1
|
Han Y, Luo F, Liang A, Xu D, Zhang H, Liu T, Qi H. Aquaporin CmPIP2;3 links H2O2 signal and antioxidation to modulate trehalose-induced cold tolerance in melon seedlings. PLANT PHYSIOLOGY 2024; 197:kiae477. [PMID: 39250755 DOI: 10.1093/plphys/kiae477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 07/19/2024] [Accepted: 07/29/2024] [Indexed: 09/11/2024]
Abstract
Cold stress severely restricts the growth and development of cold-sensitive crops. Trehalose (Tre), known as the "sugar of life", plays key roles in regulating plant cold tolerance by triggering antioxidation. However, the relevant regulatory mechanism remains unclear. Here, we confirmed that Tre triggers apoplastic hydrogen peroxide (H2O2) production and thus plays key roles in improving the cold tolerance of melon (Cucumis melo var. makuwa Makino) seedlings. Moreover, Tre treatment can promote the transport of apoplastic H2O2 to the cytoplasm. This physiological process may depend on aquaporins. Further studies showed that a Tre-responsive plasma membrane intrinsic protein 2;3 (CmPIP2;3) had strong H2O2 transport function and that silencing CmPIP2;3 significantly weakened apoplastic H2O2 transport and reduced the cold tolerance of melon seedlings. Yeast library and protein-DNA interaction technology were then used to screen 2 Tre-responsive transcription factors, abscisic acid-responsive element (ABRE)-binding factor 2 (CmABF2) and ABRE-binding factor 3 (CmABF3), which can bind to the ABRE motif of the CmPIP2;3 promoter and activate its expression. Silencing of CmABF2 and CmABF3 further dramatically increased the ratio of apoplastic H2O2/cytoplasm H2O2 and reduced the cold tolerance of melon seedlings. This study uncovered that Tre treatment induces CmABF2/3 to positively regulate CmPIP2;3 expression. CmPIP2;3 subsequently enhances the cold tolerance of melon seedlings by promoting the transport of apoplastic H2O2 into the cytoplasm for conducting redox signals and stimulating downstream antioxidation.
Collapse
Affiliation(s)
- Yuqing Han
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
- Key Laboratory of Protected Horticulture of Education of Ministry and Liaoning Province, National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology, Shenyang 110866, China
| | - Fei Luo
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
- Key Laboratory of Protected Horticulture of Education of Ministry and Liaoning Province, National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology, Shenyang 110866, China
| | - Adan Liang
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
- Key Laboratory of Protected Horticulture of Education of Ministry and Liaoning Province, National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology, Shenyang 110866, China
| | - Dongdong Xu
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
- Key Laboratory of Protected Horticulture of Education of Ministry and Liaoning Province, National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology, Shenyang 110866, China
| | - Hongyi Zhang
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
- Key Laboratory of Protected Horticulture of Education of Ministry and Liaoning Province, National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology, Shenyang 110866, China
| | - Tao Liu
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
- Key Laboratory of Protected Horticulture of Education of Ministry and Liaoning Province, National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology, Shenyang 110866, China
| | - Hongyan Qi
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
- Key Laboratory of Protected Horticulture of Education of Ministry and Liaoning Province, National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology, Shenyang 110866, China
| |
Collapse
|
2
|
Cao J, Maitirouzi A, Feng Y, Zhang H, Heng Y, Zhang J, Wang Y. Heterologous expression of Halostachys caspica pathogenesis-related protein 10 increases salt and drought resistance in transgenic Arabidopsis thaliana. PLANT MOLECULAR BIOLOGY 2024; 115:5. [PMID: 39671054 DOI: 10.1007/s11103-024-01536-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Accepted: 11/14/2024] [Indexed: 12/14/2024]
Abstract
Pathogenesis-related proteins (PR), whose expressions are induced by biotic and abiotic stress, play important roles in plant defense. Previous research identified the salt-induced HcPR10 gene in the halophyte Halostachys caspica as a regulator of plant growth and development through interactions with cytokinin. However, the mechanisms by which HcPR10 mediates resistance to abiotic stress remain poorly understood. In this study, we found that the heterologous expression of HcPR10 significantly enhanced salt and drought tolerance in Arabidopsis, likely by increasing the activity of antioxidant enzyme systems, allowing for effective scavenging of reactive oxygen species (ROS) and thus protecting plant cells from oxidative damage. Additionally, the overexpression of HcPR10 also activated the expression of stress-related genes in Arabidopsis. Furthermore, using yeast two-hybrid technology, five proteins (HcLTPG6, HcGPX6, HcUGT73B3, HcLHCB2.2, and HcMSA1) were identified as potential interacting partners for HcPR10, which could positively regulate the salt stress response mediated by HcPR10. Our findings lay the foundation for a better understanding of the molecular mechanisms of HcPR10 in response to abiotic stress and reveal additional candidate genes for improving crop salt tolerance through genetic engineering.
Collapse
Affiliation(s)
- Jing Cao
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, 830046, China
| | - Ayixianmuguli Maitirouzi
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, 830046, China
| | - Yudan Feng
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, 830046, China
| | - Hua Zhang
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, 830046, China
| | - Youqiang Heng
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, 830046, China
| | - Jinbo Zhang
- Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China.
- Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Chinese Academy of Sciences, Urumqi, 830011, China.
| | - Yan Wang
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, 830046, China.
| |
Collapse
|
3
|
Joshi H, Harter K, Rohr L, Mishra SK, Chauhan PS. Elucidation of PGPR-responsive OsNAM2 regulates salt tolerance in Arabidopsis by AFP2 and SUS protein interaction. Microbiol Res 2024; 289:127890. [PMID: 39243685 DOI: 10.1016/j.micres.2024.127890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 08/12/2024] [Accepted: 08/28/2024] [Indexed: 09/09/2024]
Abstract
This study investigates the molecular mechanisms underlying salt stress responses in plants, focusing on the regulatory roles of OsNAM2, a gene influenced by the plant growth-promoting rhizobacterium Bacillus amyloliquefaciens (SN13). The study examines how SN13-modulated OsNAM2 enhances salt tolerance in Arabidopsis through physiological, biochemical, and molecular analyses. Overexpression of OsNAM2, especially with SN13 inoculation, improves germination, seedling growth, root length, and biomass under high NaCl concentrations compared to wild-type plants, indicating a synergistic effect. OsNAM2 overexpression enhances relative water content, reduces electrolyte leakage and malondialdehyde accumulation, and increases proline content, suggesting better membrane integrity and stress endurance. Furthermore, SN13 and OsNAM2 overexpression modulates essential metabolic genes involved in glycolysis, the pentose phosphate pathway, and the tricarboxylic acid cycle, facilitating metabolic adjustments crucial for salt stress adaptation. The interaction of OsNAM2 with SUS, facilitated by SN13, suggests enhanced sucrose metabolism efficiency, providing substrates for protective responses. Additionally, OsNAM2 plays a regulatory role in the ABA signaling pathway through significant protein-protein interactions like with AFP2. This study highlights the intricate interplay between SN13-responsive OsNAM2 and key signaling pathways, suggesting strategies for enhancing crop salt tolerance through targeted genetic and microbial interventions.
Collapse
Affiliation(s)
- Harshita Joshi
- Microbial Technologies Division, Council of Scientific and Industrial Research-National Botanical Research Institute (CSIR-NBRI), Rana Pratap Marg, Lucknow 226001, India; Department of Botany, University of Lucknow, Lucknow 226007, India
| | - Klaus Harter
- The Center for Plant Molecular Biology (ZMBP), University of Tübingen, Tübingen 72076, Germany
| | - Leander Rohr
- The Center for Plant Molecular Biology (ZMBP), University of Tübingen, Tübingen 72076, Germany
| | - Shashank Kumar Mishra
- Microbial Technologies Division, Council of Scientific and Industrial Research-National Botanical Research Institute (CSIR-NBRI), Rana Pratap Marg, Lucknow 226001, India
| | - Puneet Singh Chauhan
- Microbial Technologies Division, Council of Scientific and Industrial Research-National Botanical Research Institute (CSIR-NBRI), Rana Pratap Marg, Lucknow 226001, India.
| |
Collapse
|
4
|
Atmaca H, Çamli Pulat Ç, Ilhan S, Kalyoncu F. Hericium erinaceus Extract Induces Apoptosis via PI3K/AKT and RAS/MAPK Signaling Pathways in Prostate Cancer Cells. Chem Biodivers 2024; 21:e202400905. [PMID: 39183463 DOI: 10.1002/cbdv.202400905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 08/17/2024] [Accepted: 08/21/2024] [Indexed: 08/27/2024]
Abstract
Prostate cancer (PCa) is increasing globally, surpassing lung cancer in incidence. Despite available treatment options, prostate cancer remains incurable. Hence, novel therapeutic strategies are urgently needed to treat PCa. Hericium erinaceus (HE), a medicinal mushroom, offers diverse therapeutic benefits. We examined HE's effects on PCa cells, preparing an ethanol extract and identifying its volatile compounds through GC-MS. MTT assay assessed cell viability, while specific inhibitors and western blotting explored HE's impact on PI3K/AKT and RAS/MAPK pathways. Flow cytometry and ELISA evaluated apoptosis induction. HE showed concentration- and time-dependent cytotoxicity on PCa cells with minimal effects on normal cells. Mechanistically, HE suppressed PI3K/AKT and RAS/MAPK pathways, reducing phosphorylated protein levels. Moreover, it induced PCa cell apoptosis. These findings suggest HE as a potential therapeutic for prostate cancer, shedding light on its cytotoxic and apoptotic effects for further investigation.
