1
|
Sohail N, Farhat H, Qureshi SA, Ullah I, Ali MS. The brown algae: Sargassum binderi sonder shows a potential nephroprotective activity in in-vivo experimental model. ANNALES PHARMACEUTIQUES FRANÇAISES 2024; 82:1046-1061. [PMID: 38871117 DOI: 10.1016/j.pharma.2024.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 06/02/2024] [Accepted: 06/06/2024] [Indexed: 06/15/2024]
Abstract
OBJECTIVES This study aimed to investigate the protective activity of brown seaweed, the ethanolic and water extracts of Sargassum binderi (S. binderi) were examined. Anticancer drug, cisplatin is normally used for the treatment of solid tumors that cause acute kidney damage after assemblage in the renal tubules. MATERIAL AND METHODS It was an acute nephrotoxicity study, animals were divided into several groups randomly, cisplatin (7mg/kg i.p.) and normal saline were used as positive and negative control respectively. The S. bindari ethanolic and water extract were given orally in a dose of 200mg/kg for 5days. Various biomarkers were assessed to observe the nephroprotective potential, while antioxidant activities were investigated using reduced glutathione, catalase and malondialdehyde as oxidative stress. GCMS was performed to validate the presence of important therapeutic moieties. RESULTS The current result justified that pretreatment with S. binderi inhibited the elevation of antioxidant parameters and also showed protection against lipid peroxidation, induced by cisplatin challenge. The overall impact was the nephroprotection, which has been revealed from the results. GCMS evaluation of hexanes fraction revealed the presence of therapeutically important compounds including heptasiloxane, 3,7,11,15-tetramethyl-2-hexadecen-1-ol, hexadecamethyl, cyclooctasiloxane, and hexadecamethyl. These compounds have been reported for their antioxidant, antibacterial, anticancer, and antifungal activities. CONCLUSION S. binderi showed reno-protective effect by checking their well-known biochemical parameters probably due to the antioxidant activity as confirmed by the presence of compounds.
Collapse
Affiliation(s)
- Nida Sohail
- Department of Biochemistry, University of Karachi, Main University Road, Karachi City, Sindh 75270, Pakistan.
| | - Hafiza Farhat
- Institute of Biological Sciences, Gomal University, D.I Khan, D.I Khan 29050, Pakistan
| | - Shamim Akhtar Qureshi
- Department of Biochemistry, University of Karachi, Main University Road, Karachi City, Sindh 75270, Pakistan
| | - Irfan Ullah
- Department of Neuroscience, The University of Minnesota, Minneapolis, MN 55455, United States
| | - Muhammad Shaiq Ali
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Main University Road, Karachi City, Sindh 75270, Pakistan
| |
Collapse
|
2
|
Rafieezadeh D, Esfandyari G. Marine bioactive peptides with anticancer potential, a narrative review. INTERNATIONAL JOURNAL OF BIOCHEMISTRY AND MOLECULAR BIOLOGY 2024; 15:118-126. [PMID: 39309614 PMCID: PMC11411149 DOI: 10.62347/tuvq7468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 07/08/2024] [Indexed: 09/25/2024]
Abstract
In this paper, we explore marine bioactive peptides with anticancer potential sourced from various marine organisms, including tunicates, sea sponges, and mollusks. Peptides like Stylisin and Papuamides have been isolated, identified, and modified to enhance their activity, with many advancing to clinical trials due to their diverse biological activities, promising prospects in medicine. Enzymatic hydrolysis is a favored method for extracting peptides from marine proteins, particularly from sponges known for their rich bioactive compounds. Compounds such as Jaspamide and Homophymins exhibit potent cytotoxic activity against cancer cells, underscoring their therapeutic potential. Additionally, peptides from ascidians and mollusks, such as Aplidine and Kahalalide F, demonstrate significant anticancer properties. This study also explores peptides influencing apoptosis, microtubule dynamics, and angiogenesis, providing insights into potential mechanisms for cancer treatment. While peptides like Neovastat and mycothiazole target known pathways, others such as patellamides act through unknown mechanisms, highlighting the intricate interactions of marine peptides with cancer cells. Overall, marine-derived peptides show promise as valuable candidates for developing novel anticancer therapies.
Collapse
Affiliation(s)
- Diana Rafieezadeh
- Department of Cellular and Molecular Biology, Razi UniversityKermanshah, Iran
| | | |
Collapse
|
3
|
Mohamed Abdoul-Latif F, Ainane A, Achenani L, Merito Ali A, Mohamed H, Ali A, Jutur PP, Ainane T. Production of Fucoxanthin from Microalgae Isochrysis galbana of Djibouti: Optimization, Correlation with Antioxidant Potential, and Bioinformatics Approaches. Mar Drugs 2024; 22:358. [PMID: 39195473 DOI: 10.3390/md22080358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 07/30/2024] [Accepted: 08/03/2024] [Indexed: 08/29/2024] Open
Abstract
Fucoxanthin, a carotenoid with remarkable antioxidant properties, has considerable potential for high-value biotechnological applications in the pharmaceutical, nutraceutical, and cosmeceutical fields. However, conventional extraction methods of this molecule from microalgae are limited in terms of cost-effectiveness. This study focused on optimizing biomass and fucoxanthin production from Isochrysis galbana, isolated from the coast of Tadjoura (Djibouti), by testing various culture media. The antioxidant potential of the cultures was evaluated based on the concentrations of fucoxanthin, carotenoids, and total phenols. Different nutrient formulations were tested to determine the optimal combination for a maximum biomass yield. Using the statistical methodology of principal component analysis, Walne and Guillard F/2 media were identified as the most promising, reaching a maximum fucoxanthin yield of 7.8 mg/g. Multiple regression models showed a strong correlation between antioxidant activity and the concentration of fucoxanthin produced. A thorough study of the optimization of I. galbana growth conditions, using a design of experiments, revealed that air flow rate and CO2 flow rate were the most influential factors on fucoxanthin production, reaching a value of 13.4 mg/g. Finally, to validate the antioxidant potential of fucoxanthin, an in silico analysis based on molecular docking was performed, showing that fucoxanthin interacts with antioxidant proteins (3FS1, 3L2C, and 8BBK). This research not only confirmed the positive results of I. galbana cultivation in terms of antioxidant activity, but also provided essential information for the optimization of fucoxanthin production, opening up promising prospects for industrial applications and future research.
Collapse
Affiliation(s)
| | - Ayoub Ainane
- Superior School of Technology, University of Sultan Moulay Slimane, P.O. Box 170, Khenifra 54000, Morocco
| | - Laila Achenani
- Superior School of Technology, University of Sultan Moulay Slimane, P.O. Box 170, Khenifra 54000, Morocco
| | - Ali Merito Ali
- Medicinal Research Institute, Center for Research and Study of Djibouti, Djibouti City P.O. Box 486, Djibouti
| | - Houda Mohamed
- Medicinal Research Institute, Center for Research and Study of Djibouti, Djibouti City P.O. Box 486, Djibouti
- Peltier Hospital of Djibouti, Djibouti City P.O. Box 2123, Djibouti
| | - Ahmad Ali
- University Department of Life Sciences, University of Mumbai, Vidyanagari, Santacruz (East), Mumbai 400098, India
| | - Pannaga Pavan Jutur
- Omics of Algae Group, Industrial Biotechnology, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Tarik Ainane
- Superior School of Technology, University of Sultan Moulay Slimane, P.O. Box 170, Khenifra 54000, Morocco
| |
Collapse
|
4
|
Kaur M, Shitanaka T, Surendra KC, Khanal SK. Macroalgae-derived bioactive compounds for functional food and pharmaceutical applications-a critical review. Crit Rev Food Sci Nutr 2024:1-23. [PMID: 39078214 DOI: 10.1080/10408398.2024.2384643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/31/2024]
Abstract
The rising demand for global food resources, combined with an overreliance on land-based agroecosystems, poses a significant challenge for the sustainable production of food products. Macroalgae cultivation is a promising approach to mitigate impending global food insecurities due to several key factors: independence from terrestrial farming, rapid growth rates, unique biochemical makeup, and carbon capture potential. Furthermore, macroalgae are rich in vitamins, minerals, essential amino acids, polyunsaturated fatty acids and fiber, demonstrating significant potential as sustainable alternatives for enhancing dietary diversity and fulfilling nutritional requirements. This review provides an overview of the nutritional composition and functional properties of commercially cultivated macroalgae species, with emphasis on their viability as value additions to the functional food market. Furthermore, the review discusses the technological aspects of integrating macroalgae into food products, covering both innovative solutions and existing challenges. Macroalgae, beyond being nutritional powerhouses, contain a plethora of bioactive compounds with varied biological activities, including anti-diabetic, anti-cancer, cardioprotective, and neuroprotective properties, making them excellent candidates in developing novel pharmaceuticals. Thus, this review also summarizes the pharmaceutical applications of macroalgae, identifies research gaps and proposes potential strategies for incorporating macroalgae-derived bioactive compounds into therapeutic products.
Collapse
Affiliation(s)
- Manpreet Kaur
- Department of Molecular Biosciences and Bioengineering, University of Hawai'i at Mānoa, Honolulu, HI, USA
| | - Ty Shitanaka
- Department of Molecular Biosciences and Bioengineering, University of Hawai'i at Mānoa, Honolulu, HI, USA
| | - K C Surendra
- Department of Molecular Biosciences and Bioengineering, University of Hawai'i at Mānoa, Honolulu, HI, USA
| | - Samir Kumar Khanal
- Department of Molecular Biosciences and Bioengineering, University of Hawai'i at Mānoa, Honolulu, HI, USA
- Department of Environmental Engineering, Korea University Sejong Campus, Sejong, Korea
| |
Collapse
|
5
|
Huang JJ, Xu W, Lin S, Cheung PCK. The bioactivities and biotechnological production approaches of carotenoids derived from microalgae and cyanobacteria. Crit Rev Biotechnol 2024:1-29. [PMID: 39038957 DOI: 10.1080/07388551.2024.2359966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 05/13/2024] [Indexed: 07/24/2024]
Abstract
Microalgae and cyanobacteria are a rich source of carotenoids that are well known for their potent bioactivities, including antioxidant, anti-cancer, anti-proliferative, anti-inflammatory, and anti-obesity properties. Recently, many interests have also been focused on the biological activities of these microalgae/cyanobacteria-derived carotenoids, such as fucoxanthin and β-carotene potential to be the salutary nutraceuticals, on treating or preventing human common diseases (e.g., cancers). This is due to their special chemical structures that demonstrate unique bioactive functions, in which the biologically active discrepancies might attribute to the different spatial configurations of their molecules. In addition, their abundance and bioaccessibilities make them more popularly applied in food and pharmaceutical industries, as compared to the macroalgal/fungal-derived ones. This review is focused on the recent studies on the bioactivities of fucoxanthin and some carotenoids derived from microalgae and cyanobacteria in relationship with human health and diseases, with emphasis on their potential applications as natural antioxidants. Various biotechnological approaches employed to induce the production of these specific carotenoids from the culture of microalgae/cyanobacteria are also critically reviewed. These well-developed and emerging biotechnologies present promise to be applied in food and pharmaceutical industries to facilitate the efficient manufacture of the bioactive carotenoid products derived from microalgae and cyanobacteria.
