1
|
Willems A, Sura-de Jong M, Klaassens E, van den Bogert B, van Beek A, van Dijk G. Self-Initiated Dietary Adjustments Alter Microbiota Abundances: Implications for Perceived Health. Nutrients 2024; 16:3544. [PMID: 39458538 PMCID: PMC11510366 DOI: 10.3390/nu16203544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/01/2024] [Accepted: 10/10/2024] [Indexed: 10/28/2024] Open
Abstract
Background/Objectives: Personalized and self-initiated dietary adjustments have been shown to alleviate mental and somatic complaints. Here, we investigated the potential role of gut microbiome alterations underlying these effects. Methods: For this purpose, participants (n = 185) underwent a four-week self-initiated dietary intervention and filled out weekly questionnaires on their dietary intake, somatic and mental symptoms, and physical activity. Results: Overall, the participants lost weight, had alleviated mental and somatic complaints, reduced their total caloric and percentual carbohydrate intake, and ate less processed, party-type, and traditional Dutch food items, but ate more Pescatarian type food items, while keeping their fiber intake unaltered. Baseline and endpoint gut microbiota analyses using 16S rRNA gene sequencing revealed an overall increase in Gemmiger formicilis and reductions in Peptostreptococcaceae and Ruminococcus bromii over the four-week dietary intervention. While these bacterial alterations were considered to be beneficial for the host, they were not individually correlated with alterations in, or endpoint levels of, somatic and/or mental complaints. Instead, individual increases in Ruminococcus bicirculans (a well-known utilizer of plant cell wall polysaccharides) were strongly correlated with reductions in mental complaints, even though overall R. bicirculans remained unaltered over the course of the four-week self-initiated dierary intervention. Conclusions: Our results suggest that overall altered versus individually correlated microbiota abundances and their relations with host health characteristics over the course of a self-chosen dietary intervention may represent different levels of regulation, which remain to be further untangled.
Collapse
Affiliation(s)
- Anouk Willems
- Applied Research Centre Food & Dairy, Van Hall Larenstein University of Applied Sciences, 8934 CJ Leeuwarden, The Netherlands
- Groningen Institute for Evolutionary Life Sciences—Neurobiology, University of Groningen, 9474 AG Groningen, The Netherlands
| | - Martina Sura-de Jong
- Applied Research Centre Food & Dairy, Van Hall Larenstein University of Applied Sciences, 8934 CJ Leeuwarden, The Netherlands
| | - Eline Klaassens
- Product Development Department, BaseClear B.V., 2333 BE Leiden, The Netherlands
| | - Bartholomeus van den Bogert
- Product Development Department, BaseClear B.V., 2333 BE Leiden, The Netherlands
- MyMicroZoo, 2333 BE Leiden, The Netherlands
| | - André van Beek
- Department of Endocrinology, University Medical Center Groningen, Postbus 30001, 9700 RB Groningen, The Netherlands
| | - Gertjan van Dijk
- Groningen Institute for Evolutionary Life Sciences—Neurobiology, University of Groningen, 9474 AG Groningen, The Netherlands
| |
Collapse
|
2
|
Tchinda Defo SH, Moussa D, Bouvourné P, Guédang Nyayi SD, Woumitna GC, Kodji K, Wado EK, Ngatanko Abaissou HH, Foyet HS. Unpredictable chronic mild stress induced anxio-depressive disorders and enterobacteria dysbiosis: Potential protective effects of Detariummicrocarpum. JOURNAL OF ETHNOPHARMACOLOGY 2024; 337:118940. [PMID: 39423942 DOI: 10.1016/j.jep.2024.118940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 10/11/2024] [Accepted: 10/12/2024] [Indexed: 10/21/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Detarium microcarpum Guill. & Perr. is used traditionally in Far North Cameroun to treat stomach aches, anxiety, epilepsy, and other mental disorders. AIM OF THE STUDY Evaluate the anxiolytic and antidepressant-like effects of D. microcarpum (DM) in unpredictable chronic mild stress (UCMS) model of depression in male rats and its impact on fecal enterobacteria of stressed rats. MATERIALS AND METHODS Rats were handled daily (control) or subjected to the UCMS procedure for 42 days. Anxiety-like behaviors were assessed using the light and dark box test (LBD) and the open field test (OFT). Depressive-like behaviors were assessed using the forced swimming test (FST), the sucrose preference test (SPT), and the novelty suppressed feeding test (NSFT). Feces were then collected, followed by blood, brain, and duodenum sections after sacrifice. Monoamine levels, pro-inflammatory cytokines, oxidative stress factors, and nitrosative stress were assessed. Feces were introduced into Hectoen enteric agar for the identification of enterobacteria. An in vitro growth test was performed. RESULTS The DM ethanolic extract has significantly increased the time spent in the light box, in the LBD, and in the center area of the OFT. Moreover, the extract has significantly reduced the preference for sucrose in the SPT, the time of immobility in the FST, and the latency period to consume the pet in the NSFT. DM extract has significantly reduced serum cortisol levels. It also significantly decreased the pro-inflammatory cytokines TNF-α and Il-1β in both brain and duodenum homogenate. DM has increased the brain's serotonin, GABA, and dopamine levels. The DM extract also decreased the MDA and nitrite levels. It also increased the SOD and CAT activities in both brain and duodenal homogenate. Histologically, the DM extract restored the cell's density in hippocampi sections and prevented gut inflammation and peroxidation characterizing leaky gut syndrome. DM extract has no effect on the growth of enterobacteria species isolated in vitro. CONCLUSION The ethanolic extract of DM would have anxiolytic and antidepressant effects via the modulation of the HPA axis, brain antioxidant enzyme activities, inflammation, and nitrosative stress. Moreover, it could act by preventing leaky gut syndrome.
Collapse
Affiliation(s)
- Serge Hermann Tchinda Defo
- Laboratory of Cognitive and Behavioural Neuroscience, Faculty of Science, University of Maroua, Cameroon P.O. Box: 814, Maroua, Cameroon.
| | - Djaouda Moussa
- Department of Life and Earth Sciences, Higher Teachers' Training College, University of Maroua, P.O. Box: 55, Maroua, Cameroon.
| | - Parfait Bouvourné
- Laboratory of Cognitive and Behavioural Neuroscience, Faculty of Science, University of Maroua, Cameroon P.O. Box: 814, Maroua, Cameroon.
| | - Simon Désiré Guédang Nyayi
- Laboratory of Cognitive and Behavioural Neuroscience, Faculty of Science, University of Maroua, Cameroon P.O. Box: 814, Maroua, Cameroon.
| | - Guillaume Camdi Woumitna
- Laboratory of Cognitive and Behavioural Neuroscience, Faculty of Science, University of Maroua, Cameroon P.O. Box: 814, Maroua, Cameroon.
| | - Kalib Kodji
- Laboratory of Cognitive and Behavioural Neuroscience, Faculty of Science, University of Maroua, Cameroon P.O. Box: 814, Maroua, Cameroon.
| | - Eglantine Keugong Wado
- Laboratory of Cognitive and Behavioural Neuroscience, Faculty of Science, University of Maroua, Cameroon P.O. Box: 814, Maroua, Cameroon.
| | - Hervé Hervé Ngatanko Abaissou
- Laboratory of Cognitive and Behavioural Neuroscience, Faculty of Science, University of Maroua, Cameroon P.O. Box: 814, Maroua, Cameroon.
| | - Harquin Simplice Foyet
- Laboratory of Cognitive and Behavioural Neuroscience, Faculty of Science, University of Maroua, Cameroon P.O. Box: 814, Maroua, Cameroon.
| |
Collapse
|
3
|
Sun Y, Fan C, Lei D. Association between gut microbiota and postpartum depression: A bidirectional Mendelian randomization study. J Affect Disord 2024; 362:615-622. [PMID: 39029663 DOI: 10.1016/j.jad.2024.07.057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 07/04/2024] [Accepted: 07/14/2024] [Indexed: 07/21/2024]
Abstract
BACKGROUNDS Empirical investigations have shown an association between gut microbiota and postpartum depression (PPD); nevertheless, the precise cause-and-effect relationship between these two variables remains ambiguous. This research aimed to examine the possible reciprocal causal relationship between the gut microbiota and PPD. METHODS In this work, we used Mendelian randomization (MR) to analyze the relationship between the gut microbiota (n = 18,340) and PPD (n = 67,205). We obtained the relevant SNPs from publicly accessible genome-wide association studies (GWAS). The SNP estimations were combined by the inverse-variance weighted (IVW) method, including sensitivity analyses such as weighted median, MR Egger, and MR Pleiotropy Residual Sum and Outlier (PRESSO). RESULTS We have identified strong correlations between six bacterial characteristics and the likelihood of developing PPD. Our research revealed that the genus Ruminococcaceae UCG010, the family Veillonellaceae, and the class Clostridia had a beneficial effect on preventing PPD. The class Alphaproteobacteria, genus Slackia, and order NB1n were found to have a significant negative impact on PPD. The sensitivity studies conducted on these bacterial features consistently confirmed these finding. LIMITATIONS It is crucial to acknowledge that our study was conducted just within a European society, which may restrict its applicability to other groups. CONCLUSIONS The findings from our MR investigation indicate a potential causal relationship between certain kinds of gut bacteria and PPD. Additional investigation is required to elucidate the influence of gut microbiota on the advancement of PPD.
Collapse
Affiliation(s)
- Yonghao Sun
- Fujian Provincial Key Laboratory of Reproductive Health Research, School of Medicine, Xiamen University, Xiamen, China
| | - Cuifang Fan
- Department of Obstetrics, Renmin Hospital of Wuhan University, Wuhan 430000, China.
| | - Di Lei
- Department of Obstetrics, Renmin Hospital of Wuhan University, Wuhan 430000, China.
| |
Collapse
|
4
|
Kolobaric A, Andreescu C, Jašarević E, Hong CH, Roh HW, Cheong JY, Kim YK, Shin TS, Kang CS, Kwon CO, Yoon SY, Hong SW, Aizenstein HJ, Karim HT, Son SJ. Gut microbiome predicts cognitive function and depressive symptoms in late life. Mol Psychiatry 2024; 29:3064-3075. [PMID: 38664490 PMCID: PMC11449789 DOI: 10.1038/s41380-024-02551-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 03/29/2024] [Accepted: 04/03/2024] [Indexed: 10/05/2024]
Abstract
Depression in older adults with cognitive impairment increases progression to dementia. Microbiota is associated with current mood and cognition, but the extent to which it predicts future symptoms is unknown. In this work, we identified microbial features that reflect current and predict future cognitive and depressive symptoms. Clinical assessments and stool samples were collected from 268 participants with varying cognitive and depressive symptoms. Seventy participants underwent 2-year follow-up. Microbial community diversity, structure, and composition were assessed using high-resolution 16 S rRNA marker gene sequencing. We implemented linear regression to characterize the relationship between microbiome composition, current cognitive impairment, and depressive symptoms. We leveraged elastic net regression to discover features that reflect current or future cognitive function and depressive symptoms. Greater microbial community diversity associated with lower current cognition in the whole sample, and greater depression in participants not on antidepressants. Poor current cognitive function associated with lower relative abundance of Bifidobacterium, while greater GABA degradation associated with greater current depression severity. Future cognitive decline associated with lower cognitive function, lower relative abundance of Intestinibacter, lower glutamate degradation, and higher baseline histamine synthesis. Future increase in depressive symptoms associated with higher baseline depression and anxiety, lower cognitive function, diabetes, lower relative abundance of Bacteroidota, and lower glutamate degradation. Our results suggest cognitive dysfunction and depression are unique states with an overall biological effect detectable through gut microbiota. The microbiome may present a noninvasive readout and prognostic tool for cognitive and psychiatric states.
Collapse
Affiliation(s)
- A Kolobaric
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, USA
| | - C Andreescu
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, USA
| | - E Jašarević
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh, USA
- Department of Computational and Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, USA
- Magee-Womens Research Institute, Pittsburgh, USA
| | - C H Hong
- Department of Psychiatry, Ajou University School of Medicine, Suwon, Republic of Korea
| | - H W Roh
- Department of Psychiatry, Ajou University School of Medicine, Suwon, Republic of Korea
| | - J Y Cheong
- Department of Gastroenterology, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Y K Kim
- Institute of MD Healthcare Inc, Seoul, Republic of Korea
| | - T S Shin
- Institute of MD Healthcare Inc, Seoul, Republic of Korea
| | - C S Kang
- Institute of MD Healthcare Inc, Seoul, Republic of Korea
| | - C O Kwon
- Institute of MD Healthcare Inc, Seoul, Republic of Korea
| | - S Y Yoon
- Institute of MD Healthcare Inc, Seoul, Republic of Korea
| | - S W Hong
- Department of Psychiatry, Ajou University School of Medicine, Suwon, Republic of Korea
| | - H J Aizenstein
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, USA
- Department of Bioengineering, University of Pittsburgh School of Medicine, Pittsburgh, USA
| | - H T Karim
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, USA.
- Department of Bioengineering, University of Pittsburgh School of Medicine, Pittsburgh, USA.
| | - S J Son
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, USA.
- Department of Psychiatry, Ajou University School of Medicine, Suwon, Republic of Korea.
| |
Collapse
|
5
|
Green M, Trivedi MH, Foster JA. Microbes and mood: innovative biomarker approaches in depression. Trends Mol Med 2024:S1471-4914(24)00241-7. [PMID: 39353744 DOI: 10.1016/j.molmed.2024.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 08/18/2024] [Accepted: 09/09/2024] [Indexed: 10/04/2024]
Abstract
Although the field of psychiatry has made gains in biomarker discovery, our ability to change long-term outcomes remains inadequate. Matching individuals to the best treatment for them is a persistent clinical challenge. Moreover, the development of novel treatments has been hampered in part due to a limited understanding of the biological mechanisms underlying individual differences that contribute to clinical heterogeneity. The gut microbiome has become an area of intensive research in conditions ranging from metabolic disorders to cancer. Innovation in these spaces has led to translational breakthroughs, offering novel microbiome-informed approaches that may improve patient outcomes. In this review we examine how translational microbiome research is poised to advance biomarker discovery in mental health, with a focus on depression.
Collapse
Affiliation(s)
- Miranda Green
- Department of Psychiatry and Behavioural Neuroscience, McMaster University, Hamilton, ON, Canada
| | - Madhukar H Trivedi
- Center for Depression Research and Clinical Care, Department of Psychiatry and Peter O'Donnell Jr Brain Institute, UT Southwestern Medical Center, Dallas, TX, USA
| | - Jane A Foster
- Department of Psychiatry and Behavioural Neuroscience, McMaster University, Hamilton, ON, Canada; Center for Depression Research and Clinical Care, Department of Psychiatry and Peter O'Donnell Jr Brain Institute, UT Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
6
|
Mihailovich M, Soković Bajić S, Dinić M, Đokić J, Živković M, Radojević D, Golić N. Cutting-Edge iPSC-Based Approaches in Studying Host-Microbe Interactions in Neuropsychiatric Disorders. Int J Mol Sci 2024; 25:10156. [PMID: 39337640 PMCID: PMC11432053 DOI: 10.3390/ijms251810156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/14/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024] Open
Abstract
Gut microbiota (GM), together with its metabolites (such as SCFA, tryptophan, dopamine, GABA, etc.), plays an important role in the functioning of the central nervous system. Various neurological and psychiatric disorders are associated with changes in the composition of GM and their metabolites, which puts them in the foreground as a potential adjuvant therapy. However, the molecular mechanisms behind this relationship are not clear enough. Therefore, before considering beneficial microbes and/or their metabolites as potential therapeutics for brain disorders, the mechanisms underlying microbiota-host interactions must be identified and characterized in detail. In this review, we summarize the current knowledge of GM alterations observed in prevalent neurological and psychiatric disorders, multiple sclerosis, major depressive disorder, Alzheimer's disease, and autism spectrum disorders, together with experimental evidence of their potential to improve patients' quality of life. We further discuss the main obstacles in the study of GM-host interactions and describe the state-of-the-art solution and trends in this field, namely "culturomics" which enables the culture and identification of novel bacteria that inhabit the human gut, and models of the gut and blood-brain barrier as well as the gut-brain axis based on induced pluripotent stem cells (iPSCs) and iPSC derivatives, thus pursuing a personalized medicine agenda for neuropsychiatric disorders.
Collapse
Affiliation(s)
- Marija Mihailovich
- Institute of Molecular Genetics and Genetic Engineering (IMGGE), University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade, Serbia; (S.S.B.); (M.D.); (J.Đ.); (M.Ž.); (D.R.)