Collapse
Affiliation(s)
- Harika Atmaca
- Faculty of Engineering and Natural Sciences, Department of Biology, Manisa Celal Bayar University, Manisa, Türkiye
| | - Çisil Çamli Pulat
- Applied Science Research Center, Manisa Celal Bayar University, Manisa, Türkiye
| | - Suleyman Ilhan
- Faculty of Engineering and Natural Sciences, Department of Biology, Manisa Celal Bayar University, Manisa, Türkiye
| | - Fatih Kalyoncu
- Faculty of Engineering and Natural Sciences, Department of Biology, Manisa Celal Bayar University, Manisa, Türkiye
| |
Collapse
|
5
|
Huang S, Yang X, Li W, Xu Z, Xie Y, Meng X, Li Z, Zhou W, Wang S, Jin L, Jin N, Lyu J, Yu J. Genome-wide analysis of the CCT gene family and functional characterization of SlCCT6 in response to drought stress in tomato. Int J Biol Macromol 2024; 280:135906. [PMID: 39332567 DOI: 10.1016/j.ijbiomac.2024.135906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 09/19/2024] [Accepted: 09/20/2024] [Indexed: 09/29/2024]
Abstract
CCT transcription factors are important for photoperiod and abiotic stress regulation in Arabidopsis and rice. However, the CCT gene family has not been reported in tomato. Here, we systematically analyzed this. Thirty-one SlCCT genes were identified and divided into five groups (CMF, TIFY, PRR, S8, and COL), with members unevenly distributed across 12 chromosomes and the third chromosome exhibiting the most distribution. SlCCT was found to interact with an interacting protein (SlGI), transcription factor (MYB), and non-coding RNA (sly-miR156-5p) to jointly regulate the tomato stress response. cis-Acting element analysis of the SlCCT promoter region indicated large stress- and hormone-response elements in this family. Real-time PCR results indicated that SlPRR subfamily genes respond to various abiotic stresses and hormones. Tissue expression analysis revealed that several PRR subfamily genes are highly expressed in flowers, and subcellular localization analysis indicated an SlCCT6 nuclear location. Notably, SlCCT6 expression was significantly induced by drought, and its silencing reduced drought stress tolerance. Moreover, SlCCT6 overexpression enhanced tomato drought resistance by increasing antioxidant enzyme activity and activating stress-related genes, whereas SlCCT6 knockout decreased drought resistance. In conclusion, this provides valuable insights for future research on SlCCT functions.
Collapse
Affiliation(s)
- Shuchao Huang
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| | - Xiting Yang
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| | - Wei Li
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| | - Zhiqi Xu
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| | - Yandong Xie
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| | - Xin Meng
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| | - Zhaozhuang Li
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| | - Wenhao Zhou
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| | - Shuya Wang
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China
| | - Li Jin
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China
| | - Ning Jin
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| | - Jian Lyu
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China; State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China.
| | - Jihua Yu
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China; State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China.
| |
Collapse
|
6
|
Liu J, Tang X, Zhang H, Wei M, Zhang N, Si H. Transcriptome Analysis of Potato Leaves under Oxidative Stress. Int J Mol Sci 2024; 25:5994. [PMID: 38892181 PMCID: PMC11172952 DOI: 10.3390/ijms25115994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/23/2024] [Accepted: 05/28/2024] [Indexed: 06/21/2024] Open
Abstract
Potato (Solanum tuberosum L.) is a major global food crop, and oxidative stress can significantly impact its growth. Previous studies have shown that its resistance to oxidative stress is mainly related to transcription factors, post-translational modifications, and antioxidant enzymes in vivo, but the specific molecular mechanisms remain unclear. In this study, we analyzed the transcriptome data from potato leaves treated with H2O2 and Methyl viologen (MV), and a control group, for 12 h. We enriched 8334 (CK vs. H2O2) and 4445 (CK vs. MV) differentially expressed genes (DEGs), respectively, and randomly selected 15 DEGs to verify the sequencing data by qRT-PCR. Gene ontology (GO) enrichment analysis showed that the DEGs were mainly concentrated in cellular components and related to molecular function, and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis indicated that most of the DEGs were related to metabolic pathways, plant hormone signal transduction, MAPK-signaling pathway, and plant-pathogen interactions. In addition, several candidate transcription factors, mainly including MYB, WRKY, and genes associated with Ca2+-mediated signal transduction, were also found to be differentially expressed. Among them, the plant hormone genes Soltu.DM.03G022780 and Soltu.DM.06G019360, the CNGC gene Soltu.DM.06G006320, the MYB transcription factors Soltu.DM.06G004450 and Soltu.DM.09G002130, and the WRKY transcription factor Soltu.DM.06G020440 were noticeably highly expressed, which indicates that these are likely to be the key genes in the regulation of oxidative stress tolerance. Overall, these findings lay the foundation for further studies on the molecular mechanisms of potato leaves in response to oxidative stress.
Collapse
Affiliation(s)
- Juping Liu
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China; (J.L.); (X.T.); (H.Z.); (N.Z.)
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China;
| | - Xun Tang
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China; (J.L.); (X.T.); (H.Z.); (N.Z.)
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China;
| | - Huanhuan Zhang
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China; (J.L.); (X.T.); (H.Z.); (N.Z.)
- College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Meng Wei
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China;
| | - Ning Zhang
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China; (J.L.); (X.T.); (H.Z.); (N.Z.)
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China;
| | - Huaijun Si
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China; (J.L.); (X.T.); (H.Z.); (N.Z.)
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China;
| |
Collapse
|
7
|
Xie N, Shi H, Shang X, Zhao Z, Fang Y, Wu H, Luo P, Cui Y, Chen W. RhMED15a-like, a subunit of the Mediator complex, is involved in the drought stress response in Rosa hybrida. BMC PLANT BIOLOGY 2024; 24:351. [PMID: 38684962 PMCID: PMC11059607 DOI: 10.1186/s12870-024-05059-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 04/23/2024] [Indexed: 05/02/2024]
Abstract
BACKGROUND Rose (Rosa hybrida) is a globally recognized ornamental plant whose growth and distribution are strongly limited by drought stress. The role of Mediator, a multiprotein complex crucial for RNA polymerase II-driven transcription, has been elucidated in drought stress responses in plants. However, its physiological function and regulatory mechanism in horticultural crop species remain elusive. RESULTS In this study, we identified a Tail module subunit of Mediator, RhMED15a-like, in rose. Drought stress, as well as treatment with methyl jasmonate (MeJA) and abscisic acid (ABA), significantly suppressed the transcript level of RhMED15a-like. Overexpressing RhMED15a-like markedly bolstered the osmotic stress tolerance of Arabidopsis, as evidenced by increased germination rate, root length, and fresh weight. In contrast, the silencing of RhMED15a-like through virus induced gene silencing in rose resulted in elevated malondialdehyde accumulation, exacerbated leaf wilting, reduced survival rate, and downregulated expression of drought-responsive genes during drought stress. Additionally, using RNA-seq, we identified 972 differentially expressed genes (DEGs) between tobacco rattle virus (TRV)-RhMED15a-like plants and TRV controls. Gene Ontology (GO) analysis revealed that some DEGs were predominantly associated with terms related to the oxidative stress response, such as 'response to reactive oxygen species' and 'peroxisome'. Furthermore, Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment highlighted pathways related to 'plant hormone signal transduction', in which the majority of DEGs in the jasmonate (JA) and ABA signalling pathways were induced in TRV-RhMED15a-like plants. CONCLUSION Our findings underscore the pivotal role of the Mediator subunit RhMED15a-like in the ability of rose to withstand drought stress, probably by controlling the transcript levels of drought-responsive genes and signalling pathway elements of stress-related hormones, providing a solid foundation for future research into the molecular mechanisms underlying drought tolerance in rose.