Collapse
Affiliation(s)
- Jim Junhui Huang
- Food and Nutritional Sciences Programme, School of Life Sciences, The Chinese University of Hong Kong, Shatin, People's Republic of China
- Department of Food Science and Technology, Faculty of Science, National University of Singapore, Singapore, Republic of Singapore
| | - Wenwen Xu
- Food and Nutritional Sciences Programme, School of Life Sciences, The Chinese University of Hong Kong, Shatin, People's Republic of China
- School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Shaoling Lin
- Food and Nutritional Sciences Programme, School of Life Sciences, The Chinese University of Hong Kong, Shatin, People's Republic of China
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, People's Republic of China
| | - Peter Chi Keung Cheung
- Food and Nutritional Sciences Programme, School of Life Sciences, The Chinese University of Hong Kong, Shatin, People's Republic of China
| |
Collapse
|
6
|
Mohamed Abdoul-Latif F, Ainane A, Houmed Aboubaker I, Merito Ali A, Mohamed H, Jutur PP, Ainane T. Unlocking the Green Gold: Exploring the Cancer Treatment and the Other Therapeutic Potential of Fucoxanthin Derivatives from Microalgae. Pharmaceuticals (Basel) 2024; 17:960. [PMID: 39065808 PMCID: PMC11280058 DOI: 10.3390/ph17070960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/14/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024] Open
Abstract
Fucoxanthin, a carotenoid widely studied in marine microalgae, is at the heart of scientific research because of its promising bioactive properties for human health. Its unique chemical structure and specific biosynthesis, characterized by complex enzymatic conversion in marine organisms, have been examined in depth in this review. The antioxidant, anti-inflammatory, and anti-cancer activities of fucoxanthin have been rigorously supported by data from in vitro and in vivo experiments and early clinical trials. Additionally, this review explores emerging strategies to optimize the stability and efficacy of fucoxanthin, aiming to increase its solubility and bioavailability to enhance its therapeutic applications. However, despite these potential benefits, challenges persist, such as limited bioavailability and technological obstacles hindering its large-scale production. The medical exploitation of fucoxanthin thus requires an innovative approach and continuous optimization to overcome these barriers. Although further research is needed to refine its clinical use, fucoxanthin offers promising potential in the development of natural therapies aimed at improving human health. By integrating knowledge about its biosynthesis, mechanisms of action, and potential beneficial effects, future studies could open new perspectives in the treatment of cancer and other chronic diseases.
Collapse
Affiliation(s)
| | - Ayoub Ainane
- Superior School of Technology, University of Sultan Moulay Slimane, P.O. Box 170, Khenifra 54000, Morocco
| | - Ibrahim Houmed Aboubaker
- Center for Research and Study of Djibouti, Medicinal Research Institute, Djibouti City P.O. Box 486, Djibouti
- Peltier Hospital of Djibouti, Djibouti City P.O. Box 2123, Djibouti
| | - Ali Merito Ali
- Center for Research and Study of Djibouti, Medicinal Research Institute, Djibouti City P.O. Box 486, Djibouti
| | - Houda Mohamed
- Center for Research and Study of Djibouti, Medicinal Research Institute, Djibouti City P.O. Box 486, Djibouti
- Peltier Hospital of Djibouti, Djibouti City P.O. Box 2123, Djibouti
| | - Pannaga Pavan Jutur
- Omics of Algae Group, Industrial Biotechnology, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067, India;
| | - Tarik Ainane
- Superior School of Technology, University of Sultan Moulay Slimane, P.O. Box 170, Khenifra 54000, Morocco
| |
Collapse
|
7
|
Hadjkacem F, Elleuch J, Pierre G, Fendri I, Michaud P, Abdelkafi S. Production and purification of fucoxanthins and β-carotenes from Halopteris scoparia and their effects on digestive enzymes and harmful bacteria. ENVIRONMENTAL TECHNOLOGY 2024; 45:2923-2934. [PMID: 36952278 DOI: 10.1080/09593330.2023.2195562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 02/27/2023] [Indexed: 06/18/2023]
Abstract
ABSTRACTAlgae constitute a significant part of marine biodiversity. They represent a renewable source of bioactive metabolites from drug development and therapeutic fields. Fucoxanthin and β-carotene from the brown macroalgae Halopteris scoparia, were extracted using conventional organic solvent extraction, then purified, to homogeneity, based on various chromatographic principles. Their effects on digestive enzymes and harmful bacteria were investigated. The capacities of both purified pigments to inhibit α-amylase and trypsin enzymes were evaluated. Purified fucoxanthin and β-carotene exhibited interesting α-amylase inhibition activities, with IC50 of 300 and 500 µg/mL, respectively. Moreover, trypsin inhibition activities were detected using purified these two pigments. The antibacterial potential of the purified pigments was evaluated. β-carotene showed to be a great antibacterial natural compound against gram-positive and gram-negative bacteria such as Listeria monocytogenes, Staphylococcus aureus and Salmonella enterica with Minimal Inhibitory Concentration (MIC) of about 0.225, 0.1125, 0.225 µg/mL, respectively. Those findings are in favor of the exploitation of H. scoparia pigments in therapeutic fields as an antidiabetic source directly by the inhibition of α-amylase and trypsin as well as antibacterial agents against gastrointestinal infections.
Collapse
Affiliation(s)
- Farah Hadjkacem
- Laboratoire de Génie Enzymatique et Microbiologie, Equipe de Biotechnologie des Algues, Ecole Nationale d'Ingénieurs de Sfax, University of Sfax, Sfax, Tunisia
- Université Clermont Auvergne, CNRS, SIGMA Clermont, Institut Pascal, Clermont-Ferrand, France
| | - Jihen Elleuch
- Laboratoire de Génie Enzymatique et Microbiologie, Equipe de Biotechnologie des Algues, Ecole Nationale d'Ingénieurs de Sfax, University of Sfax, Sfax, Tunisia
| | - Guillaume Pierre
- Université Clermont Auvergne, CNRS, SIGMA Clermont, Institut Pascal, Clermont-Ferrand, France
| | - Imen Fendri
- Laboratoire de Biotechnologie de Plantes Appliquée à l'Amélioration de Cultures, Faculté des Sciences de Sfax, Université de Sfax, Sfax, Tunisia
| | - Philippe Michaud
- Université Clermont Auvergne, CNRS, SIGMA Clermont, Institut Pascal, Clermont-Ferrand, France
| | - Slim Abdelkafi
- Laboratoire de Génie Enzymatique et Microbiologie, Equipe de Biotechnologie des Algues, Ecole Nationale d'Ingénieurs de Sfax, University of Sfax, Sfax, Tunisia
| |
Collapse
|
8
|
Lee JY, Wong CY, Koh RY, Lim CL, Kok YY, Chye SM. Natural Bioactive Compounds from Macroalgae and Microalgae for the Treatment of Alzheimer's Disease: A Review. THE YALE JOURNAL OF BIOLOGY AND MEDICINE 2024; 97:205-224. [PMID: 38947104 PMCID: PMC11202106 DOI: 10.59249/jnkb9714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Neuroinflammation, toxic protein aggregation, oxidative stress, and mitochondrial dysfunction are key pathways in neurodegenerative diseases like Alzheimer's disease (AD). Targeting these mechanisms with antioxidants, anti-inflammatory compounds, and inhibitors of Aβ formation and aggregation is crucial for treatment. Marine algae are rich sources of bioactive compounds, including carbohydrates, phenolics, fatty acids, phycobiliproteins, carotenoids, fatty acids, and vitamins. In recent years, they have attracted interest from the pharmaceutical and nutraceutical industries due to their exceptional biological activities, which include anti-inflammation, antioxidant, anticancer, and anti-apoptosis properties. Multiple lines of evidence have unveiled the potential neuroprotective effects of these multifunctional algal compounds for application in treating and managing AD. This article will provide insight into the molecular mechanisms underlying the neuroprotective effects of bioactive compounds derived from algae based on in vitro and in vivo models of neuroinflammation and AD. We will also discuss their potential as disease-modifying and symptomatic treatment strategies for AD.
Collapse
Affiliation(s)
- Jia Yee Lee
- School of Health Sciences, International Medical
University, Kuala Lumpur, Malaysia
| | - Chiew Yen Wong
- Department of Applied Biomedical Science and
Biotechnology, School of Health Sciences, International Medical University,
Kuala Lumpur, Malaysia
| | - Rhun Yian Koh
- Department of Applied Biomedical Science and
Biotechnology, School of Health Sciences, International Medical University,
Kuala Lumpur, Malaysia
| | - Chooi Ling Lim
- Department of Applied Biomedical Science and
Biotechnology, School of Health Sciences, International Medical University,
Kuala Lumpur, Malaysia
| | - Yih Yih Kok
- Department of Applied Biomedical Science and
Biotechnology, School of Health Sciences, International Medical University,
Kuala Lumpur, Malaysia
| | - Soi Moi Chye
- Department of Applied Biomedical Science and
Biotechnology, School of Health Sciences, International Medical University,
Kuala Lumpur, Malaysia
| |
Collapse
|
9
|
Kuo MY, Dai WC, Chang JL, Chang JS, Lee TM, Chang CC. Fucoxanthin induces human melanoma cytotoxicity by thwarting the JAK2/STAT3/BCL-xL signaling axis. ENVIRONMENTAL TOXICOLOGY 2024; 39:3356-3366. [PMID: 38444163 DOI: 10.1002/tox.24193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 01/23/2024] [Accepted: 02/10/2024] [Indexed: 03/07/2024]
Abstract
Melanoma is the most lethal skin malignancy. Fucoxanthin is a marine carotenoid with significant anticancer activities. Intriguingly, Fucoxanthin's impact on human melanoma remains elusive. Signal Transducer and Activator of Transcription 3 (STAT3) represents a promising target in cancer therapy due to its persistent activation in various cancers, including melanoma. Herein, we revealed that Fucoxanthin is cytotoxic to human melanoma cell lines A2758 and A375 while showing limited cytotoxicity to normal human melanocytes. Apoptosis is a primary reason for Fucoxanthin's melanoma cytotoxicity, as the pan-caspase inhibitor z-VAD-fmk drastically abrogated Fucoxanthin-elicited clonogenicity blockage. Besides, Fucoxanthin downregulated tyrosine 705-phosphorylated STAT3 (p-STAT3 (Y705)), either inherently present in melanoma cells or inducible by interleukin 6 (IL-6) stimulation. Notably, ectopic expression of STAT3-C, a dominant-active STAT3 mutant, abolished Fucoxanthin-elicited melanoma cell apoptosis and clonogenicity inhibition, supporting the pivotal role of STAT3 blockage in Fucoxanthin's melanoma cytotoxicity. Moreover, Fucoxanthin lowered BCL-xL levels by blocking STAT3 activation, while ectopic BCL-xL expression rescued melanoma cells from Fucoxanthin-induced killing. Lastly, Fucoxanthin was found to diminish the levels of JAK2 with dual phosphorylation at tyrosine residues 1007 and 1008 in melanoma cells, suggesting that Fucoxanthin impairs STAT3 signaling by blocking JAK2 activation. Collectively, we present the first evidence that Fucoxanthin is cytotoxic selectively against human melanoma cells while sparing normal melanocytes. Mechanistically, Fucoxanthin targets the JAK2/STAT3/BCL-xL antiapoptotic axis to provoke melanoma cell death. This discovery implicates the potential application of Fucoxanthin as a chemopreventive or therapeutic strategy for melanoma management.
Collapse
Affiliation(s)
- Min-Yung Kuo
- Pediatric Surgery Division, Department of Surgery, Tungs' Taichung MetroHarbor Hospital, Taichung, Taiwan
| | - Wen-Chyi Dai
- Doctoral Program in Biotechnology Industrial Innovation and Management, National Chung Hsing University, Taichung, Taiwan
| | - Jie-Li Chang
- Taichung Municipal Taichung First Senior High School, Taichung, Taiwan
| | - Jo-Shu Chang
- Department of Chemical and Materials Engineering, Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung, Taiwan
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan
| | - Tse-Min Lee
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Chia-Che Chang
- Doctoral Program in Biotechnology Industrial Innovation and Management, National Chung Hsing University, Taichung, Taiwan
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan
- Graduate Institute of Biomedical Sciences, Master Program in Precision Health, Doctoral Program in Translational Medicine, Rong Hsing Research Center for Translational Medicine, The iEGG and Animal Biotechnology Research Center, National Chung Hsing University, Taichung, Taiwan
- Department of Medical Laboratory Science and Biotechnology, Asia University, Taichung, Taiwan
- Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
- Traditional Herbal Medicine Research Center, Taipei Medical University Hospital, Taipei, Taiwan
| |
Collapse
|
10
|
Kang N, Kim EA, Park A, Heo SY, Heo JH, Heo SJ. Antiviral Potential of Fucoxanthin, an Edible Carotenoid Purified from Sargassum siliquastrum, against Zika Virus. Mar Drugs 2024; 22:247. [PMID: 38921558 PMCID: PMC11204710 DOI: 10.3390/md22060247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/22/2024] [Accepted: 05/25/2024] [Indexed: 06/27/2024] Open
Abstract
Considering the lack of antiviral drugs worldwide, we investigated the antiviral potential of fucoxanthin, an edible carotenoid purified from Sargassum siliquastrum, against zika virus (ZIKV) infection. The antiviral activity of fucoxanthin was assessed in ZIKV-infected Vero E6 cells, and the relevant structural characteristics were confirmed using molecular docking and molecular dynamics (MD) simulation. Fucoxanthin decreased the infectious viral particles and nonstructural protein (NS)1 mRNA expression levels at concentrations of 12.5, 25, and 50 µM in ZIKV-infected cells. Fucoxanthin also decreased the increased mRNA levels of interferon-induced proteins with tetratricopeptide repeat 1 and 2 in ZIKV-infected cells. Molecular docking simulations revealed that fucoxanthin binds to three main ZIKV proteins, including the envelope protein, NS3, and RNA-dependent RNA polymerase (RdRp), with binding energies of -151.449, -303.478, and -290.919 kcal/mol, respectively. The complex of fucoxanthin with RdRp was more stable than RdRp protein alone based on MD simulation. Further, fucoxanthin bonded to the three proteins via repeated formation and disappearance of hydrogen bonds. Overall, fucoxanthin exerts antiviral potential against ZIKV by affecting its three main proteins in a concentration-dependent manner. Thus, fucoxanthin isolated from S. siliquastrum is a potential candidate for treating zika virus infections.
