR] 0.49 [0.28-0.85]; p = 0.01). Even those who had coronary artery disease at baseline showed a marginally significant benefit (0.50 [0.24-1.06]; p = 0.07). However, mouthwash usage did not change OHS effects (HR = 0.49 [0.27-0.87]; p = 0.01), indicating no additional benefits nor detriments. All tested microbes trended to decrease with mouthwash usage in the short term, but none were statistically significant.Conclusion Good OHS significantly lowered the risk of CVD mortality relative to poor OHS. Mouthwash usage did not show any long-term harm or benefit on CVD mortality beyond the benefits rendered by brushing and flossing.
Collapse
Affiliation(s)
- Sok-Ja Janket
- The Forsyth Institute, Centre for Clinical and Translational Research, Cambridge, Massachusetts, USA.
| | - Caitlyn Lee
- Boston University Externship, Wheeler High School, Providence, Rhode Island, USA
| | - Markku Surakka
- Department of Maxillofacial Diseases, Kuopio University Hospital, Kuopio, Finland
| | | | - Thomas E Van Dyke
- The Forsyth Institute, Centre for Clinical and Translational Research, Cambridge, Massachusetts, USA
| | - Alison E Baird
- Department of Neurology, SUNY Downstate Medical Centre, Brooklyn, New York, USA
| | - Jukka H Meurman
- Department of Oral and Maxillofacial Diseases, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| |
Collapse
|
26
|
Liu T, Chen YC, Jeng SL, Chang JJ, Wang JY, Lin CH, Tsai PF, Ko NY, Ko WC, Wang JL. Short-term effects of Chlorhexidine mouthwash and Listerine on oral microbiome in hospitalized patients. Front Cell Infect Microbiol 2023; 13:1056534. [PMID: 36816590 PMCID: PMC9932516 DOI: 10.3389/fcimb.2023.1056534] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 01/20/2023] [Indexed: 02/05/2023] Open
Abstract
Introduction Chlorhexidine (CHX) and essential oil containing mouthwashes like Listerine® can improve oral hygiene via suppressing oral microbes. In hospitalized patients, CHX mouthwash reduces the incidence of ventilator-associated pneumonia. However, CHX use was also associated with increased mortality, which might be related to nitrate-reducing bacteria. Currently, no study determines oral bacteria targeted by essential oils mouthwash in hospitalized patients using a metagenomic approach. Methods We recruited 87 hospitalized patients from a previous randomized control study, and assigned them to three mouthwash groups: CHX, Listerine, and normal saline (control). Before and after gargling the mouthwash twice a day for 5-7 days, oral bacteria were examined using a 16S rDNA approach. Results Alpha diversities at the genus level decreased significantly only for the CHX and Listerine groups. Only for the two groups, oral microbiota before and after gargling were significantly different, but not clearly distinct. Paired analysis eliminated the substantial individual differences and revealed eight bacterial genera (including Prevotella, Fusobacterium, and Selenomonas) with a decreased relative abundance, while Rothia increased after gargling the CHX mouthwash. After gargling Listerine, seven genera (including Parvimonas, Eubacterium, and Selenomonas) showed a decreased relative abundance, and the magnitudes were smaller compared to the CHX group. Fewer bacteria targeted by Listerine were reported to be nitrate-reducing compared to the CHX mouthwash. Discussion In conclusion, short-term gargling of the CHX mouthwash and Listerine altered oral microbiota in our hospitalized patients. The bacterial genera targeted by the CHX mouthwash and Listerine were largely different and the magnitudes of changes were smaller using Listerine. Functional alterations of gargling CHX and Listerine were also different. These findings can be considered for managing oral hygiene of hospitalized patients.
Collapse
Affiliation(s)
- Tsunglin Liu
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Yen-Chin Chen
- Department of Nursing, National Cheng Kung University Hospital, Tainan, Taiwan,Department of Nursing, National Cheng Kung University, Tainan, Taiwan
| | - Shuen-Lin Jeng
- Department of Statistics, Institute of Data Science, Center for Innovative FinTech Business Models, National Cheng Kung University, Tainan, Taiwan
| | - Jui-Jen Chang
- Graduate Institute of Integrated Medicine, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
| | - Jiu-Yao Wang
- Center of Allergy, Immunology and Microbiome (AIM), Department of Allergy and Immunology, China Medical University Children’s Hospital, Taichung, Taiwan
| | - Cheng-Han Lin
- Center of Allergy, Immunology and Microbiome (AIM), Department of Allergy and Immunology, China Medical University Children’s Hospital, Taichung, Taiwan
| | - Pei-Fang Tsai
- Department of Pathology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Nai-Ying Ko
- Department of Nursing, National Cheng Kung University Hospital, Tainan, Taiwan,Department of Nursing, National Cheng Kung University, Tainan, Taiwan
| | - Wen-Chien Ko
- Department of Internal Medicine, National Cheng Kung University Hospital, Tainan, Taiwan,Department of Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Jiun-Ling Wang
- Department of Internal Medicine, National Cheng Kung University Hospital, Tainan, Taiwan,Department of Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan,*Correspondence: Jiun-Ling Wang,
| |
Collapse
|
27
|
周 陆, 陈 柏, 李 雨, 段 胜. [Oral Microbiome and Systemic Diseases]. SICHUAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF SICHUAN UNIVERSITY. MEDICAL SCIENCE EDITION 2023; 54:1-6. [PMID: 36647635 PMCID: PMC10409018 DOI: 10.12182/20230160504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Indexed: 01/18/2023]
Abstract
As one of the most diverse microbial communities within the human body, the oral microbiome is an important component that contributes to the maintenance of human health. The microbial composition of different sites in the oral cavity varies significantly and a dynamic equilibrium is maintained through communications with the environment and oral and distal organs of the host. It has been reported that there is significant correlation between dysbiotic oral microbiome and the occurrence or progression of a variety of systemic diseases. In this review, we summarized recent advances in research on the relationship between oral microbiome and systemic health, focusing on the interaction and pathological mechanisms between oral microbiome and systemic health and hoping to provide new avenues for the early prevention and clinical diagnosis and treatment of systemic diseases.
Collapse
Affiliation(s)
- 陆军 周
- 上海交通大学口腔医学院 国家口腔疾病临床医学研究中心 上海市口腔医学重点实验室 上海市口腔医学研究所 上海交通大学医学院附属第九人民医院 口腔微生态与系统性疾病实验室 (上海 200011)Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai 200011, China
| | - 柏延 陈
- 上海交通大学口腔医学院 国家口腔疾病临床医学研究中心 上海市口腔医学重点实验室 上海市口腔医学研究所 上海交通大学医学院附属第九人民医院 口腔微生态与系统性疾病实验室 (上海 200011)Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai 200011, China
| | - 雨霖 李
- 上海交通大学口腔医学院 国家口腔疾病临床医学研究中心 上海市口腔医学重点实验室 上海市口腔医学研究所 上海交通大学医学院附属第九人民医院 口腔微生态与系统性疾病实验室 (上海 200011)Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai 200011, China
| | - 胜仲 段
- 上海交通大学口腔医学院 国家口腔疾病临床医学研究中心 上海市口腔医学重点实验室 上海市口腔医学研究所 上海交通大学医学院附属第九人民医院 口腔微生态与系统性疾病实验室 (上海 200011)Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai 200011, China
| |
Collapse
|
28
|
Maki KA, Ganesan SM, Meeks B, Farmer N, Kazmi N, Barb JJ, Joseph PV, Wallen GR. The role of the oral microbiome in smoking-related cardiovascular risk: a review of the literature exploring mechanisms and pathways. J Transl Med 2022; 20:584. [PMID: 36503487 PMCID: PMC9743777 DOI: 10.1186/s12967-022-03785-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 11/21/2022] [Indexed: 12/14/2022] Open
Abstract
Cardiovascular disease is a leading cause of morbidity and mortality. Oral health is associated with smoking and cardiovascular outcomes, but there are gaps in knowledge of many mechanisms connecting smoking to cardiovascular risk. Therefore, the aim of this review is to synthesize literature on smoking and the oral microbiome, and smoking and cardiovascular risk/disease, respectively. A secondary aim is to identify common associations between the oral microbiome and cardiovascular risk/disease to smoking, respectively, to identify potential shared oral microbiome-associated mechanisms. We identified several oral bacteria across varying studies that were associated with smoking. Atopobium, Gemella, Megasphaera, Mycoplasma, Porphyromonas, Prevotella, Rothia, Treponema, and Veillonella were increased, while Bergeyella, Haemophilus, Lautropia, and Neisseria were decreased in the oral microbiome of smokers versus non-smokers. Several bacteria that were increased in the oral microbiome of smokers were also positively associated with cardiovascular outcomes including Porphyromonas, Prevotella, Treponema, and Veillonella. We review possible mechanisms that may link the oral microbiome to smoking and cardiovascular risk including inflammation, modulation of amino acids and lipids, and nitric oxide modulation. Our hope is this review will inform future research targeting the microbiome and smoking-related cardiovascular disease so possible microbial targets for cardiovascular risk reduction can be identified.
