1
|
Muheyati M, Wu G, Li Y, Pan Z, Chen Y. Supramolecular nanotherapeutics based on cucurbiturils. J Nanobiotechnology 2024; 22:790. [PMID: 39710716 DOI: 10.1186/s12951-024-03024-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 11/14/2024] [Indexed: 12/24/2024] Open
Abstract
Polymeric biomaterials have important applications in aiding clinical disease treatment, including drug delivery, bioimaging, and tissue engineering. Currently, conventional tumor chemotherapy faces obstacles such as poor solubility/stability, inability to target, and uncontrolled drug release in clinical trials, for which the emergence of supramolecular material therapeutics combining non-covalent interactions with conventional therapies is a very promising candidate. Due to their molecular recognition abilities with a range of biomolecules, cucurbit[n]uril (CB[n]), a type of macrocyclic receptors with robust backbones, hydrophobic cavities, and carbonyl-binding channels, have garnered a lot of attention. Therefore, this paper reviews recent advances in CB[n] material-based supramolecular therapeutics for clinical treatments, including targeted delivery applications and related imaging and sensing systems. This study also covers the distinctive benefits of CB materials for biological applications, as well as the trends and prospects of this interdisciplinary subject, based on numerous state-of-the-art research findings.
Collapse
Affiliation(s)
- Maiyier Muheyati
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, People's Republic of China
- Laboratory for Clinical Medicine, Capital Medical University, Beijing, 100069, People's Republic of China
| | - Guangheng Wu
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, People's Republic of China
| | - Yilin Li
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, People's Republic of China
| | - Ziting Pan
- Laboratory for Clinical Medicine, Capital Medical University, Beijing, 100069, People's Republic of China
- School of Basic Medicine, Capital Medical University, Beijing, 100069, People's Republic of China
| | - Yueyue Chen
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, People's Republic of China.
- Laboratory for Clinical Medicine, Capital Medical University, Beijing, 100069, People's Republic of China.
| |
Collapse
|
2
|
Prchalova E, Andrys R, Pejchal J, Kohoutova Z, Knittelova K, Hofmanova T, Skarka A, Dlabkova A, Psotka M, Prchal L, Musilek K, Karasova JZ, Malinak D. Brominated oxime nucleophiles are efficiently reactivating cholinesterases inhibited by nerve agents. Arch Toxicol 2024; 98:2937-2952. [PMID: 38789714 DOI: 10.1007/s00204-024-03791-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 05/15/2024] [Indexed: 05/26/2024]
Abstract
Six novel brominated bis-pyridinium oximes were designed and synthesized to increase their nucleophilicity and reactivation ability of phosphorylated acetylcholinesterase (AChE) and butyrylcholinesterase (BChE). Their pKa was valuably found lower to parent non-halogenated oximes. Stability tests showed that novel brominated oximes were stable in water, but the stability of di-brominated oximes was decreased in buffer solution and their degradation products were prepared and characterized. The reactivation screening of brominated oximes was tested on AChE and BChE inhibited by organophosphorus surrogates. Two mono-brominated oximes reactivated AChE comparably to non-halogenated analogues, which was further confirmed by reactivation kinetics. The acute toxicity of two selected brominated oximes was similar to commercially available oxime reactivators and the most promising brominated oxime was tested in vivo on sarin- and VX-poisoned rats. This brominated oxime showed interesting CNS distribution and significant reactivation effectiveness in blood. The same oxime resulted with the best protective index for VX-poisoned rats.