Collapse
Affiliation(s)
- Nanxin Xie
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, College of Horticulture Science, Zhejiang A&F University, Hangzhou, 311300, China
| | - Haoyang Shi
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, College of Horticulture Science, Zhejiang A&F University, Hangzhou, 311300, China
| | - Xiaoman Shang
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, College of Horticulture Science, Zhejiang A&F University, Hangzhou, 311300, China
| | - Zixin Zhao
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, College of Horticulture Science, Zhejiang A&F University, Hangzhou, 311300, China
| | - Yan Fang
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, College of Horticulture Science, Zhejiang A&F University, Hangzhou, 311300, China
| | - Huimin Wu
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, College of Horticulture Science, Zhejiang A&F University, Hangzhou, 311300, China
| | - Ping Luo
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, College of Horticulture Science, Zhejiang A&F University, Hangzhou, 311300, China
| | - Yongyi Cui
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, College of Horticulture Science, Zhejiang A&F University, Hangzhou, 311300, China
| | - Wen Chen
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, College of Horticulture Science, Zhejiang A&F University, Hangzhou, 311300, China.
| |
Collapse
|
8
|
Xu R, Chong L, Zhu Y. Mediator kinase subunit CDK8 phosphorylates transcription factor TCP15 during tomato pollen development. PLANT PHYSIOLOGY 2024; 195:865-878. [PMID: 38365204 DOI: 10.1093/plphys/kiae079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 11/28/2023] [Accepted: 12/19/2023] [Indexed: 02/18/2024]
Abstract
Pollen development in flowering plants has strong implications for reproductive success. Pollen DNA can be targeted to improve plant traits for yield and stress tolerance. In this study, we demonstrated that the Mediator subunit CYCLIN-DEPENDENT KINASE 8 (CDK8) is a key modulator of pollen development in tomato (Solanum lycopersicum). SlCDK8 knockout led to significant decreases in pollen viability, fruit yield, and fruit seed number. We also found that SlCDK8 directly interacts with transcription factor TEOSINTE BRANCHED1-CYCLOIDEA-PCF15 (SlTCP15) using yeast two-hybrid screens. We subsequently showed that SlCDK8 phosphorylates Ser 187 of SlTCP15 to promote SlTCP15 stability. Phosphorylated TCP15 directly bound to the TGGGCY sequence in the promoters of DYSFUNCTIONAL TAPETUM 1 (SlDYT1) and MYB DOMAIN PROTEIN 103 (SlMYB103), which are responsible for pollen development. Consistently, disruption of SlTCP15 resembled slcdk8 tomato mutants. In sum, our work identified a new substrate of Mediator CDK8 and revealed an important regulatory role of SlCDK8 in pollen development via cooperation with SlTCP15.
Collapse
Affiliation(s)
- Rui Xu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475001, China
| | - Leelyn Chong
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475001, China
| | - Yingfang Zhu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475001, China
- Sanya Institute of Henan University, Sanya, Hainan 570203, China
| |
Collapse
|
9
|
Liang L, Wang D, Xu D, Xiao J, Tang W, Song X, Yu G, Liang Z, Xie M, Xu Z, Sun B, Tang Y, Huang Z, Lai Y, Li H. Comparative phylogenetic analysis of the mediator complex subunit in asparagus bean (Vigna unguiculata ssp. sesquipedialis) and its expression profile under cold stress. BMC Genomics 2024; 25:149. [PMID: 38321384 PMCID: PMC10848533 DOI: 10.1186/s12864-024-10060-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 01/29/2024] [Indexed: 02/08/2024] Open
Abstract
BACKGROUND The mediator complex subunits (MED) constitutes a multiprotein complex, with each subunit intricately involved in crucial aspects of plant growth, development, and responses to stress. Nevertheless, scant reports pertain to the VunMED gene within the context of asparagus bean (Vigna unguiculata ssp. sesquipedialis). Establishing the identification and exploring the responsiveness of VunMED to cold stress forms a robust foundation for the cultivation of cold-tolerant asparagus bean cultivars. RESULTS Within this study, a comprehensive genome-wide identification of VunMED genes was executed in the asparagus bean cultivar 'Ningjiang3', resulting in the discovery of 36 distinct VunMED genes. A phylogenetic analysis encompassing 232 MED genes from diverse species, including Arabidopsis, tomatoes, soybeans, mung beans, cowpeas, and asparagus beans, underscored the highly conserved nature of MED gene sequences. Throughout evolutionary processes, each VunMED gene underwent purification and neutral selection, with the exception of VunMED19a. Notably, VunMED9/10b/12/13/17/23 exhibited structural variations discernible across four cowpea species. Divergent patterns of temporal and spatial expression were evident among VunMED genes, with a prominent role attributed to most genes during early fruit development. Additionally, an analysis of promoter cis-acting elements was performed, followed by qRT-PCR assessments on roots, stems, and leaves to gauge relative expression after exposure to cold stress and subsequent recovery. Both treatments induced transcriptional alterations in VunMED genes, with particularly pronounced effects observed in root-based genes following cold stress. Elucidating the interrelationships between subunits involved a preliminary understanding facilitated by correlation and principal component analyses. CONCLUSIONS This study elucidates the pivotal contribution of VunMED genes to the growth, development, and response to cold stress in asparagus beans. Furthermore, it offers a valuable point of reference regarding the individual roles of MED subunits.
Collapse
Affiliation(s)
- Le Liang
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Dong Wang
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Dongmei Xu
- Mianyang Academy of Agricultural Sciences, Mianyang, 621000, China
| | - Jiachang Xiao
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Wen Tang
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xueping Song
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Guofeng Yu
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Zongxu Liang
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Minghui Xie
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Zeping Xu
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Bo Sun
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yi Tang
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Zhi Huang
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yunsong Lai
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Huanxiu Li
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|
10
|
Zhang Y, He Y, Zhao H, Wang Y, Wu C, Zhao Y, Xue H, Zhu Q, Zhang J, Ou X. The 14-3-3 Protein BdGF14a Increases the Transcriptional Regulation Activity of BdbZIP62 to Confer Drought and Salt Resistance in Tobacco. PLANTS (BASEL, SWITZERLAND) 2024; 13:245. [PMID: 38256798 PMCID: PMC10819667 DOI: 10.3390/plants13020245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/27/2023] [Accepted: 01/12/2024] [Indexed: 01/24/2024]
Abstract
BdGF14a, a 14-3-3 gene from Brachypodium distachyon, induced by salt, H2O2, and abscisic acid (ABA), improved tolerance to drought and salt in tobacco, with a higher survival rate and longer roots under these stresses. Additionally, physiological index analyses showed that the heterologous expression of BdGF14a induced higher expression levels of antioxidant enzymes and their activities, leading to lighter DAB and NBT staining, denoting decreased H2O2 content. Additionally, the lower MDA content and ion leakage indicated enhanced cell membrane stability. Moreover, exogenous ABA resulted in shorter roots and a lower stomatal aperture in BdGF14a transgenic plants. BdGF14a interacted with NtABF2 and regulated the expression of stress-related genes. However, adding an ABA biosynthesis inhibitor suppressed most of these changes. Furthermore, similar salt and drought resistance phenotypes and physiological indicators were characterized in tobacco plants expressing BdbZIP62, an ABRE/ABF that interacts with BdGF14a. And Y1H and LUC assays showed that BdGF14a could enhance the transcription regulation activity of NtABF2 and BdbZIP62, targeting NtNECD1 by binding to the ABRE cis-element. Thus, BdGF14a confers resistance to drought and salinity through interaction with BdbZIP62 and enhances its transcriptional regulation activity via an ABA-mediated signaling pathway. Therefore, this work offers novel target genes for breeding salt- and drought-tolerant plants.
Collapse
Affiliation(s)
- Yang Zhang
- Henan Institute of Science and Technology, School of Agriculture, Xinxiang 453003, China; (Y.Z.); (H.X.); (Q.Z.)