Collapse
Affiliation(s)
- Katherine A. Maki
- grid.410305.30000 0001 2194 5650Translational Biobehavioral and Health Disparities Branch, National Institutes of Health, Clinical Center, 10 Center Drive, Building 10, Bethesda, MD 20814 USA
| | - Sukirth M. Ganesan
- grid.214572.70000 0004 1936 8294Department of Periodontics, The University of Iowa College of Dentistry and Dental Clinics, 801 Newton Rd., Iowa City, IA 52242 USA
| | - Brianna Meeks
- grid.411024.20000 0001 2175 4264University of Maryland, School of Social Work, Baltimore, MD USA
| | - Nicole Farmer
- grid.410305.30000 0001 2194 5650Translational Biobehavioral and Health Disparities Branch, National Institutes of Health, Clinical Center, 10 Center Drive, Building 10, Bethesda, MD 20814 USA
| | - Narjis Kazmi
- grid.410305.30000 0001 2194 5650Translational Biobehavioral and Health Disparities Branch, National Institutes of Health, Clinical Center, 10 Center Drive, Building 10, Bethesda, MD 20814 USA
| | - Jennifer J. Barb
- grid.410305.30000 0001 2194 5650Translational Biobehavioral and Health Disparities Branch, National Institutes of Health, Clinical Center, 10 Center Drive, Building 10, Bethesda, MD 20814 USA
| | - Paule V. Joseph
- grid.420085.b0000 0004 0481 4802National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD USA ,grid.280738.60000 0001 0035 9863National Institute of Nursing Research, National Institutes of Health, Bethesda, MD USA
| | - Gwenyth R. Wallen
- grid.410305.30000 0001 2194 5650Translational Biobehavioral and Health Disparities Branch, National Institutes of Health, Clinical Center, 10 Center Drive, Building 10, Bethesda, MD 20814 USA
| |
Collapse
|
29
|
Ling X, Jie W, Qin X, Zhang S, Shi K, Li T, Guo J. Gut microbiome sheds light on the development and treatment of abdominal aortic aneurysm. Front Cardiovasc Med 2022; 9:1063683. [PMID: 36505348 PMCID: PMC9732037 DOI: 10.3389/fcvm.2022.1063683] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 11/03/2022] [Indexed: 11/27/2022] Open
Abstract
Abdominal aortic aneurysm (AAA) is an inflammatory vascular disease with high disability and mortality. Its susceptible risk factors include old age, being male, smoking, hypertension, and aortic atherosclerosis. With the improvement of screening techniques, AAA incidence and number of deaths caused by aneurysm rupture increase annually, attracting much clinical attention. Due to the lack of non-invasive treatment, early detection and development of novel treatment of AAA is an urgent clinical concern. The pathophysiology and progression of AAA are characterized by inflammatory destruction. The gut microbiota is an "invisible organ" that directly or indirectly affects the vascular wall inflammatory cell infiltration manifested with enhanced arterial wall gut microbiota and metabolites, which plays an important role in the formation and progression of AAA. As such, the gut microbiome may become an important risk factor for AAA. This review summarizes the direct and indirect effects of the gut microbiome on the pathogenesis of AAA and highlights the gut microbiome-mediated inflammatory responses and discoveries of relevant therapeutic targets that may help manage the development and rupture of AAA.
Collapse
Affiliation(s)
- Xuebin Ling
- Key Laboratory of Tropical Cardiovascular Diseases Research of Hainan Province, Department of Cardiovascular Medicine of the First Affiliated Hospital, Hainan Medical University, Haikou, China
| | - Wei Jie
- Key Laboratory of Tropical Cardiovascular Diseases Research of Hainan Province, Department of Cardiovascular Medicine of the First Affiliated Hospital, Hainan Medical University, Haikou, China
- Key Laboratory of Emergency and Trauma of Ministry of Education, Hainan Medical University, Haikou, China
| | - Xue Qin
- Key Laboratory of Tropical Cardiovascular Diseases Research of Hainan Province, Department of Cardiovascular Medicine of the First Affiliated Hospital, Hainan Medical University, Haikou, China
| | - Shuya Zhang
- Key Laboratory of Tropical Cardiovascular Diseases Research of Hainan Province, Department of Cardiovascular Medicine of the First Affiliated Hospital, Hainan Medical University, Haikou, China
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States
| | - Kaijia Shi
- Key Laboratory of Tropical Cardiovascular Diseases Research of Hainan Province, Department of Cardiovascular Medicine of the First Affiliated Hospital, Hainan Medical University, Haikou, China
| | - Tianfa Li
- Key Laboratory of Tropical Cardiovascular Diseases Research of Hainan Province, Department of Cardiovascular Medicine of the First Affiliated Hospital, Hainan Medical University, Haikou, China
| | - Junli Guo
- Key Laboratory of Tropical Cardiovascular Diseases Research of Hainan Province, Department of Cardiovascular Medicine of the First Affiliated Hospital, Hainan Medical University, Haikou, China
- Key Laboratory of Emergency and Trauma of Ministry of Education, Hainan Medical University, Haikou, China
| |
Collapse
|
30
|
Wang H, Yang M, Cheng S, Ren Y, Deng Y, Liang J, Lin X, Li J, Yin J, Wu Q. The Spouses of Stroke Patients Have a Similar Oral Microbiome to Their Partners with an Elevated Risk of Stroke. Microorganisms 2022; 10:2288. [PMID: 36422358 PMCID: PMC9697374 DOI: 10.3390/microorganisms10112288] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/09/2022] [Accepted: 11/16/2022] [Indexed: 01/19/2024] Open
Abstract
Spousal members who share no genetic relatedness show similar oral microbiomes. Whether a shared microbiome increases the risk of cerebrovascular disease is challenging to investigate. The aim of this study was to compare the oral microbiota composition of poststroke patients, their partners, and controls and to compare the risk of stroke between partners of poststroke patients and controls. Forty-seven pairs of spouses and 34 control subjects were recruited for the study. Alcohol use, smoking, metabolic disease history, clinical test results, and oral health were documented. Oral microbiome samples were measured by 16S rRNA gene sequencing. The risk of stroke was measured by risk factor assessment (RFA) and the Framingham Stroke Profile (FSP). Poststroke patients and their partners exhibited higher alpha diversity than controls. Principal-coordinate analysis (PCoA) showed that poststroke patients share a more similar microbiota composition with their partners than controls. The differentially abundant microbial taxa among the 3 groups were identified by linear discriminant analysis effect size (LEfSe) analysis. The risk factor assessment indicated that partners of poststroke patients had a higher risk of stroke than controls. Spearman correlation analysis showed that Prevotellaceae was negatively associated with RFA. Lactobacillales was negatively associated with FSP, while Campilobacterota and [Eubacterium]_nodatum_group were positively associated with FSP. These results suggest that stroke risk may be transmissible between spouses through the oral microbiome, in which several bacteria might be involved in the pathogenesis of stroke.