Collapse
Affiliation(s)
- Eliska Prchalova
- University of Hradec Kralove, Faculty of Science, Department of Chemistry, Rokitanskeho 62, 500 03, Hradec Kralove, Czech Republic
| | - Rudolf Andrys
- University of Hradec Kralove, Faculty of Science, Department of Chemistry, Rokitanskeho 62, 500 03, Hradec Kralove, Czech Republic
| | - Jaroslav Pejchal
- University of Defence, Military Faculty of Medicine, Department of Toxicology and Military Pharmacy, Trebesska 1575, 500 01, Hradec Kralove, Czech Republic
| | - Zuzana Kohoutova
- University of Hradec Kralove, Faculty of Science, Department of Chemistry, Rokitanskeho 62, 500 03, Hradec Kralove, Czech Republic
| | - Karolina Knittelova
- University of Hradec Kralove, Faculty of Science, Department of Chemistry, Rokitanskeho 62, 500 03, Hradec Kralove, Czech Republic
| | - Tereza Hofmanova
- University of Hradec Kralove, Faculty of Science, Department of Chemistry, Rokitanskeho 62, 500 03, Hradec Kralove, Czech Republic
| | - Adam Skarka
- University of Hradec Kralove, Faculty of Science, Department of Chemistry, Rokitanskeho 62, 500 03, Hradec Kralove, Czech Republic
| | - Alzbeta Dlabkova
- University of Defence, Military Faculty of Medicine, Department of Toxicology and Military Pharmacy, Trebesska 1575, 500 01, Hradec Kralove, Czech Republic
| | - Miroslav Psotka
- University of Hradec Kralove, Faculty of Science, Department of Chemistry, Rokitanskeho 62, 500 03, Hradec Kralove, Czech Republic
- University Hospital in Hradec Kralove, Biomedical Research Center, Sokolska 581, 500 05, Hradec Kralove, Czech Republic
| | - Lukas Prchal
- University Hospital in Hradec Kralove, Biomedical Research Center, Sokolska 581, 500 05, Hradec Kralove, Czech Republic
| | - Kamil Musilek
- University of Hradec Kralove, Faculty of Science, Department of Chemistry, Rokitanskeho 62, 500 03, Hradec Kralove, Czech Republic
- University Hospital in Hradec Kralove, Biomedical Research Center, Sokolska 581, 500 05, Hradec Kralove, Czech Republic
| | - Jana Zdarova Karasova
- University of Defence, Military Faculty of Medicine, Department of Toxicology and Military Pharmacy, Trebesska 1575, 500 01, Hradec Kralove, Czech Republic.
- University Hospital in Hradec Kralove, Biomedical Research Center, Sokolska 581, 500 05, Hradec Kralove, Czech Republic.
| | - David Malinak
- University of Hradec Kralove, Faculty of Science, Department of Chemistry, Rokitanskeho 62, 500 03, Hradec Kralove, Czech Republic.
- University Hospital in Hradec Kralove, Biomedical Research Center, Sokolska 581, 500 05, Hradec Kralove, Czech Republic.
| |
Collapse
|
3
|
Halcrow PW, Quansah DNK, Kumar N, Solloway RL, Teigen KM, Lee KA, Liang B, Geiger JD. Weak base drug-induced endolysosome iron dyshomeostasis controls the generation of reactive oxygen species, mitochondrial depolarization, and cytotoxicity. NEUROIMMUNE PHARMACOLOGY AND THERAPEUTICS 2024; 3:33-46. [PMID: 38532786 PMCID: PMC10961484 DOI: 10.1515/nipt-2023-0021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 12/28/2023] [Indexed: 03/28/2024]
Abstract
Objectives Approximately 75 % of marketed drugs have the physicochemical property of being weak bases. Weak-base drugs with relatively high pKa values enter acidic organelles including endosomes and lysosomes (endolysosomes), reside in and de-acidify endolysosomes, and induce cytotoxicity. Divalent cations within endolysosomes, including iron, are released upon endolysosome de-acidification. Endolysosomes are "master regulators of iron homeostasis", and neurodegeneration is linked to ferrous iron (Fe2+)-induced reactive oxygen species (ROS) generation via Fenton chemistry. Because endolysosome de-acidification-induced lysosome-stress responses release endolysosome Fe2+, it was crucial to determine the mechanisms by which a functionally and structurally diverse group of weak base drugs including atropine, azithromycin, fluoxetine, metoprolol, and tamoxifen influence endolysosomes and cause cell death. Methods Using U87MG astrocytoma and SH-SY5Y neuroblastoma cells, we conducted concentration-response relationships for 5 weak-base drugs to determine EC50 values. From these curves, we chose pharmacologically and therapeutically relevant concentrations to determine if weak-base drugs induced lysosome-stress responses by de-acidifying endolysosomes, releasing endolysosome Fe2+ in sufficient levels to increase cytosolic and mitochondria Fe2+ and ROS levels and cell death. Results Atropine (anticholinergic), azithromycin (antibiotic), fluoxetine (antidepressant), metoprolol (beta-adrenergic), and tamoxifen (anti-estrogen) at pharmacologically and therapeutically relevant concentrations (1) de-acidified endolysosomes, (2) decreased Fe2+ levels in endolysosomes, (3) increased Fe2+ and ROS levels in cytosol and mitochondria, (4) induced mitochondrial membrane potential depolarization, and (5) increased cell death; effects prevented by the endocytosed iron-chelator deferoxamine. Conclusions Weak-base pharmaceuticals induce lysosome-stress responses that may affect their safety profiles; a better understanding of weak-base drugs on Fe2+ interorganellar signaling may improve pharmacotherapeutics.