Collapse
Affiliation(s)
- Nalae Kang
- Jeju Bio Research Center, Korea Institute of Ocean Science and Technology (KIOST), Jeju 63349, Republic of Korea; (N.K.); (E.-A.K.); (A.P.); (S.-Y.H.); (J.-H.H.)
| | - Eun-A Kim
- Jeju Bio Research Center, Korea Institute of Ocean Science and Technology (KIOST), Jeju 63349, Republic of Korea; (N.K.); (E.-A.K.); (A.P.); (S.-Y.H.); (J.-H.H.)
| | - Areumi Park
- Jeju Bio Research Center, Korea Institute of Ocean Science and Technology (KIOST), Jeju 63349, Republic of Korea; (N.K.); (E.-A.K.); (A.P.); (S.-Y.H.); (J.-H.H.)
| | - Seong-Yeong Heo
- Jeju Bio Research Center, Korea Institute of Ocean Science and Technology (KIOST), Jeju 63349, Republic of Korea; (N.K.); (E.-A.K.); (A.P.); (S.-Y.H.); (J.-H.H.)
| | - Jun-Ho Heo
- Jeju Bio Research Center, Korea Institute of Ocean Science and Technology (KIOST), Jeju 63349, Republic of Korea; (N.K.); (E.-A.K.); (A.P.); (S.-Y.H.); (J.-H.H.)
| | - Soo-Jin Heo
- Jeju Bio Research Center, Korea Institute of Ocean Science and Technology (KIOST), Jeju 63349, Republic of Korea; (N.K.); (E.-A.K.); (A.P.); (S.-Y.H.); (J.-H.H.)
- Department of Biology, University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| |
Collapse
|
11
|
Venkatachalam J, Jeyadoss VS, Bose KSC, Subramanian R. Marine seaweed endophytic fungi-derived active metabolites promote reactive oxygen species-induced cell cycle arrest and apoptosis in human breast cancer cells. Mol Biol Rep 2024; 51:611. [PMID: 38704796 DOI: 10.1007/s11033-024-09511-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 04/02/2024] [Indexed: 05/07/2024]
Abstract
BACKGROUND Endophytic fungi have an abundant sources rich source of rich bioactive molecules with pivotal pharmacological properties. Several studies have found that endophytic fungi-derived bioactive secondary metabolites have antiproliferative, anti-oxidant, and anti-inflammatory properties, but the molecular mechanism by which they induce cell cycle arrest and apoptosis pathways is unknown. This study aimed to determine the molecular mechanism underlying the anticancer property of the endophytic fungi derived active secondary metabolites on human breast cancer cells. METHODS In this study, we identified four endophytic fungi from marine seaweeds and partially screened its phytochemical properties by Chromatography-Mass Spectrometry (GC-MS) analysis. Moreover, the molecular mechanism underlying the anticancer property of these active secondary metabolites (FA, FB, FC and FE) on human breast cancer cells were examined on MCF-7 cells by TT assay, Apoptotic assay by Acridine orang/Ethidium Bromide (Dual Staining), DNA Fragmentation by DAPI Staining, reactive oxygen species (ROS) determination by DCFH-DA assay, Cell cycle analysis was conducted Flow cytometry and the apoptotic signalling pathway was evaluated by westernblot analysis. Doxorubicin was used as a positive control drug for this experiment. RESULTS The GC-MS analysis of ethyl acetate extract of endophytic fungi from the marine macro-algae revealed the different functional groups and bioactive secondary metabolites. From the library, we observed the FC (76%), FB (75%), FA (73%) and FE (71%) have high level of antioxidant activity which was assessed by DPPH scavenging assay. Further, we evaluated the cytotoxic potentials of these secondary metabolites on human breast cancer MCF-7 cells for 24 h and the IC50 value were calculated (FA:28.62 ± 0.3 µg/ml, FB:49.81 ± 2.5 µg/ml, FC:139.42 ± µg/ml and FE:22.47 ± 0.5 µg/ul) along with positive control Doxorubicin 15.64 ± 0.8 µg/ml respectively by MTT assay. The molecular mechanism by which the four active compound induced apoptosis via reactive oxygen species (ROS) and cell cycle arrest in MCF-7 cells was determined H2DCFDA staining, DAPI staining, Acridine orange and ethidium bromide (AO/EtBr) dual staining, flowcytometry analysis with PI staining and apoptotic key regulatory proteins expression levels measured by westernblot analysis. CONCLUSION Our findings, revealed the anticancer potential of endophytic fungi from marine seaweed as a valuable source of bioactive compounds with anticancer properties and underscore the significance of exploring marine-derived endophytic fungi as a promising avenue for the development of novel anticancer agents. Further investigations are necessary to isolate and characterize specific bioactive compounds responsible for these effects and to validate their therapeutic potential in preclinical and clinical settings.
Collapse
Affiliation(s)
| | | | | | - Raghunandhakumar Subramanian
- Cancer and Stem cell Research Lab, Department of Pharmacology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, 600 077, Tamilnadu, India.
| |
Collapse
|
12
|
Wang X, Yang C, Zhang X, Ye C, Liu W, Wang C. Marine natural products: potential agents for depression treatment. Acta Biochim Pol 2024; 71:12569. [PMID: 38812493 PMCID: PMC11135343 DOI: 10.3389/abp.2024.12569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 03/08/2024] [Indexed: 05/31/2024]
Abstract
Depression is a common psychiatric disorder. Due to the disadvantages of current clinical drugs, including poor efficacy and unnecessary side effects, research has shifted to novel natural products with minimal or no adverse effects as therapeutic alternatives. The ocean is a vast ecological home, with a wide variety of organisms that can produce a large number of natural products with unique structures, some of which have neuroprotective effects and are a valuable source for the development of new drugs for depression. In this review, we analyzed preclinical and clinical studies of natural products derived from marine organisms with antidepressant potential, including the effects on the pathophysiology of depression, and the underlying mechanisms of these effects. It is expected to provide a reference for the development of new antidepressant drugs.
Collapse
Affiliation(s)
| | | | | | | | | | - Chengmin Wang
- Department of Psychiatry, Shenzhen Longgang Center for Chronic Disease Control, Shenzhen, China
| |
Collapse
|
13
|
Tanna B, Yadav S, Patel MK, Mishra A. Metabolite Profiling, Biological and Molecular Analyses Validate the Nutraceutical Potential of Green Seaweed Acrosiphoniaorientalis for Human Health. Nutrients 2024; 16:1222. [PMID: 38674913 PMCID: PMC11055090 DOI: 10.3390/nu16081222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/10/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024] Open
Abstract
Seaweeds have proven to be nutrient-dense and are rich in antioxidants, like phenolics, flavonoids, and other essential metabolites that help to provide their medicinal benefits. Non-targeted metabolite profiling of the tropical green seaweed Acrosiphonia orientalis showed the presence of numerous groups of contents, including sugars, essential amino acids, and fatty acids. Targeted metabolite profiling using HPLC identified 17 amino acids. The extract exhibited a very low half-maximal effective concentration (EC50) dosage for HeLa and Huh-7 cell lines, indicating a high likelihood of anticancer properties. A significant positive correlation was found between biological activities, such as antioxidation, scavenging, and reducing power with the phenolic and flavonoid contents. The extract revealed augmentation of proliferation in selected cervical cells, as it upregulated p53 1.3-fold, and downregulated important cancerous genes such as Cas-3 and DNMT 12- and 8-fold, respectively. An approximate 55-fold downregulation was observed in selected hepatic cell lines. Microarray analysis of hepatic cells indicated 0.27% and 0.07% upregulation of coding and non-coding genes, respectively, and 0.41% and 0.13% downregulation of coding and non-coding genes, respectively. As a consequence, it can be said that A. orientalis has possible medicinal use, such as anticancer activity, and therefore may be an intriguing food component that has potential as a regular dietary supplement.
Collapse
Affiliation(s)
- Bhakti Tanna
- Division of Biotechnology and Phycology, CSIR-Central Salt and Marine Chemicals Research Institute, Bhavnagar 364002, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sonam Yadav
- Division of Biotechnology and Phycology, CSIR-Central Salt and Marine Chemicals Research Institute, Bhavnagar 364002, India
| | - Manish Kumar Patel
- Division of Biotechnology and Phycology, CSIR-Central Salt and Marine Chemicals Research Institute, Bhavnagar 364002, India
- Department of Postharvest Science of Fresh Produce, Agricultural Research Organization (ARO), Volcani Center, Rishon LeZion 7505101, Israel
| | - Avinash Mishra
- Division of Biotechnology and Phycology, CSIR-Central Salt and Marine Chemicals Research Institute, Bhavnagar 364002, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
14
|
Wu Z, Tang Y, Liu Y, Chen Z, Feng Y, Hu H, Liu H, Chen G, Lu Y, Hu Y, Xu R. Co-delivery of fucoxanthin and Twist siRNA using hydroxyethyl starch-cholesterol self-assembled polymer nanoparticles for triple-negative breast cancer synergistic therapy. J Adv Res 2024:S2090-1232(24)00160-7. [PMID: 38636588 DOI: 10.1016/j.jare.2024.04.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 03/22/2024] [Accepted: 04/15/2024] [Indexed: 04/20/2024] Open
Abstract
INTRODUCTION Triple-negative breast cancer (TNBC) represents the most aggressive subtype of breast cancer with an extremely dismal prognosis and few treatment options. As a desmoplastic tumor, TNBC tumor cells are girdled by stroma composed of cancer-associated fibroblasts (CAFs) and their secreted stromal components. The rapidly proliferating tumor cells, together with the tumor stroma, exert additional solid tissue pressure on tumor vasculature and surrounding tissues, severely obstructing therapeutic agent from deep intratumoral penetration, and resulting in tumor metastasis and treatment resistance. OBJECTIVES Fucoxanthin (FX), a xanthophyll carotenoid abundant in marine algae, has attracted widespread attention as a promising alternative candidate for tumor prevention and treatment. Twist is a pivotal regulator of epithelial to mesenchymal transition, and its depletion has proven to sensitize antitumor drugs, inhibit metastasis, reduce CAFs activation and the following interstitial deposition, and increase tumor perfusion. The nanodrug delivery system co-encapsulating FX and nucleic acid drug Twist siRNA (siTwist) was expected to form a potent anti-TNBC therapeutic cyclical feedback loop. METHODS AND RESULTS Herein, our studies constituted a novel self-assembled polymer nanomedicine (siTwist/FX@HES-CH) based on the amino-modified hydroxyethyl starch (HES-NH2) grafted with hydrophobic segment cholesterol (CH). The MTT assay, flow cytometry apoptosis analysis, transwell assay, western blot, and 3D multicellular tumor spheroids growth inhibition assay all showed that siTwist/FX@HES-CH could kill tumor cells and inhibit their metastasis in a synergistic manner. The in vivo anti-TNBC efficacy was demonstrated that siTwist/FX@HES-CH remodeled tumor microenvironment, facilitated interstitial barrier crossing, killed tumor cells synergistically, drastically reduced TNBC orthotopic tumor burden and inhibited lung metastasis. CONCLUSION Systematic studies revealed that this dual-functional nanomedicine that targets both tumor cells and tumor microenvironment significantly alleviates TNBC orthotopic tumor burden and inhibits lung metastasis, establishing a new paradigm for TNBC therapy.