Collapse
Affiliation(s)
- Huidi Wang
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Mengjia Yang
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Sanping Cheng
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Yueran Ren
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Yiting Deng
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Jingru Liang
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Xiaofei Lin
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Jie Li
- Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Jia Yin
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Qiheng Wu
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
31
|
Li Y, Zhu M, Liu Y, Luo B, Cui J, Huang L, Chen K, Liu Y. The oral microbiota and cardiometabolic health: A comprehensive review and emerging insights. Front Immunol 2022; 13:1010368. [PMID: 36466857 PMCID: PMC9716288 DOI: 10.3389/fimmu.2022.1010368] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 10/26/2022] [Indexed: 08/26/2023] Open
Abstract
There is mounting evidence demonstrating that oral dysbiosis causes periodontal disease and promotes the development of cardiovascular disease. The advancement of omics techniques has driven the optimization of oral microbiota species analysis and has provided a deeper understanding of oral pathogenic bacteria. A bi-directional relationship exists between the oral microbiota and the host, and oral-gut microbiota transfer is known to alter the composition of the gut microbiota and may cause local metabolic disorders. Furthermore, cardiovascular health can also be highly affected by oral microbiota functions and metabolites, including short-chain fatty acids (SCFAs), nitric oxide (NO), hydrogen sulfide (H2S), and some lipid metabolites. Studies have found that trimethylamine oxide (TMAO) may have adverse effects on cardiovascular health, whereas SCFAs, NO, and H2S have cardioprotective effects. SCFAs and H2S exert varying oral and cardiovascular effects, however reports on this specific topic remain controversial. Previous evidences are accustomed to summarizing the functions of oral microbiota in the context of periodontitis. The direct relationship between oral microbiota and cardiovascular diseases is insufficient. By systematically summarizing the methods associated with oral microbiota transplantation (OMT), this review facilitates an investigation into the causal links between oral microbiota and cardiovascular disease. The concomitant development of omics, bioinformatics, bacterial culture techniques, and microbiota transplantation techniques is required to gain a deeper understanding of the relationship between oral microbiota and cardiovascular disease occurrence.
Collapse
Affiliation(s)
- Yiwen Li
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, Chinese Academy of Chinese Medical Sciences, Beijing, China
| | - Mengmeng Zhu
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, Chinese Academy of Chinese Medical Sciences, Beijing, China
| | - Yanfei Liu
- The Second Department of Gerontology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Binyu Luo
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, Chinese Academy of Chinese Medical Sciences, Beijing, China
| | - Jing Cui
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, Chinese Academy of Chinese Medical Sciences, Beijing, China
| | - Luqi Huang
- China Center for Evidence-based Medicine of Traditional Chinese Medicine (TCM), China Academy of Chinese Medical Sciences, Beijing, China
| | - Keji Chen
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, Chinese Academy of Chinese Medical Sciences, Beijing, China
| | - Yue Liu
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, Chinese Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
32
|
Mollaie E, Asiaei S, Aryan H. Nitrite enhanced detection from saliva by simple geometrical modifications of paper-based micromixers. MICROFLUIDICS AND NANOFLUIDICS 2022; 26:88. [PMID: 36246785 PMCID: PMC9554860 DOI: 10.1007/s10404-022-02596-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 09/28/2022] [Indexed: 06/16/2023]
Abstract
Dysregulation of nitric oxide (NO) and it's two relatively stable metabolites, nitrite, and nitrate, in SARS-CoV-2, are reported in infected populations, especially for nitrates levels > 68.4 μmol/L. In this paper, we measure the abnormal presence of nitrite in the saliva by developing a cheap μPAD for colorimetric detection through the modified Griess reaction. This includes a diazotization reaction between nitrite and Griess reagent, including Sulfanilamide and N-Naphthyl-ethylenediamine in an acidic medium, causing a pink Azo compound. The modifications are suggested by a numerical method model that couples the mass flux with the porosity medium equations (convection, diffusion and, dispersion) that improves the mixing process. The mixing index was quantified from the concentration deviation method via simulation of a homogeneous two-phase flow in a porous environment. Five μPAD designs were fabricated to verify the simulation results of mixing enhancement on the Griess reactants in saliva samples. The investigated geometries include straight, helical, zig-zag, square wave, and inclined jagged shapes fabricated by direct laser writing, suitable for low cost, mass fabrication. Inclined jagged micromixer exhibited the best performance with up to 40% improvement compared with the simple straight geometry. Deliberate geometrical modifications, exemplified here in a jagged micromixer on paper, cut the limit of detection (LOD) by at least half without impacting the linear detection range.
Collapse
Affiliation(s)
- Elham Mollaie
- School of Mechanical Engineering, Iran University of Science and Technology, Tehran, Iran
| | - Sasan Asiaei
- Sensors and Integrated Bio-Microfluidics/MEMS Laboratory, School of Mechanical Engineering, Iran University of Science and Technology, Tehran, Iran
| | - Hiwa Aryan
- School of Mechanical Engineering, Iran University of Science and Technology, Tehran, Iran
- Clinical Research Development Center of Imam Khomeini and Mohammad Kermanshahi and Farabi Hospitals, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
33
|
Pasteurella multocida Toxin Aggravates Ligatured-Induced Periodontal Bone Loss and Inflammation via NOD-Like Receptor Protein 3 Inflammasome. Cell Microbiol 2022. [DOI: 10.1155/2022/3305695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
NOD-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome is reportedly involved in periodontal pathogenesis. Pasteurella multocida toxin (PMT) is the major virulence factor of Pasteurella multocida strains, which belongs to the nonoral gram-negative facultative rods (GNFR). The existence of GNFR and their toxin may aggravate periodontitis. Therefore, it is important to unclose the regulatory mechanisms of PMT in periodontitis. However, the involvement of NLRP3 inflammasome and PMT in periodontitis remain unclear. The results showed that NLRP3 expression was increased in periodontitis mice by immunohistochemical staining and quantitative reverse transcription polymerase chain reaction (qRT-PCR). Nlrp3-/- mice showed less periodontal bone loss and lower abundances of Pasteurella multocida by 16S rRNA sequencing. PMT promoted NLRP3 expressions by activating nuclear factor kappa light chain enhancer of B cells (NF-κB) pathway and activated NLRP3 inflammasome. This effect was reversed by NLRP3 inhibitor MCC950. Furthermore, PMT aggravated periodontal bone loss and inflammation in WT mice, while MCC950 attenuated periodontal bone loss and inflammation. The Nlrp3-/- periodontitis models with PMT local injection showed less bone loss and inflammation compared with WT periodontitis mice after PMT treatment. Taken together, our results showed that PMT aggravates periodontal response to the ligature by promoting NLRP3 expression and activating NLRP3 inflammasome, suggesting that NLRP3 may be an effective target for the treatment of periodontitis caused by GNFR and MCC950 may be a potential drug against this disease.
Collapse
|
34
|
Insight into the Relationship between Oral Microbiota and the Inflammatory Bowel Disease. Microorganisms 2022; 10:microorganisms10091868. [PMID: 36144470 PMCID: PMC9505529 DOI: 10.3390/microorganisms10091868] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/03/2022] [Accepted: 09/09/2022] [Indexed: 11/17/2022] Open
Abstract
Inflammatory bowel disease has been a growing concern of lots of people globally, including both adults and children. As a chronic inflammatory disease of the intestine, even though the etiology of inflammatory bowel disease is still unclear, the available evidence from clinic observations has suggested a close association with microorganisms. The oral microbiota possesses the characteristics of a large number and abundant species, second only to the intestinal microbiota in the human body; as a result, it successfully attracts the attention of researchers. The highly diverse commensal oral microbiota is not only a normal part of the oral cavity but also has a pronounced impact on the pathophysiology of general health. Numerous studies have shown the potential associations between the oral microbiota and inflammatory bowel disease. Inflammatory bowel disease can affect the composition of the oral microbiota and lead to a range of oral pathologies. In turn, there are a variety of oral microorganisms involved in the development and progression of inflammatory bowel disease, including Streptococcus spp., Fusobacterium nucleatum, Porphyromonas gingivalis, Campylobacter concisus, Klebsiella pneumoniae, Saccharibacteria (TM7), and Candida albicans. Based on the above analysis, the purpose of this review is to summarize this relationship of mutual influence and give further insight into the detection of flora as a target for the diagnosis and treatment of inflammatory bowel disease to open up a novel approach in future clinical practice.