- Human Technopole, Palazzo Italia, Viale Rita Levi-Montalcini, 1, 20157 Milan, Italy
| | - Svetlana Soković Bajić
- Institute of Molecular Genetics and Genetic Engineering (IMGGE), University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade, Serbia; (S.S.B.); (M.D.); (J.Đ.); (M.Ž.); (D.R.)
| | - Miroslav Dinić
- Institute of Molecular Genetics and Genetic Engineering (IMGGE), University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade, Serbia; (S.S.B.); (M.D.); (J.Đ.); (M.Ž.); (D.R.)
| | - Jelena Đokić
- Institute of Molecular Genetics and Genetic Engineering (IMGGE), University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade, Serbia; (S.S.B.); (M.D.); (J.Đ.); (M.Ž.); (D.R.)
| | - Milica Živković
- Institute of Molecular Genetics and Genetic Engineering (IMGGE), University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade, Serbia; (S.S.B.); (M.D.); (J.Đ.); (M.Ž.); (D.R.)
| | - Dušan Radojević
- Institute of Molecular Genetics and Genetic Engineering (IMGGE), University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade, Serbia; (S.S.B.); (M.D.); (J.Đ.); (M.Ž.); (D.R.)
| | - Nataša Golić
- Institute of Molecular Genetics and Genetic Engineering (IMGGE), University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade, Serbia; (S.S.B.); (M.D.); (J.Đ.); (M.Ž.); (D.R.)
| |
Collapse
|
7
|
Li S, Huang J, Luo D, Fu W, Liu J. Electro-acupuncture inhibits HDAC2 via modulating gut microbiota to ameliorate SNI-induced pain and depression-like behavior in rats. J Affect Disord 2024; 360:305-313. [PMID: 38395201 DOI: 10.1016/j.jad.2024.02.069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 02/02/2024] [Accepted: 02/18/2024] [Indexed: 02/25/2024]
Abstract
BACKGROUND Depression and chronic pain frequent co-occur, exacerbating each other's symptoms and hindering treatment. Emerging studies have highlighted abnormal gut microbiota in both conditions. Previous studies have demonstrated the clinical effectiveness of electro-acupuncture (EA) in managing these conditions, yet the underlying mechanisms remain elusive. METHODS Spared nerve injury (SNI) was employed to induce chronic pain and depression-like behavior. Rats were randomly assigned to sham SNI (SS), SNI, and EA groups. SNI surgery was performed on all rats, except those in SS group, which underwent sham SNI surgery. Then EA group received 5 weeks of EA treatment. Pain and depression-like behavior were assessed through paw withdrawal threshold, sucrose-preference test, and forced swim test. Gut microbiota composition was analyzed via 16S rDNA sequencing. Brain-Derived Neurotrophic Factor (BDNF) and acetylation-related proteins in the medial prefrontal cortex (mPFC) were evaluated through enzyme-linked immunosorbent assay and western blot. RESULTS EA treatment significantly ameliorated pain and depression-like behavior. The 16S rDNA sequencing showed EA modulated gut microbiota composition, increased short-chain fatty acids (SCFAs)-producing bacteria, including Akkermansi, Ruminococcaceae and Lachnospiraceae family, particularly Akkermansia. Furthermore, EA increased BDNF, AcH3 and decreased HDAC2 in mPFC. Notably, SCFAs-producing bacteria exhibited a negative correlation with HDAC2 levels. LIMITATIONS This study exclusively investigated microbiota differences resulting from EA stimulation, without delving into the functional variations brought about by these microbial distinctions. CONCLUSIONS The therapeutic effects of EA on the comorbidity of chronic pain and depression may involve the modulation of the gut microbiota, resulting in histone acetylation changes and upregulation of BDNF.
Collapse
Affiliation(s)
- Sheng Li
- Department of Acupuncture and Moxibustion, The second affiliated hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China.
| | - Jianpeng Huang
- Department of Acupuncture and Moxibustion, The second affiliated hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Ding Luo
- Department of Acupuncture and Moxibustion, The second affiliated hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Wenbin Fu
- Department of Acupuncture and Moxibustion, The second affiliated hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China.
| | - Jianhua Liu
- Department of Acupuncture and Moxibustion, The second affiliated hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China.
| |
Collapse
|
8
|
Taghizadeh Ghassab F, Shamlou Mahmoudi F, Taheri Tinjani R, Emami Meibodi A, Zali MR, Yadegar A. Probiotics and the microbiota-gut-brain axis in neurodegeneration: Beneficial effects and mechanistic insights. Life Sci 2024; 350:122748. [PMID: 38843992 DOI: 10.1016/j.lfs.2024.122748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 03/21/2024] [Accepted: 05/23/2024] [Indexed: 06/10/2024]
Abstract
Neurodegenerative diseases (NDs) are a group of heterogeneous disorders with a high socioeconomic burden. Although pharmacotherapy is currently the principal therapeutic approach for the management of NDs, mounting evidence supports the notion that the protracted application of available drugs would abate their dopaminergic outcomes in the long run. The therapeutic application of microbiome-based modalities has received escalating attention in biomedical works. In-depth investigations of the bidirectional communication between the microbiome in the gut and the brain offer a multitude of targets for the treatment of NDs or maximizing the patient's quality of life. Probiotic administration is a well-known microbial-oriented approach to modulate the gut microbiota and potentially influence the process of neurodegeneration. Of note, there is a strong need for further investigation to map out the mechanistic prospects for the gut-brain axis and the clinical efficacy of probiotics. In this review, we discuss the importance of microbiome modulation and hemostasis via probiotics, prebiotics, postbiotics and synbiotics in ameliorating pathological neurodegenerative events. Also, we meticulously describe the underlying mechanism of action of probiotics and their metabolites on the gut-brain axis in different NDs. We suppose that the present work will provide a functional direction for the use of probiotic-based modalities in promoting current practical treatments for the management of neurodegenerative-related diseases.
Collapse
Affiliation(s)
- Fatemeh Taghizadeh Ghassab
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Shamlou Mahmoudi
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Reyhaneh Taheri Tinjani
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Armitasadat Emami Meibodi
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Zali
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abbas Yadegar
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
9
|
Pyo Y, Kwon KH, Jung YJ. Probiotic Functions in Fermented Foods: Anti-Viral, Immunomodulatory, and Anti-Cancer Benefits. Foods 2024; 13:2386. [PMID: 39123577 PMCID: PMC11311591 DOI: 10.3390/foods13152386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/30/2024] [Accepted: 07/05/2024] [Indexed: 08/12/2024] Open
Abstract
Fermented foods can provide many benefits to our health. These foods are created by the action of microorganisms and help support our digestive health and immune system. Fermented foods include yogurt, kimchi, pickles, kefir, beer, wine, and more. Fermented foods contain probiotics, lactic acid bacteria (LAB), yeast, organic acids, ethanol, or antimicrobial compounds, which help balance the gut microbiome and improve digestive health. Fermented foods can also benefit your overall health by increasing the diversity of your gut microbiome and reducing inflammation. By routinely consuming fermented foods with these benefits, we can continue to improve our health. Probiotics from fermented foods are beneficial strains of bacteria that are safe for human health and constitute an important component of human health, even for children and the elderly. Probiotics can have a positive impact on your health, especially by helping to balance your gut microbiome and improve digestive health. Probiotics can also boost your immune system and reduce inflammation, which can benefit your overall health. Probiotics, which can be consumed in the diet or in supplement form, are found in many different types of foods and beverages. Research is continuing to investigate the health effects of probiotics and how they can be utilized. The potential mechanisms of probiotics include anti-cancer activity, preventing and treating immune system-related diseases, and slowing the development of Alzheimer's disease and Huntington's disease. This is due to the gut-brain axis of probiotics, which provides a range of health benefits beyond the digestive and gastrointestinal systems. Probiotics reduce tumor necrosis factor-α and interleukins through the nuclear factor-kappa B and mitogen-activated protein kinase pathways. They have been shown to protect against colon cancer and colitis by interfering with the adhesion of harmful bacteria in the gut. This article is based on clinical and review studies identified in the electronic databases PubMed, Web of Science, Embase, and Google Scholar, and a systematic review of clinical studies was performed.
Collapse
Affiliation(s)
- Yeonhee Pyo
- Department of Beauty Cosmetics, College of Biomedical and Health Science, Konkuk University, Chungju 27478, Republic of Korea
| | - Ki Han Kwon
- College of General Education, Kookmin University, Seoul 02707, Republic of Korea;
| | - Yeon Ja Jung
- Department of Beauty Cosmetics, College of Biomedical and Health Science, Konkuk University, Chungju 27478, Republic of Korea
| |
Collapse
|
10
|
Hu L, Ye W, Deng Q, Wang C, Luo J, Huang L, Fang Z, Sun L, Gooneratne R. Microbiome and Metabolite Analysis Insight into the Potential of Shrimp Head Hydrolysate to Alleviate Depression-like Behaviour in Growth-Period Mice Exposed to Chronic Stress. Nutrients 2024; 16:1953. [PMID: 38931307 PMCID: PMC11206410 DOI: 10.3390/nu16121953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/07/2024] [Accepted: 06/18/2024] [Indexed: 06/28/2024] Open
Abstract
Chronic stress (CS) endangers the physical and mental health of adolescents. Therefore, alleviating and preventing such negative health impacts are a top priority. This study explores the effect of feeding shrimp head hydrolysate (SHH) on gut microbiota, short-chain fatty acids (SCFAs), and neurotransmitters in growing C57BL/6 mice subjected to chronic unpredictable mild stress. Mice in the model group and three SHH groups were exposed to CS for 44 days, distilled water and SHH doses of 0.18, 0.45, 0.90 g/kg·BW were given respectively by gavage daily for 30 days from the 15th day. The results showed that SHH can significantly reverse depression-like behaviour, amino acids degradation, α diversity and β diversity, proportion of Firmicutes and Bacteroidota, abundance of genera such as Muribaculaceae, Bacteroides, Prevotellaceae_UCG-001, Parabacteroides and Alistipes, concentration of five short-chain fatty acids (SCFAs), 5-HT and glutamate induced by CS. Muribaculaceae and butyric acid may be a controlled target. This study highlights the potential and broad application of SHH as an active ingredient in food to combat chronic stress damage.
Collapse
Affiliation(s)
- Lianhua Hu
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Province Engineering Laboratory for Marine Biological Products, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (L.H.); (W.Y.); (C.W.); (J.L.); (L.H.); (Z.F.); (L.S.)
| | - Weichang Ye
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Province Engineering Laboratory for Marine Biological Products, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (L.H.); (W.Y.); (C.W.); (J.L.); (L.H.); (Z.F.); (L.S.)
| | - Qi Deng
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Province Engineering Laboratory for Marine Biological Products, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (L.H.); (W.Y.); (C.W.); (J.L.); (L.H.); (Z.F.); (L.S.)
| | - Chen Wang
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Province Engineering Laboratory for Marine Biological Products, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (L.H.); (W.Y.); (C.W.); (J.L.); (L.H.); (Z.F.); (L.S.)
| | - Jinjin Luo
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Province Engineering Laboratory for Marine Biological Products, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (L.H.); (W.Y.); (C.W.); (J.L.); (L.H.); (Z.F.); (L.S.)
| | - Ling Huang
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Province Engineering Laboratory for Marine Biological Products, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (L.H.); (W.Y.); (C.W.); (J.L.); (L.H.); (Z.F.); (L.S.)
| | - Zhijia Fang
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Province Engineering Laboratory for Marine Biological Products, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (L.H.); (W.Y.); (C.W.); (J.L.); (L.H.); (Z.F.); (L.S.)
| | - Lijun Sun
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Province Engineering Laboratory for Marine Biological Products, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (L.H.); (W.Y.); (C.W.); (J.L.); (L.H.); (Z.F.); (L.S.)
| | - Ravi Gooneratne
- Department of Wine, Food and Molecular Biosciences, Faculty of Agriculture and Life Sciences, Lincoln University, P.O. Box 85084, Lincoln 7647, New Zealand;
| |
Collapse
|
11
|
Odorskaya MV, Mavletova DA, Nesterov AA, Tikhonova OV, Soloveva NA, Reznikova DA, Galanova OO, Vatlin AA, Slynko NM, Vasilieva AR, Peltek SE, Danilenko VN. The use of omics technologies in creating LBP and postbiotics based on the Limosilactobacillus fermentum U-21. Front Microbiol 2024; 15:1416688. [PMID: 38919499 PMCID: PMC11197932 DOI: 10.3389/fmicb.2024.1416688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 05/28/2024] [Indexed: 06/27/2024] Open
Abstract
In recent years, there has been an increasing tendency to create drugs based on certain commensal bacteria of the human microbiota and their ingredients, primarily focusing on live biotherapeutics (LBPs) and postbiotics. The creation of such drugs, termed pharmacobiotics, necessitates an understanding of their mechanisms of action and the identification of pharmacologically active ingredients that determine their target properties. Typically, these are complexes of biologically active substances synthesized by specific strains, promoted as LBPs or postbiotics (including vesicles): proteins, enzymes, low molecular weight metabolites, small RNAs, etc. This study employs omics technologies, including genomics, proteomics, and metabolomics, to explore the potential of Limosilactobacillus fermentum U-21 for innovative LBP and postbiotic formulations targeting neuroinflammatory processes. Proteomic techniques identified and quantified proteins expressed by L. fermentum U-21, highlighting their functional attributes and potential applications. Key identified proteins include ATP-dependent Clp protease (ClpL), chaperone protein DnaK, protein GrpE, thioredoxin reductase, LysM peptidoglycan-binding domain-containing protein, and NlpC/P60 domain-containing protein, which have roles in disaggregase, antioxidant, and immunomodulatory activities. Metabolomic analysis provided insights into small-molecule metabolites produced during fermentation, revealing compounds with anti-neuroinflammatory activity. Significant metabolites produced by L. fermentum U-21 include GABA (γ-aminobutyric acid), niacin, aucubin, and scyllo-inositol. GABA was found to stabilize neuronal activity, potentially counteracting neurodegenerative processes. Niacin, essential for optimal nervous system function, was detected in vesicles and culture fluid, and it modulates cytokine production, maintaining immune homeostasis. Aucubin, an iridoid glycoside usually secreted by plants, was identified as having antioxidant properties, addressing issues of bioavailability for therapeutic use. Scyllo-inositol, identified in vesicles, acts as a chemical chaperone, reducing abnormal protein clumps linked to neurodegenerative diseases. These findings demonstrate the capability of L. fermentum U-21 to produce bioactive substances that could be harnessed in the development of pharmacobiotics for neurodegenerative diseases, contributing to their immunomodulatory, anti-neuroinflammatory, and neuromodulatory activities. Data of the HPLC-MS/MS analysis are available via ProteomeXchange with identifier PXD050857.
Collapse
Affiliation(s)
- Maya V. Odorskaya
- Laboratory of Bacterial Genetics, Vavilov Institute of General Genetics Russian Academy of Sciences, Moscow, Russia
| | - Dilara A. Mavletova
- Laboratory of Bacterial Genetics, Vavilov Institute of General Genetics Russian Academy of Sciences, Moscow, Russia
| | - Andrey A. Nesterov
- Laboratory of Bacterial Genetics, Vavilov Institute of General Genetics Russian Academy of Sciences, Moscow, Russia
- Institute of Environmental Engineering, RUDN University, Moscow, Russia
| | | | | | - Diana A. Reznikova
- Laboratory of Bacterial Genetics, Vavilov Institute of General Genetics Russian Academy of Sciences, Moscow, Russia
- Phystech School of Biological and Medical Physics, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Olesya O. Galanova
- Laboratory of Bacterial Genetics, Vavilov Institute of General Genetics Russian Academy of Sciences, Moscow, Russia
- Phystech School of Biological and Medical Physics, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Aleksey A. Vatlin
- Laboratory of Bacterial Genetics, Vavilov Institute of General Genetics Russian Academy of Sciences, Moscow, Russia
| | - Nikolai M. Slynko
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
| | - Asya R. Vasilieva
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
| | - Sergey E. Peltek
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
| | - Valery N. Danilenko
- Laboratory of Bacterial Genetics, Vavilov Institute of General Genetics Russian Academy of Sciences, Moscow, Russia
- Brain Science Institute, Research Center of Neurology, Moscow, Russia
| |
Collapse
|
12
|
Averina OV, Poluektova EU, Zorkina YA, Kovtun AS, Danilenko VN. Human Gut Microbiota for Diagnosis and Treatment of Depression. Int J Mol Sci 2024; 25:5782. [PMID: 38891970 PMCID: PMC11171505 DOI: 10.3390/ijms25115782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/21/2024] [Accepted: 05/23/2024] [Indexed: 06/21/2024] Open
Abstract
Nowadays, depressive disorder is spreading rapidly all over the world. Therefore, attention to the studies of the pathogenesis of the disease in order to find novel ways of early diagnosis and treatment is increasing among the scientific and medical communities. Special attention is drawn to a biomarker and therapeutic strategy through the microbiota-gut-brain axis. It is known that the symbiotic interactions between the gut microbes and the host can affect mental health. The review analyzes the mechanisms and ways of action of the gut microbiota on the pathophysiology of depression. The possibility of using knowledge about the taxonomic composition and metabolic profile of the microbiota of patients with depression to select gene compositions (metagenomic signature) as biomarkers of the disease is evaluated. The use of in silico technologies (machine learning) for the diagnosis of depression based on the biomarkers of the gut microbiota is given. Alternative approaches to the treatment of depression are being considered by balancing the microbial composition through dietary modifications and the use of additives, namely probiotics, postbiotics (including vesicles) and prebiotics as psychobiotics, and fecal transplantation. The bacterium Faecalibacterium prausnitzii is under consideration as a promising new-generation probiotic and auxiliary diagnostic biomarker of depression. The analysis conducted in this review may be useful for clinical practice and pharmacology.