Collapse
Affiliation(s)
- Zeliang Wu
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yuxiang Tang
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Clinical Medical Center of Cell Therapy for Neoplastic Disease, Wuhan 430022, China
| | - Yuanhui Liu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zhaozhao Chen
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yuao Feng
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Hang Hu
- School of Pharmacy, Changzhou University, Changzhou 213164, China
| | - Hui Liu
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; The Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei Province, Wuhan 430030, China
| | - Gang Chen
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Youming Lu
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Innovation Center for Brain Medical Sciences of the Ministry of Education, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Yu Hu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Clinical Medical Center of Cell Therapy for Neoplastic Disease, Wuhan 430022, China.
| | - Rong Xu
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; The Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei Province, Wuhan 430030, China; Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
15
|
Sadeghi A, Rajabiyan A, Meygoli Nezhad N, Nabizade N, Alvani A, Zarei-Ahmady A. A review on Persian Gulf brown algae as potential source for anticancer drugs. ALGAL RES 2024; 79:103446. [DOI: 10.1016/j.algal.2024.103446] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
|
16
|
Nikitha R, Afeeza K, Suresh V, Dilipan E. Molecular Docking of Seaweed-Derived Drug Fucoxanthin Against the Monkeypox Virus. Cureus 2024; 16:e58730. [PMID: 38779278 PMCID: PMC11110489 DOI: 10.7759/cureus.58730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 04/22/2024] [Indexed: 05/25/2024] Open
Abstract
Background The monkeypox virus (MPXV) is classified as a zoonotic virus of the Poxviridae family, resulting from the MPXV strain of the Orthopoxvirus genus. Seaweeds, or marine macroalgae, are abundant reservoirs of bioactive compounds that demonstrate diverse biological properties, such as antiviral actions. In the field of computational analysis, in silico analysis refers to the use of computer-based methods to study and assess biological systems and processes. To forecast the binding affinity and interaction between the discovered chemical and the target proteins of the MPXV, a molecular docking analysis was conducted. Aim The research aims to conduct an in silico examination of a protein-ligand interaction of a drug produced from seaweed that targets the MPXV. Methodology Protein Data Bank (PDB) and PubChem databases provided MPXV methyltransferase and fucoxanthin ligand compounds. AutoDockTools 1.5.7 calculated the molecular docking using the Lamarckian genetic algorithm. Autogrid created a grid box around target 8B07 active site hotspot residues. Each docked molecule's docking parameters were obtained from 100 docking experiments with a maximum of 2.5 × 106 energy evaluations, a 0.02 mutation rate, and a 0.8 crossover rate. The population comprised 250 randomly selected volunteers. PyMOL was utilized to observe ligand fragment interactions. Results The binding energy of the ligand fucoxanthin was -5.46 kcal/mol. Fucoxanthin interacts with receptor molecules via hydrogen bonding at the amino acid level: Chain A: PHE188 and TYR189; and Chain B: LYS33, GLN37, GLY38, GLY96, ARG97, PHE115, PRO202, and SER203. The higher the negative docking score, the stronger the binding affinity between the receptor and ligand molecules, indicating that bioactive substances are more effective. Conclusion The findings of this study indicate that fucoxanthin, a pharmaceutical derivative generated from seaweed, had antiviral activity against the MPXV. This conclusion was reached based on protein-ligand interactions.
Collapse
Affiliation(s)
- Ramakrishnan Nikitha
- Physiology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai, IND
| | - Klg Afeeza
- Physiology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai, IND
| | - Vasugi Suresh
- Medical Physiology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai, IND
| | - Elangovan Dilipan
- Physiology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai, IND
| |
Collapse
|
17
|
Dalisay DS, Tenebro CP, Sabido EM, Suarez AFL, Paderog MJV, Reyes-Salarda R, Saludes JP. Marine-Derived Anticancer Agents Targeting Apoptotic Pathways: Exploring the Depths for Novel Cancer Therapies. Mar Drugs 2024; 22:114. [PMID: 38535455 PMCID: PMC10972102 DOI: 10.3390/md22030114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 02/01/2024] [Accepted: 02/08/2024] [Indexed: 04/13/2024] Open
Abstract
Extensive research has been conducted on the isolation and study of bioactive compounds derived from marine sources. Several natural products have demonstrated potential as inducers of apoptosis and are currently under investigation in clinical trials. These marine-derived compounds selectively interact with extrinsic and intrinsic apoptotic pathways using a variety of molecular mechanisms, resulting in cell shrinkage, chromatin condensation, cytoplasmic blebs, apoptotic bodies, and phagocytosis by adjacent parenchymal cells, neoplastic cells, or macrophages. Numerous marine-derived compounds are currently undergoing rigorous examination for their potential application in cancer therapy. This review examines a total of 21 marine-derived compounds, along with their synthetic derivatives, sourced from marine organisms such as sponges, corals, tunicates, mollusks, ascidians, algae, cyanobacteria, fungi, and actinobacteria. These compounds are currently undergoing preclinical and clinical trials to evaluate their potential as apoptosis inducers for the treatment of different types of cancer. This review further examined the compound's properties and mode of action, preclinical investigations, clinical trial studies on single or combination therapy, and the prospective development of marine-derived anticancer therapies.
Collapse
Affiliation(s)
- Doralyn S. Dalisay
- Center for Chemical Biology and Biotechnology (C2B2), University of San Agustin, Iloilo City 5000, Philippines; (C.P.T.); (E.M.S.); (M.J.V.P.)
- Department of Biology, University of San Agustin, Iloilo City 5000, Philippines;
- Balik Scientist Program, Department of Science and Technology, Philippine Council for Health Research and Development (DOST-PCHRD), Taguig 1631, Philippines;
| | - Chuckcris P. Tenebro
- Center for Chemical Biology and Biotechnology (C2B2), University of San Agustin, Iloilo City 5000, Philippines; (C.P.T.); (E.M.S.); (M.J.V.P.)
| | - Edna M. Sabido
- Center for Chemical Biology and Biotechnology (C2B2), University of San Agustin, Iloilo City 5000, Philippines; (C.P.T.); (E.M.S.); (M.J.V.P.)
| | - Angelica Faith L. Suarez
- Center for Natural Drug Discovery and Development (CND3), University of San Agustin, Iloilo City 5000, Philippines;
| | - Melissa June V. Paderog
- Center for Chemical Biology and Biotechnology (C2B2), University of San Agustin, Iloilo City 5000, Philippines; (C.P.T.); (E.M.S.); (M.J.V.P.)
- Department of Pharmacy, University of San Agustin, Iloilo City 5000, Philippines
| | - Rikka Reyes-Salarda
- Department of Biology, University of San Agustin, Iloilo City 5000, Philippines;
| | - Jonel P. Saludes
- Balik Scientist Program, Department of Science and Technology, Philippine Council for Health Research and Development (DOST-PCHRD), Taguig 1631, Philippines;
- Center for Natural Drug Discovery and Development (CND3), University of San Agustin, Iloilo City 5000, Philippines;
- Department of Chemistry, University of San Agustin, Iloilo City 5000, Philippines
| |
Collapse
|
18
|
Sun H, Wang J, Li Y, Yang S, Chen DD, Tu Y, Liu J, Sun Z. Synthetic biology in microalgae towards fucoxanthin production for pharmacy and nutraceuticals. Biochem Pharmacol 2024; 220:115958. [PMID: 38052271 DOI: 10.1016/j.bcp.2023.115958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/16/2023] [Accepted: 11/29/2023] [Indexed: 12/07/2023]
Abstract
Synthetic biology has emerged as a powerful tool for engineering biological systems to produce valuable compounds, including pharmaceuticals and nutraceuticals. Microalgae, in particular, offer a promising platform for the production of bioactive compounds due to their high productivity, low land and water requirements, and ability to perform photosynthesis. Fucoxanthin, a carotenoid pigment found predominantly in brown seaweeds and certain microalgae, has gained significant attention in recent years due to its numerous health benefits, such as antioxidation, antitumor effect and precaution osteoporosis. This review provides an overview of the principles and applications of synthetic biology in the microbial engineering of microalgae for enhanced fucoxanthin production. Firstly, the fucoxanthin bioavailability and metabolism in vivo was introduced for the beneficial roles, followed by the biological functions of anti-oxidant activity, anti-inflammatory activity, antiapoptotic role antidiabetic and antilipemic effects. Secondly, the cultivation condition and strategy were summarized for fucoxanthin improvement with low production costs. Thirdly, the genetic engineering of microalgae, including gene overexpression, knockdown and knockout strategies were discussed for further improving the fucoxanthin production. Then, synthetic biology tools of CRISPR-Cas9 genome editing, transcription activator-like effector nucleases as well as modular assembly and chassis engineering were proposed to precise modification of microalgal genomes to improve fucoxanthin production. Finally, challenges and future perspectives were discussed to realize the industrial production and development of functional foods of fucoxanthin from microalgae.
Collapse
Affiliation(s)
- Han Sun
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education; International Research Center for Marine Biosciences, Ministry of Science and Technology; Shanghai Ocean University, Shanghai 201306, China; Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
| | - Jia Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Yuelian Li
- China National Chemical Information Center, Beijing 100020, China
| | - Shufang Yang
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
| | | | - Yidong Tu
- Technology Center, Shanghai Inoherb Co. Ltd, 121 Chengyin Road, Shanghai 200083, China
| | - Jin Liu
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, Algae Innovation Center for Engineering Research, School of Resources and Environment, Nanchang University, Nanchang 330031, China
| | - Zheng Sun
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education; International Research Center for Marine Biosciences, Ministry of Science and Technology; Shanghai Ocean University, Shanghai 201306, China; Marine Biomedical Science and Technology Innovation Platform of Lin-gang Special Area, Shanghai 201306, China.
| |
Collapse
|
19
|
Habibi H, Rahmatnejad E, Tohidifar SS, Afshar A, Kameli A, Jafari M, Mohammadi M. Improving performance, reproduction, and immunity in laying Japanese quail with algal derivatives. Poult Sci 2024; 103:103295. [PMID: 38064886 PMCID: PMC10757023 DOI: 10.1016/j.psj.2023.103295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/13/2023] [Accepted: 11/13/2023] [Indexed: 01/02/2024] Open
Abstract
We investigated the effect of the Persian Gulf algae derivatives, namely phycocyanin (PC) and fucoidan (FUC), on the performance, reproductive traits, and immune responses of laying Japanese quails. A completely randomized design was used to distribute 250 six-wk-old Japanese quails with an average body weight of 215 ± 10 g into 5 treatments, 5 replicates, and 10 birds in each replicate over a 5-wk period. Unlike the control groups, the treatment groups received drinking water supplemented with PC and FUC at concentrations of 20 or 40 mg/L, denoted as PC20, PC40, FUC20, and FUC40, respectively, while all birds were provided with identical feed. Supplemental algal derivatives notably improved hen day egg production (HDEP), egg mass, and feed conversion ratio (FCR) compared to the control group (P < 0.01). Incorporating PC and FUC had no significant effect on the weight of males' testes or the weight and length of hens' oviducts. Additionally, the experimental treatments had no impact on the chicks' hatching weight. The supplementation of PC and FUC resulted in increased fertility (P = 0.038) and hatchability (P < 0.001) rates, with the exception of fertility in the PC40 group. The effect of the experimental treatments on immune responses was largely not statistically significant, except in the case of ND. Specifically, the experimental treatments resulted in increased (P = 0.033) antibody titers against ND when compared to the control group, with the exception of FUC20. Supplemental algal derivatives significantly (P < 0.01) reduced total cholesterol, creatinine, and triglycerides (except in the case of PC20). Overall, these findings underscore the potential of algal derivatives to enhance quail performance, reproductive traits, and immune responses.