Collapse
|
35
|
Agri-Food Waste from Apple, Pear, and Sugar Beet as a Source of Protective Bioactive Molecules for Endothelial Dysfunction and Its Major Complications. Antioxidants (Basel) 2022; 11:antiox11091786. [PMID: 36139860 PMCID: PMC9495678 DOI: 10.3390/antiox11091786] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/01/2022] [Accepted: 09/07/2022] [Indexed: 11/16/2022] Open
Abstract
Endothelial damage is recognized as the initial step that precedes several cardiovascular diseases (CVD), such as atherosclerosis, hypertension, and coronary artery disease. It has been demonstrated that the best treatment for CVD is prevention, and, in the frame of a healthy lifestyle, the consumption of vegetables, rich in bioactive molecules, appears effective at reducing the risk of CVD. In this context, the large amount of agri-food industry waste, considered a global problem due to its environmental and economic impact, represents an unexplored source of bioactive compounds. This review provides a summary regarding the possible exploitation of waste or by-products derived by the processing of three traditional Italian crops-apple, pear, and sugar beet-as a source of bioactive molecules to protect endothelial function. Particular attention has been given to the bioactive chemical profile of these pomaces and their efficacy in various pathological conditions related to endothelial dysfunction. The waste matrices of apple, pear, and sugar beet crops can represent promising starting material for producing "upcycled" products with functional applications, such as the prevention of endothelial dysfunction linked to cardiovascular diseases.
Collapse
|
36
|
The Oncobiome in Gastroenteric and Genitourinary Cancers. Int J Mol Sci 2022; 23:ijms23179664. [PMID: 36077063 PMCID: PMC9456244 DOI: 10.3390/ijms23179664] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/21/2022] [Accepted: 08/23/2022] [Indexed: 12/24/2022] Open
Abstract
Early evidence suggests a strong association of microorganisms with several human cancers, and great efforts have been made to understand the pathophysiology underlying microbial carcinogenesis. Bacterial dysbiosis causes epithelial barrier failure, immune dysregulation and/or genotoxicity and, consequently, creates a tumor-permissive microenvironment. The majority of the bacteria in our body reside in the gastrointestinal tract, known as gut microbiota, which represents a complex and delicate ecosystem. Gut microbes can reach the pancreas, stomach and colon via the bloodstream. Oral bacterial translocations can also occur. In the stomach, pancreas and colon, low microbial diversity is associated with cancer, in particular with a bad prognosis. The urogenital tract also harbors unique microbiota, distinct from the gut microbiota, which might have a role in the urinary and female/male reproductive cancers’ pathogenesis. In healthy women, the majority of bacteria reside in the vagina and cervix and unlike other mucosal sites, the vaginal microbiota exhibits low microbial diversity. Genital dysbiosis might have an active role in the development and/or progression of gynecological malignancies through mechanisms including modulation of oestrogen metabolism. Urinary dysbiosis may influence the pathogenesis of bladder cancer and prostate cancer in males. Modulation of the microbiome via pre, pro and postbiotics, fecal or vaginal microbiota transplantation and engineering bacteria might prove useful in improving cancer treatment response and quality of life. Elucidating the complex host-microbiome interactions will result in prevention and therapeutic efficacy interventions.
Collapse
|
37
|
Bevere M, Di Cola G, Santangelo C, Grazioli E, Marramiero L, Pignatelli P, Bondi D, Mrakic-Sposta S. Redox-based disruption of cellular hormesis and promotion of degenerative pathways: perspectives on ageing processes. J Gerontol A Biol Sci Med Sci 2022; 77:2195-2206. [PMID: 35973816 DOI: 10.1093/gerona/glac167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Indexed: 11/13/2022] Open
Abstract
The present work aims to link the redox and cell-centric theories of chronic processes in human biology, focusing on ageing. A synthetic overview of cellular redox pathways will be integrated by the concept of hormesis, which disruption leads to several physiopathological processes. The onset of age-related diseases due to the restriction of homeodynamic capacity will be herein considered in a redox fashion. Up-to-date arguments on hormetic agents, such as geroprotectors, dietary interventions, and physical exercise are refining the presented theoretical framework, integrated by insights from extracellular vesicles, microbiota, pollutants, and timing mechanisms. The broad concepts of exposome encompass the redox-based alteration of cellular hormesis for providing meaningful perspectives on redox biogerontology.
Collapse
Affiliation(s)
- Michele Bevere
- Department of Neuroscience, Imaging and Clinical Sciences, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy.,Laboratory of Functional Biotechnologies, Center for Advanced Studies and Technology (CAST), University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Giulia Di Cola
- Cancer Genetics Unit, European Institute of Oncology (IEO), Milano, Italy
| | - Carmen Santangelo
- Department of Neuroscience, Imaging and Clinical Sciences, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Elisa Grazioli
- Department of Experimental and Clinical Medicine, "Magna Graecia" University, Catanzaro, Italy.,Department of Human, Movement Sciences and Health, University of Rome "Foro Italico", Roma, Italy
| | - Lorenzo Marramiero
- Department of Neuroscience, Imaging and Clinical Sciences, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Pamela Pignatelli
- Department of Oral and Maxillofacial Sciences, Sapienza University of Rome, Roma, Italy.,Department of Medical, Oral and Biotechnological Sciences, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Danilo Bondi
- Department of Neuroscience, Imaging and Clinical Sciences, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Simona Mrakic-Sposta
- Institute of Clinical Physiology National Research Council (ICF-CNR), Milano, Italy
| |
Collapse
|
38
|
The relationship between tooth loss and hypertension: a systematic review and meta-analysis. Sci Rep 2022; 12:13311. [PMID: 35922537 PMCID: PMC9349209 DOI: 10.1038/s41598-022-17363-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 07/25/2022] [Indexed: 11/16/2022] Open
Abstract
As tooth loss is the high end of periodontal problems and edentulous individuals are at higher risk of nutritional problems like obesity, understanding the association between tooth loss and hypertension is important for improving cardiovascular health. We searched for publications from the last two decades using three electronic databases (PubMed, Web of Science and Scopus) and conducted a systematic review and meta-analysis on the association between tooth loss and hypertension according to PRISMA-P guidelines. Quality assessments were performed using the Newcastle–Ottawa Scale and the GRADE approach. Twenty-four studies (20 cross-sectional, and 4 cohort) met the inclusion criteria for this review. Most cross-sectional studies showed that subjects with more tooth loss exhibited a greater proportion of hypertension and higher systolic blood pressure than those with less tooth loss. Meta-analyses revealed a statistically significant association between tooth loss and hypertension. The pooled odds ratios of hypertension for having tooth loss with no tooth loss and for edentulous with dentate were 2.22 (95% CI 2.00–2.45) and 4.94 (95% CI 4.04–6.05), respectively. In cohort studies, subjects with more tooth loss had a greater incidence of hypertension than those with less tooth loss during the follow-up period. The present systematic review and meta-analysis suggests that tooth loss is associated with an increased risk of hypertension and higher systolic blood pressure.
Collapse
|
39
|
Giordano-Kelhoffer B, Lorca C, March Llanes J, Rábano A, del Ser T, Serra A, Gallart-Palau X. Oral Microbiota, Its Equilibrium and Implications in the Pathophysiology of Human Diseases: A Systematic Review. Biomedicines 2022; 10:biomedicines10081803. [PMID: 36009350 PMCID: PMC9405223 DOI: 10.3390/biomedicines10081803] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/19/2022] [Accepted: 07/23/2022] [Indexed: 02/06/2023] Open
Abstract
Imbalances of the oral microbiota and dysbiosis have traditionally been linked to the occurrence of teeth and oral diseases. However, recent findings indicate that this microbiota exerts relevant influence in systemic health. Dysbiosis of the oral microbiota is implicated in the apparition and progression of cardiovascular, neurodegenerative and other major human diseases. In fact, the oral microbiota are the second most diverse and largely populated microbiota of the human body and its relationships with systemic health, although widely explored, they still lack of proper integration. The purpose of this systematic review is thus to widely examine the implications of oral microbiota in oral, cardiovascular and neurodegenerative diseases to offer integrative and up-to-date interpretations. To achieve that aim, we identified a total of 121 studies curated in PUBMED from the time interval January 2003–April 2022, which after careful screening resulted in 79 studies included. The reviewed scientific literature provides plausible vias of implication of dysbiotic oral microbiota in systemic human diseases, and encourages further research to continue elucidating the highly relevant and still poorly understood implications of this niche microbiota in systemic health. PROSPERO Registration Number: CRD42022299692. This systematic review follows relevant PRISMA guidelines.