Collapse
Affiliation(s)
- Olga V. Averina
- Vavilov Institute of General Genetics, Russian Academy of Sciences (RAS), 119333 Moscow, Russia; (E.U.P.); (Y.A.Z.); (A.S.K.); (V.N.D.)
| | - Elena U. Poluektova
- Vavilov Institute of General Genetics, Russian Academy of Sciences (RAS), 119333 Moscow, Russia; (E.U.P.); (Y.A.Z.); (A.S.K.); (V.N.D.)
| | - Yana A. Zorkina
- Vavilov Institute of General Genetics, Russian Academy of Sciences (RAS), 119333 Moscow, Russia; (E.U.P.); (Y.A.Z.); (A.S.K.); (V.N.D.)
- V. Serbsky National Medical Research Centre of Psychiatry and Narcology, Kropotkinsky per. 23, 119034 Moscow, Russia
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, Zagorodnoe Highway 2, 115191 Moscow, Russia
| | - Alexey S. Kovtun
- Vavilov Institute of General Genetics, Russian Academy of Sciences (RAS), 119333 Moscow, Russia; (E.U.P.); (Y.A.Z.); (A.S.K.); (V.N.D.)
| | - Valery N. Danilenko
- Vavilov Institute of General Genetics, Russian Academy of Sciences (RAS), 119333 Moscow, Russia; (E.U.P.); (Y.A.Z.); (A.S.K.); (V.N.D.)
| |
Collapse
|
13
|
Chen M, Wang L, Lou Y, Huang Z. Effects of chronic unpredictable mild stress on gut microbiota and fecal amino acid and short-chain fatty acid pathways in mice. Behav Brain Res 2024; 464:114930. [PMID: 38432300 DOI: 10.1016/j.bbr.2024.114930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 02/16/2024] [Accepted: 02/27/2024] [Indexed: 03/05/2024]
Abstract
Depression is a serious disease that has a significant impact on social functioning. However, the exact causes of depression are still not fully understood. Therefore, it is necessary to explore new pathways leading to depression. In this study, we used 16 S rDNA to examine changes in gut microbiota and predict related pathways in depression-like mice. Additionally, we employed liquid chromatography-mass spectrometry (LC-MS) to identify changes in amino acids and gas chromatography-mass spectrometry (GC-MS) to identify changes in short-chain fatty acids (SCFAs) in fecal samples. We conducted Pearson/Spearman correlation analysis to investigate the associations between changes in amino acids/SCFAs and behavioral outcomes. The 16 S rDNA sequencing revealed significant alterations in gut microbiota at the phylum and genus levels in mice subjected to chronic unpredictable mild stress (CUMS). The relative abundances of Bacteroidetes, Proteobacteria, Bacteroides, and Alloprevotella were increased, while Firmicutes, Verrucomicrobia, Actinobacteria, Lactobacillus, Akkermansia, Lachnospirillum, and Enterobacter were decreased in the CUMS mice. We used PICRUSt software to annotate the kyoto encyclopedia of genes and genomes (KEGG) pathway function related to depression-like behavior in mice. Our analysis identified sixty functional pathways associated with the gut microbiota of mice exhibiting depression-like behavior. In the amino acid concentration analysis, we observed decreased levels of hydroxyproline and tryptophan, and increased levels of alanine in CUMS mice. In the SCFAs concentration assay, we found decreased levels of butyric acid and valeric acid, and increased levels of acetic acid in CUMS mice. Some of these changes were significantly correlated with depressive-like behaviors. Our study contributes to the understanding of the mechanism of the gut-brain axis in the occurrence and development of depression.
Collapse
Affiliation(s)
- Mengjing Chen
- The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Lingfeng Wang
- Zhejiang Chinese Medical University, Hangzhou, China
| | | | - Zhen Huang
- Zhejiang Chinese Medical University, Hangzhou, China.
| |
Collapse
|
14
|
Li B, Yan Y, Zhang T, Xu H, Wu X, Yao G, Li X, Yan C, Wu LL. Quercetin reshapes gut microbiota homeostasis and modulates brain metabolic profile to regulate depression-like behaviors induced by CUMS in rats. Front Pharmacol 2024; 15:1362464. [PMID: 38595919 PMCID: PMC11002179 DOI: 10.3389/fphar.2024.1362464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 02/20/2024] [Indexed: 04/11/2024] Open
Abstract
Quercetin, an abundant flavonoid compound in plants, is considered a novel antidepressant; however, its mechanisms of action are poorly understood. This study aimed to investigate the therapeutic effects of quercetin on chronic unpredictable mild stress (CUMS)-induced depression-like behaviors in rats and explore the underlying mechanisms by combining untargeted metabolomics and 16S rRNA sequencing analysis of brain tissue metabolites and gut microbiota. Gut microbiota analysis revealed that at the phylum level, quercetin reduced Firmicutes and the Firmicutes/Bacteroidetes (F/B) ratio and enhanced Cyanobacteria. At the genus level, quercetin downregulated 6 and upregulated 14 bacterial species. Metabolomics analysis revealed that quercetin regulated multiple metabolic pathways, including glycolysis/gluconeogenesis, sphingolipid metabolism, the pentose phosphate pathway, and coenzyme A biosynthesis. This modulation leads to improvements in depression-like phenotypes, anxiety-like phenotypes, and cognitive function, highlighting the therapeutic potential of quercetin in treating depression.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Can Yan
- Integrative Medicine Research Center, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Li-Li Wu
- Integrative Medicine Research Center, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
15
|
Bali P, Lal P, Sivapuram MS, Kutikuppala LVS, Avti P, Chanana A, Kumar S, Anand A. Mind over Microbes: Investigating the Interplay between Lifestyle Factors, Gut Microbiota, and Brain Health. Neuroepidemiology 2024:1-23. [PMID: 38531341 DOI: 10.1159/000538416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 03/08/2024] [Indexed: 03/28/2024] Open
Abstract
BACKGROUND The gut microbiota (GM) of the human body comprises several species of microorganisms. This microorganism plays a significant role in the physiological and pathophysiological processes of various human diseases. METHODS The literature review includes studies that describe causative factors that influence GM. The GM is sensitive to various factors like circadian rhythms, environmental agents, physical activity, nutrition, and hygiene that together impact the functioning and composition of the gut microbiome. This affects the health of the host, including the psycho-neural aspects, due to the interconnectivity between the brain and the gut. Hence, this paper examines the relationship of GM with neurodegenerative disorders in the context of these aforesaid factors. CONCLUSION Future studies that identify the regulatory pathways associated with gut microbes can provide a causal link between brain degeneration and the gut at a molecular level. Together, this review could be helpful in designing preventive and treatment strategies aimed at GM, so that neurodegenerative diseases can be treated.
Collapse
Affiliation(s)
- Parul Bali
- Department of Biophysics, Postgraduate Institute of Medical Education and Research, Chandigarh, India
- Department of Neuroscience, University of Florida, Gainesville, Florida, USA
| | - Parth Lal
- Advance Pediatric Centre, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Madhava Sai Sivapuram
- Department of General Medicine, Dr. Pinnamaneni Siddhartha Institute of Medical Sciences and Research Foundation, Peda Avutapalli, India
| | | | - Pramod Avti
- Department of Biophysics, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | | | - Saurabh Kumar
- CCRYN-Collaborative Centre for Mind Body Intervention through Yoga, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Akshay Anand
- CCRYN-Collaborative Centre for Mind Body Intervention through Yoga, Postgraduate Institute of Medical Education and Research, Chandigarh, India
- Neuroscience Research Lab, Department of Neurology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
- Centre for Cognitive Science and Phenomenology, Panjab University, Chandigarh, India
| |
Collapse
|
16
|
Guo C, Zhang C. Role of the gut microbiota in the pathogenesis of endometriosis: a review. Front Microbiol 2024; 15:1363455. [PMID: 38505548 PMCID: PMC10948423 DOI: 10.3389/fmicb.2024.1363455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 02/19/2024] [Indexed: 03/21/2024] Open
Abstract
Endometriosis is classically defined as a chronic inflammatory heterogeneous disorder occurring in any part of the body, characterized by estrogen-driven periodic bleeding, proliferation, and fibrosis of ectopic endometrial glands and stroma outside the uterus. Endometriosis can take overwhelmingly serious damage to the structure and function of multi-organ, even impair whole-body systems, resulting in severe dysmenorrhea, chronic pelvic pain, infertility, fatigue and depression in 5-10% women of reproductive age. Precisely because of a huge deficiency of cognition about underlying etiology and complex pathogenesis of the debilitating disease, early diagnosis and treatment modalities with relatively minor side effects become bottlenecks in endometriosis. Thus, endometriosis warrants deeper exploration and expanded investigation in pathogenesis. The gut microbiota plays a significant role in chronic diseases in humans by acting as an important participant and regulator in the metabolism and immunity of the body. Increasingly, studies have shown that the gut microbiota is closely related to inflammation, estrogen metabolism, and immunity resulting in the development and progression of endometriosis. In this review, we discuss the diverse mechanisms of endometriosis closely related to the gut microbiota in order to provide new approaches for deeper exploration and expanded investigation for endometriosis on prevention, early diagnosis and treatment.
Collapse
Affiliation(s)
| | - Chiyuan Zhang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
17
|
Fan C, Xu J, Tong H, Fang Y, Chen Y, Lin Y, Chen R, Chen F, Wu G. Gut-brain communication mediates the impact of dietary lipids on cognitive capacity. Food Funct 2024; 15:1803-1824. [PMID: 38314832 DOI: 10.1039/d3fo05288e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Cognitive impairment, as a prevalent symptom of nervous system disorders, poses one of the most challenging aspects in the management of brain diseases. Lipids present in the cell membranes of all neurons within the brain and dietary lipids can regulate the cognition and memory function. In recent years, the advancements in gut microbiome research have enabled the exploration of dietary lipids targeting the gut-brain axis as a strategy for regulating cognition. This present review provides an in-depth overview of how lipids modulate cognition via the gut-brain axis depending on metabolic, immune, neural and endocrine pathways. It also comprehensively analyzes the effects of diverse lipids on the gut microbiota and intestinal barrier function, thereby affecting the central nervous system and cognitive capacity. Moreover, comparative analysis of the positive and negative effects is presented between beneficial and detrimental lipids. The former encompass monounsaturated fatty acids, short-chain fatty acids, omega-3 polyunsaturated fatty acids, phospholipids, phytosterols, fungal sterols and bioactive lipid-soluble vitamins, as well as lipid-derived gut metabolites, whereas the latter (detrimental lipids) include medium- or long-chain fatty acids, excessive proportions of n-6 polyunsaturated fatty acids, industrial trans fatty acids, and zoosterols. To sum up, the focus of this review is on how gut-brain communication mediates the impact of dietary lipids on cognitive capacity, providing a novel theoretical foundation for promoting brain cognitive health and scientific lipid consumption patterns.
Collapse
Affiliation(s)
- Chenhan Fan
- School of Public Health, Health Science Center, Ningbo University, Ningbo, Zhejiang, 315211, China.
| | - Jingxuan Xu
- School of Public Health, Health Science Center, Ningbo University, Ningbo, Zhejiang, 315211, China.
| | - Haoxiang Tong
- School of Public Health, Health Science Center, Ningbo University, Ningbo, Zhejiang, 315211, China.
| | - Yucheng Fang
- School of Public Health, Health Science Center, Ningbo University, Ningbo, Zhejiang, 315211, China.
| | - Yiming Chen
- School of Public Health, Health Science Center, Ningbo University, Ningbo, Zhejiang, 315211, China.
| | - Yangzhuo Lin
- School of Basic Medical Science, Health Science Center, Ningbo University, Ningbo, Zhejiang, 315211, P. R. China
| | - Rui Chen
- School of Basic Medical Science, Health Science Center, Ningbo University, Ningbo, Zhejiang, 315211, P. R. China
| | - Fuhao Chen
- School of Basic Medical Science, Health Science Center, Ningbo University, Ningbo, Zhejiang, 315211, P. R. China
| | - Guoqing Wu
- School of Public Health, Health Science Center, Ningbo University, Ningbo, Zhejiang, 315211, China.
| |
Collapse
|
18
|
Mahbub NU, Islam MM, Hong ST, Chung HJ. Dysbiosis of the gut microbiota and its effect on α-synuclein and prion protein misfolding: consequences for neurodegeneration. Front Cell Infect Microbiol 2024; 14:1348279. [PMID: 38435303 PMCID: PMC10904658 DOI: 10.3389/fcimb.2024.1348279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 01/24/2024] [Indexed: 03/05/2024] Open
Abstract
Abnormal behavior of α-synuclein and prion proteins is the hallmark of Parkinson's disease (PD) and prion illnesses, respectively, being complex neurological disorders. A primary cause of protein aggregation, brain injury, and cognitive loss in prion illnesses is the misfolding of normal cellular prion proteins (PrPC) into an infectious form (PrPSc). Aggregation of α-synuclein causes disruptions in cellular processes in Parkinson's disease (PD), leading to loss of dopamine-producing neurons and motor symptoms. Alteration in the composition or activity of gut microbes may weaken the intestinal barrier and make it possible for prions to go from the gut to the brain. The gut-brain axis is linked to neuroinflammation; the metabolites produced by the gut microbiota affect the aggregation of α-synuclein, regulate inflammation and immunological responses, and may influence the course of the disease and neurotoxicity of proteins, even if their primary targets are distinct proteins. This thorough analysis explores the complex interactions that exist between the gut microbiota and neurodegenerative illnesses, particularly Parkinson's disease (PD) and prion disorders. The involvement of the gut microbiota, a complex collection of bacteria, archaea, fungi, viruses etc., in various neurological illnesses is becoming increasingly recognized. The gut microbiome influences neuroinflammation, neurotransmitter synthesis, mitochondrial function, and intestinal barrier integrity through the gut-brain axis, which contributes to the development and progression of disease. The review delves into the molecular mechanisms that underlie these relationships, emphasizing the effects of microbial metabolites such as bacterial lipopolysaccharides (LPS), and short-chain fatty acids (SCFAs) in regulating brain functioning. Additionally, it looks at how environmental influences and dietary decisions affect the gut microbiome and whether they could be risk factors for neurodegenerative illnesses. This study concludes by highlighting the critical role that the gut microbiota plays in the development of Parkinson's disease (PD) and prion disease. It also provides a promising direction for future research and possible treatment approaches. People afflicted by these difficult ailments may find hope in new preventive and therapeutic approaches if the role of the gut microbiota in these diseases is better understood.
Collapse
Affiliation(s)
- Nasir Uddin Mahbub
- Department of Biomedical Sciences and Institute for Medical Science, Jeonbuk National University Medical School, Jeonju, Republic of Korea
| | - Md Minarul Islam
- Department of Biomedical Sciences and Institute for Medical Science, Jeonbuk National University Medical School, Jeonju, Republic of Korea
| | - Seong-Tshool Hong
- Department of Biomedical Sciences and Institute for Medical Science, Jeonbuk National University Medical School, Jeonju, Republic of Korea
| | - Hea-Jong Chung
- Gwangju Center, Korea Basic Science Institute, Gwangju, Republic of Korea
| |
Collapse
|
19
|
Suprunowicz M, Tomaszek N, Urbaniak A, Zackiewicz K, Modzelewski S, Waszkiewicz N. Between Dysbiosis, Maternal Immune Activation and Autism: Is There a Common Pathway? Nutrients 2024; 16:549. [PMID: 38398873 PMCID: PMC10891846 DOI: 10.3390/nu16040549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/05/2024] [Accepted: 02/15/2024] [Indexed: 02/25/2024] Open
Abstract
Autism spectrum disorder (ASD) is a neuropsychiatric condition characterized by impaired social interactions and repetitive stereotyped behaviors. Growing evidence highlights an important role of the gut-brain-microbiome axis in the pathogenesis of ASD. Research indicates an abnormal composition of the gut microbiome and the potential involvement of bacterial molecules in neuroinflammation and brain development disruptions. Concurrently, attention is directed towards the role of short-chain fatty acids (SCFAs) and impaired intestinal tightness. This comprehensive review emphasizes the potential impact of maternal gut microbiota changes on the development of autism in children, especially considering maternal immune activation (MIA). The following paper evaluates the impact of the birth route on the colonization of the child with bacteria in the first weeks of life. Furthermore, it explores the role of pro-inflammatory cytokines, such as IL-6 and IL-17a and mother's obesity as potentially environmental factors of ASD. The purpose of this review is to advance our understanding of ASD pathogenesis, while also searching for the positive implications of the latest therapies, such as probiotics, prebiotics or fecal microbiota transplantation, targeting the gut microbiota and reducing inflammation. This review aims to provide valuable insights that could instruct future studies and treatments for individuals affected by ASD.