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, The Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science & Technology, Wuhan 430074, China; (Y.H.); (H.Z.); (Y.W.); (C.W.)
| | - Yuan He
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, The Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science & Technology, Wuhan 430074, China; (Y.H.); (H.Z.); (Y.W.); (C.W.)
| | - Hongyan Zhao
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, The Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science & Technology, Wuhan 430074, China; (Y.H.); (H.Z.); (Y.W.); (C.W.)
| | - Yan Wang
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, The Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science & Technology, Wuhan 430074, China; (Y.H.); (H.Z.); (Y.W.); (C.W.)
| | - Chunlai Wu
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, The Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science & Technology, Wuhan 430074, China; (Y.H.); (H.Z.); (Y.W.); (C.W.)
| | - Yuanzeng Zhao
- Henan Institute of Science and Technology, School of Life Sciences, Xinxiang 453003, China;
| | - Hongna Xue
- Henan Institute of Science and Technology, School of Agriculture, Xinxiang 453003, China; (Y.Z.); (H.X.); (Q.Z.)
| | - Qidi Zhu
- Henan Institute of Science and Technology, School of Agriculture, Xinxiang 453003, China; (Y.Z.); (H.X.); (Q.Z.)
| | - Jinlong Zhang
- Henan Institute of Science and Technology, School of Agriculture, Xinxiang 453003, China; (Y.Z.); (H.X.); (Q.Z.)
| | - Xingqi Ou
- Henan Institute of Science and Technology, School of Agriculture, Xinxiang 453003, China; (Y.Z.); (H.X.); (Q.Z.)
| |
Collapse
|
11
|
Hu Q, Wu Y, Hong T, Wu D, Wang L. OsMED16, a tail subunit of Mediator complex, interacts with OsE2Fa to synergistically regulate rice leaf development and blast resistance. Int J Biol Macromol 2023; 253:126728. [PMID: 37678689 DOI: 10.1016/j.ijbiomac.2023.126728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/20/2023] [Accepted: 09/03/2023] [Indexed: 09/09/2023]
Abstract
Mediator, a universal eukaryotic coactivator, is a multiprotein complex to transduce information from the DNA-bound transcription factors to the RNA polymerase II transcriptional machinery. In this study, the biofunctions of a rice mediator subunit OsMED16 in leaf development and blast resistance were characterized. OsMED16 encodes a putative protein of 1170 amino acids, which is 393 bp shorted than the version in Rice Genome Annotation Project databases. Overexpression of OsMED16 plants exhibited wider leaves with larger and more numerous cells in lateral axis, and enhanced resistance to M. oryzae with hyperaccumulated salicylic acid. Further analysis revealed that OsMED16 interacts with OsE2Fa in nuclei, and the complex could directly regulate the transcriptional levels of several genes involved in cell cycle regulation and SA mediated blast resistance, such as OsCC52A1, OsCDKA1, OsCDKB2;2, OsICS1 and OsWRKY45. Altogether, this study proved that OsMED16 is a positive regulator of rice leaf development and blast resistance, and providing new insights into the crosstalk between cell cycle regulation and immunity.
Collapse
Affiliation(s)
- Qin Hu
- State Key Lab for Conservation and Utilization of Subtropical Agri-Biological Resources, Guangxi University, Daxue East Road 100, Nanning 530004, China; College of Agriculture, Guangxi University, Daxue East Road 100, Nanning 530004, China.
| | - Yanfei Wu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Youyi Avenue 368, Wuhan 430062, China
| | - Tianshu Hong
- State Key Lab for Conservation and Utilization of Subtropical Agri-Biological Resources, Guangxi University, Daxue East Road 100, Nanning 530004, China; College of Agriculture, Guangxi University, Daxue East Road 100, Nanning 530004, China
| | - Deng Wu
- State Key Lab for Conservation and Utilization of Subtropical Agri-Biological Resources, Guangxi University, Daxue East Road 100, Nanning 530004, China; College of Agriculture, Guangxi University, Daxue East Road 100, Nanning 530004, China
| | - Lulu Wang
- State Key Lab for Conservation and Utilization of Subtropical Agri-Biological Resources, Guangxi University, Daxue East Road 100, Nanning 530004, China; College of Agriculture, Guangxi University, Daxue East Road 100, Nanning 530004, China
| |
Collapse
|
12
|
Korek M, Marzec M. Strigolactones and abscisic acid interactions affect plant development and response to abiotic stresses. BMC PLANT BIOLOGY 2023; 23:314. [PMID: 37308831 DOI: 10.1186/s12870-023-04332-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 06/06/2023] [Indexed: 06/14/2023]
Abstract
Strigolactones (SL) are the youngest group of plant hormones responsible for shaping plant architecture, especially the branching of shoots. However, recent studies provided new insights into the functioning of SL, confirming their participation in regulating the plant response to various types of abiotic stresses, including water deficit, soil salinity and osmotic stress. On the other hand, abscisic acid (ABA), commonly referred as a stress hormone, is the molecule that crucially controls the plant response to adverse environmental conditions. Since the SL and ABA share a common precursor in their biosynthetic pathways, the interaction between both phytohormones has been largely studied in the literature. Under optimal growth conditions, the balance between ABA and SL content is maintained to ensure proper plant development. At the same time, the water deficit tends to inhibit SL accumulation in the roots, which serves as a sensing mechanism for drought, and empowers the ABA production, which is necessary for plant defense responses. The SL-ABA cross-talk at the signaling level, especially regarding the closing of the stomata under drought conditions, still remains poorly understood. Enhanced SL content in shoots is likely to stimulate the plant sensitivity to ABA, thus reducing the stomatal conductance and improving the plant survival rate. Besides, it was proposed that SL might promote the closing of stomata in an ABA-independent way. Here, we summarize the current knowledge regarding the SL and ABA interactions by providing new insights into the function, perception and regulation of both phytohormones during abiotic stress response of plants, as well as revealing the gaps in the current knowledge of SL-ABA cross-talk.
Collapse
Affiliation(s)
- Magdalena Korek
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Jagiellonska 28, Katowice, 40-032, Poland.
| | - Marek Marzec
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Jagiellonska 28, Katowice, 40-032, Poland
| |
Collapse
|
13
|
Chen S, Dang D, Liu Y, Ji S, Zheng H, Zhao C, Dong X, Li C, Guan Y, Zhang A, Ruan Y. Genome-wide association study presents insights into the genetic architecture of drought tolerance in maize seedlings under field water-deficit conditions. FRONTIERS IN PLANT SCIENCE 2023; 14:1165582. [PMID: 37223800 PMCID: PMC10200999 DOI: 10.3389/fpls.2023.1165582] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 03/24/2023] [Indexed: 05/25/2023]
Abstract
Introduction Drought stress is one of the most serious abiotic stresses leading to crop yield reduction. Due to the wide range of planting areas, the production of maize is particularly affected by global drought stress. The cultivation of drought-resistant maize varieties can achieve relatively high, stable yield in arid and semi-arid zones and in the erratic rainfall or occasional drought areas. Therefore, to a great degree, the adverse impact of drought on maize yield can be mitigated by developing drought-resistant or -tolerant varieties. However, the efficacy of traditional breeding solely relying on phenotypic selection is not adequate for the need of maize drought-resistant varieties. Revealing the genetic basis enables to guide the genetic improvement of maize drought tolerance. Methods We utilized a maize association panel of 379 inbred lines with tropical, subtropical and temperate backgrounds to analyze the genetic structure of maize drought tolerance at seedling stage. We obtained the high quality 7837 SNPs from DArT's and 91,003 SNPs from GBS, and a resultant combination of 97,862 SNPs of GBS with DArT's. The maize population presented the lower her-itabilities of the seedling emergence rate (ER), seedling plant height (SPH) and grain yield (GY) under field drought conditions. Results GWAS analysis by MLM and BLINK models with the phenotypic data and 97862 SNPs revealed 15 variants that were significantly independent related to drought-resistant traits at the seedling stage above the threshold of P < 1.02 × 10-5. We found 15 candidate genes for drought resistance at the seedling stage that may involve in (1) metabolism (Zm00001d012176, Zm00001d012101, Zm00001d009488); (2) programmed cell death (Zm00001d053952); (3) transcriptional regulation (Zm00001d037771, Zm00001d053859, Zm00001d031861, Zm00001d038930, Zm00001d049400, Zm00001d045128 and Zm00001d043036); (4) autophagy (Zm00001d028417); and (5) cell growth and development (Zm00001d017495). The most of them in B73 maize line were shown to change the expression pattern in response to drought stress. These results provide useful information for understanding the genetic basis of drought stress tolerance of maize at seedling stage.