Collapse
Affiliation(s)
- Peter W. Halcrow
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, USA
| | - Darius N. K. Quansah
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, USA
| | - Nirmal Kumar
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, USA
| | - Rebecca L. Solloway
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, USA
| | - Kayla M. Teigen
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, USA
| | - Kasumi A. Lee
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, USA
| | - Braelyn Liang
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, USA
| | - Jonathan D. Geiger
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, USA
| |
Collapse
|
4
|
Nikolova V, Dobrev S, Kircheva N, Yordanova V, Dudev T, Angelova S. Host-guest complexation of cucurbit[7]uril and cucurbit[8]uril with the antimuscarinic drugs tropicamide and atropine. J Mol Graph Model 2023; 119:108380. [PMID: 36455472 DOI: 10.1016/j.jmgm.2022.108380] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 10/30/2022] [Accepted: 11/21/2022] [Indexed: 11/23/2022]
Abstract
Cucurbiturils are useful excipients in eye drop formulations: they can increase the water solubility of the drug, enhance drug absorption into the eye, improve aqueous stability and reduce local irritation. Effective and safe drug delivery is, however, a challenge and the information on the host (CBs)/guest (tropicamide and atropine) interactions can help improving the existing treatments and develop novel therapies not limited only to eye diseases/conditions. Since this carrier system can easily modify the properties of the drug and ensure its delivery at the targeted ocular tissue, further insight into the intimate mechanism of the host-guest recognition is crucial. The present DFT/SMD study focuses on the role of numerous factors governing this process, namely the specific position of the guest molecule in the cavity of the cucurbituril, the ionization form (non/protonated) of the antimuscarinic drug, the dielectric constant of the medium, and the size of the cavitant pore. The obtained results are in line with experimental observations and shed light on the mechanism, at atomic resolution, of recognition between the CBs and the two parasympatholytic drugs.
Collapse
Affiliation(s)
- Valya Nikolova
- Faculty of Chemistry and Pharmacy, Sofia University "St. Kliment Ohridski", 1164, Sofia, Bulgaria
| | - Stefan Dobrev
- Institute of Optical Materials and Technologies "Acad. J. Malinowski", Bulgarian Academy of Sciences, 1113, Sofia, Bulgaria
| | - Nikoleta Kircheva
- Institute of Optical Materials and Technologies "Acad. J. Malinowski", Bulgarian Academy of Sciences, 1113, Sofia, Bulgaria
| | - Victoria Yordanova
- Faculty of Chemistry and Pharmacy, Sofia University "St. Kliment Ohridski", 1164, Sofia, Bulgaria
| | - Todor Dudev
- Faculty of Chemistry and Pharmacy, Sofia University "St. Kliment Ohridski", 1164, Sofia, Bulgaria.
| | - Silvia Angelova
- Institute of Optical Materials and Technologies "Acad. J. Malinowski", Bulgarian Academy of Sciences, 1113, Sofia, Bulgaria.