Collapse
Affiliation(s)
| | | | | | | | - Stefan Modzelewski
- Department of Psychiatry, Medical University of Bialystok, pl. Wołodyjowskiego 2, 15-272 Białystok, Poland; (M.S.); (N.T.); (A.U.); (K.Z.); (N.W.)
| | | |
Collapse
|
20
|
Delanote J, Correa Rojo A, Wells PM, Steves CJ, Ertaylan G. Systematic identification of the role of gut microbiota in mental disorders: a TwinsUK cohort study. Sci Rep 2024; 14:3626. [PMID: 38351227 PMCID: PMC10864280 DOI: 10.1038/s41598-024-53929-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 02/06/2024] [Indexed: 02/16/2024] Open
Abstract
Mental disorders are complex disorders influenced by multiple genetic, environmental, and biological factors. Specific microbiota imbalances seem to affect mental health status. However, the mechanisms by which microbiota disturbances impact the presence of depression, stress, anxiety, and eating disorders remain poorly understood. Currently, there are no robust biomarkers identified. We proposed a novel pyramid-layer design to accurately identify microbial/metabolomic signatures underlying mental disorders in the TwinsUK registry. Monozygotic and dizygotic twins discordant for mental disorders were screened, in a pairwise manner, for differentially abundant bacterial genera and circulating metabolites. In addition, multivariate analyses were performed, accounting for individual-level confounders. Our pyramid-layer study design allowed us to overcome the limitations of cross-sectional study designs with significant confounder effects and resulted in an association of the abundance of genus Parabacteroides with the diagnosis of mental disorders. Future research should explore the potential role of Parabacteroides as a mediator of mental health status. Our results indicate the potential role of the microbiome as a modifier in mental disorders that might contribute to the development of novel methodologies to assess personal risk and intervention strategies.
Collapse
Affiliation(s)
- Julie Delanote
- Sustainable Health, Flemish Institute for Technological Research (VITO), Mol, Belgium
| | - Alejandro Correa Rojo
- Sustainable Health, Flemish Institute for Technological Research (VITO), Mol, Belgium
- Data Science Institute, Interuniversity Institute for Biostatistics and Statistical Bioinformatics (I-BioStat), Hasselt University, Diepenbeek, Belgium
| | - Philippa M Wells
- Department of Twin Research and Genetic Epidemiology, King's College London, St Thomas' Hospital, 3-4th Floor South Wing Block D, Westminster Bridge Road, London, SE1 7EH, UK
| | - Claire J Steves
- Department of Twin Research and Genetic Epidemiology, King's College London, St Thomas' Hospital, 3-4th Floor South Wing Block D, Westminster Bridge Road, London, SE1 7EH, UK
- Department of Ageing and Health, St Thomas' Hospital, 9th floor, North Wing, Westminster Bridge Road, London, SE1 7EH, UK
| | - Gökhan Ertaylan
- Sustainable Health, Flemish Institute for Technological Research (VITO), Mol, Belgium.
| |
Collapse
|
21
|
Luqman A, He M, Hassan A, Ullah M, Zhang L, Rashid Khan M, Din AU, Ullah K, Wang W, Wang G. Mood and microbes: a comprehensive review of intestinal microbiota's impact on depression. Front Psychiatry 2024; 15:1295766. [PMID: 38404464 PMCID: PMC10884216 DOI: 10.3389/fpsyt.2024.1295766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 01/22/2024] [Indexed: 02/27/2024] Open
Abstract
Depression is considered a multifaceted and intricate mental disorder of growing concern due to its significant impact on global health issues. The human gut microbiota, also known as the "second brain," has an important role in the CNS by regulating it through chemical, immunological, hormonal, and neurological processes. Various studies have found a significant bidirectional link between the brain and the gut, emphasizing the onset of depression therapies. The biological and molecular processes underlying depression and microbiota are required, as the bidirectional association may represent a novel study. However, profound insights into the stratification and diversity of the gut microbiota are still uncommon. This article investigates the emerging evidence of a bacterial relationship between the gut and the brain's neurological system and its potential pathogenicity and relevance. The interplay of microbiota, immune system, nervous system neurotransmitter synthesis, and neuroplasticity transitions is also widely studied. The consequences of stress, dietary fibers, probiotics, prebiotics, and antibiotics on the GB axis are being studied. Multiple studies revealed the processes underlying this axis and led to the development of effective microbiota-based drugs for both prevention and treatment. Therefore, the results support the hypothesis that gut microbiota influences depression and provide a promising area of research for an improved knowledge of the etiology of the disease and future therapies.
Collapse
Affiliation(s)
- Ameer Luqman
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, National and Local Joint Engineering Laboratory for Vascular Implant, Bioengineering College of Chongqing University, Chongqing, China
| | - Mei He
- Chongqing University Cancer Hospital, Chongqing, China
| | - Adil Hassan
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, National and Local Joint Engineering Laboratory for Vascular Implant, Bioengineering College of Chongqing University, Chongqing, China
- Chongqing Key Laboratory of Nano/Micro Composite Materials and Devices, Chongqing University of Science and Technology, Chongqing, China
- JinFeng Laboratory, Chongqing, China
| | - Mehtab Ullah
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, National and Local Joint Engineering Laboratory for Vascular Implant, Bioengineering College of Chongqing University, Chongqing, China
| | | | - Muhammad Rashid Khan
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, National and Local Joint Engineering Laboratory for Vascular Implant, Bioengineering College of Chongqing University, Chongqing, China
| | - Ahmad Ud Din
- Plants for Human Health Institute, Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Kannapolis, NC, United States
| | - Kamran Ullah
- Department of Biology, The University of Haripur, Haripur, Pakistan
| | - Wei Wang
- Chongqing University Cancer Hospital, Chongqing, China
| | - Guixue Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, National and Local Joint Engineering Laboratory for Vascular Implant, Bioengineering College of Chongqing University, Chongqing, China
- JinFeng Laboratory, Chongqing, China
| |
Collapse
|
22
|
Yang YH, Li CX, Zhang RB, Shen Y, Xu XJ, Yu QM. A review of the pharmacological action and mechanism of natural plant polysaccharides in depression. Front Pharmacol 2024; 15:1348019. [PMID: 38389919 PMCID: PMC10883385 DOI: 10.3389/fphar.2024.1348019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 01/29/2024] [Indexed: 02/24/2024] Open
Abstract
Depression is a prevalent mental disorder. However, clinical treatment options primarily based on chemical drugs have demonstrated varying degrees of adverse reactions and drug resistance, including somnolence, nausea, and cognitive impairment. Therefore, the development of novel antidepressant medications that effectively reduce suffering and side effects has become a prominent area of research. Polysaccharides are bioactive compounds extracted from natural plants that possess diverse pharmacological activities and medicinal values. It has been discovered that polysaccharides can effectively mitigate depression symptoms. This paper provides an overview of the pharmacological action and mechanisms, intervention approaches, and experimental models regarding the antidepressant effects of polysaccharides derived from various natural sources. Additionally, we summarize the roles and potential mechanisms through which these polysaccharides prevent depression by regulating neurotransmitters, HPA axis, neurotrophic factors, neuroinflammation, oxidative stress, tryptophan metabolism, and gut microbiota. Natural plant polysaccharides hold promise as adjunctive antidepressants for prevention, reduction, and treatment of depression by exerting their therapeutic effects through multiple pathways and targets. Therefore, this review aims to provide scientific evidence for developing polysaccharide resources as effective antidepressant drugs.
Collapse
Affiliation(s)
- Yu-He Yang
- Heilongjiang University of Chinese Medicine, Harbin, China
| | - Chen-Xue Li
- Harbin University of Commerce, Harbin, China
| | | | - Ying Shen
- Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xue-Jiao Xu
- Heilongjiang University of Chinese Medicine, Harbin, China
| | - Qin-Ming Yu
- Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
23
|
Kong H, Xu T, Wang S, Zhang Z, Li M, Qu S, Li Q, Gao P, Cong Z. The molecular mechanism of polysaccharides in combating major depressive disorder: A comprehensive review. Int J Biol Macromol 2024; 259:129067. [PMID: 38163510 DOI: 10.1016/j.ijbiomac.2023.129067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 12/10/2023] [Accepted: 12/25/2023] [Indexed: 01/03/2024]
Abstract
Major depressive disorder (MDD) is a complex psychiatric condition with diverse etiological factors. Typical pathological features include decreased cerebral cortex, subcortical structures, and grey matter volumes, as well as monoamine transmitter dysregulation. Although medications exist to treat MDD, unmet needs persist due to limited efficacy, induced side effects, and relapse upon drug withdrawal. Polysaccharides offer promising new therapies for MDD, demonstrating antidepressant effects with minimal side effects and multiple targets. These include neurotransmitter, neurotrophin, neuroinflammation, hypothalamic-pituitary-adrenal axis, mitochondrial function, oxidative stress, and intestinal flora regulation. This review explores the latest advancements in understanding the pharmacological actions and mechanisms of polysaccharides in treating major depression. We discuss the impact of polysaccharides' diverse structures and properties on their pharmacological actions, aiming to inspire new research directions and facilitate the discovery of novel anti-depressive drugs.
Collapse
Affiliation(s)
- Hongwei Kong
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Tianren Xu
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Shengguang Wang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Zhiyuan Zhang
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Min Li
- Institute of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Suyan Qu
- Tai 'an Taishan District People's Hospital, China
| | - Qinqing Li
- Shanxi University of Chinese Medicine, China
| | - Peng Gao
- Institute of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China.
| | - Zhufeng Cong
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; Affiliated Cancer Hospital of Shandong First Medical University, China.
| |
Collapse
|
24
|
Tamés H, Sabater C, Royo F, Margolles A, Falcón JM, Ruas-Madiedo P, Ruiz L. Mouse intestinal microbiome modulation by oral administration of a GABA-producing Bifidobacterium adolescentis strain. Microbiol Spectr 2024; 12:e0258023. [PMID: 37991375 PMCID: PMC10783132 DOI: 10.1128/spectrum.02580-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 10/15/2023] [Indexed: 11/23/2023] Open
Abstract
IMPORTANCE The gut microbiome-brain communication signaling has emerged in recent years as a novel target for intervention with the potential to ameliorate some conditions associated with the central nervous system. Hence, probiotics with capacity to produce neurotransmitters, for instance, have come up as appealing alternatives to treat disorders associated with disbalanced neurotransmitters. Herein, we further deep into the effects of administering a gamma-aminobutyric acid (GABA)-producing Bifidobacterium strain, previously demonstrated to contribute to reduce serum glutamate levels, in the gut microbiome composition and metabolic activity in a mouse model. Our results demonstrate that the GABA-producing strain administration results in a specific pattern of gut microbiota modulation, different from the one observed in animals receiving non-GABA-producing strains. This opens new avenues to delineate the specific mechanisms by which IPLA60004 administration contributes to reducing serum glutamate levels and to ascertain whether this effect could exert health benefits in patients of diseases associated with high-glutamate serum concentrations.
Collapse
Affiliation(s)
- Héctor Tamés
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias-Consejo Superior de Investigaciones Científicas (IPLA-CSIC), Paseo Río Linares s/n, Villaviciosa, Asturias, Spain
- Functionality and Ecology of Beneficial Microbes (MicroHealth) Group, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Asturias, Spain
| | - Carlos Sabater
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias-Consejo Superior de Investigaciones Científicas (IPLA-CSIC), Paseo Río Linares s/n, Villaviciosa, Asturias, Spain
- Functionality and Ecology of Beneficial Microbes (MicroHealth) Group, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Asturias, Spain
| | - Félix Royo
- Exosomes Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas Y Digestivas (CIBERehd), Madrid, Spain
- IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| | - Abelardo Margolles
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias-Consejo Superior de Investigaciones Científicas (IPLA-CSIC), Paseo Río Linares s/n, Villaviciosa, Asturias, Spain
- Functionality and Ecology of Beneficial Microbes (MicroHealth) Group, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Asturias, Spain
| | - Juan Manuel Falcón
- Exosomes Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas Y Digestivas (CIBERehd), Madrid, Spain
- IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| | - Patricia Ruas-Madiedo
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias-Consejo Superior de Investigaciones Científicas (IPLA-CSIC), Paseo Río Linares s/n, Villaviciosa, Asturias, Spain
- Functionality and Ecology of Beneficial Microbes (MicroHealth) Group, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Asturias, Spain
| | - Lorena Ruiz
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias-Consejo Superior de Investigaciones Científicas (IPLA-CSIC), Paseo Río Linares s/n, Villaviciosa, Asturias, Spain
- Functionality and Ecology of Beneficial Microbes (MicroHealth) Group, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Asturias, Spain
| |
Collapse
|
25
|
König E, Heponiemi P, Kivinen S, Räkköläinen J, Beasley S, Borman T, Collado MC, Hukkinen V, Junnila J, Lahti L, Norring M, Piirainen V, Salminen S, Heinonen M, Valros A. Fewer culturable Lactobacillaceae species identified in faecal samples of pigs performing manipulative behaviour. Sci Rep 2024; 14:132. [PMID: 38168466 PMCID: PMC10762183 DOI: 10.1038/s41598-023-50791-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 12/25/2023] [Indexed: 01/05/2024] Open
Abstract
Manipulative behaviour that consists of touching or close contact with ears or tails of pen mates is common in pigs and can become damaging. Manipulative behaviour was analysed from video recordings of 45-day-old pigs, and 15 manipulator-control pairs (n = 30) were formed. Controls neither received nor performed manipulative behaviour. Rectal faecal samples of manipulators and controls were compared. 16S PCR was used to identify Lactobacillaceae species and 16S amplicon sequencing to determine faecal microbiota composition. Seven culturable Lactobacillaceae species were identified in control pigs and four in manipulator pigs. Manipulators (p = 0.02) and females (p = 0.005) expressed higher Lactobacillus amylovorus, and a significant interaction was seen (sex * status: p = 0.005) with this sex difference being more marked in controls. Females (p = 0.08) and manipulator pigs (p = 0.07) tended to express higher total Lactobacillaceae. A tendency for an interaction was seen in Limosilactobacillus reuteri (sex * status: p = 0.09). Results suggest a link between observed low diversity in Lactobacillaceae and the development of manipulative behaviour.
Collapse
Affiliation(s)
- Emilia König
- Research Centre for Animal Welfare, Department of Production Animal Medicine, University of Helsinki, 00790, Helsinki, Finland.
| | | | - Sanni Kivinen
- Functional Foods Forum, University of Turku, 20520, Turku, Finland
| | | | - Shea Beasley
- Vetcare Ltd., 04600, Mäntsälä, Finland
- Sheaps Oy, 03250, Ojakkala, Finland
| | - Tuomas Borman
- Department of Computing, University of Turku, 20500, Turku, Finland
| | - Maria Carmen Collado
- Institute of Agrochemistry and Food Technology-National Research Council (IATA-CSIC), 46980, Paterna, Valencia, Spain
| | - Vilja Hukkinen
- Research Centre for Animal Welfare, Department of Production Animal Medicine, University of Helsinki, 00790, Helsinki, Finland
| | | | - Leo Lahti
- Department of Computing, University of Turku, 20500, Turku, Finland
| | - Marianna Norring
- Research Centre for Animal Welfare, Department of Production Animal Medicine, University of Helsinki, 00790, Helsinki, Finland
| | - Virpi Piirainen
- Research Centre for Animal Welfare, Department of Production Animal Medicine, University of Helsinki, 00790, Helsinki, Finland
| | - Seppo Salminen
- Functional Foods Forum, University of Turku, 20520, Turku, Finland
| | - Mari Heinonen
- Research Centre for Animal Welfare, Department of Production Animal Medicine, University of Helsinki, 00790, Helsinki, Finland
| | - Anna Valros
- Research Centre for Animal Welfare, Department of Production Animal Medicine, University of Helsinki, 00790, Helsinki, Finland
| |
Collapse
|
26
|
Sah RK, Nandan A, Kv A, S P, S S, Jose A, Venkidasamy B, Nile SH. Decoding the role of the gut microbiome in gut-brain axis, stress-resilience, or stress-susceptibility: A review. Asian J Psychiatr 2024; 91:103861. [PMID: 38134565 DOI: 10.1016/j.ajp.2023.103861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 12/01/2023] [Accepted: 12/08/2023] [Indexed: 12/24/2023]
Abstract
Increased exposure to stress is associated with stress-related disorders, including depression, anxiety, and neurodegenerative conditions. However, susceptibility to stress is not seen in every individual exposed to stress, and many of them exhibit resilience. Thus, developing resilience to stress could be a big breakthrough in stress-related disorders, with the potential to replace or act as an alternative to the available therapies. In this article, we have focused on the recent advancements in gut microbiome research and the potential role of the gut-brain axis (GBA) in developing resilience or susceptibility to stress. There might be a complex interaction between the autonomic nervous system (ANS), immune system, endocrine system, microbial metabolites, and bioactive lipids like short-chain fatty acids (SCFAs), neurotransmitters, and their metabolites that regulates the communication between the gut microbiota and the brain. High fiber intake, prebiotics, probiotics, plant supplements, and fecal microbiome transplant (FMT) could be beneficial against gut dysbiosis-associated brain disorders. These could promote the growth of SCFA-producing bacteria, thereby enhancing the gut barrier and reducing the gut inflammatory response, increase the expression of the claudin-2 protein associated with the gut barrier, and maintain the blood-brain barrier integrity by promoting the expression of tight junction proteins such as claudin-5. Their neuroprotective effects might also be related to enhancing the expression of brain-derived neurotrophic factor (BDNF) and glucagon-like peptide (GLP-1). Further investigations are needed in the field of the gut microbiome for the elucidation of the mechanisms by which gut dysbiosis contributes to the pathophysiology of neuropsychiatric disorders.