Collapse
Affiliation(s)
- Shan Chen
- Shenyang City Key Laboratory of Maize Genomic Selection Breeding, College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Dongdong Dang
- Shenyang City Key Laboratory of Maize Genomic Selection Breeding, College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning, China
- CIMMYT-China Specialty Maize Research Center, Crop Breeding and Cultivation Research Institute, Shang-hai Academy of Agricultural Sciences, Shanghai, China
- International Maize and Wheat Improvement Center (CIMMYT), Texcoco, Mexico
| | - Yubo Liu
- CIMMYT-China Specialty Maize Research Center, Crop Breeding and Cultivation Research Institute, Shang-hai Academy of Agricultural Sciences, Shanghai, China
- International Maize and Wheat Improvement Center (CIMMYT), Texcoco, Mexico
| | - Shuwen Ji
- Shenyang City Key Laboratory of Maize Genomic Selection Breeding, College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Hongjian Zheng
- CIMMYT-China Specialty Maize Research Center, Crop Breeding and Cultivation Research Institute, Shang-hai Academy of Agricultural Sciences, Shanghai, China
- International Maize and Wheat Improvement Center (CIMMYT), Texcoco, Mexico
| | - Chenghao Zhao
- Dandong Academy of Agricultural Sciences, Fengcheng, Liaoning, China
| | - Xiaomei Dong
- Shenyang City Key Laboratory of Maize Genomic Selection Breeding, College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Cong Li
- Shenyang City Key Laboratory of Maize Genomic Selection Breeding, College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Yuan Guan
- CIMMYT-China Specialty Maize Research Center, Crop Breeding and Cultivation Research Institute, Shang-hai Academy of Agricultural Sciences, Shanghai, China
- International Maize and Wheat Improvement Center (CIMMYT), Texcoco, Mexico
| | - Ao Zhang
- Shenyang City Key Laboratory of Maize Genomic Selection Breeding, College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Yanye Ruan
- Shenyang City Key Laboratory of Maize Genomic Selection Breeding, College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning, China
| |
Collapse
|
14
|
Moulick D, Bhutia KL, Sarkar S, Roy A, Mishra UN, Pramanick B, Maitra S, Shankar T, Hazra S, Skalicky M, Brestic M, Barek V, Hossain A. The intertwining of Zn-finger motifs and abiotic stress tolerance in plants: Current status and future prospects. FRONTIERS IN PLANT SCIENCE 2023; 13:1083960. [PMID: 36684752 PMCID: PMC9846276 DOI: 10.3389/fpls.2022.1083960] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 11/22/2022] [Indexed: 06/17/2023]
Abstract
Environmental stresses such as drought, high salinity, and low temperature can adversely modulate the field crop's ability by altering the morphological, physiological, and biochemical processes of the plants. It is estimated that about 50% + of the productivity of several crops is limited due to various types of abiotic stresses either presence alone or in combination (s). However, there are two ways plants can survive against these abiotic stresses; a) through management practices and b) through adaptive mechanisms to tolerate plants. These adaptive mechanisms of tolerant plants are mostly linked to their signalling transduction pathway, triggering the action of plant transcription factors and controlling the expression of various stress-regulated genes. In recent times, several studies found that Zn-finger motifs have a significant function during abiotic stress response in plants. In the first report, a wide range of Zn-binding motifs has been recognized and termed Zn-fingers. Since the zinc finger motifs regulate the function of stress-responsive genes. The Zn-finger was first reported as a repeated Zn-binding motif, comprising conserved cysteine (Cys) and histidine (His) ligands, in Xenopus laevis oocytes as a transcription factor (TF) IIIA (or TFIIIA). In the proteins where Zn2+ is mainly attached to amino acid residues and thus espousing a tetrahedral coordination geometry. The physical nature of Zn-proteins, defining the attraction of Zn-proteins for Zn2+, is crucial for having an in-depth knowledge of how a Zn2+ facilitates their characteristic function and how proteins control its mobility (intra and intercellular) as well as cellular availability. The current review summarized the concept, importance and mechanisms of Zn-finger motifs during abiotic stress response in plants.
Collapse
Affiliation(s)
- Debojyoti Moulick
- Department of Environmental Science, University of Kalyani, Nadia, West Bengal, India
| | - Karma Landup Bhutia
- Department of Agricultural Biotechnology & Molecular Breeding, College of Basic Science and Humanities, Dr. Rajendra Prasad Central Agricultural University, Samastipur, India
| | - Sukamal Sarkar
- School of Agriculture and Rural Development, Faculty Centre for Integrated Rural Development and Management (IRDM), Ramakrishna Mission Vivekananda Educational and Research Institute, Ramakrishna Mission Ashrama, Narendrapur, Kolkata, India
| | - Anirban Roy
- School of Agriculture and Rural Development, Faculty Centre for Integrated Rural Development and Management (IRDM), Ramakrishna Mission Vivekananda Educational and Research Institute, Ramakrishna Mission Ashrama, Narendrapur, Kolkata, India
| | - Udit Nandan Mishra
- Department of Crop Physiology and Biochemistry, Sri University, Cuttack, Odisha, India
| | - Biswajit Pramanick
- Department of Agronomy, Dr. Rajendra Prasad Central Agricultural University, PUSA, Samastipur, Bihar, India
- Department of Agronomy and Horticulture, University of Nebraska Lincoln, Scottsbluff, NE, United States
| | - Sagar Maitra
- Department of Agronomy and Agroforestry, Centurion University of Technology and Management, Paralakhemundi, Odisha, India
| | - Tanmoy Shankar
- Department of Agronomy and Agroforestry, Centurion University of Technology and Management, Paralakhemundi, Odisha, India
| | - Swati Hazra
- School of Agricultural Sciences, Sharda University, Greater Noida, Uttar Pradesh, India
| | - Milan Skalicky
- Department of Botany and Plant Physiology, Faculty of Agrobiology, Food, and Natural Resources, Czech University of Life Sciences Prague, Prague, Czechia
| | - Marian Brestic
- Department of Botany and Plant Physiology, Faculty of Agrobiology, Food, and Natural Resources, Czech University of Life Sciences Prague, Prague, Czechia
- Institute of Plant and Environmental Sciences, Slovak University of Agriculture, Nitra, Slovakia
| | - Viliam Barek
- Department of Water Resources and Environmental Engineering, Faculty of Horticulture and Landscape Engineering, Slovak University of Agriculture, Nitra, Slovakia
| | - Akbar Hossain
- Division of Agronomy, Bangladesh Wheat and Maize Research Institute, Dinajpur, Bangladesh
| |
Collapse
|
15
|
O’Rourke JA, Graham MA. Coupling VIGS with Short- and Long-Term Stress Exposure to Understand the Fiskeby III Iron Deficiency Stress Response. Int J Mol Sci 2022; 24:ijms24010647. [PMID: 36614091 PMCID: PMC9820625 DOI: 10.3390/ijms24010647] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/19/2022] [Accepted: 12/26/2022] [Indexed: 12/31/2022] Open
Abstract
Yield loss due to abiotic stress is an increasing problem in agriculture. Soybean is a major crop for the upper Midwestern United States and calcareous soils exacerbate iron deficiency for growers, resulting in substantial yield losses. Fiskeby III is a soybean variety uniquely resistant to a variety of abiotic stresses, including iron deficiency. Previous studies identified a MATE transporter (Glyma.05G001700) associated with iron stress tolerance in Fiskeby III. To understand the function of this gene in the Fiskeby III response to iron deficiency, we coupled its silencing using virus-induced gene silencing with RNAseq analyses at two timepoints. Analyses of these data confirm a role for the MATE transporter in Fiskeby III iron stress responses. Further, they reveal that Fiskeby III induces transcriptional reprogramming within 24 h of iron deficiency stress, confirming that like other soybean varieties, Fiskeby III is able to quickly respond to stress. However, Fiskeby III utilizes novel genes and pathways in its iron deficiency response. Identifying and characterizing these genes and pathways in Fiskeby III provides novel targets for improving abiotic stress tolerance in elite soybean lines.