| |
Collapse
|
5
|
Dolezal R. Accuracy and precision of binding free energy prediction for a tacrine related lead inhibitor of acetylcholinesterase with an arsenal of supercomputerized molecular modelling methods: a comparative study. J Biomol Struct Dyn 2022; 40:11291-11319. [PMID: 34323654 DOI: 10.1080/07391102.2021.1957716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Nowadays, advanced computational chemistry methods offer various strategies for revealing prospective hit structures in drug development essentially through accurate binding free energy predictions. After the era of molecular docking and quantitative structure-activity relationships, much interest has been lately oriented to perturbed molecular dynamic approaches like replica exchange with solute tempering and free energy perturbation (REST/FEP) and the potential of the mean force with adaptive biasing and accelerated weight histograms (PMF/AWH). Both of these receptor-based techniques can exploit exascale CPU&GPU supercomputers to achieve high throughput performance. In this fundamental study, we have compared the predictive power of a panel of supercomputerized molecular modelling methods to distinguish the major binding modes and the corresponding binding free energies of a promising tacrine related potential antialzheimerics in human acetylcholinesterase. The binding free energies were estimated using flexible molecular docking, molecular mechanics/generalized Born surface area/Poisson-Boltzmann surface area (MM/GBSA/PBSA), transmutation REST/FEP with 12 x 5 ns/λ windows, annihilation FEP with 20 x 5 ns/λ steps, PMF with weight histogram analysis method (WHAM) and 40 x 5 ns samples, and PMF/AWH with 10 x 100 ns replicas. Confrontation of the classical approaches such as canonical molecular dynamics and molecular docking with alchemical calculations and steered molecular dynamics enabled us to show how large errors in ΔG predictions can be expected if these in silico methods are employed in the elucidation of a common case of enzyme inhibition.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Rafael Dolezal
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic.,Biomedical Research Center, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| |
Collapse
|
6
|
Pejchal J, Jošt P, Múčková L, Andrýs R, Lísa M, Zdarova Karasova J. A systematic evaluation of the cucurbit[7]uril pharmacokinetics and toxicity after a single dose and short-term repeated administration in mice. Arch Toxicol 2022; 96:1411-1421. [DOI: 10.1007/s00204-022-03249-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Accepted: 02/02/2022] [Indexed: 11/29/2022]
|
7
|
Chen J, Gao T, Chang Y, Wei Y, Wang Y. Supramolecular complexation between cucurbit[7]uril and folate and analytical applications. JOURNAL OF CHEMICAL RESEARCH 2021. [DOI: 10.1177/17475198211066489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Folate (FA) plays a key role in the biosynthesis of amino acids, purines, and pyrimidines in the human body, and intracellular folate metabolism has become an attractive target of tumor chemotherapy. In this work, an inclusion interaction was found between FA and cucurbit[7]uril (CB[7]), and the formation of a CB[7]-FA 2:1 supramolecular inclusion complex was confirmed by fluorescence spectra, UV-Vis absorption spectroscopy, 1H NMR, and molecular modeling calculations. In addition, FA is generally determined through the indirect fluorescent method because it shows weak fluorescence in aqueous solution. Therefore, a simple, direct fluorescence probe method for rapidly measuring FA was investigated, and the linear equation of FA was ΔF = 14.691C + 37.366 within the concentration ranges of 0.82 ~ 18.31 µg mL–1. The proposed direct fluorescence method was applied to the determination of spiked plasma. We demonstrated that this method could provide an experimental basis for the targeted administration of the CB[7]-FA complex, and it could be extended as a promising fluorescence detection method for drugs in vivo.