Collapse
Affiliation(s)
- Barbara Giordano-Kelhoffer
- Faculty of Dentistry, Universitat Internacional de Catalunya (UIC), 08017 Barcelona, Spain;
- Bioengineering Institute of Technology, Faculty of Health Sciences, Universitat Internacional de Catalunya (UIC), 08017 Barcelona, Spain
- Faculty of Health Sciences, Valencian International University, 46002 Valencia, Spain
- Biomedical Research Institute of Lleida Dr. Pifarré Foundation (IRB Lleida), Neuroscience Area, +Pec Proteomics Research Group (+PPRG), University Hospital Arnau de Vilanova (HUAV), 25198 Lleida, Spain;
| | - Cristina Lorca
- Biomedical Research Institute of Lleida Dr. Pifarré Foundation (IRB Lleida), Neuroscience Area, +Pec Proteomics Research Group (+PPRG), University Hospital Arnau de Vilanova (HUAV), 25198 Lleida, Spain;
- IMDEA—Food Research Institute, +Pec Proteomics, Campus of International Excellence UAM + CSIC, Old Cantoblanco Hospital, 8 Crta. Canto Blanco, 28049 Madrid, Spain
| | - Jaume March Llanes
- NeuroPGA Research Group—Psychology Department, University of Lleida (UdL), 25001 Lleida, Spain;
| | - Alberto Rábano
- Alzheimer’s Centre Reina Sofia—CIEN Foundation, 28031 Madrid, Spain; (A.R.); (T.d.S.)
| | - Teodoro del Ser
- Alzheimer’s Centre Reina Sofia—CIEN Foundation, 28031 Madrid, Spain; (A.R.); (T.d.S.)
| | - Aida Serra
- IMDEA—Food Research Institute, +Pec Proteomics, Campus of International Excellence UAM + CSIC, Old Cantoblanco Hospital, 8 Crta. Canto Blanco, 28049 Madrid, Spain
- Correspondence: (A.S.); (X.G.-P.); Tel.: +34-91-7278-100 (A.S.); +34-97-3702-224 (X.G.-P.)
| | - Xavier Gallart-Palau
- Faculty of Health Sciences, Valencian International University, 46002 Valencia, Spain
- Biomedical Research Institute of Lleida Dr. Pifarré Foundation (IRB Lleida), Neuroscience Area, +Pec Proteomics Research Group (+PPRG), University Hospital Arnau de Vilanova (HUAV), 25198 Lleida, Spain;
- Psychology Department, University of Lleida (UdL), 25001 Lleida, Spain
- Correspondence: (A.S.); (X.G.-P.); Tel.: +34-91-7278-100 (A.S.); +34-97-3702-224 (X.G.-P.)
| |
Collapse
|
40
|
Han Y, Huang Y, Yang Q, Jia L, Zheng Y, Li W. Long non-coding RNA SNHG5 mediates periodontal inflammation through the NF-κB signaling pathway. J Clin Periodontol 2022; 49:1038-1051. [PMID: 35713268 DOI: 10.1111/jcpe.13684] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 05/14/2022] [Accepted: 06/12/2022] [Indexed: 11/30/2022]
Abstract
AIM We investigated the role of the long non-coding RNA (lncRNA), small nucleolar RNA host gene 5 (SNHG5), in the pathogenesis of periodontitis. MATERIALS AND METHODS A ligature-induced periodontitis mouse model was established, and gingival tissues from patients with periodontitis and healthy controls were collected. Inflammatory cytokines were detected using qRT-PCR and western blotting analyses. Direct interactions between SNHG5 and p65 were detected by RNA pull-down and RNA immunoprecipitation assays. Micro-computed tomography, hematoxylin and eosin staining, and immunohistochemical staining were used to measure periodontal bone loss. RESULTS SNHG5 expression was downregulated in human and mouse periodontal tissues compared to that in the healthy controls. In vitro experiments demonstrated that SNHG5 significantly ameliorated tumor necrosis factor-α (TNFα)-induced inflammation. Mechanistically, SNHG5 directly binds to the nuclear factor-kappa B (NF-κB) p65 subunit and inhibits its translocation, thereby suppressing the NF-κB signaling pathway activation and reducing the nucleotide-binding oligomerization domain-like receptor family pyrin domain-containing 3 inflammasome expression. Locally injecting si-SNHG5 aggravated the periodontal destruction. CONCLUSION This study revealed that SNHG5 mediates periodontal inflammation through the NF-κB signaling pathway, providing a potential therapeutic target for periodontitis treatment. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Yineng Han
- Department of Orthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun Avenue South, Haidian District, Beijing, People's Republic of China.,National Center of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing, China
| | - Yiping Huang
- Department of Orthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun Avenue South, Haidian District, Beijing, People's Republic of China.,National Center of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing, China
| | - Qiaolin Yang
- Department of Orthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun Avenue South, Haidian District, Beijing, People's Republic of China.,National Center of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing, China
| | - Lingfei Jia
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, 22 Zhongguancun Avenue South, Haidian District, Beijing, People's Republic of China.,Central Laboratory, Peking University School and Hospital of Stomatology, 22 Zhongguancun Avenue South, Haidian District, Beijing, People's Republic of China.,National Center of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing, China
| | - Yunfei Zheng
- Department of Orthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun Avenue South, Haidian District, Beijing, People's Republic of China.,National Center of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing, China
| | - Weiran Li
- Department of Orthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun Avenue South, Haidian District, Beijing, People's Republic of China.,National Center of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing, China
| |
Collapse
|
41
|
Chervinets VM, Chervinets YV, Chichanovskaja LV, Ganzja DV, Grigoryants EO, Belyaev VS, Mironov AY. The microbiome of oral cavity patients with periodontitis, adhesive and biofilm forming properties. Klin Lab Diagn 2022; 67:163-169. [PMID: 35320632 DOI: 10.51620/0869-2084-2022-67-3-163-169] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The work characterizes the intestinal microbiota of patients with ischemic stroke, including the spectrum, frequency and number of microorganisms, as well as the spectrum and amount of gas signaling molecules secreted by lactobacilli. It was found that in patients with ischemic stroke, the frequency of the main representatives of normal microflora, Bifidobacterium spp., Lactobacillus spp., Escherichia coli, decreased in 2-3 times, and the same time the prevalence of Clostridia spp., Bacillus spp., Peptostreptococcus spp., Klebsiella spp. increased in 2-3 times; yeast like fungi C. albicans was isolated in 25% of cases. Lactobacilli isolated from the intestinal microbiota of patients with ischemic stroke were represented by a wide variety of species: L. rhamnosus, L. fermentum, L. plantarum, L. brevis, L. pentosus, L. curvatus, L. salivarius. In most cases, they did not produce NO, they released CO 2 times less compared to healthy people. The most active NO producers - L. plantarum, CO - L. rhamnosus.
Collapse
Affiliation(s)
| | | | | | | | | | | | - A Yu Mironov
- G.N. Gabrichevskogo Moscow research institute for epidemiology and microbiology.,Russian academy of post-graduate education Federal Research and Clinical Center of Specialized Medical Care and Medical Technologies FMBA of Russia
| |
Collapse
|
42
|
Stamm P, Kalinovic S, Oelze M, Steven S, Czarnowski A, Kvandova M, Bayer F, Reinhardt C, Münzel T, Daiber A. Mechanistic Insights into Inorganic Nitrite-Mediated Vasodilation of Isolated Aortic Rings under Oxidative/Hypertensive Conditions and S-Nitros(yl)ation of Proteins in Germ-Free Mice. Biomedicines 2022; 10:biomedicines10030730. [PMID: 35327532 PMCID: PMC8945819 DOI: 10.3390/biomedicines10030730] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/11/2022] [Accepted: 03/16/2022] [Indexed: 02/07/2023] Open
Abstract
The prevalence and clinical importance of arterial hypertension are still growing. Inorganic nitrite (NO2-) represents an attractive dietary antihypertensive agent, but its metabolism and mode of action, which we aimed to investigate with the present study, are not completely understood. Isolated aortic rings from rats were treated ex vivo with oxidants, and rats were infused in vivo with angiotensin-II. Vascular responses to acetylcholine (ACh) and nitrite were assessed by isometric tension recording. The loss of vasodilatory potency in response to oxidants was much more pronounced for ACh as compared to nitrite ex vivo (but not in vivo with angiotensin-II). This effect may be caused by the redox regulation of conversion to xanthine oxidase (XO). Conventionally raised and germ-free mice were treated with nitrite by gavage, which did not improve ACh-mediated vasodilation, but did increase the plasma levels of S-nitros(yl)ated proteins in the conventionally-raised, but not in the germ-free mice. In conclusion, inorganic nitrite represents a dietary drug option to treat arterial hypertension in addition to already established pharmacological treatment. Short-term oxidative stress did not impair the vasodilatory properties of nitrite, which may be beneficial in cardiovascular disease patients. The gastrointestinal microbiome appears to play a key role in nitrite metabolism and bioactivation.