Collapse
|
16
|
Chen Y, Feng P, Zhang X, Xie Q, Chen G, Zhou S, Hu Z. Silencing of SlMYB50 affects tolerance to drought and salt stress in tomato. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 193:139-152. [PMID: 36356545 DOI: 10.1016/j.plaphy.2022.10.026] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 10/08/2022] [Accepted: 10/26/2022] [Indexed: 06/16/2023]
Abstract
High salinity and drought stresses often cause plants to produce ROS, including hydrogen peroxide (H2O2) and superoxide (O2-), which interfere with plant growth and affect crop yield. The transcription factors of the MYB family are involved in responses to biotic and abiotic stresses. Here, we isolated the R2R3-MYB transcription factor gene SlMYB50 and found that silencing of SlMYB50 increased resistance to PEG 6000, mannitol and salt. In addition, the resistance of transgenic tomatoes increased under high salt and drought stress. After stress treatment, the relative water content, chlorophyll content (critical for carbon fixation) and root vitality of the SlMYB50-RNAi lines were higher than those of the wild-type (WT). The opposite was true the water loss rate, relative conductivity, and MDA (as a sign of cell wall disruption). Under drought stress conditions, SlMYB50-silenced lines exhibited less H2O2 and less O2- accumulation, as well as higher CAT enzyme activity, than were exhibited by the WT. Notably, after stress treatment, the expression levels of chlorophyll-synthesis-related, flavonoid-synthesis-related, carotenoid-related, antioxidant-enzyme-related and ABA-biosynthesis-related genes were all upregulated in SlMYB50-silenced lines compared to those of WT. A dual-luciferase reporter system was used to verify that SlMYB50 could bind to the CHS1 promoter. In summary, this study identified essential roles for SlMYB50 in regulating drought and salt tolerance.
Collapse
Affiliation(s)
- Yanan Chen
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing, PR China.
| | - Panpan Feng
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing, PR China.
| | - Xianwei Zhang
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing, PR China.
| | - Qiaoli Xie
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing, PR China.
| | - Guoping Chen
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing, PR China.
| | - Shuang Zhou
- College of Agriculture/Mudan, Henan University of Science and Technology, Henan Province, PR China.
| | - Zongli Hu
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing, PR China.
| |
Collapse
|
17
|
Aycan M, Baslam M, Mitsui T, Yildiz M. The TaGSK1, TaSRG, TaPTF1, and TaP5CS Gene Transcripts Confirm Salinity Tolerance by Increasing Proline Production in Wheat ( Triticum aestivum L.). PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11233401. [PMID: 36501443 PMCID: PMC9738719 DOI: 10.3390/plants11233401] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 11/28/2022] [Accepted: 11/29/2022] [Indexed: 05/27/2023]
Abstract
Salinity is an abiotic stress factor that reduces yield and threatens food security in the world's arid and semi-arid regions. The development of salt-tolerant genotypes is critical for mitigating yield losses, and this journey begins with the identification of sensitive and tolerant plants. Numerous physiologic and molecular markers for detecting salt-tolerant wheat genotypes have been developed. One of them is proline, which has been used for a long time but has received little information about proline-related genes in wheat genotypes. In this study, proline content and the expression levels of proline-related genes (TaPTF1, TaDHN, TaSRG, TaSC, TaPIMP1, TaMIP, TaHKT1;4, TaGSK, TaP5CS, and TaMYB) were examined in sensitive, moderate, and tolerant genotypes under salt stress (0, 50, 150, and 250 mM NaCl) for 0, 12, and 24 h. Our results show that salt stress increased the proline content in all genotypes, but it was found higher in salt-tolerant genotypes than in moderate and sensitive genotypes. The salinity stress increased gene expression levels in salt-tolerant and moderate genotypes. While salt-stress exposure for 12 and 24 h had a substantial effect on gene expression in wheat, TaPTF1, TaPIMP1, TaMIP, TaHKT1;4, and TaMYB genes were considerably upregulated in 24 h. The salt-tolerant genotypes showed a higher positive interaction than a negative interaction. The TaPTF1, TaP5CS, TaGSK1, and TaSRG genes were found to be more selective than the other analyzed genes under salt-stress conditions. Despite each gene's specific function, increasing proline biosynthesis functioned as a common mechanism for separating salt tolerance from sensitivity.
Collapse
Affiliation(s)
- Murat Aycan
- Graduate School of Natural and Applied Sciences, Ankara University, Ankara 06110, Türkiye
- Laboratory of Biochemistry, Faculty of Agriculture, Niigata University, Niigata 950-2181, Japan
| | - Marouane Baslam
- Laboratory of Biochemistry, Faculty of Agriculture, Niigata University, Niigata 950-2181, Japan
| | - Toshiaki Mitsui
- Laboratory of Biochemistry, Faculty of Agriculture, Niigata University, Niigata 950-2181, Japan
| | - Mustafa Yildiz
- Department of Field Crops, Faculty of Agriculture, Ankara University, Ankara 06110, Türkiye
| |
Collapse
|
18
|
Chong L, Hsu CC, Zhu Y. Advances in mass spectrometry-based phosphoproteomics for elucidating abscisic acid signaling and plant responses to abiotic stress. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:6547-6557. [PMID: 35959917 DOI: 10.1093/jxb/erac324] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 07/23/2022] [Indexed: 06/15/2023]
Abstract
Abiotic stresses have significant impacts on crop yield and quality. Even though significant efforts during the past decade have been devoted to uncovering the core signaling pathways associated with the phytohormone abscisic acid (ABA) and abiotic stress in plants, abiotic stress signaling mechanisms in most crops remain largely unclear. The core components of the ABA signaling pathway, including early events in the osmotic stress-induced phosphorylation network, have recently been elucidated in Arabidopsis with the aid of phosphoproteomics technologies. We now know that SNF1-related kinases 2 (SnRK2s) are not only inhibited by the clade A type 2C protein phosphatases (PP2Cs) through dephosphorylation, but also phosphorylated and activated by upstream mitogen-activated protein kinase kinase kinases (MAP3Ks). Through describing the course of studies to elucidate abiotic stress and ABA signaling, we will discuss how we can take advantage of the latest innovations in mass-spectrometry-based phosphoproteomics and structural proteomics to boost our investigation of plant regulation and responses to ABA and abiotic stress.
Collapse
Affiliation(s)
- Leelyn Chong
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Chuan-Chih Hsu
- Department of Biochemistry, Purdue University, West Lafayette, IN, USA
| | - Yingfang Zhu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
- Sanya Institute of Henan University, Sanya, Hainan, China
| |
Collapse
|
19
|
Chong L, Xu R, Ku L, Zhu Y. Beyond stress response: OST1 opening doors for plants to grow. STRESS BIOLOGY 2022; 2:44. [PMID: 37676544 PMCID: PMC10441877 DOI: 10.1007/s44154-022-00069-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 10/18/2022] [Indexed: 09/08/2023]
Abstract
The sucrose non-fermenting 1 (SNF1)-related protein kinase 2 (SnRK2) family members have been discovered to regulate abiotic stress response via the abscisic acid (ABA)-independent and dependent signaling pathways. SnRK2.6, also known as Open Stomata 1 (OST1), is a serine/threonine protein kinase that plays critical roles in linking ABA receptor complexes and downstream components such as transcription factors and anion channels to regulate stress response. Asides from its well-known regulatory roles in stomatal movement and cold stress response, OST1 has also been demonstrated recently to modulate major developmental roles of flowering and growth in plants. In this review, we will discuss about the various roles of OST1 as well as the 'doors' that OST1 can 'open' to help plants perform stress adaptation. Therefore, we will address how OST1 can regulate stomata apertures, cold stress tolerance as well as other aspects of its emerging roles such as balancing flowering and root growth in response to drought.
Collapse
Affiliation(s)
- Leelyn Chong
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475001, China
| | - Rui Xu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475001, China
| | - Lixia Ku
- College of Agronomy, Synergetic Innovation Center of Henan Grain Crops and National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, 450046, China.
| | - Yingfang Zhu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475001, China.
| |
Collapse
|
20
|
Genome-Wide Identification of C2H2 ZFPs and Functional Analysis of BRZAT12 under Low-Temperature Stress in Winter Rapeseed (Brassica rapa). Int J Mol Sci 2022; 23:ijms232012218. [PMID: 36293086 PMCID: PMC9603636 DOI: 10.3390/ijms232012218] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/07/2022] [Accepted: 10/11/2022] [Indexed: 11/17/2022] Open
Abstract
Zinc-finger protein (ZFP) transcription factors are among the largest families of transcription factors in plants. They participate in various biological processes such as apoptosis, autophagy, and stemness maintenance and play important roles in regulating plant growth and development and the response to stress. To elucidate the functions of ZFP genes in the low-temperature response of winter (Brassica rapa L.) B. rapa, this study identified 141 members of the C2H2 ZFP gene family from B. rapa, which are heterogeneously distributed on 10 chromosomes and have multiple cis-acting elements related to hormone regulation and abiotic stress of adversity. Most of the genes in this family contain only one CDS, and genes distributed in the same evolutionary branch share mostly the same motifs and are highly conserved in the evolution of cruciferous species. The genes were significantly upregulated in the roots and growth cones of ‘Longyou-7’, indicating that they play a role in the stress-response process of winter B. rapa. The expression level of the Bra002528 gene was higher in the strongly cold-resistant varieties than in the weakly cold-resistant varieties after low-temperature stress. The survival rate and BrZAT12 gene expression of trans-BrZAT12 Arabidopsis thaliana (Arabidopsis) were significantly higher than those of the wild-type plants at low temperature, and the enzyme activities in vivo were higher than those of the wild-type plants, indicating that the BrZAT12 gene could improve the cold resistance of winter B. rapa. BrZAT12 expression and superoxide dismutase and ascorbate peroxidase enzyme activities were upregulated in winter B. rapa after exogenous ABA treatment. BrZAT12 expression and enzyme activities decreased after the PD98059 treatment, and BrZAT12 expression and enzyme activities were higher than in the PD98059 treatment but lower than in the control after both treatments together. It is speculated that BrZAT12 plays a role in the ABA signaling process in which MAPKK is involved. This study provides a theoretical basis for the resolution of cold-resistance mechanisms in strong winter B. rapa.