Collapse
Affiliation(s)
- Jue Chen
- Shanxi University of Chinese Medicine, Taiyuan, P.R. China
| | - Tengmei Gao
- Shanxi University of Chinese Medicine, Taiyuan, P.R. China
| | - Yinxia Chang
- Shanxi University of Chinese Medicine, Taiyuan, P.R. China
| | - Yanming Wei
- Shanxi University of Chinese Medicine, Taiyuan, P.R. China
| | - Yonghui Wang
- Shanxi University of Chinese Medicine, Taiyuan, P.R. China
| |
Collapse
|
8
|
Supramolecular Atropine Potentiometric Sensor. SENSORS 2021; 21:s21175879. [PMID: 34502770 PMCID: PMC8434286 DOI: 10.3390/s21175879] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/03/2021] [Accepted: 08/03/2021] [Indexed: 12/04/2022]
Abstract
A supramolecular atropine sensor was developed, using cucurbit[6]uril as the recognition element. The solid-contact electrode is based on a polymeric membrane incorporating cucurbit[6]uril (CB[6]) as an ionophore, 2-nitrophenyl octyl ether as a solvent mediator, and potassium tetrakis (4-chlorophenyl) borate as an additive. In a MES-NaOH buffer at pH 6, the performance of the atropine sensor is characterized by a slope of (58.7 ± 0.6) mV/dec with a practical detection limit of (6.30 ± 1.62) × 10−7 mol/L and a lower limit of the linear range of (1.52 ± 0.64) × 10−6 mol/L. Selectivity coefficients were determined for different ions and excipients. The obtained results were bolstered by the docking and spectroscopic studies which demonstrated the interaction between atropine and CB[6]. The accuracy of the potentiometric analysis of atropine content in certified reference material was evaluated by the t-Student test. The herein proposed sensor answers the need for reliable methods providing better management of this hospital drug shelf-life while reducing its flush and remediation costs.
Collapse
|
9
|
Andrýs R, Klusoňová A, Lísa M, Kassa J, Karasová JŽ. Effect of Oxime Encapsulation on Acetylcholinesterase Reactivation: Pharmacokinetic Study of the Asoxime-Cucurbit[7]uril Complex in Mice Using Hydrophilic Interaction Liquid Chromatography-Mass Spectrometry. Mol Pharm 2021; 18:2416-2427. [PMID: 34019427 DOI: 10.1021/acs.molpharmaceut.1c00257] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Oxime-based molecules are used for the treatment of patients to reactivate acetylcholinesterase (AChE) function after organophosphate intoxication. However, their efficacy is limited by low penetration through the blood-brain barrier and fast elimination. In this work, the cucurbit[7]uril (CB[7]) carrier was used for the encapsulation of the clinical agent asoxime to enhance brain bioavailability and the treatment window. We present a pharmacokinetic study of asoxime and the asoxime-CB[7] complex in an in vivo mouse model. Ultrahigh-performance liquid chromatography with electrospray ionization-mass spectrometry detection was developed to determine asoxime and CB[7] in biological fluids and tissues after thorough optimization of chromatographic conditions. The dihydroxypropane-silica stationary phase using hydrophilic interaction liquid chromatography conditions provided the best chromatographic performance. The final method was validated and applied for the pharmacokinetic study of mouse plasma, urine, bile, liver, kidney, and brain samples at different times after administration of asoxime and the asoxime-CB[7] complex. The results showed a greater than 3-fold increase in the area under the curve (AUC) in the brain for asoxime administered as a complex with CB[7] relative to that for the administration of asoxime alone. The effectiveness of the treatment strategy was evaluated using a reactivation study and a functional observatory battery. Protection of brain AChE activity is crucial for saving human lives or reducing the consequences of poisoning. The asoxime administered as a complex increased the brain activity by approximately 30% compared to that with atropine alone. CB[7] coadministration improved the AChE activity by 11%, which agrees with the higher asoxime AUC assessed in the pharmacokinetic study.
Collapse
Affiliation(s)
- Rudolf Andrýs
- Department of Chemistry, Faculty of Science, University of Hradec Králové, Rokitanského 62, 50003 Hradec Králové, Czech Republic
| | - Aneta Klusoňová
- Department of Chemistry, Faculty of Science, University of Hradec Králové, Rokitanského 62, 50003 Hradec Králové, Czech Republic
| | - Miroslav Lísa
- Department of Chemistry, Faculty of Science, University of Hradec Králové, Rokitanského 62, 50003 Hradec Králové, Czech Republic
| | - Jiří Kassa
- Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences Hradec Králové, University of Defence, Tychonova 1, 160 00 Praha, Czech Republic
| | - Jana Žd'árová Karasová
- Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences Hradec Králové, University of Defence, Tychonova 1, 160 00 Praha, Czech Republic
| |
Collapse
|