Collapse
Affiliation(s)
- Ranjay Kumar Sah
- Department of Pharmacology, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi 682 041, Kerala, India
| | - Amritasree Nandan
- Department of Pharmacology, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi 682 041, Kerala, India
| | - Athira Kv
- Department of Pharmacology, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi 682 041, Kerala, India.
| | - Prashant S
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi 682 041, Kerala, India
| | - Sathianarayanan S
- NITTE (Deemed to be University), NGSM Institute of Pharmaceutical Sciences, Department of Pharmaceutical Chemistry, Mangalore, India
| | - Asha Jose
- JSS College of Pharmacy, JSS Academy of Higher Education and research, Ooty 643001, Tamil Nadu, India
| | - Baskar Venkidasamy
- Department of Oral & Maxillofacial Surgery, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai 600 077, Tamil Nadu, India.
| | - Shivraj Hariram Nile
- Division of Food and Nutritional Biotechnology, National Agri-Food Biotechnology Institute (NABI), Sector-81, Mohali 140306, Punjab, India.
| |
Collapse
|
27
|
Bahmani M, Mehrtabar S, Jafarizadeh A, Zoghi S, Heravi FS, Abbasi A, Sanaie S, Rahnemayan S, Leylabadlo HE. The Gut Microbiota and Major Depressive Disorder: Current Understanding and Novel Therapeutic Strategies. Curr Pharm Biotechnol 2024; 25:2089-2107. [PMID: 38288791 DOI: 10.2174/0113892010281892240116081031] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 12/13/2023] [Accepted: 12/19/2023] [Indexed: 09/10/2024]
Abstract
Major depressive disorder (MDD) is a common neuropsychiatric challenge that primarily targets young females. MDD as a global disorder has a multifactorial etiology related to the environment and genetic background. A balanced gut microbiota is one of the most important environmental factors involved in human physiological health. The interaction of gut microbiota components and metabolic products with the hypothalamic-pituitary-adrenal system and immune mediators can reverse depression phenotypes in vulnerable individuals. Therefore, abnormalities in the quantitative and qualitative structure of the gut microbiota may lead to the progression of MDD. In this review, we have presented an overview of the bidirectional relationship between gut microbiota and MDD, and the effect of pre-treatments and microbiomebased approaches, such as probiotics, prebiotics, synbiotics, fecal microbiota transplantation, and a new generation of microbial alternatives, on the improvement of unstable clinical conditions caused by MDD.
Collapse
Affiliation(s)
- Mohaddeseh Bahmani
- Liver and Gastrointestinal Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Saba Mehrtabar
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Jafarizadeh
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sevda Zoghi
- Liver and Gastrointestinal Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Amin Abbasi
- Liver and Gastrointestinal Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sarvin Sanaie
- Research Center for Integrative Medicine in Aging, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sama Rahnemayan
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | | |
Collapse
|
28
|
Torres-Chávez ME, Torres-Carrillo NM, Monreal-Lugo AV, Garnés-Rancurello S, Murugesan S, Gutiérrez-Hurtado IA, Beltrán-Ramírez JR, Sandoval-Pinto E, Torres-Carrillo N. Association of intestinal dysbiosis with susceptibility to multiple sclerosis: Evidence from different population studies (Review). Biomed Rep 2023; 19:93. [PMID: 37901876 PMCID: PMC10603378 DOI: 10.3892/br.2023.1675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 09/25/2023] [Indexed: 10/31/2023] Open
Abstract
Understanding the relationship between microorganisms that live in our intestines and neuroinflammatory and neurodegenerative pathologies of the central nervous system (CNS) is essential, since they have been shown to have an immunomodulatory effect in neurological disorders, such as multiple sclerosis (MS). The gut microbiota can be affected by several environmental factors, including infections, physical and emotional stress and diet, the latter known as the main modulator of intestinal bacteria. An abrupt shift in the gut microbiota composition and function is known as dysbiosis, a state of local and systemic inflammation produced by pathogenic bacteria and its metabolites responsible for numerous neurological symptoms. It may also trigger neuronal damage in patients diagnosed with MS. Intestinal dysbiosis affects the permeability of the intestine, allowing chronic low-grade bacterial translocation from the intestine to the circulation, which may overstimulate immune cells and cells resident in the CNS, break immune tolerance and, in addition, alter the permeability of the blood-brain barrier (BBB). This way, toxins, inflammatory molecules and oxidative stress molecules can pass freely into the CNS and cause extensive damage to the brain. However, commensal bacteria, such as the Lactobacillus genus and Bacteroides fragilis, and their metabolites (with anti-inflammatory potential), produce neurotransmitters such as γ-aminobutyric acid, histamine, dopamine, norepinephrine, acetylcholine and serotonin, which are important for neurological regulation. In addition, reprogramming the gut microbiota of patients with MS with a healthy gut microbiota may help improve the integrity of the gut and BBB, by providing clinically protective anti-inflammatory effects and reducing the disease's degenerative progression. The present review provides valuable information about the relationship between gut microbiota and neuroinflammatory processes of the CNS. Most importantly, it highlights the importance of intestinal bacteria as an environmental factor that may mediate the clinical course of MS, or even predispose to the outbreak of this disease.
Collapse
Affiliation(s)
- María Eugenia Torres-Chávez
- Department of Microbiology and Pathology, University Center for Health Sciences, University of Guadalajara, Guadalajara, Jalisco 44340, Mexico
| | - Nora Magdalena Torres-Carrillo
- Department of Microbiology and Pathology, University Center for Health Sciences, University of Guadalajara, Guadalajara, Jalisco 44340, Mexico
| | - Ana Victoria Monreal-Lugo
- Department of Nutrition and Health Research Center, National Institute of Public Health, Cuernavaca, Morelos 62100, Mexico
- Department of Nutrition and Bioprogramming Coordination, Isidro Espinosa de los Reyes National Institute of Perinatology, Mexico City 11000, Mexico
| | - Sandra Garnés-Rancurello
- Department of Nutrition, Technological Institute of Higher Studies of Monterrey, Zapopan, Jalisco 45201, Mexico
| | | | - Itzae Adonai Gutiérrez-Hurtado
- Department of Molecular Biology and Genomics, University Center for Health Sciences, University of Guadalajara, Guadalajara, Jalisco 44340, Mexico
| | - Jesús Raúl Beltrán-Ramírez
- Department of Information Systems, University Center of Administrative Economic Sciences, University of Guadalajara, Zapopan, Jalisco 45100, Mexico
| | - Elena Sandoval-Pinto
- Department of Cellular and Molecular Biology, University Center for Biological and Agricultural Sciences, University of Guadalajara, Zapopan, Jalisco 45200, Mexico
| | - Norma Torres-Carrillo
- Department of Microbiology and Pathology, University Center for Health Sciences, University of Guadalajara, Guadalajara, Jalisco 44340, Mexico
| |
Collapse
|
29
|
Angelova IY, Kovtun AS, Averina OV, Koshenko TA, Danilenko VN. Unveiling the Connection between Microbiota and Depressive Disorder through Machine Learning. Int J Mol Sci 2023; 24:16459. [PMID: 38003647 PMCID: PMC10671666 DOI: 10.3390/ijms242216459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 11/13/2023] [Accepted: 11/15/2023] [Indexed: 11/26/2023] Open
Abstract
In the last few years, investigation of the gut-brain axis and the connection between the gut microbiota and the human nervous system and mental health has become one of the most popular topics. Correlations between the taxonomic and functional changes in gut microbiota and major depressive disorder have been shown in several studies. Machine learning provides a promising approach to analyze large-scale metagenomic data and identify biomarkers associated with depression. In this work, machine learning algorithms, such as random forest, elastic net, and You Only Look Once (YOLO), were utilized to detect significant features in microbiome samples and classify individuals based on their disorder status. The analysis was conducted on metagenomic data obtained during the study of gut microbiota of healthy people and patients with major depressive disorder. The YOLO method showed the greatest effectiveness in the analysis of the metagenomic samples and confirmed the experimental results on the critical importance of a reduction in the amount of Faecalibacterium prausnitzii for the manifestation of depression. These findings could contribute to a better understanding of the role of the gut microbiota in major depressive disorder and potentially lead the way for novel diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Irina Y. Angelova
- Vavilov Institute of General Genetics, Russian Academy of Sciences (RAS), 119333 Moscow, Russia; (A.S.K.); (O.V.A.); (V.N.D.)
| | | | | | | | | |
Collapse
|
30
|
Zhou C, Chen Y, Xue S, Shi Q, Guo L, Yu H, Xue F, Cai M, Wang H, Peng Z. rTMS ameliorates depressive-like behaviors and regulates the gut microbiome and medium- and long-chain fatty acids in mice exposed to chronic unpredictable mild stress. CNS Neurosci Ther 2023; 29:3549-3566. [PMID: 37269082 PMCID: PMC10580350 DOI: 10.1111/cns.14287] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 04/18/2023] [Accepted: 05/23/2023] [Indexed: 06/04/2023] Open
Abstract
INTRODUCTION Repetitive transcranial magnetic stimulation (rTMS) is a clinically useful therapy for depression. However, the effects of rTMS on the metabolism of fatty acids (FAs) and the composition of gut microbiota in depression are not well established. METHODS Mice received rTMS (15 Hz, 1.26 T) for seven consecutive days after exposure to chronic unpredictable mild stress (CUMS). The subsequent depressive-like behaviors, the composition of gut microbiota of stool samples, as well as medium- and long-chain fatty acids (MLCFAs) in the plasma, prefrontal cortex (PFC), and hippocampus (HPC) were evaluated. RESULTS CUMS induced remarkable changes in gut microbiotas and fatty acids, specifically in community diversity of gut microbiotas and PUFAs in the brain. 15 Hz rTMS treatment alleviates depressive-like behaviors and partially normalized CUMS induced alterations of microbiotas and MLCFAs, especially the abundance of Cyanobacteria, Actinobacteriota, and levels of polyunsaturated fatty acids (PUFAs) in the hippocampus and PFC. CONCLUSION These findings revealed that the modulation of gut microbiotas and PUFAs metabolism might partly contribute to the antidepressant effect of rTMS.
Collapse
Affiliation(s)
- Cui‐Hong Zhou
- Department of Psychiatry, Xijing HospitalAir Force Medical UniversityXi'anChina
| | - Yi‐Huan Chen
- Department of Psychiatry, Xijing HospitalAir Force Medical UniversityXi'anChina
| | - Shan‐Shan Xue
- Department of Psychiatry, Xijing HospitalAir Force Medical UniversityXi'anChina
| | - Qing‐Qing Shi
- Department of Psychiatry, Xijing HospitalAir Force Medical UniversityXi'anChina
| | - Lin Guo
- Department of PsychiatryChang'an HospitalXi'anChina
| | - Huan Yu
- Department of Psychiatry, Xijing HospitalAir Force Medical UniversityXi'anChina
| | - Fen Xue
- Department of Psychiatry, Xijing HospitalAir Force Medical UniversityXi'anChina
| | - Min Cai
- Department of Psychiatry, Xijing HospitalAir Force Medical UniversityXi'anChina
| | - Hua‐Ning Wang
- Department of Psychiatry, Xijing HospitalAir Force Medical UniversityXi'anChina
| | - Zheng‐Wu Peng
- Department of Psychiatry, Xijing HospitalAir Force Medical UniversityXi'anChina
| |
Collapse
|
31
|
Zhang S, Lu B, Wang G. The role of gut microbiota in the pathogenesis and treatment of postpartum depression. Ann Gen Psychiatry 2023; 22:36. [PMID: 37759312 PMCID: PMC10523734 DOI: 10.1186/s12991-023-00469-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 09/22/2023] [Indexed: 09/29/2023] Open
Abstract
Postpartum depression (PPD) is a common complication of pregnancy in women, and its pathogenesis mainly involves disturbances of the neuroendocrine regulation, immune system, neurotransmitters, hormone secretion, and the gut microbiome. Gut microbes play essential physiological and pathological roles in the gut-brain axis' pathways which are involved in various central nervous system (CNS) and psychiatric disorders, including PPD. Numerous studies have identified the fundamental role of the gut-brain axis in the pathogenesis and treatment of PPD patients and also correlates with other pathogenic mechanisms of PPD. Disturbances in gut microbes are associated with the disruption of multiple signaling pathways and systems that ultimately lead to PPD development. This review aimed to elucidate the potential connections between gut microbes and the established PPD network, and this might serve as a guide for the development of new efficient diagnostic, therapeutic, and prognostic strategies in the management of PPD.
Collapse
Affiliation(s)
| | - Baili Lu
- Wuhan Mental Health Center, Wuhan, China
| | - Gang Wang
- Wuhan Mental Health Center, Wuhan, China.
| |
Collapse
|
32
|
Ross K. Psychobiotics: Are they the future intervention for managing depression and anxiety? A literature review. Explore (NY) 2023; 19:669-680. [PMID: 36868988 PMCID: PMC9940471 DOI: 10.1016/j.explore.2023.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 02/12/2023] [Accepted: 02/18/2023] [Indexed: 02/22/2023]
Abstract
Mental health is a public health concern among professional organizations, clinicians, and consumers alike, especially in light of the COVID-19 pandemic. Indeed, the World Health Organization has identified mental health as an epidemic of the 21st century contributing to the global health burden, which highlights the urgency to develop economical, accessible, minimally invasive interventions to effectively manage depression, anxiety, and stress. Nutritional approaches, including the use of probiotics and psychobiotics to manage depression and anxiety, have elicited interest in recent years. This review aimed to summarize evidence from studies including animal models, cell cultures, and human subjects. Overall, the current evidence suggests that 1) Specific strains of probiotics can reduce depressive symptoms and anxiety; 2) Symptoms may be reduced through one or more possible mechanisms of action, including impact on the synthesis of neurotransmitters such as serotonin and GABA, modulation of inflammatory cytokines, or enhancing stress responses through effects on stress hormones and the HPA axis; and 3) While psychobiotics may offer therapeutic benefits to manage depression and anxiety, further research, particularly human studies, is needed to better characterize their mode of action and understand optimal dosing in the context of nutritional interventions.
Collapse
Affiliation(s)
- Kim Ross
- Sonoran University of Health Sciences, 2140 E. Broadway Rd. Tempe, AZ 85282, United States.
| |
Collapse
|
33
|
López-Villodres JA, Escamilla A, Mercado-Sáenz S, Alba-Tercedor C, Rodriguez-Perez LM, Arranz-Salas I, Sanchez-Varo R, Bermúdez D. Microbiome Alterations and Alzheimer's Disease: Modeling Strategies with Transgenic Mice. Biomedicines 2023; 11:1846. [PMID: 37509487 PMCID: PMC10377071 DOI: 10.3390/biomedicines11071846] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 06/21/2023] [Accepted: 06/23/2023] [Indexed: 07/30/2023] Open
Abstract
In the last decade, the role of the microbiota-gut-brain axis has been gaining momentum in the context of many neurodegenerative and metabolic disorders, including Alzheimer's disease (AD) and diabetes, respectively. Notably, a balanced gut microbiota contributes to the epithelial intestinal barrier maintenance, modulates the host immune system, and releases neurotransmitters and/or neuroprotective short-chain fatty acids. However, dysbiosis may provoke immune dysregulation, impacting neuroinflammation through peripheral-central immune communication. Moreover, lipopolysaccharide or detrimental microbial end-products can cross the blood-brain barrier and induce or at least potentiate the neuropathological progression of AD. Thus, after repeated failure to find a cure for this dementia, a necessary paradigmatic shift towards considering AD as a systemic disorder has occurred. Here, we present an overview of the use of germ-free and/or transgenic animal models as valid tools to unravel the connection between dysbiosis, metabolic diseases, and AD, and to investigate novel therapeutical targets. Given the high impact of dietary habits, not only on the microbiota but also on other well-established AD risk factors such as diabetes or obesity, consistent changes of lifestyle along with microbiome-based therapies should be considered as complementary approaches.