Collapse
Affiliation(s)
- Hassan Habibi
- Department of Animal Science, Faculty of Agriculture and Natural Resources, Persian Gulf University, Bushehr 75169, Iran
| | - Enayat Rahmatnejad
- Department of Animal Science, Faculty of Agriculture and Natural Resources, Persian Gulf University, Bushehr 75169, Iran.
| | - Sayyed Sattar Tohidifar
- Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Shahrekord 8818634141, Shahrekord, Iran
| | - Alireza Afshar
- The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Ali Kameli
- The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Maryam Jafari
- Graduated Master of Science in Medical Mycology, Kerman University of Medicine Science, Kerman, Iran
| | - Mehdi Mohammadi
- Department of Marine Biotechnology and Environment, Persian Gulf Research and Studies Center, Persian Gulf University, Bushehr, Iran
| |
Collapse
|
20
|
Babbar R, Kaur A, Vanya, Arora R, Gupta JK, Wal P, Tripathi AK, Koparde AA, Goyal P, Ramniwas S, Gulati M, Behl T. Impact of Bioactive Compounds in the Management of Various Inflammatory Diseases. Curr Pharm Des 2024; 30:1880-1893. [PMID: 38818920 DOI: 10.2174/0113816128299615240513174041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 04/02/2024] [Accepted: 04/16/2024] [Indexed: 06/01/2024]
Abstract
Inflammation is an individual's physiological response to a sequence of physical, chemical, or infectious stressors acting mainly to provide localized protection. Although inflammation is a protective and thus beneficial process, its excess or prolonged action can be harmful to the body. An increasing number of the population worldwide are changing their lifestyles, which leads to a rise in inflammatory diseases, such as atherosclerosis, angina pectoris, myocardial infarction, ulcerative colitis, cancer, and many more. Their treatment is based majorly on the pharmacological approach. However, natural products or bioactive compounds are of great significance in inflammation therapy because they show minimum side effects and maximum bioavailability. Therefore, it is critical to investigate bioactive substances that can modify target functions associated with oxidative stress defense and might be used to achieve various health benefits. This review accentuates the essence of bioactive chemicals used in the treatment of inflammation and other inflammatory illnesses. These bioactive compounds can be of any origin, such as plants, animals, bacteria, fungi, marine invertebrates, etc. Bioactive compounds derived from plant sources, such as glycyrrhizin, lignans, lycopene, resveratrol, indoles, and phenolic and polyphenolic compounds, work mainly by reducing oxidative stress and thereby preventing various inflammatory disorders. A large diversity of these anti-inflammatory bioactive compounds has also been discovered in marine environments, giving rise to an increase in the interest of various scientists in marine invertebrates and microbes. The vast diversity of microbes found in the marine environment represents an enormous supply to extract novel compounds, such as from bacteria, cyanobacteria, fungi, algae, microalgae, tiny invertebrates, etc. In the present review, an attempt has been made to summarize such novel bioactive compounds that help prevent inflammatory responses via different mechanisms of action.
Collapse
Affiliation(s)
- Ritchu Babbar
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Arpanpreet Kaur
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Vanya
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Rashmi Arora
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | | | - Pranay Wal
- Department of Pharmacy, Pranveer Singh Institute of Technology, Kanpur, Uttar Pradesh 209305, India
| | | | - Akshada Amit Koparde
- Department of Pharmaceutical Chemistry, Krishna Vishwa Vidyapeeth, Krishna Institute of Pharmacy, Malkapur, Karad 415110, Maharashtra, India
| | - Pradeep Goyal
- Department of Pharmacology, Saraswati College of Pharmacy, Gharuan, Mohali, Punjab, India
| | - Seema Ramniwas
- University Centre for Research and Development, University of Biotechnology, Chandigarh University, Gharuan, Mohali, Punjab, India
| | - Monica Gulati
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 1444411, India
- ARCCIM, Faculty of Health, University of Technology, Sydney, Ultimo, NSW 2007, Australia
| | - Tapan Behl
- Amity School of Pharmaceutical Sciences, Amity University, Mohali, Punjab, India
| |
Collapse
|
21
|
Ahmed SA, Mendonca P, Messeha SS, Oriaku ET, Soliman KFA. The Anticancer Effects of Marine Carotenoid Fucoxanthin through Phosphatidylinositol 3-Kinase (PI3K)-AKT Signaling on Triple-Negative Breast Cancer Cells. Molecules 2023; 29:61. [PMID: 38202644 PMCID: PMC10779870 DOI: 10.3390/molecules29010061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 12/08/2023] [Accepted: 12/12/2023] [Indexed: 01/12/2024] Open
Abstract
Triple-negative breast cancer (TNBC) is an aggressive subtype of breast cancer that lacks specific targets such as estrogen, progesterone, and HER2 receptors. TNBC affects one in eight women in the United States, making up 15-20% of breast cancer cases. Patients with TNBC can develop resistance to chemotherapy over time, leading to treatment failure. Therefore, finding other options like natural products is necessary for treatment. The advantages of using natural products sourced from plants as anticancer agents are that they are less toxic, more affordable, and have fewer side effects. These products can modulate several cellular processes of the tumor microenvironment, such as proliferation, migration, angiogenesis, cell cycle arrest, and apoptosis. The phosphatidyl inositol 3-kinase (PI3K)-AKT signaling pathway is an important pathway that contributes to the survival and growth of the tumor microenvironment and is associated with these cellular processes. This current study examined the anticancer effects of fucoxanthin, a marine carotenoid isolated from brown seaweed, in the MDA-MB-231 and MDA-MB-468 TNBC cell lines. The methods used in this study include a cytotoxic assay, PI3K-AKT signaling pathway PCR arrays, and Wes analysis. Fucoxanthin (6.25 µM) + TNF-α (50 ng/mL) and TNF-α (50 ng/mL) showed no significant effect on cell viability compared to the control in both MDA-MB-231 and MDA-MB-468 cells after a 24 h treatment period. PI3K-AKT signaling pathway PCR array studies showed that in TNF-α-stimulated (50 ng/mL) MDA-MB-231 and MDA-MB-468 cells, fucoxanthin (6.25 µM) modulated the mRNA expression of 12 genes, including FOXO1, RASA1, HRAS, MAPK3, PDK2, IRS1, EIF4EBP1, EIF4B, PTK2, TIRAP, RHOA, and ELK1. Additionally, fucoxanthin significantly downregulated the protein expression of IRS1, EIF4B, and ELK1 in MDA-MB-231 cells, and no change in the protein expression of EIF4B and ELK1 was shown in MDA-MB-468 cells. Fucoxanthin upregulated the protein expression of RHOA in both cell lines. The modulation of the expression of genes and proteins of the PI3K-AKT signaling pathway may elucidate fucoxanthin's effects in cell cycle progression, apoptotic processes, migration, and proliferation, which shows that PI3K-AKT may be the possible molecular mechanism for fucoxanthin's effects. In conclusion, the results obtained in this study elucidate fucoxanthin's molecular mechanisms and indicate that fucoxanthin may be considered a promising candidate for breast cancer-targeted therapy.
Collapse
Affiliation(s)
- Shade’ A. Ahmed
- Division of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Institute of Public Health, Florida A&M University, Tallahassee, FL 32307, USA; (S.A.A.); (E.T.O.)
| | - Patricia Mendonca
- Department of Biology, College of Science and Technology, Florida A&M University, Tallahassee, FL 32307, USA;
| | - Samia S. Messeha
- Department of Biology, College of Science and Technology, Florida A&M University, Tallahassee, FL 32307, USA;
| | - Ebenezer T. Oriaku
- Division of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Institute of Public Health, Florida A&M University, Tallahassee, FL 32307, USA; (S.A.A.); (E.T.O.)
| | - Karam F. A. Soliman
- Division of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Institute of Public Health, Florida A&M University, Tallahassee, FL 32307, USA; (S.A.A.); (E.T.O.)
| |
Collapse
|
22
|
Su M, Bastiaens L, Verspreet J, Hayes M. Applications of Microalgae in Foods, Pharma and Feeds and Their Use as Fertilizers and Biostimulants: Legislation and Regulatory Aspects for Consideration. Foods 2023; 12:3878. [PMID: 37893770 PMCID: PMC10606004 DOI: 10.3390/foods12203878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/24/2023] [Accepted: 10/13/2023] [Indexed: 10/29/2023] Open
Abstract
Microalgae are a rich resource of lipids, proteins, carbohydrates and pigments with nutritional and health benefits. They increasingly find use as ingredients in functional foods and feeds as well as in cosmetics and agricultural products including biostimulants. One of their distinct advantages is their ability to grow on wastewaters and other waste streams, and they are considered an environmentally friendly and cheap method to recover nutrients and remove pollutants from the environment. However, there are limits concerning their applications if grown on certain waste streams. Within, we collate an overview of existing algal applications and current market scenarios for microalgal products as foods and feeds along with relevant legislative requirements concerning their use in Europe and the United States. Microalgal compounds of interest and their extraction and processing methodologies are summarized, and the benefits and caveats of microalgae cultivated in various waste streams and their applications are discussed.
Collapse
Affiliation(s)
- Min Su
- The Food BioSciences Department Ashtown, Teagasc Food Research Centre, 15D05 Dublin, Ireland;
| | - Leen Bastiaens
- Flemish Institute for Technological Research (VITO), 2400 Mol, Belgium
| | - Joran Verspreet
- Flemish Institute for Technological Research (VITO), 2400 Mol, Belgium
| | - Maria Hayes
- The Food BioSciences Department Ashtown, Teagasc Food Research Centre, 15D05 Dublin, Ireland;
| |
Collapse
|
23
|
Jiang J, Chen Q, Huan T, Nie Y, Dai Z, Li D, Xu X, Lu J, Hu Z, Xu H. Comparative studies on in vitro antitumor activities and apoptosis-inducing effects of enantiomeric ruthenium(II) complexes. Dalton Trans 2023; 52:14338-14349. [PMID: 37431624 DOI: 10.1039/d3dt01584j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2023]
Abstract
On the basis of our previous comparative studies on the DNA binding of a pair of ruthenium(II) complex enantiomers, Δ-[Ru(bpy)2PBIP]2+ and Λ-[Ru(bpy)2PBIP]2+ {bpy = 2,2'-bipyridine, PBIP = 2-(4-bromophenyl)imidazo[4,5-f]1,10-phenanthroline}, in this study, their antitumor activities and mechanisms were further investigated comparatively. The cytotoxicity assay demonstrated that both the enantiomers exerted selective antiproliferative effects on cancer cell lines A2780 and PC3. Fluorescence localization experiments suggested that both the enantiomers effectively permeated the nucleus of HeLa cells and co-localized with DNA, resulting in their DNA damage and apoptosis. Flow cytometry experiments showed that the apoptosis was enhanced by increasing the concentration of each enantiomer. Western blotting analyses indicated that both extrinsic and intrinsic apoptosis pathways were activated by the two enantiomers. miRNA microarray analyses displayed that both the enantiomers up- and downregulated multiple miRNAs, some of which were predicted to be associated with carcinogenesis. The above experimental results also showed that the Δ-enantiomer exerted a more potent antitumor activity, a higher efficiency of entering cancer cells and a stronger apoptosis-inducing effect compared with the Λ-enantiomer. Combined with the previously published research results, experimental results from this study implied that the antitumor activity of a metal complex might have originated from the conformation change of DNA in tumor cells caused by the intercalation of the complex, that the antitumor mechanism of a metal complex could be related to its DNA-binding mode, and that the antitumor efficiency of a metal complex could result from its DNA-binding strength.
Collapse
Affiliation(s)
- Jianrong Jiang
- Guangdong Technology Research Center for Marine Algal Bioengineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China.
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
- Shenzhen Engineering Laboratory for Marine Algal Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
- Shenzhen Key Laboratory of Microbial Genetic Engineering, Longhua Innovation Institute for Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Qian Chen
- Guangdong Technology Research Center for Marine Algal Bioengineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China.
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
- Shenzhen Engineering Laboratory for Marine Algal Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
- Shenzhen Key Laboratory of Microbial Genetic Engineering, Longhua Innovation Institute for Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Tianwen Huan
- Guangdong Technology Research Center for Marine Algal Bioengineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China.
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
- Shenzhen Engineering Laboratory for Marine Algal Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
- Shenzhen Key Laboratory of Microbial Genetic Engineering, Longhua Innovation Institute for Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Yanhong Nie
- Guangdong Technology Research Center for Marine Algal Bioengineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China.
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
- Shenzhen Engineering Laboratory for Marine Algal Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
- Shenzhen Key Laboratory of Microbial Genetic Engineering, Longhua Innovation Institute for Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Zhongming Dai
- Shenzhen University General Hospital, Shenzhen 518060, China
| | - Dujuan Li
- Key Laboratory of RF Circuits and Systems of Ministry of Education, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Xu Xu
- Guangdong Technology Research Center for Marine Algal Bioengineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China.