Collapse
|
21
|
Hu Y, Chen X, Shen X. Regulatory network established by transcription factors transmits drought stress signals in plant. STRESS BIOLOGY 2022; 2:26. [PMID: 37676542 PMCID: PMC10442052 DOI: 10.1007/s44154-022-00048-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 06/20/2022] [Indexed: 09/08/2023]
Abstract
Plants are sessile organisms that evolve with a flexible signal transduction system in order to rapidly respond to environmental changes. Drought, a common abiotic stress, affects multiple plant developmental processes especially growth. In response to drought stress, an intricate hierarchical regulatory network is established in plant to survive from the extreme environment. The transcriptional regulation carried out by transcription factors (TFs) is the most important step for the establishment of the network. In this review, we summarized almost all the TFs that have been reported to participate in drought tolerance (DT) in plant. Totally 466 TFs from 86 plant species that mostly belong to 11 families are collected here. This demonstrates that TFs in these 11 families are the main transcriptional regulators of plant DT. The regulatory network is built by direct protein-protein interaction or mutual regulation of TFs. TFs receive upstream signals possibly via post-transcriptional regulation and output signals to downstream targets via direct binding to their promoters to regulate gene expression.
Collapse
Affiliation(s)
- Yongfeng Hu
- Key Laboratory of Three Gorges Regional Plant Genetics and Germplasm Enhancement, Biotechnology Research Center, China Three Gorges University, Yichang, 443002 Hubei China
| | - Xiaoliang Chen
- Key Laboratory of Three Gorges Regional Plant Genetics and Germplasm Enhancement, Biotechnology Research Center, China Three Gorges University, Yichang, 443002 Hubei China
| | - Xiangling Shen
- Key Laboratory of Three Gorges Regional Plant Genetics and Germplasm Enhancement, Biotechnology Research Center, China Three Gorges University, Yichang, 443002 Hubei China
| |
Collapse
|
22
|
Chong L, Xu R, Huang P, Guo P, Zhu M, Du H, Sun X, Ku L, Zhu JK, Zhu Y. The tomato OST1-VOZ1 module regulates drought-mediated flowering. THE PLANT CELL 2022; 34:2001-2018. [PMID: 35099557 PMCID: PMC9048945 DOI: 10.1093/plcell/koac026] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 01/25/2022] [Indexed: 05/08/2023]
Abstract
Flowering is a critical agricultural trait that substantially affects tomato fruit yield. Although drought stress influences flowering time, the molecular mechanism underlying drought-regulated flowering in tomato remains elusive. In this study, we demonstrated that loss of function of tomato OPEN STOMATA 1 (SlOST1), a protein kinase essential for abscisic acid (ABA) signaling and abiotic stress responses, lowers the tolerance of tomato plants to drought stress. slost1 mutants also exhibited a late flowering phenotype under both normal and drought stress conditions. We also established that SlOST1 directly interacts with and phosphorylates the NAC (NAM, ATAF and CUC)-type transcription factor VASCULAR PLANT ONE-ZINC FINGER 1 (SlVOZ1), at residue serine 67, thereby enhancing its stability and nuclear translocation in an ABA-dependent manner. Moreover, we uncovered several SlVOZ1 binding motifs from DNA affinity purification sequencing analyses and revealed that SlVOZ1 can directly bind to the promoter of the major flowering-integrator gene SINGLE FLOWER TRUSS to promote tomato flowering transition in response to drought. Collectively, our data uncover the essential role of the SlOST1-SlVOZ1 module in regulating flowering in response to drought stress in tomato and offer insights into a novel strategy to balance drought stress response and flowering.
Collapse
Affiliation(s)
| | | | | | - Pengcheng Guo
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475001, China
- Sanya Institute of Henan University, Sanya, 572025, China
| | - Mingku Zhu
- Institute of Integrative Plant Biology, School of Life Sciences, Jiangsu Normal University, Xuzhou 221116, China
| | - Hai Du
- College of Agronomy and Biotechnology, Chongqing Engineering Research Center for Rapeseed, Southwest University, Chongqing 400716, China
| | - Xiaoli Sun
- Crop Stress Molecular Biology Laboratory, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Lixia Ku
- College of Agronomy, Synergetic Innovation Center of Henan Grain Crops and National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou 450046, China
| | - Jian-Kang Zhu
- Shanghai Center for Plant Stress Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, Indiana 47907, USA
| | | |
Collapse
|
23
|
Chen Y, Li L, Tang B, Wu T, Chen G, Xie Q, Hu Z. Silencing of SlMYB55 affects plant flowering and enhances tolerance to drought and salt stress in tomato. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 316:111166. [PMID: 35151450 DOI: 10.1016/j.plantsci.2021.111166] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 12/14/2021] [Accepted: 12/21/2021] [Indexed: 06/14/2023]
Abstract
The transcription factors of the MYB family are involved in plant growth and development and responses to biotic and abiotic stresses. Here, we isolated the R2R3-MYB transcription factor gene SlMYB55 and found that it is responsive to abscisic acid (ABA), drought, and salt stress. Notably, the expression levels of multiple stress-related and inflorescence and flowering time-related genes were changed in SlMYB55-RNAi plants compared to wild-type plants. Transient tobacco expression experiments indicated that SlMYB55 directly targets the WUS and 4CL genes to regulate the development of inflorescence and flavonoid biosynthesis. Yeast two-hybrid experiments showed that the SlMYB55 protein interacts with the MADS-box family protein MBP21. Based on these results, we concluded that SlMYB55 affects the biosynthesis of ABA, regulates drought and salt responses through ABA-mediated signal transduction pathways, and directly or indirectly affects the expression of genes related to drought and salt response, flowering time, sepal size and inflorescence, thereby regulating stress tolerance and flower development. In summary, this study identified essential roles for SlMYB55 in regulating drought and salt tolerance and flower development.
Collapse
Affiliation(s)
- Yanan Chen
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing, People's Republic of China.
| | - Ling Li
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing, People's Republic of China.
| | - Boyan Tang
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing, People's Republic of China.
| | - Ting Wu
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing, People's Republic of China.
| | - Guoping Chen
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing, People's Republic of China.
| | - Qiaoli Xie
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing, People's Republic of China.
| | - Zongli Hu
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing, People's Republic of China.
| |
Collapse
|
24
|
Liu Y, Khan AR, Gan Y. C2H2 Zinc Finger Proteins Response to Abiotic Stress in Plants. Int J Mol Sci 2022; 23:ijms23052730. [PMID: 35269875 PMCID: PMC8911255 DOI: 10.3390/ijms23052730] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 02/25/2022] [Accepted: 02/26/2022] [Indexed: 12/14/2022] Open
Abstract
Abiotic stresses have already exhibited the negative effects on crop growth and development, thereby influencing crop quality and yield. Therefore, plants have developed regulatory mechanisms to adopt against such harsh changing environmental conditions. Recent studies have shown that zinc finger protein transcription factors play a crucial role in plant growth and development as well as in stress response. C2H2 zinc finger proteins are one of the best-studied types and have been shown to play diverse roles in the plant abiotic stress responses. However, the C2H2 zinc finger network in plants is complex and needs to be further studied in abiotic stress responses. Here in this review, we mainly focus on recent findings on the regulatory mechanisms, summarize the structural and functional characterization of C2H2 zinc finger proteins, and discuss the C2H2 zinc finger proteins involved in the different signal pathways in plant responses to abiotic stress.