Collapse
Affiliation(s)
- Paul Stamm
- Department of Cardiology, Cardiology I, University Medical Center Mainz, 55131 Mainz, Germany; (P.S.); (S.K.); (M.O.); (S.S.); (A.C.); (M.K.)
- German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, 55131 Mainz, Germany;
| | - Sanela Kalinovic
- Department of Cardiology, Cardiology I, University Medical Center Mainz, 55131 Mainz, Germany; (P.S.); (S.K.); (M.O.); (S.S.); (A.C.); (M.K.)
| | - Matthias Oelze
- Department of Cardiology, Cardiology I, University Medical Center Mainz, 55131 Mainz, Germany; (P.S.); (S.K.); (M.O.); (S.S.); (A.C.); (M.K.)
| | - Sebastian Steven
- Department of Cardiology, Cardiology I, University Medical Center Mainz, 55131 Mainz, Germany; (P.S.); (S.K.); (M.O.); (S.S.); (A.C.); (M.K.)
- Center for Thrombosis and Hemostasis Mainz, University Medical Center Mainz, 55131 Mainz, Germany;
| | - Alexander Czarnowski
- Department of Cardiology, Cardiology I, University Medical Center Mainz, 55131 Mainz, Germany; (P.S.); (S.K.); (M.O.); (S.S.); (A.C.); (M.K.)
| | - Miroslava Kvandova
- Department of Cardiology, Cardiology I, University Medical Center Mainz, 55131 Mainz, Germany; (P.S.); (S.K.); (M.O.); (S.S.); (A.C.); (M.K.)
| | - Franziska Bayer
- Center for Thrombosis and Hemostasis Mainz, University Medical Center Mainz, 55131 Mainz, Germany;
| | - Christoph Reinhardt
- German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, 55131 Mainz, Germany;
- Center for Thrombosis and Hemostasis Mainz, University Medical Center Mainz, 55131 Mainz, Germany;
| | - Thomas Münzel
- Department of Cardiology, Cardiology I, University Medical Center Mainz, 55131 Mainz, Germany; (P.S.); (S.K.); (M.O.); (S.S.); (A.C.); (M.K.)
- German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, 55131 Mainz, Germany;
- Correspondence: (T.M.); (A.D.); Tel.: +49-6131-17-6280 (A.D.)
| | - Andreas Daiber
- Department of Cardiology, Cardiology I, University Medical Center Mainz, 55131 Mainz, Germany; (P.S.); (S.K.); (M.O.); (S.S.); (A.C.); (M.K.)
- German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, 55131 Mainz, Germany;
- Correspondence: (T.M.); (A.D.); Tel.: +49-6131-17-6280 (A.D.)
| |
Collapse
|
43
|
Roles of oral microbiota and oral-gut microbial transmission in hypertension. J Adv Res 2022; 43:147-161. [PMID: 36585105 PMCID: PMC9811375 DOI: 10.1016/j.jare.2022.03.007] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 03/07/2022] [Accepted: 03/08/2022] [Indexed: 01/07/2023] Open
Abstract
INTRODUCTION Considerable evidence has linked periodontitis (PD) to hypertension (HTN), but the nature behind this connection is unclear. Dysbiosis of oral microbiota leading to PD is known to aggravate different systematic diseases, but the alteration of oral microbiota in HTN and their impacts on blood pressure (BP) remains to be discovered. OBJECTIVES To characterize the alterations of oral and gut microbiota and their roles in HTN. METHODS We performed a cross-sectional (95 HTN participants and 39 controls) and a 6-month follow-up study (52 HTN participants and 26 controls) to analyze the roles of oral and gut microbiota in HTN. Saliva, subgingival plaques, and feces were collected for 16S rRNA gene sequencing or metagenomic analysis. C57BL/6J mice were pretreated with antibiotics to deplete gut microbiota, and then transplanted with human saliva by gavage to test the impacts of abnormal oral-gut microbial transmission on HTN. RESULTS BP in participants with PD was higher than no PD in both cross-sectional and follow-up cohort. Relative abundances of 14 salivary genera, 15 subgingival genera and 10 gut genera significantly altered in HTN and those of 7 salivary genera, 12 subgingival genera and 6 gut genera significantly correlated with BP. Sixteen species under 5 genera were identified as oral-gut transmitters, illustrating the presence of oral-gut microbial transmission in HTN. Veillonella was a frequent oral-gut transmitter stably enriched in HTN participants of both cross-sectional and follow-up cohorts. Saliva from HTN participants increased BP in hypertensive mice. Human saliva-derived Veillonella successfully colonized in mouse gut, more abundantly under HTN condition. CONCLUSIONS PD and oral microbiota are strongly associated with HTN, likely through oral-gut transmission of microbes. Ectopic colonization of saliva-derived Veillonella in the gut may aggravate HTN. Therefore, precise manipulations of oral microbiota and/or oral-gut microbial transmission may be useful strategies for better prevention and treatment of HTN.
Collapse
|
44
|
Wang X, Xu X, Chen Y, Li Z, Zhang M, Zhao C, Lian B, Zhao J, Guo Y, Liu Q. Liu Shen Capsule Alters Airway Microbiota Composition and Metabolite Profiles in Healthy Humans. Front Pharmacol 2022; 12:824180. [PMID: 35153770 PMCID: PMC8831732 DOI: 10.3389/fphar.2021.824180] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 12/31/2021] [Indexed: 12/31/2022] Open
Abstract
Alteration in airway microbiota composition and perturbations in microbe-metabolites interactions have been proposed as markers of many diseases. Liu Shen (LS) capsule, a traditional Chinese medicine, was proved as favorable in treating respiratory diseases. However, the effects of the LS capsule in terms of regulating human microorganisms and metabolite profiles are not well known. This study aimed to define and compare the respiratory microbiota composition and circulating and fecal metabolite profiles before and after LS capsule administration. A total of 30 healthy volunteers were recruited. The pharyngeal swab samples were collected for 16S rRNA gene sequencing. The serum and fecal samples were collected to analyze the non-targeted ultra-performance liquid chromatography–tandem mass spectrometry metabolomics. The airway microbial compositions were profoundly altered after LS capsule administration, as evidenced by increased microbial diversity and altered microbial taxa distribution. The increasing abundance of bacterial Bifidobacteria, and Lactobacillus characterized the after-administration groups, and the increasing of abundance bacterial Proteobacteria, Veillonella, Prevotella, Neisseria, and Actinomyces characterized the before-administration groups. Significant discriminations were observed in both serum and fecal metabolic profiles between the before- and after-administration groups. A total number of 134 and 71 significant HMDB taxonomic metabolites including glycerophospholipids, fatty acyls, and prenol lipids in the serum and fecal samples were identified respectively between the before- and after-administration groups. The integrated analysis showed that some altered airway microbiota phylum, such as Bacteroidetes and Proteobacteria, significantly correlated with metabolites in serum and fecal. Hence, our study reported the alternations in the composition and functions of the airway microbial community and the changes in circulating and fecal metabolite profiles after LS capsule administration in healthy humans, thus providing a novel insight into the mechanisms underlying the role of LS capsule treating and preventing related diseases.