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
- Shenzhen Engineering Laboratory for Marine Algal Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
- Shenzhen Key Laboratory of Microbial Genetic Engineering, Longhua Innovation Institute for Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Jun Lu
- Auckland Bioengineering Institute, University of Auckland, Auckland 1142, New Zealand
| | - Zhangli Hu
- Guangdong Technology Research Center for Marine Algal Bioengineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China.
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
- Shenzhen Engineering Laboratory for Marine Algal Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
- Shenzhen Key Laboratory of Microbial Genetic Engineering, Longhua Innovation Institute for Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| | - Hong Xu
- Guangdong Technology Research Center for Marine Algal Bioengineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China.
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
- Shenzhen Engineering Laboratory for Marine Algal Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
- Shenzhen Key Laboratory of Microbial Genetic Engineering, Longhua Innovation Institute for Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
24
|
Han J, Zhang Y, Peng H. Fucoxanthin inhibits cardiac fibroblast transdifferentiation by alleviating oxidative stress through downregulation of BRD4. PLoS One 2023; 18:e0291469. [PMID: 37699016 PMCID: PMC10497131 DOI: 10.1371/journal.pone.0291469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 08/29/2023] [Indexed: 09/14/2023] Open
Abstract
Myocardial fibrosis can lead to ischemic damage of the myocardium, which can be life-threatening in severe cases. Cardiac fibroblast (CF) transdifferentiation is an important process in myocardial fibrosis. Fucoxanthin (FX) plays a key role in ameliorating myocardial fibrosis; however, its mechanism of action is not fully understood. This study investigated the role of FX in the angiotensin II (Ang II)-induced transdifferentiation of CFs and its potential mechanisms of action. We found that FX inhibited Ang II-induced transdifferentiation of CFs. Simultaneously, FX downregulated bromodomain-containing protein 4 (BRD4) expression in CFs and increased nuclear expression of nuclear factorerythroid 2-related factor 2 (Nrf2). FX reverses AngII-induced inhibition of the Keap1/Nrf2/HO-1 pathway and elevates the level of reactive oxygen species (ROS). FX failed to reverse Ang II-induced changes in fibrosis-associated proteins and ROS levels after Nrf2 silencing. BRD4 silencing reversed the inhibitory effect of Ang II on the Keap1/Nrf2/HO-1 antioxidant signalling pathway. In conclusion, we demonstrated that FX inhibited Ang II-induced transdifferentiation of CFs and that this effect may be related to the activation of the Keap1/Nrf2/HO-1 pathway by reducing BRD4 expression and, ultimately, oxidative stress.
Collapse
Affiliation(s)
- Jinxia Han
- Shaoxing Seventh People’s Hospital, Shaoxing, China
| | | | - Haisheng Peng
- Department of pharmacology, Medical college, Shaoxing University, Shaoxing, China
| |
Collapse
|
25
|
Ahmed SA, Mendonca P, Messeha SS, Soliman KFA. Anticancer Effects of Fucoxanthin through Cell Cycle Arrest, Apoptosis Induction, and Angiogenesis Inhibition in Triple-Negative Breast Cancer Cells. Molecules 2023; 28:6536. [PMID: 37764312 PMCID: PMC10535858 DOI: 10.3390/molecules28186536] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/07/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
The absence of progesterone receptors, estrogen receptors, and human epidermal growth factor receptor-2 restricts the therapy choices for treating triple-negative breast cancer (TNBC). Moreover, conventional medication is not highly effective in treating TNBC, and developing effective therapeutic agents from natural bioactive compounds is a viable option. In this study, the anticancer effects of the natural compound fucoxanthin were investigated in two genetically different models of TNBC cells: MDA-MB-231 and MDA-MB-468 cells. Fucoxanthin had a significant anticancer effect in both cell lines at a concentration range of 1.56-300 µM. The compound decreased cell viability in both cell lines with higher potency in MDA-MB-468 cells. Meanwhile, proliferation assays showed similar antiproliferative effects in both cell lines after 48 h and 72 h treatment periods. Flow cytometry and Annexin V-FITC apoptosis assay revealed the ability of fucoxanthin to induce apoptosis in MDA-MB-231 only. Cell cycle arrest analysis showed that the compound also induced cell cycle arrest at the G1 phase in both cell lines, accompanied by more cell cycle arrest in MDA-MB-231 cells at S-phase and a higher cell cycle arrest in the MDA-MB-468 cells at G2-phase. Wound healing and migration assay showed that in both cell lines, fucoxanthin prevented migration, but was more effective in MDA-MB-231 cells in a shorter time. In both angiogenic cytokine array and RT-PCR studies, fucoxanthin (6.25 µM) downregulated VEGF-A and -C expression in TNF-α-stimulated (50 ng/mL) MDA-MB-231, but not in MDA-MB-468 cells on the transcription and protein levels. In conclusion, this study shows that fucoxanthin was more effective in MDA-MB-231 TNBC cells, where it can target VEGF-A and VEGF-C, inhibit cell proliferation and cell migration, and induce cell cycle arrest and apoptosis-the most crucial cellular processes involved in breast cancer development and progression.
Collapse
Affiliation(s)
- Shade’ A. Ahmed
- Division of Pharmaceutical Sciences, Institute of Public Health, College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA;
| | - Patricia Mendonca
- Department of Biology, College of Science and Technology, Florida A&M University, Tallahassee, FL 32307, USA;
| | - Samia S. Messeha
- Department of Biology, College of Science and Technology, Florida A&M University, Tallahassee, FL 32307, USA;
| | - Karam F. A. Soliman
- Division of Pharmaceutical Sciences, Institute of Public Health, College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA;
| |
Collapse
|
26
|
Pereira L, Valado A. Algae-Derived Natural Products in Diabetes and Its Complications-Current Advances and Future Prospects. Life (Basel) 2023; 13:1831. [PMID: 37763235 PMCID: PMC10533039 DOI: 10.3390/life13091831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/17/2023] [Accepted: 08/28/2023] [Indexed: 09/29/2023] Open
Abstract
Diabetes poses a significant global health challenge, necessitating innovative therapeutic strategies. Natural products and their derivatives have emerged as promising candidates for diabetes management due to their diverse compositions and pharmacological effects. Algae, in particular, have garnered attention for their potential as a source of bioactive compounds with anti-diabetic properties. This review offers a comprehensive overview of algae-derived natural products for diabetes management, highlighting recent developments and future prospects. It underscores the pivotal role of natural products in diabetes care and delves into the diversity of algae, their bioactive constituents, and underlying mechanisms of efficacy. Noteworthy algal derivatives with substantial potential are briefly elucidated, along with their specific contributions to addressing distinct aspects of diabetes. The challenges and limitations inherent in utilizing algae for therapeutic interventions are examined, accompanied by strategic recommendations for optimizing their effectiveness. By addressing these considerations, this review aims to chart a course for future research in refining algae-based approaches. Leveraging the multifaceted pharmacological activities and chemical components of algae holds significant promise in the pursuit of novel antidiabetic treatments. Through continued research and the fine-tuning of algae-based interventions, the global diabetes burden could be mitigated, ultimately leading to enhanced patient outcomes.
Collapse
Affiliation(s)
- Leonel Pereira
- Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
- MARE-Marine and Environmental Sciences Centre/ARNET-Aquatic Research Network, University of Coimbra, 3000-456 Coimbra, Portugal;
| | - Ana Valado
- MARE-Marine and Environmental Sciences Centre/ARNET-Aquatic Research Network, University of Coimbra, 3000-456 Coimbra, Portugal;
- Biomedical Laboratory Sciences, Polytechnic Institute of Coimbra, Coimbra Health School, Rua 5 de Outubro-SM Bispo, Apartado 7006, 3045-043 Coimbra, Portugal
| |
Collapse
|
27
|
Chini Zittelli G, Lauceri R, Faraloni C, Silva Benavides AM, Torzillo G. Valuable pigments from microalgae: phycobiliproteins, primary carotenoids, and fucoxanthin. Photochem Photobiol Sci 2023; 22:1733-1789. [PMID: 37036620 DOI: 10.1007/s43630-023-00407-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 03/03/2023] [Indexed: 04/11/2023]
Abstract
Phycobiliproteins, carotenoids and fucoxanthin are photosynthetic pigments extracted from microalgae and cyanobacteria with great potential biotechnological applications, as healthy food colorants and cosmetics. Phycocyanin possesses a brilliant blue color, with fluorescent properties making it useful as a reagent for immunological essays. The most important source of phycocyanin is the cyanobacterium Arthrospira platensis, however, recently, the Rhodophyta Galdieria sulphuraria has also been identified as such. The main obstacle to the commercialization of phycocyanin is represented by its chemical instability, strongly reducing its shelf-life. Moreover, the high level of purity needed for pharmaceutical applications requires several steps which increase both the production time and cost. Microalgae (Chlorella, Dunaliella, Nannochloropsis, Scenedesmus) produce several light harvesting carotenoids, and are able to manage with oxidative stress, due to their free radical scavenging properties, which makes them suitable for use as source of natural antioxidants. Many studies focused on the selection of the most promising strains producing valuable carotenoids and on their extraction and purification. Among carotenoids produced by marine microalgae, fucoxanthin is the most abundant, representing more than 10% of total carotenoids. Despite the abundance and diversity of fucoxanthin producing microalgae only a few species have been studied for commercial production, the most relevant being Phaeodactylum tricornutum. Due to its antioxidant activity, fucoxanthin can bring various potential benefits to the prevention and treatment of lifestyle-related diseases. In this review, we update the main results achieved in the production, extraction, purification, and commercialization of these important pigments, motivating the cultivation of microalgae as a source of natural pigments.
Collapse
Affiliation(s)
- Graziella Chini Zittelli
- Istituto per la Bioeconomia, CNR, Via Madonna del Piano 10, 50019, Sesto Fiorentino, Florence, Italy
| | - Rosaria Lauceri
- Istituto di Ricerca sulle Acque, CNR, Sede Di Verbania, Largo Tonolli 50, 28922, Verbania, Italy
| | - Cecilia Faraloni
- Istituto per la Bioeconomia, CNR, Via Madonna del Piano 10, 50019, Sesto Fiorentino, Florence, Italy
| | - Ana Margarita Silva Benavides
- Centro de Investigación en Ciencias del Mar Y Limnologίa, Universidad de Costa Rica, San Pedro, San José, 2060, Costa Rica
- Escuela de Biologia, Universidad de Costa Rica, San Pedro, San José, 2060, Costa Rica
| | - Giuseppe Torzillo
- Istituto per la Bioeconomia, CNR, Via Madonna del Piano 10, 50019, Sesto Fiorentino, Florence, Italy.
- Centro de Investigación en Ciencias del Mar Y Limnologίa, Universidad de Costa Rica, San Pedro, San José, 2060, Costa Rica.
| |
Collapse
|
28
|
Ben Ammar R, Zahra HA, Abu Zahra AM, Alfwuaires M, Abdulaziz Alamer S, Metwally AM, Althnaian TA, Al-Ramadan SY. Protective Effect of Fucoxanthin on Zearalenone-Induced Hepatic Damage through Nrf2 Mediated by PI3K/AKT Signaling. Mar Drugs 2023; 21:391. [PMID: 37504922 PMCID: PMC10381773 DOI: 10.3390/md21070391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/26/2023] [Accepted: 06/29/2023] [Indexed: 07/29/2023] Open
Abstract
Hepatotoxic contaminants such as zearalenone (ZEA) are widely present in foods. Marine algae have a wide range of potential applications in pharmaceuticals, cosmetics, and food products. Research is ongoing to develop treatments and products based on the compounds found in algae. Fucoxanthin (FXN) is a brown-algae-derived dietary compound that is reported to prevent hepatotoxicity caused by ZEA. This compound has multiple biological functions, including anti-diabetic, anti-obesity, anti-microbial, and anti-cancer properties. Furthermore, FXN is a powerful antioxidant. In this study, we examined the effects of FXN on ZEA-induced stress and inflammation in HepG2 cells. MTT assays, ROS generation assays, Western blots, and apoptosis analysis were used to evaluate the effects of FXN on ZEA-induced HepG2 cell inflammation. Pre-incubation with FXN reduced the cytotoxicity of ZEA toward HepG2 cells. FXN inhibited the ZEA-induced production of pro-inflammatory cytokines, including IL-1 β, IL-6, and TNF-α. Moreover, FXN increased HO-1 expression in HepG2 by activating the PI3K/AKT/NRF2 signaling pathway. In conclusion, FXN inhibits ZEA-induced inflammation and oxidative stress in hepatocytes by targeting Nrf2 via activating PI3K/AKT signaling.