Collapse
Affiliation(s)
- Juan Antonio López-Villodres
- Departamento Fisiologia Humana, Histologia Humana, Anatomia Patologica y Educacion Fisica y Deportiva, Facultad de Medicina, Universidad de Malaga, 29071 Malaga, Spain
| | - Alejandro Escamilla
- Departamento Fisiologia Humana, Histologia Humana, Anatomia Patologica y Educacion Fisica y Deportiva, Facultad de Medicina, Universidad de Malaga, 29071 Malaga, Spain
- Instituto de Investigacion Biomedica de Malaga-IBIMA-Plataforma Bionand, 29071 Malaga, Spain
| | - Silvia Mercado-Sáenz
- Departamento Fisiologia Humana, Histologia Humana, Anatomia Patologica y Educacion Fisica y Deportiva, Facultad de Medicina, Universidad de Malaga, 29071 Malaga, Spain
| | - Carmen Alba-Tercedor
- Departamento Fisiologia Humana, Histologia Humana, Anatomia Patologica y Educacion Fisica y Deportiva, Facultad de Medicina, Universidad de Malaga, 29071 Malaga, Spain
| | - Luis Manuel Rodriguez-Perez
- Departamento Fisiologia Humana, Histologia Humana, Anatomia Patologica y Educacion Fisica y Deportiva, Facultad de Medicina, Universidad de Malaga, 29071 Malaga, Spain
- Instituto de Investigacion Biomedica de Malaga-IBIMA-Plataforma Bionand, 29071 Malaga, Spain
| | - Isabel Arranz-Salas
- Departamento Fisiologia Humana, Histologia Humana, Anatomia Patologica y Educacion Fisica y Deportiva, Facultad de Medicina, Universidad de Malaga, 29071 Malaga, Spain
- Instituto de Investigacion Biomedica de Malaga-IBIMA-Plataforma Bionand, 29071 Malaga, Spain
- Unidad de Anatomia Patologica, Hospital Universitario Virgen de la Victoria, 29010 Malaga, Spain
| | - Raquel Sanchez-Varo
- Departamento Fisiologia Humana, Histologia Humana, Anatomia Patologica y Educacion Fisica y Deportiva, Facultad de Medicina, Universidad de Malaga, 29071 Malaga, Spain
- Instituto de Investigacion Biomedica de Malaga-IBIMA-Plataforma Bionand, 29071 Malaga, Spain
- Centro de Investigacion Biomedica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 28031 Madrid, Spain
| | - Diego Bermúdez
- Departamento Fisiologia Humana, Histologia Humana, Anatomia Patologica y Educacion Fisica y Deportiva, Facultad de Medicina, Universidad de Malaga, 29071 Malaga, Spain
| |
Collapse
|
34
|
Yao Y, Qi X, Jia Y, Ye J, Chu X, Wen Y, Cheng B, Cheng S, Liu L, Liang C, Wu C, Wang X, Ning Y, Wang S, Zhang F. Evaluating the interactive effects of dietary habits and human gut microbiome on the risks of depression and anxiety. Psychol Med 2023; 53:3047-3055. [PMID: 35074039 DOI: 10.1017/s0033291721005092] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND Gut microbiome and dietary patterns have been suggested to be associated with depression/anxiety. However, limited effort has been made to explore the effects of possible interactions between diet and microbiome on the risks of depression and anxiety. METHODS Using the latest genome-wide association studies findings in gut microbiome and dietary habits, polygenic risk scores (PRSs) analysis of gut microbiome and dietary habits was conducted in the UK Biobank cohort. Logistic/linear regression models were applied for evaluating the associations for gut microbiome-PRS, dietary habits-PRS, and their interactions with depression/anxiety status and Patient Health Questionnaire (PHQ-9)/Generalized Anxiety Disorder-7 (GAD-7) score by R software. RESULTS We observed 51 common diet-gut microbiome interactions shared by both PHQ score and depression status, such as overall beef intake × genus Sporobacter [hurdle binary (HB)] (PPHQ = 7.88 × 10-4, Pdepression status = 5.86 × 10-4); carbohydrate × genus Lactococcus (HB) (PPHQ = 0.0295, Pdepression status = 0.0150). We detected 41 common diet-gut microbiome interactions shared by GAD score and anxiety status, such as sugar × genus Parasutterella (rank normal transformed) (PGAD = 5.15 × 10-3, Panxiety status = 0.0347); tablespoons of raw vegetables per day × family Coriobacteriaceae (HB) (PGAD = 6.02 × 10-4, Panxiety status = 0.0345). Some common significant interactions shared by depression and anxiety were identified, such as overall beef intake × genus Sporobacter (HB). CONCLUSIONS Our study results expanded our understanding of how to comprehensively consider the relationships for dietary habits-gut microbiome interactions with depression and anxiety.
Collapse
Affiliation(s)
- Yao Yao
- Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Xin Qi
- Precision Medicine Center, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, P. R. China
| | - Yumeng Jia
- Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Jing Ye
- Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Xiaomeng Chu
- Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Yan Wen
- Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Bolun Cheng
- Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Shiqiang Cheng
- Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Li Liu
- Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Chujun Liang
- Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Cuiyan Wu
- Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Xi Wang
- Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Yujie Ning
- Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Sen Wang
- Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Feng Zhang
- Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
35
|
Li Y, Jiang X, Chen J, Hu Y, Bai Y, Xu W, He L, Wang Y, Chen C, Chen J. Evaluation of the contribution of gut microbiome dysbiosis to cardiac surgery-associated acute kidney injury by comparative metagenome analysis. Front Microbiol 2023; 14:1119959. [PMID: 37065117 PMCID: PMC10091463 DOI: 10.3389/fmicb.2023.1119959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 02/28/2023] [Indexed: 03/19/2023] Open
Abstract
IntroductionCardiac surgery-associated acute kidney injury (CSA-AKI) is a common hospital-acquired AKI that carries a grave disease burden. Recently, gut-kidney crosstalk has greatly changed our understanding of the pathogenesis of kidney diseases. However, the relationship between gut microbial dysbiosis and CSA-AKI remains unclear. The purpose of this study was to investigate the possible contributions of gut microbiota alterations in CSA-AKI patientsMethodsPatients undergoing cardiac surgery were enrolled and divided into acute kidney injury (AKI) and Non-AKI groups. Faecal samples were collected before the operation. Shotgun metagenomic sequencing was performed to identify the taxonomic composition of the intestinal microbiome. All groups were statistically compared with alpha- and beta-diversity analysis, and linear discriminant analysis effect size (LEfSe) analysis was performed.ResultsA total of 70 individuals comprising 35 AKI and 35 Non_AKI were enrolled in the study. There was no significant difference between the AKI and Non_AKI groups with respect to the alpha-and beta-diversity of the Shannon index, Simpson or Chao1 index values except with respect to functional pathways (p < 0.05). However, the relative abundance of top 10 gut microbiota in CSA-AKI was different from the Non_AKI group. Interestingly, both LEfSe and multivariate analysis confirmed that the species Escherichia coli, Rothia mucilaginosa, and Clostridium_innocuum were associated with CSA-AKI. Moreover, correlation heat map indicated that altered pathways and disrupted function could be attributed to disturbances of gut microbiota involving Escherichia_coli.ConclusionDysbiosis of the intestinal microbiota in preoperative stool affects susceptibility to CSA-AKI, indicating the crucial role of key microbial players in the development of CSA-AKI. This work provides valuable knowledge for further study of the contribution of gut microbiota in CSA-AKI.
Collapse
Affiliation(s)
- Ying Li
- Department of Cardiac Surgery, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Department of Intensive Care Unit of Cardiovascular Surgery, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Department of Critical Care Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of South China Structural Heart Disease, Guangzhou, China
| | - Xinyi Jiang
- Department of Critical Care Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- School of Medicine, South China University of Technology, Guangzhou, China
| | - Jingchun Chen
- Department of Critical Care Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Yali Hu
- BGI College and Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Yunpeng Bai
- Center of Scientific Research, Maoming People’s Hospital, Maoming, China
| | - Wang Xu
- Department of Intensive Care Unit of Cardiovascular Surgery, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Linling He
- Department of Critical Care Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- Shantou University Medical College, Shantou, China
| | - Yirong Wang
- Department of Intensive Care Unit of Cardiovascular Surgery, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Chunbo Chen
- Department of Intensive Care Unit of Cardiovascular Surgery, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Department of Critical Care Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- Department of Emergency, Maoming People’s Hospital, Maoming, China
- Chunbo Chen,
| | - Jimei Chen
- Department of Cardiac Surgery, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of South China Structural Heart Disease, Guangzhou, China
- *Correspondence: Jimei Chen,
| |
Collapse
|
36
|
Mar JS, Ota N, Pokorzynski ND, Peng Y, Jaochico A, Sangaraju D, Skippington E, Lekkerkerker AN, Rothenberg ME, Tan MW, Yi T, Keir ME. IL-22 alters gut microbiota composition and function to increase aryl hydrocarbon receptor activity in mice and humans. MICROBIOME 2023; 11:47. [PMID: 36894983 PMCID: PMC9997005 DOI: 10.1186/s40168-023-01486-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 02/01/2023] [Indexed: 05/27/2023]
Abstract
BACKGROUND IL-22 is induced by aryl hydrocarbon receptor (AhR) signaling and plays a critical role in gastrointestinal barrier function through effects on antimicrobial protein production, mucus secretion, and epithelial cell differentiation and proliferation, giving it the potential to modulate the microbiome through these direct and indirect effects. Furthermore, the microbiome can in turn influence IL-22 production through the synthesis of L-tryptophan (L-Trp)-derived AhR ligands, creating the prospect of a host-microbiome feedback loop. We evaluated the impact IL-22 may have on the gut microbiome and its ability to activate host AhR signaling by observing changes in gut microbiome composition, function, and AhR ligand production following exogenous IL-22 treatment in both mice and humans. RESULTS Microbiome alterations were observed across the gastrointestinal tract of IL-22-treated mice, accompanied by an increased microbial functional capacity for L-Trp metabolism. Bacterially derived indole derivatives were increased in stool from IL-22-treated mice and correlated with increased fecal AhR activity. In humans, reduced fecal concentrations of indole derivatives in ulcerative colitis (UC) patients compared to healthy volunteers were accompanied by a trend towards reduced fecal AhR activity. Following exogenous IL-22 treatment in UC patients, both fecal AhR activity and concentrations of indole derivatives increased over time compared to placebo-treated UC patients. CONCLUSIONS Overall, our findings indicate IL-22 shapes gut microbiome composition and function, which leads to increased AhR signaling and suggests exogenous IL-22 modulation of the microbiome may have functional significance in a disease setting. Video Abstract.
Collapse
Affiliation(s)
- Jordan S. Mar
- Genentech, 1 DNA Way, South San Francisco, CA 94080 USA
- Present address: Biomarker Discovery OMNI, Genentech Inc., South San Francisco, CA USA
| | - Naruhisa Ota
- Genentech, 1 DNA Way, South San Francisco, CA 94080 USA
- Present address: Biomarker Discovery OMNI, Genentech Inc., South San Francisco, CA USA
| | - Nick D. Pokorzynski
- Genentech, 1 DNA Way, South San Francisco, CA 94080 USA
- Present address: Biomarker Discovery OMNI, Genentech Inc., South San Francisco, CA USA
| | - Yutian Peng
- Genentech, 1 DNA Way, South San Francisco, CA 94080 USA
- Department of Infectious Diseases, Genentech Inc., South San Francisco, CA USA
| | - Allan Jaochico
- Genentech, 1 DNA Way, South San Francisco, CA 94080 USA
- Drug Metabolism and Pharmacokinetics, Genentech Inc., South San Francisco, CA USA
| | - Dewakar Sangaraju
- Genentech, 1 DNA Way, South San Francisco, CA 94080 USA
- Drug Metabolism and Pharmacokinetics, Genentech Inc., South San Francisco, CA USA
| | - Elizabeth Skippington
- Genentech, 1 DNA Way, South San Francisco, CA 94080 USA
- Bioinformatics, Genentech Inc., South San Francisco, CA USA
| | - Annemarie N. Lekkerkerker
- Genentech, 1 DNA Way, South San Francisco, CA 94080 USA
- OMNI Biomarker Development, Genentech Inc., South San Francisco, CA USA
| | - Michael E. Rothenberg
- Genentech, 1 DNA Way, South San Francisco, CA 94080 USA
- Early Clinical Development, Genentech Inc., South San Francisco, CA USA
| | - Man-Wah Tan
- Genentech, 1 DNA Way, South San Francisco, CA 94080 USA
- Department of Infectious Diseases, Genentech Inc., South San Francisco, CA USA
| | - Tangsheng Yi
- Genentech, 1 DNA Way, South San Francisco, CA 94080 USA
- Present address: Department of Immunology Discovery, Genentech Inc., South San Francisco, CA USA
| | - Mary E. Keir
- Genentech, 1 DNA Way, South San Francisco, CA 94080 USA
- Present address: Biomarker Discovery OMNI, Genentech Inc., South San Francisco, CA USA
| |
Collapse
|
37
|
Wu L, Gao L, Jin X, Chen Z, Qiao X, Cui X, Gao J, Zhang L. Ethanol Extract of Mao Jian Green Tea Attenuates Gastrointestinal Symptoms in a Rat Model of Irritable Bowel Syndrome with Constipation via the 5-hydroxytryptamine Signaling Pathway. Foods 2023; 12:foods12051101. [PMID: 36900618 PMCID: PMC10000491 DOI: 10.3390/foods12051101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/17/2023] [Accepted: 02/27/2023] [Indexed: 03/08/2023] Open
Abstract
In a previous study, we demonstrated that the hydro extract of Mao Jian Green Tea (MJGT) promotes gastrointestinal motility. In this study, the effect of MJGT ethanol extract (MJGT_EE) in treating irritable bowel syndrome with constipation (IBS-C) in a rat model constructed via maternal separation combined with an ice water stimulation was investigated. First, a successful model construction was confirmed through the determination of the fecal water content (FWC) and the smallest colorectal distension (CRD) volume. Then, the overall regulatory effects of MJGT_EE on the gastrointestinal tract were preliminarily evaluated through gastric emptying and small intestinal propulsion tests. Our findings indicated that MJGT_EE significantly increased FWC (p < 0.01) and the smallest CRD volume (p < 0.05) and promoted gastric emptying and small intestinal propulsion (p < 0.01). Furthermore, mechanistically, MJGT_EE reduced intestinal sensitivity by regulating the expression of proteins related to the serotonin (5-hydroxytryptamine; 5-HT) pathway. More specifically, it decreased tryptophan hydroxylase (TPH) expression (p < 0.05) and increased serotonin transporter (SERT) expression (p < 0.05), thereby decreasing 5-HT secretion (p < 0.01), activating the calmodulin (CaM)/myosin light chain kinase (MLCK) pathway, and increasing 5-HT4 receptor (5-HT4R) expression (p < 0.05). Moreover, MJGT_EE enhanced the diversity of gut microbiota, increased the proportion of beneficial bacteria, and regulated the number of 5-HT-related bacteria. Flavonoids may play the role of being active ingredients in MJGT_EE. These findings suggest that MJGT_EE could serve as a potential therapeutic pathway for IBS-C.