Collapse
Affiliation(s)
- Xuerui Wang
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Basic Research with Traditional Chinese Medicine on Infectious Diseases, Beijing, China
- Beijing Institute of Chinese Medicine, Beijing, China
| | - Xiaolong Xu
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Basic Research with Traditional Chinese Medicine on Infectious Diseases, Beijing, China
- Beijing Institute of Chinese Medicine, Beijing, China
| | - Yishan Chen
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Zhenxuan Li
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Mina Zhang
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Chunxia Zhao
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Bo Lian
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Jingxia Zhao
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
- Beijing Institute of Chinese Medicine, Beijing, China
| | - Yuhong Guo
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Qingquan Liu
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Basic Research with Traditional Chinese Medicine on Infectious Diseases, Beijing, China
- Beijing Institute of Chinese Medicine, Beijing, China
- *Correspondence: Qingquan Liu,
| |
Collapse
|
45
|
Chen X, Chen Y, Feng M, Huang X, Li C, Han F, Zhang Q, Gao X. Altered Salivary Microbiota in Patients with Obstructive Sleep Apnea Comorbid Hypertension. Nat Sci Sleep 2022; 14:593-607. [PMID: 35422668 PMCID: PMC9005082 DOI: 10.2147/nss.s347630] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 03/11/2022] [Indexed: 12/22/2022] Open
Abstract
PURPOSE Microorganisms contribute to the pathogenesis of obstructive sleep apnea (OSA)-associated hypertension (HTN), while more studies focus on intestinal microbiome. However, the relationship between oral microbiota and OSA-associated HTN has yet to be elucidated. This study aimed to identify differences in salivary microbiota between patients with OSA comorbid HTN compared with OSA patients, and furthermore evaluate the relationship between oral microbiome changes and increased blood pressure in patients with OSA. PATIENTS AND METHODS This study collected salivary samples from 103 participants, including 27 healthy controls, 27 patients with OSA, 23 patients with HTN, and 26 patients with OSA comorbid HTN, to explore alterations of the oral microbiome using 16S rRNA gene V3-V4 high-throughput sequencing. And ultra-high-performance liquid chromatography was used for metabolomic analysis. RESULTS Alpha- and beta-diversity analyses revealed a substantial difference in community structure and diversity in patients with OSA comorbid HTN compared with patients with OSA or HTN. The relative abundance of the genus Actinomyces was significantly decreased in patients with HTN compared with healthy controls, and those with OSA concomitant HTN compared with the patients in OSA, but was not significantly different between patients with OSA and healthy controls. Linear discriminant analysis effect size and variance analysis also indicated that the genera Haemophilus, Neisseria, and Lautropia were enriched in HTN. In addition, Oribacterium was an unique taxa in the OSA comorbid HTN group compared with the control group. Metabolomic analysis of saliva identified compounds associated with cardiovascular disease in patients with OSA comorbid HTN.2-hydroxyadenine, was significantly increased in the group of patients with OSA compared with controls, and L-carnitine was significantly decreased in patients with OSA comorbid HTN compared with OSA patients. CONCLUSION This study highlighted noninvasive biomarkers for patients with OSA comorbid HTN. As the first study to find alterations of the salivary microbiome in patients with OSA comorbid HTN, it may provide a theoretical foundation for clinical diagnosis and treatment of this condition.
Collapse
Affiliation(s)
- Xuehui Chen
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, 100081, People's Republic of China
| | - Yanlong Chen
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, 100081, People's Republic of China
| | - Mengqi Feng
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, 100081, People's Republic of China
| | - Xin Huang
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, 100081, People's Republic of China
| | - Changtao Li
- Department of Orthodontics, Beijing Haidian Hospital, Haidian Section of Peking University Third Hospital, Beijing, 100080, People's Republic of China
| | - Fang Han
- Sleep Medicine Center, Department of Respiratory and Critical Care Medicine, Peking University People's Hospital, Beijing, 100044, People's Republic of China
| | - Qian Zhang
- Central Laboratory, Peking University School and Hospital of Stomatology, Beijing, 100081, People's Republic of China.,National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, Beijing, 100081, People's Republic of China
| | - Xuemei Gao
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, 100081, People's Republic of China.,National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, Beijing, 100081, People's Republic of China
| |
Collapse
|
46
|
Role of the microbiota in hypertension and antihypertensive drug metabolism. Hypertens Res 2021; 45:246-253. [PMID: 34887530 DOI: 10.1038/s41440-021-00804-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 09/17/2021] [Accepted: 11/03/2021] [Indexed: 12/22/2022]
Abstract
Recent evidence suggests that the gut microbiota plays an important role in the development and pathogenesis of hypertension. Dysbiosis, an imbalance in the composition and function of the gut microbiota, was shown to be associated with hypertension in both animal models and humans. In this review, we provide insights into host-microbiota interactions and summarize the evidence supporting the importance of the microbiota in blood pressure (BP) regulation. Metabolites produced by the gut microbiota, especially short-chain fatty acids (SCFAs), modulate BP and vascular responses. Harmful gut-derived metabolites, such as trimethylamine N-oxide and several uremic toxins, exert proatherosclerotic, prothrombotic, and proinflammatory effects. High-salt intake alters the composition of the microbiota, and this microbial alteration contributes to the pathogenesis of salt-sensitive hypertension. In addition, the microbiota may impact the metabolism of drugs and steroid hormones in the host. The drug-metabolizing activities of the microbiota affect the pharmacokinetic parameters of antihypertensive drugs and contribute to the pathogenesis of licorice-induced pseudohyperaldosteronism. Furthermore, the oral microbiota plays a role in BP regulation by producing nitric oxide, which lowers BP via its vasodilatory effects. Thus, antihypertensive intervention strategies targeting the microbiota, such as the use of prebiotics, probiotics, and postbiotics (e.g., SCFAs), are considered new therapeutic options for the treatment of hypertension.
Collapse
|
47
|
Bahadoran Z, Mirmiran P, Carlström M, Ghasemi A. Inorganic nitrate: A potential prebiotic for oral microbiota dysbiosis associated with type 2 diabetes. Nitric Oxide 2021; 116:38-46. [PMID: 34506950 DOI: 10.1016/j.niox.2021.09.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 07/07/2021] [Accepted: 09/05/2021] [Indexed: 11/29/2022]
Abstract
Oral microbiota dysbiosis, concomitant with decreased abundance of nitrate (NO3-)-reducing bacteria, oral net nitrite (NO2-) production, and reduced nitric oxide (·NO) bioactivity, is associated with the development of cardiometabolic disorders. Therefore, restoring the oral microbiome to a health-associated state is suggested as a therapeutic approach to potentiate the NO3--NO2--·NO pathway and provide a backup resource for insufficient NO production in conditions including cardiovascular disease and type 2 diabetes mellitus (T2DM). The current review discusses how inorganic NO3- can improve the oral microbial community in patients with T2DM and act as a prebiotic. Both animal and human experiments indicated that inorganic NO3- modulates the oral microbiome by increasing the abundance of health-associated NO3--reducing bacteria (e.g., Neisseria and Rothia) and decreasing the plenty of species Prevotella and Veillonella, leading to oral NO2- accumulation and improved systemic ·NO availability. Supplementation with NO3- reduces caries- and periodontitis-associated bacteria and the pathogenic genus related to insulin resistance and glucose intolerance. In addition, inorganic NO3- may provide a more optimal environment for NO3- reductase activity in the oral cavity, as it increases salivary flow rate and prevents decreased pH by inhibiting acid-producing bacteria.