Collapse
Affiliation(s)
- Rebai Ben Ammar
- Department of Biological Sciences, College of Science, King Faisal University, Al-Ahsa 31982, Saudi Arabia
- Center of Biotechnology of Borj-Cedria, Laboratory of Aromatic and Medicinal Plants, Technopole of Borj-Cedria, Hammam-Lif 2050, Tunisia
| | - Hamad Abu Zahra
- Department of Biological Sciences, College of Science, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | | | - Manal Alfwuaires
- Department of Biological Sciences, College of Science, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Sarah Abdulaziz Alamer
- Department of Biological Sciences, College of Science, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Ashraf M Metwally
- Department of Biological Sciences, College of Science, King Faisal University, Al-Ahsa 31982, Saudi Arabia
- Botany and Microbiology Department, Faculty of Science, Assiut University, Assiut 71516, Egypt
| | - Thnaian A Althnaian
- Department of Anatomy, College of Veterinary Medicine, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Saeed Y Al-Ramadan
- Department of Anatomy, College of Veterinary Medicine, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| |
Collapse
|
29
|
González-Cardoso MA, Cerón-García MC, Navarro-López E, Molina-Miras A, Sánchez-Mirón A, Contreras-Gómez A, García-Camacho F. Alternatives to classic solvents for the isolation of bioactive compounds from Chrysochromulina rotalis. BIORESOURCE TECHNOLOGY 2023; 379:129057. [PMID: 37059341 DOI: 10.1016/j.biortech.2023.129057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/09/2023] [Accepted: 04/11/2023] [Indexed: 05/03/2023]
Abstract
This paper demonstrates a sequential partitioning method for isolating bioactive compounds from Chrysochromulina rotalis using a polarity gradient, replacing classic and hazardous solvents with greener alternatives. Seventeen solvents were evaluated based on their Hansen solubility parameters and for having a similar polarity to the solvents they would replace, four of which were selected as substitutes in the classic fractionation process. Considering the fatty acid and carotenoid recovery yields obtained for each of the solvents, it has been proposed to replace hexane (HEX), toluene (TOL), dichloromethane (DCM) and n-butanol (BUT) with cyclohexane, chlorobenzene, isobutyl acetate and isoamyl alcohol, respectively. In addition, cytotoxic activity was observed when the TOL and DCM solvent extracts were tested against tumour cell lines, demonstrating the antiproliferative potential of compounds containing, for example, fucoxanthin, fatty acids, peptides, isoflavonoids or terpenes, among others.
Collapse
Affiliation(s)
| | - M C Cerón-García
- Department of Chemical Engineering, University of Almería, Almería 04120, Spain; Research Center in Agrifood Biotechnology (CIAMBITAL) University of Almería, Spain.
| | - E Navarro-López
- Department of Chemical Engineering, University of Almería, Almería 04120, Spain; Research Center in Agrifood Biotechnology (CIAMBITAL) University of Almería, Spain
| | - A Molina-Miras
- Department of Chemical Engineering, University of Almería, Almería 04120, Spain; Research Center in Agrifood Biotechnology (CIAMBITAL) University of Almería, Spain
| | - A Sánchez-Mirón
- Department of Chemical Engineering, University of Almería, Almería 04120, Spain; Research Center in Agrifood Biotechnology (CIAMBITAL) University of Almería, Spain
| | - A Contreras-Gómez
- Department of Chemical Engineering, University of Almería, Almería 04120, Spain; Research Center in Agrifood Biotechnology (CIAMBITAL) University of Almería, Spain
| | - F García-Camacho
- Department of Chemical Engineering, University of Almería, Almería 04120, Spain; Research Center in Agrifood Biotechnology (CIAMBITAL) University of Almería, Spain
| |
Collapse
|
30
|
Wang J, Dong X, Li D, Fang Z, Wan X, Liu J. Fucoxanthin inhibits gastric cancer lymphangiogenesis and metastasis by regulating Ran expression. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 118:154926. [PMID: 37392675 DOI: 10.1016/j.phymed.2023.154926] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 05/21/2023] [Accepted: 06/06/2023] [Indexed: 07/03/2023]
Abstract
BACKGROUND Lymph node metastasis is a key mechanism in gastric cancer (GC) metastasis and lymphangiogenesis is a vital step in the process of lymph node metastasis. Currently, there are no drugs which can treat lymph node metastasis in GC. Previous studies using the drug fucoxanthin have mainly focused on cell cycle arrest, induction of apoptosis, or inhibition of angiogenesis in GC. However, the effects of fucoxanthin on lymphangiogenesis and metastasis in GC have not been studied. METHODS Cell counting kit 8 and transwell experiments were used to evaluate the inhibitory effect of fucoxanthin on cell proliferation, migration and invasion. HGC-27 and HLEC cells were co-cultured in a transwell chamber and the footpad metastasis model was established to evaluate lymphangiogenesis and lymph node metastasis. The possible regulatory targets of fucoxanthin in GC were analyzed using human tissue microarrays, bioinformatics analysis, and molecular docking. The regulatory pathway of fucoxanthin was verified using confocal laser microscopy, adenovirus transfection and western blotting. RESULTS Tissue microarray and bioinformatics analyses showed that Ran was highly expressed in metastatic lymph nodes and has some predictive value for metastasis in GC. Molecular docking results revealed that fucoxanthin interacted with Met189 and Lys167 of Ran via hydrogen bonds. Mechanistically, fucoxanthin inhibits the nuclear transport of NF-κB by downregulating protein expression of Ran and importinβ, thereby inhibiting VEGF-C secretion, and ultimately inhibiting tumor lymphangiogenesis and lymph node metastasis in vivo and in vitro. CONCLUSIONS Fucoxanthin suppressed GC-induced lymphangiogenesis and metastasis in vitro and in vivo by regulating Ran expression via the importinβ/NF-κB/VEGF-C nuclear transport signaling pathway. These novel findings provide the basis for the research and development of novel treatments using traditional Chinese medicine in treatment of lymph node metastasis, which has important theoretical significance and clinical value.
Collapse
Affiliation(s)
- Jia Wang
- Stem Cell Clinical Research Center, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, China; Department of Critical Care Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116021, China
| | - Xue Dong
- Department of Critical Care Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116021, China
| | - Dandan Li
- Department of Critical Care Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116021, China
| | - Zhiyao Fang
- Department of Critical Care Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116021, China
| | - Xianyao Wan
- Department of Critical Care Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116021, China.
| | - Jing Liu
- Stem Cell Clinical Research Center, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, China; Liaoning Key Laboratory of Frontier Technology of Stem Cell and Precision Medicine, Dalian Engineering Research Center for Genetic Variation Detection of Infectious Pathogenic Microorganisms, Dalian Innovation Institute of Stem Cell and Precision Medicine, Dalian, Liaoning 116085, China.
| |
Collapse
|
31
|
Zang L, Baharlooeian M, Terasawa M, Shimada Y, Nishimura N. Beneficial effects of seaweed-derived components on metabolic syndrome via gut microbiota modulation. Front Nutr 2023; 10:1173225. [PMID: 37396125 PMCID: PMC10311452 DOI: 10.3389/fnut.2023.1173225] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 04/10/2023] [Indexed: 07/04/2023] Open
Abstract
Metabolic syndrome comprises a group of conditions that collectively increase the risk of abdominal obesity, diabetes, atherosclerosis, cardiovascular diseases, and cancer. Gut microbiota is involved in the pathogenesis of metabolic syndrome, and microbial diversity and function are strongly affected by diet. In recent years, epidemiological evidence has shown that the dietary intake of seaweed can prevent metabolic syndrome via gut microbiota modulation. In this review, we summarize the current in vivo studies that have reported the prevention and treatment of metabolic syndrome via seaweed-derived components by regulating the gut microbiota and the production of short-chain fatty acids. Among the surveyed related articles, animal studies revealed that these bioactive components mainly modulate the gut microbiota by reversing the Firmicutes/Bacteroidetes ratio, increasing the relative abundance of beneficial bacteria, such as Bacteroides, Akkermansia, Lactobacillus, or decreasing the abundance of harmful bacteria, such as Lachnospiraceae, Desulfovibrio, Lachnoclostridium. The regulated microbiota is thought to affect host health by improving gut barrier functions, reducing LPS-induced inflammation or oxidative stress, and increasing bile acid production. Furthermore, these compounds increase the production of short-chain fatty acids and influence glucose and lipid metabolism. Thus, the interaction between the gut microbiota and seaweed-derived bioactive components plays a critical regulatory role in human health, and these compounds have the potential to be used for drug development. However, further animal studies and human clinical trials are required to confirm the functional roles and mechanisms of these components in balancing the gut microbiota and managing host health.
Collapse
Affiliation(s)
- Liqing Zang
- Graduate School of Regional Innovation Studies, Mie University, Tsu, Mie, Japan
- Mie University Zebrafish Research Center, Mie University, Tsu, Mie, Japan
| | - Maedeh Baharlooeian
- Department of Marine Biology, Faculty of Marine Science and Oceanography, Khorramshahr University of Marine Science and Technology, Khorramshahr, Iran
| | | | - Yasuhito Shimada
- Mie University Zebrafish Research Center, Mie University, Tsu, Mie, Japan
- Department of Integrative Pharmacology, Mie University Graduate School of Medicine, Tsu, Mie, Japan
- Department of Bioinformatics, Mie University Advanced Science Research Promotion Center, Tsu, Mie, Japan
| | - Norihiro Nishimura
- Graduate School of Regional Innovation Studies, Mie University, Tsu, Mie, Japan
- Mie University Zebrafish Research Center, Mie University, Tsu, Mie, Japan
| |
Collapse
|
32
|
Pereira L, Cotas J. Therapeutic Potential of Polyphenols and Other Micronutrients of Marine Origin. Mar Drugs 2023; 21:323. [PMID: 37367648 DOI: 10.3390/md21060323] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/22/2023] [Accepted: 05/25/2023] [Indexed: 06/28/2023] Open
Abstract
Polyphenols are compounds found in various plants and foods, known for their antioxidant and anti-inflammatory properties. Recently, researchers have been exploring the therapeutic potential of marine polyphenols and other minor nutrients that are found in algae, fish and crustaceans. These compounds have unique chemical structures and exhibit diverse biological properties, including anti-inflammatory, antioxidant, antimicrobial and antitumor action. Due to these properties, marine polyphenols are being investigated as possible therapeutic agents for the treatment of a wide variety of conditions, such as cardiovascular disease, diabetes, neurodegenerative diseases and cancer. This review focuses on the therapeutic potential of marine polyphenols and their applications in human health, and also, in marine phenolic classes, the extraction methods, purification techniques and future applications of marine phenolic compounds.