Collapse
Affiliation(s)
- Yihua Liu
- College of Agriculture and Forestry Sciences, Linyi University, Linyi 276000, China
- Correspondence: (Y.L.); (Y.G.)
| | - Ali Raza Khan
- Zhejiang Key Lab of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China;
| | - Yinbo Gan
- Zhejiang Key Lab of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China;
- Correspondence: (Y.L.); (Y.G.)
| |
Collapse
|
25
|
Yong Y, Zhang Y, Lyu Y. Functional characterization of Lilium lancifolium cold-responsive Zinc Finger Homeodomain ( ZFHD) gene in abscisic acid and osmotic stress tolerance. PeerJ 2021; 9:e11508. [PMID: 34113493 PMCID: PMC8162235 DOI: 10.7717/peerj.11508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 05/03/2021] [Indexed: 12/01/2022] Open
Abstract
Background. We have previously performed an analysis of the cold-responsive transcriptome in the mature leaves of tiger lily (Lilium lancifolium) by gene co-expression network identification. The results has revealed that a ZFHD gene, notated as encoding zinc finger homeodomain protein, may play an essential regulating role in tiger lily response to cold stress. Methods. A further investigation of the ZFHD gene (termed as LlZFHD4) responding to osmotic stresses, including cold, salt, water stresses, and abscisic acid (ABA) was performed in this study. Based on the transcriptome sequences, the coding region and 5′ promoter region of LlZFHD4 were cloned from mature tiger lily leaves. Stress response analysis was performed under continuous 4 °C, NaCl, PEG, and ABA treatments. Functional characterization of LlZFHD4 was conducted in transgenic Arabidopsis, tobacco, and yeast. Results. LlZFHD4 encodes a nuclear-localized protein consisting of 180 amino acids. The N-terminal region of LlZFHD4 has transcriptional activation activity in yeast. The 4 °C, NaCl, PEG, and ABA treatments induced the expression of LlZFHD4. Several stress- or hormone-responsive cis-acting regulatory elements (T-Box, BoxI. and ARF) and binding sites of transcription factors (MYC, DRE and W-box) were found in the core promoter region (789 bp) of LlZFHD4. Also, the GUS gene driven by LlZFHD4 promoter was up-regulated by cold, NaCl, water stresses, and ABA in Arabidopsis. Overexpression of LlZFHD4 improved cold and drought tolerance in transgenic Arabidopsis; higher survival rate and better osmotic adjustment capacity were observed in LlZFHD4 transgenic plants compared to wild type (WT) plants under 4 °C and PEG conditions. However, LlZFHD4 transgenic plants were less tolerant to salinity and more hypersensitive to ABA compared to WT plants. The transcript levels of stress- and ABA-responsive genes were much more up-regulated in LlZFHD4 transgenic Arabidopsis than WT. These results indicate LlZFHD4 is involved in ABA signaling pathway and plays a crucial role in regulating the response of tiger lily to cold, salt and water stresses.
Collapse
Affiliation(s)
- Yubing Yong
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, China National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, College of Landscape Architecture, Beijing Forestory University, Beijing, Haidian, China.,College of Landscape Architecture, Central South University of Forestry and Technology, Changsha, Hunan, China
| | - Yue Zhang
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, China National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, College of Landscape Architecture, Beijing Forestory University, Beijing, Haidian, China
| | - Yingmin Lyu
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, China National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, College of Landscape Architecture, Beijing Forestory University, Beijing, Haidian, China
| |
Collapse
|
26
|
Advances in the Molecular Mechanisms of Abscisic Acid and Gibberellins Functions in Plants. Int J Mol Sci 2021; 22:ijms22116080. [PMID: 34199940 PMCID: PMC8200236 DOI: 10.3390/ijms22116080] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 05/28/2021] [Accepted: 05/31/2021] [Indexed: 12/05/2022] Open
|
27
|
Wang P, Li L, Wei H, Sun W, Zhou P, Zhu S, Li D, Zhuge Q. Genome-Wide and Comprehensive Analysis of the Multiple Stress-Related CAF1 (CCR4-Associated Factor 1) Family and Its Expression in Poplar. PLANTS 2021; 10:plants10050981. [PMID: 34068989 PMCID: PMC8155972 DOI: 10.3390/plants10050981] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 05/11/2021] [Accepted: 05/12/2021] [Indexed: 01/06/2023]
Abstract
Poplar is one of the most widely used tree in afforestation projects. However, it is susceptible to abiotic and biotic stress. CCR4-associated factor 1 (CAF1) is a major member of CCR4-NOT, and it is mainly involved in transcriptional regulation and mRNA degradation in eukaryotes. However, there are no studies on the molecular phylogeny and expression of the CAF1 gene in poplar. In this study, a total of 19 PtCAF1 genes were identified in the Populus trichocarpa genome. Phylogenetic analysis of the PtCAF1 gene family was performed with two closely related species (Arabidopsis thaliana and Oryza sativa) to investigate the evolution of the PtCAF1 gene. The tissue expression of the PtCAF1 gene showed that 19 PtCAF1 genes were present in different tissues of poplar. Additionally, the analysis of the expression of the PtCAF1 gene showed that the CAF1 family was up-regulated to various degrees under biotic and abiotic stresses and participated in the poplar stress response. The results of our study provide a deeper understanding of the structure and function of the PtCAF1 gene and may contribute to our understanding of the molecular basis of stress tolerance in poplar.
Collapse
|
28
|
Defects in Cell Wall Differentiation of the Arabidopsis Mutant rol1-2 Is Dependent on Cyclin-Dependent Kinase CDK8. Cells 2021; 10:cells10030685. [PMID: 33808926 PMCID: PMC8003768 DOI: 10.3390/cells10030685] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/05/2021] [Accepted: 03/11/2021] [Indexed: 01/02/2023] Open
Abstract
Plant cells are encapsulated by cell walls whose properties largely determine cell growth. We have previously identified the rol1-2 mutant, which shows defects in seedling root and shoot development. rol1-2 is affected in the Rhamnose synthase 1 (RHM1) and shows alterations in the structures of Rhamnogalacturonan I (RG I) and RG II, two rhamnose-containing pectins. The data presented here shows that root tissue of the rol1-2 mutant fails to properly differentiate the cell wall in cell corners and accumulates excessive amounts of callose, both of which likely alter the physical properties of cells. A surr (suppressor of the rol1-2 root developmental defect) mutant was identified that alleviates the cell growth defects in rol1-2. The cell wall differentiation defect is re-established in the rol1-2 surr mutant and callose accumulation is reduced compared to rol1-2. The surr mutation is an allele of the cyclin-dependent kinase 8 (CDK8), which encodes a component of the mediator complex that influences processes central to plant growth and development. Together, the identification of the surr mutant suggests that changes in cell wall composition and turnover in the rol1-2 mutant have a significant impact on cell growth and reveals a function of CDK8 in cell wall architecture and composition.
Collapse
|
29
|
Zhang H, Zheng D, Yin L, Song F, Jiang M. Functional Analysis of OsMED16 and OsMED25 in Response to Biotic and Abiotic Stresses in Rice. FRONTIERS IN PLANT SCIENCE 2021; 12:652453. [PMID: 33868352 PMCID: PMC8044553 DOI: 10.3389/fpls.2021.652453] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 03/08/2021] [Indexed: 05/19/2023]
Abstract
Mediator complex is a multiprotein complex that regulates RNA polymerase II-mediated transcription. Moreover, it functions in several signaling pathways, including those involved in response to biotic and abiotic stresses. We used virus-induced gene silencing (VIGS) to study the functions of two genes, namely OsMED16 and OsMED25 in response to biotic and abiotic stresses in rice. Both genes were differentially induced by Magnaporthe grisea (M. grisea), the causative agent of blast disease, hormone treatment, and abiotic stress. We found that both BMV: OsMED16- and BMV: OsMED25-infiltrated seedlings reduced the resistance to M. grisea by regulating the accumulation of H2O2 and expression of defense-related genes. Furthermore, BMV: OsMED16-infiltrated seedlings decreased the tolerance to cold by increasing the malondialdehyde (MDA) content and reducing the expression of cold-responsive genes.
Collapse
Affiliation(s)
- Huijuan Zhang
- College of Life Science, Taizhou University, Taizhou, China
| | - Dewei Zheng
- College of Life Science, Taizhou University, Taizhou, China
| | - Longfei Yin
- College of Life Science, Taizhou University, Taizhou, China
| | - Fengming Song
- National Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Ming Jiang
- College of Life Science, Taizhou University, Taizhou, China
- *Correspondence: Ming Jiang,
| |
Collapse
|