Collapse
Affiliation(s)
- Zahra Bahadoran
- Nutrition and Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Parvin Mirmiran
- Department of Clinical Nutrition and Human Dietetics, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mattias Carlström
- Department of Physiology and Pharmacology, Karolinska Institutet, Biomedicum 5B, Stockholm, SE-171 76, Sweden
| | - Asghar Ghasemi
- Endocrine Physiology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
48
|
Stein JM, Yekta-Michael SS, Schittenhelm F, Reichert S, Kupietz D, Dommisch H, Kasaj A, Wied S, Vela OC, Stratul SI. Comparison of three full-mouth concepts for the non-surgical treatment of stage III and IV periodontitis: A randomized controlled trial. J Clin Periodontol 2021; 48:1516-1527. [PMID: 34517434 DOI: 10.1111/jcpe.13548] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/25/2021] [Accepted: 09/06/2021] [Indexed: 12/29/2022]
Abstract
AIM To evaluate the clinical efficacy of full-mouth scaling (FMS), full-mouth disinfection (FMD), and FMD with adjuvant erythritol air-polishing (FMDAP) compared to quadrant-wise debridement (Q-SRP) in patients with periodontitis stage III/IV. METHODS In this four-arm parallel, prospective, randomized, controlled multi-centre study, changes of pocket probing depths (PPDs), clinical attachment level (CAL), bleeding on probing (BOP), and proportion of closed pockets (PPD ≤4 mm without BOP) were evaluated at baseline and after 3 and 6 months. RESULTS From 190 randomly participating patients, 172 were included in the final analysis. All groups showed significant (p < .05) improvements in all clinical parameters over 3 and 6 months. During the study period, FMDAP showed significantly higher reductions of mean PPD in teeth with moderate (PPD 4-6 mm) and deep (PPD > 6 mm) pockets and significantly increased proportions of pocket closure than Q-SRP. Patients treated with FMD had significantly greater PPD reduction in deep pockets and a higher percentage of pocket closure after 3 months but not after 6 months compared to Q-SRP. CAL and BOP changes did not significantly differ among all groups. Efficiency of treatment (time effort to gain one closed pocket) was significantly higher for FMDAP, FMD, and FMS compared to Q-SRP (6.3, 8.5, 9.5 vs. 17.8 min per closed pocket; p < .05). CONCLUSIONS All treatment modalities were effective, without significant differences between full-mouth approaches. FMDAP showed improved clinical outcomes over Q-SRP for moderate and deep pockets after 6 months. Full-mouth protocols were more time-efficient than conventional Q-SRP. CLINICAL SIGNIFICANCE The trial was registered in a clinical trial database (ClinicalTrials.gov: NCT03509233).
Collapse
Affiliation(s)
- Jamal M Stein
- Department of Operative Dentistry, Periodontology and Preventive Dentistry, University Hospital (RWTH), Aachen, Germany.,Private Practice, Aachen, Germany
| | | | - Florian Schittenhelm
- Department of Operative Dentistry, Periodontology and Preventive Dentistry, University Hospital (RWTH), Aachen, Germany.,Private Practice, Aachen, Germany
| | - Stefan Reichert
- Department of Operative Dentistry and Periodontology, Martin Luther University, Mainz, Germany
| | - David Kupietz
- Department of Operative Dentistry and Periodontology, Martin Luther University, Mainz, Germany
| | - Henrik Dommisch
- Department of Oral Medicine and Oral Surgery, Charité-Universitätsmedizin Berlin, Berlin, Germany.,Berlin Institute of Health, Berlin, Germany
| | - Adrian Kasaj
- Department of Periodontology and Operative Dentistry, University Medical Center, Mainz, Germany
| | - Stephanie Wied
- Department of Medical Statistics, University Hospital (RWTH), Aachen, Germany
| | - Octavia-Carolina Vela
- Department of Periodontology, Anton Sculean Center for Research and Peri-Implant Diseases, Victor Babes University of Medicine and Pharmacy, Romania
| | - Stefan-Ioan Stratul
- Department of Periodontology, Anton Sculean Center for Research and Peri-Implant Diseases, Victor Babes University of Medicine and Pharmacy, Romania
| |
Collapse
|
49
|
Verratti V, Tonacci A, Bondi D, Chiavaroli A, Ferrante C, Brunetti L, Crisafulli A, Cerretelli P. Ethnic Differences on Cardiac Rhythms and Autonomic Nervous System Responses During a High-Altitude Trek: A Pilot Study Comparing Italian Trekkers to Nepalese Porters. Front Physiol 2021; 12:709451. [PMID: 34497537 PMCID: PMC8419438 DOI: 10.3389/fphys.2021.709451] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 07/28/2021] [Indexed: 01/10/2023] Open
Abstract
Altitude hypoxia exposure results in increased sympathetic activity and heart rate due to several mechanisms. Recent studies have contested the validity of heart rate variability (HRV) analysis on sympathetic activity measurement. But the plethora of HRV metrics may provide meaningful insights, particularly if linked with cardiovascular and autonomic nervous system parameters. However, the population-specific nature of HRV and cardiorespiratory response to altitude hypoxia are still missing. Six Italian trekkers and six Nepalese porters completed 300 km of a Himalayan trek. The ECG analysis was conducted at baseline, and before (bBC) and after (aBC) the high-altitude (HA) circuit. Urine was collected before and after the expedition in Italians, for assessing catecholamines. Heart rate increased with altitude significantly (p < 0.001) in the Italian group; systolic (p = 0.030) and diastolic (p = 0.012) blood pressure, and mean arterial pressure (p = 0.004) increased with altitude. Instead, pulse pressure did not change, although the Nepalese group showed lower baseline values than the Italians. As expected, peripheral oxygen saturation decreased with altitude (p < 0.001), independently of the ethnic groups. Nepalese had a higher respiratory rate (p = 0.007), independent of altitude. The cardiac vagal index increased at altitude, from baseline to bBC (p = 0.008). Higuchi fractal dimension (HFD) showed higher basal values in the Nepalese group (p = 0.041), and a tendency for the highest values at bBC. Regarding the urinary catecholamine response, exposure to HA increased urinary levels, particularly of norepinephrine (p = 0.005, d = 1.623). Our findings suggest a better cardiovascular resilience of the Nepalese group when compared with Italians, which might be due to an intrinsic adaptation to HA, resulting from their job.
Collapse
Affiliation(s)
- Vittore Verratti
- Department of Psychological, Health and Territorial Sciences, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Alessandro Tonacci
- Institute of Clinical Physiology, National Research Council of Italy, Pisa, Italy
| | - Danilo Bondi
- Department of Neuroscience, Imaging and Clinical Sciences, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Annalisa Chiavaroli
- Department of Pharmacy, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Claudio Ferrante
- Department of Pharmacy, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Luigi Brunetti
- Department of Pharmacy, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Antonio Crisafulli
- Department of Medical Science and Public Health, University of Cagliari, Cagliari, Italy
| | - Paolo Cerretelli
- Institute of Bioimaging and Molecular Physiology, National Research Council of Italy, Segrate, Italy
| |
Collapse
|
50
|
Li Y, Cui J, Liu Y, Chen K, Huang L, Liu Y. Oral, Tongue-Coating Microbiota, and Metabolic Disorders: A Novel Area of Interactive Research. Front Cardiovasc Med 2021; 8:730203. [PMID: 34490384 PMCID: PMC8417575 DOI: 10.3389/fcvm.2021.730203] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 07/21/2021] [Indexed: 12/17/2022] Open
Abstract
Interactions between colonizing microbiota and the host have been fully confirmed, among which the tongue-coating microbiota have a moderate rate of renewal and disease sensitivity and are easily obtained, making them an ideal research subject. Oral microbiota disorders are related to diabetes, obesity, cardiovascular disease, cancer, and other systemic diseases. As an important part of the oral cavity, tongue-coating microbiota can promote gastritis and digestive system tumors, affecting the occurrence and development of multiple chronic diseases. Common risk factors include diet, age, and immune status, among others. Metabolic regulatory mechanisms may be similar between the tongue and gut microbiota. Tongue-coating microbiota can be transferred to the respiratory or digestive tract and create a new balance with local microorganisms, together with the host epithelial cells forming a biological barrier. This barrier is involved in the production and circulation of nitric oxide (NO) and the function of taste receptors, forming the oral-gut-brain axis (similar to the gut-brain axis). At present, the disease model and mechanism of tongue-coating microbiota affecting metabolism have not been widely studied, but they have tremendous potential.
Collapse
Affiliation(s)
- Yiwen Li
- National Clinical Research Center for Traditional Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jing Cui
- National Clinical Research Center for Traditional Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yanfei Liu
- The Second Department of Geriatrics, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Keji Chen
- National Clinical Research Center for Traditional Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Luqi Huang
- China Academy of Chinese Medical Sciences, Beijing, China
| | - Yue Liu
- National Clinical Research Center for Traditional Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|