Collapse
Affiliation(s)
- Lei Wu
- Institute of Molecular Science, Shanxi University, Taiyuan 030006, China
- Shanxi Key Laboratory of Minor Crops Germplasm Innovation and Molecular Breeding, College of Life Sciences, Shanxi Agricultural University, Taigu, Jinzhong 030801, China
| | - Liming Gao
- Shanxi Key Laboratory of Minor Crops Germplasm Innovation and Molecular Breeding, College of Life Sciences, Shanxi Agricultural University, Taigu, Jinzhong 030801, China
| | - Xiang Jin
- Institute of Molecular Science, Shanxi University, Taiyuan 030006, China
| | - Zhikang Chen
- Shanxi Key Laboratory of Minor Crops Germplasm Innovation and Molecular Breeding, College of Life Sciences, Shanxi Agricultural University, Taigu, Jinzhong 030801, China
| | - Xutong Qiao
- Shanxi Key Laboratory of Minor Crops Germplasm Innovation and Molecular Breeding, College of Life Sciences, Shanxi Agricultural University, Taigu, Jinzhong 030801, China
| | - Xiting Cui
- Shanxi Key Laboratory of Minor Crops Germplasm Innovation and Molecular Breeding, College of Life Sciences, Shanxi Agricultural University, Taigu, Jinzhong 030801, China
| | - Jianhua Gao
- Shanxi Key Laboratory of Minor Crops Germplasm Innovation and Molecular Breeding, College of Life Sciences, Shanxi Agricultural University, Taigu, Jinzhong 030801, China
- Correspondence: (J.G.); (L.Z.)
| | - Liwei Zhang
- Institute of Molecular Science, Shanxi University, Taiyuan 030006, China
- Correspondence: (J.G.); (L.Z.)
| |
Collapse
|
38
|
Changes in mRNA and miRNA expression in the prelimbic cortex related to depression-like syndrome induced by chronic social defeat stress in mice. Behav Brain Res 2023; 438:114211. [PMID: 36368442 DOI: 10.1016/j.bbr.2022.114211] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 10/31/2022] [Accepted: 11/06/2022] [Indexed: 11/11/2022]
Abstract
Major depressive disorder is a complex psychiatric disorder with a high prevalence rate worldwide. Previous studies have demonstrated the involvement of the prelimbic cortex (PL) in mediating depressive-like behavior, however, the exact molecular mechanism taking place in the PL remains unclear. In the present study, we conducted high-throughput sequencing of mRNAs and miRNAs in PL tissue harvested from chronic social defeat stress (CSDS) susceptible male mice. We identified 59 differentially expressed mRNAs and 6 differentially expressed miRNAs, in which 40 mRNAs and 3 miRNAs were up-regulated, while 19 mRNAs and 3 miRNAs were down-regulated. Integrated analysis of miRNA-mRNA networks suggested that GPR35 signaling might be involved in CSDS-induced depressive-like behaviors. RT-PCR and western blot assays validated that Abra, Sell and GPR35 were up-regulated. Functionally, inhibition of GPR35 in the PL ameliorated CSDS-induced depressive-like behaviors. Thus, the present study provided a global view of mRNA and miRNA profiles in the PL of male stress susceptible mice, and suggested that GPR35 signaling was associated with CSDS-induced depressive-like behaviors. These results may be valuable for further investigations of the molecular regulatory mechanisms in stress-induced depression.
Collapse
|
39
|
Ntona S, Papaefthymiou A, Kountouras J, Gialamprinou D, Kotronis G, Boziki M, Polyzos SA, Tzitiridou M, Chatzopoulos D, Thavayogarajah T, Gkolia I, Ntonas G, Vardaka E, Doulberis M. Impact of nonalcoholic fatty liver disease-related metabolic state on depression. Neurochem Int 2023; 163:105484. [PMID: 36634820 DOI: 10.1016/j.neuint.2023.105484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 12/15/2022] [Accepted: 01/05/2023] [Indexed: 01/11/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD), also recently referred as metabolic (dysfunction)-associated fatty liver disease (MAFLD), is characterized by hepatocyte steatosis in the setting of metabolic risk conditions and in the absence of an underlying precursor, for instance alcohol consumption, hepatotropic viruses and hepatotoxic drugs. A possible association between NAFLD and depression has been proposed, owing to intersecting pathophysiological pathways. This narrative review aimed to summarize the current evidence that illustrate the potential pathophysiological and clinical linkage between NAFLD-related metabolic state and depression. Prefrontal cortex lesions are suggested to be a consequence of liver steatosis-associated systematic hyperinflammatory state, a phenomenon also occurring in depression. In addition, depressive symptoms are present in neurotransmitter imbalances. These abnormalities seem to be correlated with NAFLD/MAFLD, in terms of insulin resistance (IR), ammonia and gut dysbiosis' impact on serotonin, dopamine, noradrenaline levels and gamma aminobutyric acid receptors. Furthermore, reduced levels of nesfatin-1 and copine-6-associated BDNF (brain-derived neurotrophic factor) levels have been considered as a probable link between NAFLD and depression. Regarding NAFLD-related gut dysbiosis, it stimulates mediators including lipopolysaccharides, short-chain fatty acids and bile acids, which play significant role in depression. Finally, western diet and IR, which are mainstay components of NAFLD/MAFLD, are, also, substantiated to affect neurotransmitters in hippocampus and produce neurotoxic lipids that contribute to neurologic dysfunction, and thus trigger emotional disturbances, mainly depressive symptoms.
Collapse
Affiliation(s)
- Smaragda Ntona
- Alexandrovska University Hospital, Medical University Sofia, 1431, Sofia, Bulgaria
| | - Apostolis Papaefthymiou
- Department of Gastroenterology, University Hospital of Larisa, 41110, Mezourlo, Larissa, Thessaly, Greece; First Laboratory of Pharmacology, Aristotle University of Thessaloniki, 54124, Thessaloniki, Macedonia, Greece; Second Medical Clinic, School of Medicine, Aristotle University of Thessaloniki, Ippokration Hospital, 54642, Thessaloniki, Macedonia, Greece
| | - Jannis Kountouras
- Second Medical Clinic, School of Medicine, Aristotle University of Thessaloniki, Ippokration Hospital, 54642, Thessaloniki, Macedonia, Greece.
| | - Dimitra Gialamprinou
- Second Medical Clinic, School of Medicine, Aristotle University of Thessaloniki, Ippokration Hospital, 54642, Thessaloniki, Macedonia, Greece; Second Neonatal Department and NICU, Papageorgiou General Hospital, Aristotle University of Thessaloniki, 56403, Thessaloniki, Macedonia, Greece
| | - Georgios Kotronis
- Second Medical Clinic, School of Medicine, Aristotle University of Thessaloniki, Ippokration Hospital, 54642, Thessaloniki, Macedonia, Greece; Department of Internal Medicine, General Hospital Aghios Pavlos of Thessaloniki, 55134, Thessaloniki, Macedonia, Greece
| | - Marina Boziki
- Second Neurological Department, Aristotle University of Thessaloniki, AHEPA University General Hospital of Thessaloniki, Thessaloniki, 54636, Macedonia, Greece
| | - Stergios A Polyzos
- First Laboratory of Pharmacology, Aristotle University of Thessaloniki, 54124, Thessaloniki, Macedonia, Greece
| | - Maria Tzitiridou
- Second Medical Clinic, School of Medicine, Aristotle University of Thessaloniki, Ippokration Hospital, 54642, Thessaloniki, Macedonia, Greece; School of Healthcare Sciences, Midwifery Department, University of West Macedonia, Koila, Kozani, 50100, Macedonia, Greece
| | - Dimitrios Chatzopoulos
- Second Medical Clinic, School of Medicine, Aristotle University of Thessaloniki, Ippokration Hospital, 54642, Thessaloniki, Macedonia, Greece
| | - Tharshika Thavayogarajah
- Department of Medical Oncology and Hematology, University Hospital and University of Zurich, 8091, Zurich, Switzerland
| | - Ioanna Gkolia
- Psychiatric Hospital of Thessaloniki, 54634, Stavroupoli, Macedonia, Greece
| | - Georgios Ntonas
- Department of Anesthesiology, Agios Dimitrios General Hospital, 54635, Thessaloniki, Macedonia, Greece
| | - Elisabeth Vardaka
- Second Medical Clinic, School of Medicine, Aristotle University of Thessaloniki, Ippokration Hospital, 54642, Thessaloniki, Macedonia, Greece; Department of Nutritional Sciences and Dietetics, School of Health Sciences, International Hellenic University, 57400, Thessaloniki, Greece
| | - Michael Doulberis
- Second Medical Clinic, School of Medicine, Aristotle University of Thessaloniki, Ippokration Hospital, 54642, Thessaloniki, Macedonia, Greece; Department of Gastroenterology and Hepatology, University of Zurich, 8091, Zurich, Switzerland; Division of Gastroenterology and Hepatology, Medical University Department, Kantonsspital Aarau, 5001, Aarau, Switzerland
| |
Collapse
|
40
|
Spring J, Beilinson V, DeFelice BC, Sanchez JM, Fischbach M, Chervonsky A, Golovkina T. Retroviral Infection and Commensal Bacteria Dependently Alter the Metabolomic Profile in a Sterile Organ. Viruses 2023; 15:386. [PMID: 36851600 PMCID: PMC9967258 DOI: 10.3390/v15020386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 01/26/2023] [Accepted: 01/26/2023] [Indexed: 01/31/2023] Open
Abstract
Both viruses and bacteria produce "pathogen associated molecular patterns" that may affect microbial pathogenesis and anti-microbial responses. Additionally, bacteria produce metabolites, while viruses could change the metabolic profiles of the infected cells. Here, we used an unbiased metabolomics approach to profile metabolites in spleens and blood of murine leukemia virus-infected mice monocolonized with Lactobacillus murinus to show that viral infection significantly changes the metabolite profile of monocolonized mice. We hypothesize that these changes could contribute to viral pathogenesis or to the host response against the virus and thus open a new avenue for future investigations.
Collapse
Affiliation(s)
- Jessica Spring
- Committee on Microbiology, University of Chicago, Chicago, IL 60637, USA
| | - Vera Beilinson
- Department of Microbiology, University of Chicago, Chicago, IL 60637, USA
| | | | | | - Michael Fischbach
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Alexander Chervonsky
- Committee on Microbiology, University of Chicago, Chicago, IL 60637, USA
- Department of Pathology, University of Chicago, Chicago, IL 60637, USA
- Committee on Immunology, University of Chicago, Chicago, IL 60637, USA
| | - Tatyana Golovkina
- Committee on Microbiology, University of Chicago, Chicago, IL 60637, USA
- Department of Microbiology, University of Chicago, Chicago, IL 60637, USA
- Committee on Immunology, University of Chicago, Chicago, IL 60637, USA
- Committee on Genetics, Genomics and System Biology, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
41
|
Spring J, Beilinson V, DeFelice BC, Sanchez JM, Fischbach M, Chervonsky A, Golovkina T. Retroviral infection and commensal bacteria dependently alter the metabolomic profile in a sterile organ. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.10.523497. [PMID: 36711645 PMCID: PMC9882031 DOI: 10.1101/2023.01.10.523497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Both viruses and bacteria produce 'pathogen associated molecular patterns' that may affect microbial pathogenesis and anti-microbial responses. Additionally, bacteria produce metabolites while viruses could change metabolic profiles of the infected cells. Here, we used an unbiased metabolomics approach to profile metabolites in spleens and blood of Murine Leukemia Virus-infected mice monocolonized with Lactobacillus murinus to show that viral infection significantly changes the metabolite profile of monocolonized mice. We hypothesize that these changes could contribute to viral pathogenesis or to the host response against the virus and thus, open a new avenue for future investigations.
Collapse
|
42
|
Chauhan V, Chauhan NK, Dutta S, Pathak D, Nongthomba U. Comparative in-silico analysis of microbial dysbiosis discern potential metabolic link in neurodegenerative diseases. Front Neurosci 2023; 17:1153422. [PMID: 37113148 PMCID: PMC10126365 DOI: 10.3389/fnins.2023.1153422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 03/20/2023] [Indexed: 04/29/2023] Open
Abstract
A healthy gut flora contains a diverse and stable commensal group of microorganisms, whereas, in disease conditions, there is a shift toward pathogenic microbes, termed microbial dysbiosis. Many studies associate microbial dysbiosis with neurodegenerative diseases, including Alzheimer's disease (AD), Parkinson's disease (PD), Multiple sclerosis (MS), and Amyotrophic lateral sclerosis (ALS). Although, an overall comparative analysis of microbes and their metabolic involvement in these diseases is still lacking. In this study, we have performed a comparative analysis of microbial composition changes occurring in these four diseases. Our research showed a high resemblance of microbial dysbiosis signatures between AD, PD, and MS. However, ALS appeared dissimilar. The most common population of microbes to show an increase belonged to the phyla, Bacteroidetes, Actinobacteria, Proteobacteria, and Firmicutes. Although, Bacteroidetes and Firmicutes were the only phyla that showed a decrease in their population. The functional analysis of these dysbiotic microbes showed several potential metabolic links which can be involved in the altered microbiome-gut-brain axis in neurodegenerative diseases. For instance, the microbes with elevated populations lack pathways for synthesizing SCFA acetate and butyrate. Also, these microbes have a high capacity for producing L-glutamate, an excitatory neurotransmitter and precursor of GABA. Contrastingly, Tryptophan and histamine have a lower representation in the annotated genome of elevated microbes. Finally, the neuroprotective compound spermidine was less represented in elevated microbes' genomes. Our study provides a comprehensive catalog of potential dysbiotic microbes and their metabolic involvement in neurodegenerative disorders, including AD, PD, MS, and ALS.
Collapse
Affiliation(s)
- Vipin Chauhan
- Developmental and Biomedical Genetics Laboratory, Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bengaluru, India
| | - Nitin K. Chauhan
- School of Computational and Integrative Science, Jawaharlal Nehru University, New Delhi, India
| | - Somit Dutta
- Developmental and Biomedical Genetics Laboratory, Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bengaluru, India
| | - Dhruv Pathak
- Developmental and Biomedical Genetics Laboratory, Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bengaluru, India
| | - Upendra Nongthomba
- Developmental and Biomedical Genetics Laboratory, Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bengaluru, India
- *Correspondence: Upendra Nongthomba
| |
Collapse
|
43
|
Bhatt S, Kanoujia J, Mohana Lakshmi S, Patil CR, Gupta G, Chellappan DK, Dua K. Role of Brain-Gut-Microbiota Axis in Depression: Emerging Therapeutic Avenues. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2023; 22:276-288. [PMID: 35352640 DOI: 10.2174/1871527321666220329140804] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 12/26/2021] [Accepted: 01/25/2022] [Indexed: 12/16/2022]
Abstract
The human gut microbiota plays a significant role in the pathophysiology of central nervous system-related diseases. Recent studies suggest correlations between the altered gut microbiota and major depressive disorder (MDD). It is proposed that normalization of the gut microbiota alleviates MDD. The imbalance of brain-gut-microbiota axis also results in dysregulation of the hypothalamicpituitary- adrenal (HPA) axis. This imbalance has a crucial role in the pathogenesis of depression. Treatment strategies with certain antibiotics lead to the depletion of useful microbes and thereby induce depression like effects in subjects. Microbiota is also involved in the synthesis of various neurotransmitters (NTs) like 5-hydroxy tryptamine (5-HT; serotonin), norepinephrine (NE) and dopamine (DA). In addition to NTs, the gut microbiota also has an influence on brain derived neurotrophic factor (BDNF) levels. Recent research findings have exhibited that transfer of stress prone microbiota in mice is also responsible for depression and anxiety-like behaviour in animals. The use of probiotics, prebiotics, synbiotics and proper diet have shown beneficial effects in the regulation of depression pathogenesis. Moreover, transplantation of fecal microbiota from depressed individuals to normal subjects also induces depression-like symptoms. With the precedence of limited therapeutic benefits from monoamine targeting drugs, the regulation of brain-gut microbiota is emerging as a new treatment modality for MDDs. In this review, we elaborate on the significance of brain-gut-microbiota axis in the progression of MDD, particularly focusing on the modulation of the gut microbiota as a mode of treating MDD.
Collapse
Affiliation(s)
- Shvetank Bhatt
- Amity Institute of Pharmacy, Amity University Madhya Pradesh (AUMP), Gwalior -474005, Madhya Pradesh, India
| | - Jovita Kanoujia
- Amity Institute of Pharmacy, Amity University Madhya Pradesh (AUMP), Gwalior -474005, Madhya Pradesh, India
| | - S Mohana Lakshmi
- Amity Institute of Pharmacy, Amity University Madhya Pradesh (AUMP), Gwalior -474005, Madhya Pradesh, India
| | - C R Patil
- Department of Pharmacology, R.C. Patel Institute of Pharmaceutical Education and Research, Karwand Naka, Shirpur, Maharashtra 425405, India
| | - Gaurav Gupta
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura, Mahal Road, Jaipur, India
- Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University, Bukit Jalil 57000, Kuala Lumpur, Malaysia
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, NSW 2007, Australia
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia
| |
Collapse
|
44
|
Li Y, Yang L, Li J, Gao W, Zhao Z, Dong K, Duan W, Dai B, Guo R. Antidepression of Xingpijieyu formula targets gut microbiota derived from depressive disorder. CNS Neurosci Ther 2022; 29:669-681. [PMID: 36550591 PMCID: PMC9873506 DOI: 10.1111/cns.14049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 11/15/2022] [Accepted: 11/21/2022] [Indexed: 12/24/2022] Open
Abstract
OBJECTIVE This investigation aims to determine the antidepressant role of Xingpijieyu formula (XPJYF) mediated via gut microbiota (GM)-brain axis. METHODS We collected fecal microbiota from patients with depressive disorder (DD) and cultured microbiota in vitro. Some of microbiota were transplanted into germ-free rats with the intragastric administration of XPJYF grain at the dose of 1.533 g/kg/day. The behaviors were studied by forced swimming test, open field test, sucrose preference test, and body weight. Products of hypothalamus-pituitary-adrenocortical (HPA) axis, neurotransmitter, and serum cytokines were investigated by enzyme linked immunosorbent assay. Glial fibrillary acidic protein (GFAP), a biomarker of astrocyte, was quantified using immunofluorescence. Microbiota culturing in vitro after XPJYF treatment was analyze by 16 s RNA sequencing technology. We used lipopolysaccharide (LPS) to mimic activated rat primary astrocyte in vitro. Brain-derived neurotrophic factor (BDNF), cytokines, and oxidative stress factors were determined by western blotting, and glycometabolism in astrocyte was investigated by 2-deoxy-D-glucose (2-DG) uptake, adenosine triphosphate (ATP), and glucose-1-phosphate (G1P) kits. RESULTS Microbiota composition during 8 mg/ml of XPJYF (H12-8) for 12 h showed the more consistency. Lactococcus is enriched in DD-derived microbiota composition, and Biffdobacterium and Lactobacillus in H12-8 group. GLUCOSE1PMETAB-PWY and PWY-7328 of which biofunctions were dominantly encoded by Biffdobacterium were the top two of altered pathways. XPJYF improved behaviors and repressed astrocyte activation in depression rats. XPJYF elevated 2-DG uptake, ATP, glucose-1-phosphate, and brain-derived neurotrophic factor (BDNF), and inhibited cytokines and oxidative stress in LPS-induced astrocyte. CONCLUSION XPJYF treatment targets inflammation, activation, and glycometabolim in astrocyte via gut microbiota modulation, thereby improve animal behaviors, HPA axis dysfunction, and neurotransmitter synthesis in depression rats.
Collapse
Affiliation(s)
- Yannan Li
- Second Clinical Medical CollegeBeijing University of Chinese MedicineBeijingChina,Department of NeurologyDongfang Hospital Beijing University of Chinese MedicineBeijingChina
| | - Lixuan Yang
- Second Clinical Medical CollegeBeijing University of Chinese MedicineBeijingChina,Department of NeurologyDongfang Hospital Beijing University of Chinese MedicineBeijingChina
| | - Junnan Li
- Second Clinical Medical CollegeBeijing University of Chinese MedicineBeijingChina,Department of NeurologyDongfang Hospital Beijing University of Chinese MedicineBeijingChina
| | - Wei Gao
- Department of Mental HealthTsinghua University Yuquan HospitalBeijingChina
| | - Zhonghui Zhao
- Second Clinical Medical CollegeBeijing University of Chinese MedicineBeijingChina,Department of NeurologyDongfang Hospital Beijing University of Chinese MedicineBeijingChina
| | - Kaiqiang Dong
- Second Clinical Medical CollegeBeijing University of Chinese MedicineBeijingChina,Department of NeurologyDongfang Hospital Beijing University of Chinese MedicineBeijingChina
| | - Wenzhe Duan
- Second Clinical Medical CollegeBeijing University of Chinese MedicineBeijingChina,Department of NeurologyDongfang Hospital Beijing University of Chinese MedicineBeijingChina
| | - Baoan Dai
- Second Clinical Medical CollegeBeijing University of Chinese MedicineBeijingChina,Department of NeurologyDongfang Hospital Beijing University of Chinese MedicineBeijingChina
| | - Rongjuan Guo
- Department of NeurologyDongfang Hospital Beijing University of Chinese MedicineBeijingChina
| |
Collapse
|
45
|
Suseelan S, Pinna G. Heterogeneity in major depressive disorder: The need for biomarker-based personalized treatments. Adv Clin Chem 2022; 112:1-67. [PMID: 36642481 DOI: 10.1016/bs.acc.2022.09.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Major Depressive Disorder (MDD) or depression is a pathological mental condition affecting millions of people worldwide. Identification of objective biological markers of depression can provide for a better diagnostic and intervention criteria; ultimately aiding to reduce its socioeconomic health burden. This review provides a comprehensive insight into the major biomarker candidates that have been implicated in depression neurobiology. The key biomarker categories are covered across all the "omics" levels. At the epigenomic level, DNA-methylation, non-coding RNA and histone-modifications have been discussed in relation to depression. The proteomics system shows great promise with inflammatory markers as well as growth factors and neurobiological alterations within the endocannabinoid system. Characteristic lipids implicated in depression together with the endocrine system are reviewed under the metabolomics section. The chapter also examines the novel biomarkers for depression that have been proposed by studies in the microbiome. Depression affects individuals differentially and explicit biomarkers identified by robust research criteria may pave the way for better diagnosis, intervention, treatment, and prediction of treatment response.
Collapse
Affiliation(s)
- Shayam Suseelan
- The Psychiatric Institute, Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, United States
| | - Graziano Pinna
- The Psychiatric Institute, Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, United States; UI Center on Depression and Resilience (UICDR), Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, United States; Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, United States.
| |
Collapse
|
46
|
Examining the Influence of the Human Gut Microbiota on Cognition and Stress: A Systematic Review of the Literature. Nutrients 2022; 14:nu14214623. [PMID: 36364881 PMCID: PMC9656545 DOI: 10.3390/nu14214623] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 10/25/2022] [Accepted: 10/27/2022] [Indexed: 11/06/2022] Open
Abstract
The gut microbiota is seen as an emerging biotechnology that can be manipulated to enhance or preserve cognition and physiological outputs of anxiety and depression in clinical conditions. However, the existence of such interactions in healthy young individuals in both non-stressful and stressful environments is unclear. The aim of this systematic review was to examine the relationship between the human gut microbiota, including modulators of the microbiota on cognition, brain function and/or stress, anxiety and depression. A total of n = 25 eligible research articles from a possible 3853 published between October 2018 and August 2021 were identified and included. Two study design methods for synthesis were identified: cross-sectional or pre/post intervention. Few cross-sectional design studies that linked microbiota to cognition, brain activity/structure or mental wellbeing endpoints existed (n = 6); however, correlations between microbiota diversity and composition and areas of the brain related to cognitive functions (memory and visual processing) were observed. Intervention studies targeting the gut microbiota to improve cognition, brain structure/function or emotional well-being (n = 19) generally resulted in improved brain activity and/or cognition (6/8), and improvements in depression and anxiety scores (5/8). Despite inherit limitations in studies reviewed, available evidence suggests that gut microbiota is linked to brain connectivity and cognitive performance and that modulation of gut microbiota could be a promising strategy for enhancing cognition and emotional well-being in stressed and non-stressed situations.
Collapse
|
47
|
Ren H, Gao S, Wang S, Wang J, Cheng Y, Wang Y, Wang Y. Effects of Dangshen Yuanzhi Powder on learning ability and gut microflora in rats with memory disorder. JOURNAL OF ETHNOPHARMACOLOGY 2022; 296:115410. [PMID: 35640741 DOI: 10.1016/j.jep.2022.115410] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 05/24/2022] [Accepted: 05/26/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Yuanzhi Powder is a commonly used traditional Chinese medical formulae for its potency in enhancing memory and learning. In clinical practice, Yuanzhi Powder is a classic formula in TCM to treat amnesia of the type "deficiency of Qi, turbid phlegm harasses the head and eyes, and stagnation of phlegm converting into the fire". Our previous study showed that Yuanzhi Power, used together with Codonopsis Radix (Dangshen Yuanzhi Power, DYP), could improve learning and memory ability in animals with memory disorder (MD) and its efficacy is superior or equivalent to that of the Yuanzhi Power. AIM OF STUDY This study aimed to explore the regulatory mechanism of DYP through the "bacteria-gut-brain axis". MATERIALS AND METHODS The SD rats were divided randomly into control, model, positive, DYP-L, and DYP-H groups. Except for the control group, the rats were intraperitoneally injected with D-Gal (400 mg/kg) and gavaged with aluminum chloride (200 mg/kg) every day for 50 days. The rats in the DYP group were gavaged with DYP (6.67 and 13.34 g/kg, respectively) from the 15th day, once a day. The rats in the positive group were similarly administrated with piracetam (0.5 g/kg). The rats' bodyweight was recorded from the 16th day. The learning and memory ability of animals was tested by Morris water maze. The levels of MCP-1, NF-L, NSE, and TNF-α in serum were determined by Elisa kit, while the histopathology of duodenum and colon tissues was examined by H & E staining. The diversity of intestinal flora was sequenced and analyzed. In order to reveal the role of intestinal flora in DYP treatment of MD, the intestinal flora composition and the correlation analysis of intestinal flora and the above biochemical indexes were investigated. The intestinal flora function and biological metabolic pathways were predicted and analyzed by the KEGG database. RESULTS The MD animals' learning and spatial memory ability decreased significantly, compared with the normal group, accompanied by weight increase and intestinal flora disorder. DYP can improve the learning and memory ability of MD animals, and its efficacy may exert through the following ways: (i) callback the abnormal biochemical indexes of MCP-1, NF-L, NSE, and TNF-α; (ii) decreasing the relative ratio of Firmicutes/Bacteroidetes and repairing the pathology of MD animal intestinal mucosa; and (iii) the regulation of DYP on biochemical blood indexes of MD animals was significantly correlated with the regulation of intestinal flora; (iv) DYP rats showed a strong correlation between cognitive ability improvement and bodyweight loss; (v) besides, DYP could also regulate the metabolic pathways of carbohydrate, amino acid, nucleotide, and energy by affecting related biological functions. CONCLUSIONS The results supported that DYP can improve MD animals' learning and memory ability by restoring the intestinal flora disorder and callback the abnormal biochemical indexes in serum, closely related to the "bacteria-gut-brain axis".
Collapse
Affiliation(s)
- Haiqin Ren
- Institute of Pharmaceutical & Food Engineering, Shanxi University of Chinese Medicine, 121 Daxue Road, Yuci District, Jinzhong, 030619, China
| | - Shouqin Gao
- Institute of Pharmaceutical & Food Engineering, Shanxi University of Chinese Medicine, 121 Daxue Road, Yuci District, Jinzhong, 030619, China
| | - Shihui Wang
- Institute of Pharmaceutical & Food Engineering, Shanxi University of Chinese Medicine, 121 Daxue Road, Yuci District, Jinzhong, 030619, China
| | - Jiamin Wang
- Institute of Pharmaceutical & Food Engineering, Shanxi University of Chinese Medicine, 121 Daxue Road, Yuci District, Jinzhong, 030619, China
| | - Yangang Cheng
- Institute of Pharmaceutical & Food Engineering, Shanxi University of Chinese Medicine, 121 Daxue Road, Yuci District, Jinzhong, 030619, China
| | - Yan Wang
- Institute of Pharmaceutical & Food Engineering, Shanxi University of Chinese Medicine, 121 Daxue Road, Yuci District, Jinzhong, 030619, China
| | - Yingli Wang
- Institute of Pharmaceutical & Food Engineering, Shanxi University of Chinese Medicine, 121 Daxue Road, Yuci District, Jinzhong, 030619, China.
| |
Collapse
|
48
|
Abstract
Mental health disorders, particularly depression and anxiety, affect a significant number of the global population. Several pathophysiological pathways for these disorders have been identified, including the hypothalamic-pituitary-adrenal axis, autonomic nervous system, and the immune system. In addition, life events, environmental factors, and lifestyle affect the onset, progression, and recurrence of mental health disorders. These may all overlap with periodontal and/or peri-implant disease. Mental health disorders are associated with more severe periodontal disease and, in some cases, poorer healing outcomes to nonsurgical periodontal therapy. They can result in behavior modification, such as poor oral hygiene practices, tobacco smoking, and alcohol abuse, which are also risk factors for periodontal disease and, therefore, may have a contributory effect. Stress has immunomodulatory effects regulating immune cell numbers and function, as well as proinflammatory cytokine production. Stress markers such as cortisol and catecholamines may modulate periodontal bacterial growth and the expression of virulence factors. Stress and some mental health disorders are accompanied by a low-grade chronic inflammation that may be involved in their relationship with periodontal disease and vice versa. Although the gut microbiome interacting with the central nervous system (gut-brain axis) is thought to play a significant role in mental illness, less is understood about the role of the oral microbiome. The evidence for mental health disorders on implant outcomes is lacking, but may mainly be through behaviourial changes. Through lack of compliance withoral hygiene and maintenance visits, peri-implant health can be affected. Increased smoking and risk of periodontal disease may also affect implant outcomes. Selective serotonin reuptake inhibitors have been linked with higher implant failure. They have an anabolic effect on bone, reducing turnover, which could account for the increased loss.
Collapse
Affiliation(s)
- Jake Ball
- Centre for Rural Dentistry and Oral HealthCharles Sturt UniversityOrangeNew South WalesAustralia
| | - Ivan Darby
- Periodontics, Melbourne Dental SchoolThe University of MelbourneMelbourneVictoriaAustralia
| |
Collapse
|
49
|
Hua H, Huang C, Liu H, Xu X, Xu X, Wu Z, Liu C, Wang Y, Yang C. Depression and antidepressant effects of ketamine and its metabolites: The pivotal role of gut microbiota. Neuropharmacology 2022; 220:109272. [PMID: 36170927 DOI: 10.1016/j.neuropharm.2022.109272] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 09/19/2022] [Accepted: 09/20/2022] [Indexed: 02/07/2023]
Abstract
The discovery of the robust antidepressant actions of ketamine is regarded as one of the greatest advancements in depression treatment in the past 60 years. Recent findings have provided strong evidence for the presence of bidirectional communication networks between the gastrointestinal tract and the brain in depression. Moreover, increasing evidence supports the antidepressant role of ketamine in regulating the gut microbiome and microbiota-derived molecules; however, the mechanisms underpinning such effects are still ambiguous. This review summarizes the current understanding of the anti-depressant mechanisms of ketamine and its metabolites regarding the bidirectional regulation by microbiota-gut-brain axis. We review the relationship between gut microbiota and the antidepressant mechanisms of ketamine, and discuss the role of stress response, brain-derived neurotrophic factor (BDNF)-mediated neurogenesis, anti-inflammatory effect and neurotransmitters.
Collapse
Affiliation(s)
- Hao Hua
- Department of Anesthesiology, Wuxi 9th People's Hospital Affiliated to Soochow University, Wuxi, 214062, China
| | - Chaoli Huang
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Hanyu Liu
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Xiangyang Xu
- Nhwa Institute of Pharmaceutical Research, Jiangsu Nhwa Pharmaceutical Co., Ltd & Jiangsu Key Laboratory of Central Nervous System Drug Research and Development, Xuzhou, 221116, China
| | - Xiangqing Xu
- Nhwa Institute of Pharmaceutical Research, Jiangsu Nhwa Pharmaceutical Co., Ltd & Jiangsu Key Laboratory of Central Nervous System Drug Research and Development, Xuzhou, 221116, China
| | - Zifeng Wu
- Department of Anesthesiology, Wuxi 9th People's Hospital Affiliated to Soochow University, Wuxi, 214062, China
| | - Cunming Liu
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Yuanyuan Wang
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China.
| | - Chun Yang
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China.
| |
Collapse
|
50
|
Yunes RA, Poluektova EU, Belkina TV, Danilenko VN. Lactobacilli: Legal Regulation and Prospects for New Generation Drugs. APPL BIOCHEM MICRO+ 2022; 58:652-664. [PMID: 36164404 PMCID: PMC9492457 DOI: 10.1134/s0003683822050179] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 04/20/2022] [Accepted: 04/26/2022] [Indexed: 11/23/2022]
Abstract
The global probiotics industry has been undergoing major changes in recent years. Approaches to finding and creating new probiotics, as well as a paradigm of their use in food, medicine, and pharmacology are changing. The catalyst proved to be the increasing popularity and availability of omics technologies, in particular, metagenomic studies of human and animal microbiomes. However, the efficiency and safety of drugs based on probiotic strains, as well as their marketing rates, largely depend on the levels of legal and technical regulation in the field. The present review discusses the aspects of legal regulation in Russia, the European Union and the United States, along with the advantages and disadvantages of probiotics and postbiotics. A consensus is emerging that postbiotics have a number of advantages over classical live probiotic cultures. The review also focuses on the lactobacilli family, which includes the largest number of probiotic strains studied so far and still holds a leading position among probiotics. On the legislative front, Russia is often ahead of its time with adopting such laws as the Federal Law No. 492-FZ on biosecurity, which defined the concept of human and animal microbiota and set forth legislative guidelines for its preservation. The new field of research referred to as microbiome nutrigenomics aims to achieve this goal.
Collapse
Affiliation(s)
- R. A. Yunes
- Vavilov Institute of General Genetics, Russian Academy of Sciences, 119991 Moscow, Russia
| | - E. U. Poluektova
- Vavilov Institute of General Genetics, Russian Academy of Sciences, 119991 Moscow, Russia
| | - T. V. Belkina
- Vavilov Institute of General Genetics, Russian Academy of Sciences, 119991 Moscow, Russia
| | - V. N. Danilenko
- Vavilov Institute of General Genetics, Russian Academy of Sciences, 119991 Moscow, Russia
| |
Collapse
|