Collapse
Affiliation(s)
- Leonel Pereira
- MARE-Marine and Environmental Sciences Centre/ARNET-Aquatic Research Network, IATV-Institute of Environment, Technology and Life, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
- Instituto do Ambiente Tecnologia e Vida, Faculdade de Ciências e Tecnologia, Rua Sílvio Lima, 3030-790 Coimbra, Portugal
| | - João Cotas
- MARE-Marine and Environmental Sciences Centre/ARNET-Aquatic Research Network, IATV-Institute of Environment, Technology and Life, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
| |
Collapse
|
33
|
Cui S, Wu H, He Q, Wang L, Yi X, Feng G, Wu Q, Tao B, Han D, Hu Q, Xia H, Xu L. Fucoxanthin alleviated atherosclerosis by regulating PI3K/AKT and TLR4/NFκB mediated pyroptosis in endothelial cells. Int Immunopharmacol 2023; 120:110370. [PMID: 37235964 DOI: 10.1016/j.intimp.2023.110370] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 05/13/2023] [Accepted: 05/18/2023] [Indexed: 05/28/2023]
Abstract
Fucoxanthin, a type of natural xanthophyll carotenoid, is mainly present in seaweeds and various microalgae. This compound has been proved to possess multiple functions including antioxidation, anti-inflammation and anti-tumor. Atherosclerosis is widely deemed as a chronic inflammation disease, and as the basis of vascular obstructive disease. However, there is rare research about fucoxanthin's effects on atherosclerosis. In this study, we demonstrated that the plaque area of mice treated with fucoxanthin was significantly reduced compared to the group that did not receive fucoxanthin. In addition, Bioinformatics analysis showed that PI3K/AKT signaling might be involved in the protective effect of fucoxanthin, and this hypothesis was then verified in vitro endothelial cell experiments. Besides, our further results showed that endothelial cell mortality measured by TUNEL and flow cytometry was significantly increased in the oxidized low-density lipoprotein (ox-LDL) treatment group while significantly decreased in the fucoxanthin treatment group. In addition, the pyroptosis protein expression level in the fucoxanthin group was significantly lower than that in the ox-LDL group, which indicated that fucoxanthin improved the pyroptosis level of endothelial cells. Furthermore, it was revealed that TLR4/NFκB signaling were also participated in the protection of fucoxanthin on endothelial pyroptosis. Moreover, the protection of fucoxanthin on endothelial cell pyroptosis was abrogated when PI3K/AKT was inhibited or TLR4 was overexpressed, which further suggested the anti-pyroptosis effect of fucoxanthin was mediated through regulations of PI3K/AKT and TLR4/NFκB signaling.
Collapse
Affiliation(s)
- Shengyu Cui
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, China; Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Haoliang Wu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, China; Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Qing He
- Center for Microalgal Biotechnology and Biofuels, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Lina Wang
- Beijing Noahpharm Co., Ltd, Beijing 100000, China
| | - Xin Yi
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, China; Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Gaoke Feng
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, China; Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Qingqing Wu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, China; Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Bo Tao
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, China; Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Danxiang Han
- Demeter Biotech (Zhuhai) Co. Ltd., Zhuhai 519075, China
| | - Qiang Hu
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Faculty of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Hao Xia
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, China; Hubei Key Laboratory of Cardiology, Wuhan, China.
| | - Lin Xu
- Department of Geriatrics, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China.
| |
Collapse
|
34
|
Macías-de la Rosa A, González-Cardoso MÁ, Cerón-García MDC, López-Rosales L, Gallardo-Rodríguez JJ, Seoane S, Sánchez-Mirón A, García-Camacho F. Bioactives Overproduction through Operational Strategies in the Ichthyotoxic Microalga Heterosigma akashiwo Culture. Toxins (Basel) 2023; 15:toxins15050349. [PMID: 37235383 DOI: 10.3390/toxins15050349] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 05/16/2023] [Accepted: 05/18/2023] [Indexed: 05/28/2023] Open
Abstract
The red tide-forming microalga Heterosigma akashiwo has been associated with massive events of fish deaths, both wild and cultured. Culture conditions are responsible for the synthesis or accumulation of some metabolites with different interesting bioactivities. H. akashiwo LC269919 strain was grown in a 10 L bubble column photobioreactor artificially illuminated with multi-coloured LED lights. Growth and production of exopolysaccharides, polyunsaturated fatty acids (PUFAs), and carotenoids were evaluated under different culture modes (batch, fed-batch, semicontinuous, and continuous) at two irradiance levels (300 and 700 µE·s-1·m-2). Continuous mode at the dilution rate of 0.2·day-1 and 700 µE·s-1·m-2 provided the highest production of biomass, PUFAs (132.6 and 2.3 mg·L-1·day-1), and maximum fucoxanthin productivity (0.16 mg·L-1·day-1). The fed-batch mode accumulated exopolysaccharides in a concentration (1.02 g·L-1) 10-fold over the batch mode. An extraction process based on a sequential gradient partition with water and four water-immiscible organic solvents allowed the isolation of bioactive fucoxanthin from methanolic extracts of H. akashiwo. Metabolites present in H. akashiwo, fucoxanthin and polar lipids (i.e., eicosapentaenoic acid (EPA)), or probably such as phytosterol (β-Sitosterol) from other microalgae, were responsible for the antitumor activity obtained.
Collapse
Affiliation(s)
| | | | - María Del Carmen Cerón-García
- Department of Chemical Engineering, University of Almeria, 04120 Almeria, Spain
- Research Centre Ciambital, University of Almeria, 04120 Almeria, Spain
| | - Lorenzo López-Rosales
- Department of Chemical Engineering, University of Almeria, 04120 Almeria, Spain
- Research Centre Ciambital, University of Almeria, 04120 Almeria, Spain
| | - Juan José Gallardo-Rodríguez
- Department of Chemical Engineering, University of Almeria, 04120 Almeria, Spain
- Research Centre Ciambital, University of Almeria, 04120 Almeria, Spain
| | - Sergio Seoane
- Department of Plant Biology and Ecology, University of the Basque Country (UPV/EHU), 48080 Bilbao, Spain
- Technology and Research Centre for Experimental Marine Biology and Biotechnology (PiE-UPV/EHU), 48013 Bilbao, Spain
| | - Asterio Sánchez-Mirón
- Department of Chemical Engineering, University of Almeria, 04120 Almeria, Spain
- Research Centre Ciambital, University of Almeria, 04120 Almeria, Spain
| | - Francisco García-Camacho
- Department of Chemical Engineering, University of Almeria, 04120 Almeria, Spain
- Research Centre Ciambital, University of Almeria, 04120 Almeria, Spain
| |
Collapse
|
35
|
Lomartire S, Gonçalves AMM. Marine Macroalgae Polyphenols as Potential Neuroprotective Antioxidants in Neurodegenerative Diseases. Mar Drugs 2023; 21:md21050261. [PMID: 37233455 DOI: 10.3390/md21050261] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/14/2023] [Accepted: 04/18/2023] [Indexed: 05/27/2023] Open
Abstract
Polyphenols are beneficial natural compounds with antioxidant properties that have recently gain a lot of interest for their potential therapeutic applications. Marine polyphenols derived from marine macroalgae have been discovered to possess interesting antioxidant properties; therefore, these compounds can be included in several areas of drug development. Authors have considered the use of polyphenol extracts from seaweeds as neuroprotective antioxidants in neurodegenerative diseases. Marine polyphenols may slow the progression and limit neuronal cell loss due to their antioxidant activity; therefore, the use of these natural compounds would improve the quality of life for patients affected with neurodegenerative diseases. Marine polyphenols have distinct characteristics and potential. Among seaweeds, brown algae are the main sources of polyphenols, and present the highest antioxidant activity in comparison to red algae and green algae. The present paper collects the most recent in vitro and in vivo evidence from investigations regarding polyphenols extracted from seaweeds that exhibit neuroprotective antioxidant activity. Throughout the review, oxidative stress in neurodegeneration and the mechanism of action of marine polyphenol antioxidant activity are discussed to evidence the potential of algal polyphenols for future use in drug development to delay cell loss in patients with neurodegenerative disorders.
Collapse
Affiliation(s)
- Silvia Lomartire
- University of Coimbra, MARE-Marine and Environmental Sciences Centre/ARNET-Aquatic Research Network, Department of Life Sciences, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
| | - Ana M M Gonçalves
- University of Coimbra, MARE-Marine and Environmental Sciences Centre/ARNET-Aquatic Research Network, Department of Life Sciences, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
- Department of Biology and CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
36
|
Tabakaev A, Tabakaeva O, Prikhodko Y. Functional instant beverages. FOODS AND RAW MATERIALS 2023. [DOI: 10.21603/2308-4057-2023-2-565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023] Open
Abstract
Brown algae are a source of hydrothermal extracts that can serve as an effective raw material for instant beverages. This article offers new formulations of functional instant beverages made of concentrated fruit juices and algal extracts of Saccharina japonica and Sargassum miyabei Yendo. The research objective was to define their bioactive and antioxidant profiles.
The research featured S. miyabei Yendo and S. japonica brown algae from the Far East of Russia, their dry hydrothermal extracts, and instant drinks based on these extracts combined with concentrated juices of cranberry, sea buckthorn, and chokeberry. The list of methods included spectrophotometry, high-performance liquid chromatography, and gas chromatography.
The hydrothermal algal extracts of S. miyabei and S. japonica were rich in fucoidan, phenolic compounds, and iodine. The new instant beverages underwent a sensory evaluation. They contained iodine, phenolic compounds, vitamins (ascorbic acid), fucoidan, pectin, flavonoids, anthocyanins, catechins, carotenoids, and tocopherols. All the samples could be classified as functional, but the best antiradical properties belonged to the sample with black chokeberry juice and S. miyabei.
The new functional instant beverages had a high radical-binding activity, which reached 96.3%. One portion (200 mL) covered 27–30 % of the recommended daily intake of iodine and 22–50% of vitamin C. The obtained results prove that instant beverages made of S. japonica and S. miyabei Yendo can be used as functional products.
Collapse
|
37
|
Martić A, Čižmek L, Ul’yanovskii NV, Paradžik T, Perković L, Matijević G, Vujović T, Baković M, Babić S, Kosyakov DS, Trebše P, Čož-Rakovac R. Intra-Species Variations of Bioactive Compounds of Two Dictyota Species from the Adriatic Sea: Antioxidant, Antimicrobial, Dermatological, Dietary, and Neuroprotective Potential. Antioxidants (Basel) 2023; 12:antiox12040857. [PMID: 37107232 PMCID: PMC10134986 DOI: 10.3390/antiox12040857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 03/25/2023] [Accepted: 03/30/2023] [Indexed: 04/05/2023] Open
Abstract
The marine environment has a significant impact on life on Earth. Organisms residing in it are vital for the ecosystem but also serve as an inexhaustible source of biologically active compounds. Herein, the biodiversity of two brown seaweeds, Dictyota dichotoma and Dictyota fasciola from the Adriatic Sea, was evaluated. The aim of the study was the determination of differences in compound composition while comparing their activities, including antioxidant, antimicrobial, and enzyme inhibition, in connection to human digestion, dermatology, and neurological disorders. Chemical analysis revealed several terpenoids and steroids as dominant molecules, while fucoxanthin was the main identified pigment in both algae. D. dichotoma had higher protein, carbohydrate, and pigment content. Omega-6 and omega-3 fatty acids were identified, with the highest amount of dihomo-γ-linolenic acid and α-linolenic acid in D. dichotoma. Antimicrobial testing revealed a dose-dependent inhibitory activity of methanolic fraction against Escherichia coli and Staphylococcus aureus. Moderate antioxidant activity was observed for both algae fractions, while the dietary potential was high, especially for the D. fasciola dichloromethane fraction, with inhibition percentages of around 92% for α-amylase and 57% for pancreatic lipase at 0.25 mg/mL. These results suggest that Dictyota species might be a potent source of naturally derived agents for obesity and diabetes.
Collapse
Affiliation(s)
- Ana Martić
- Laboratory for Aquaculture Biotechnology, Division of Materials Chemistry, Ruđer Bošković Institute, Bijenička 54, 10000 Zagreb, Croatia
| | - Lara Čižmek
- Laboratory for Aquaculture Biotechnology, Division of Materials Chemistry, Ruđer Bošković Institute, Bijenička 54, 10000 Zagreb, Croatia
- Center of Excellence for Marine Bioprospecting (BioProCro), Ruđer Bošković Institute, Bijenička 54, 10000 Zagreb, Croatia
| | - Nikolay V. Ul’yanovskii
- Laboratory of Natural Compounds Chemistry and Bioanalytics, Northern (Arctic) Federal University, Nab. Severnoy Dviny 17, 163002 Arkhangelsk, Russia
| | - Tina Paradžik
- Laboratory for Chemical and Biological Crystallography, Division of Physical Chemistry, Ruđer Bošković Institute, Bijenička 54, 10000 Zagreb, Croatia
| | - Lucija Perković
- Laboratory for Aquaculture Biotechnology, Division of Materials Chemistry, Ruđer Bošković Institute, Bijenička 54, 10000 Zagreb, Croatia
| | - Gabrijela Matijević
- Laboratory for Aquaculture Biotechnology, Division of Materials Chemistry, Ruđer Bošković Institute, Bijenička 54, 10000 Zagreb, Croatia
| | - Tamara Vujović
- Laboratory for Aquaculture Biotechnology, Division of Materials Chemistry, Ruđer Bošković Institute, Bijenička 54, 10000 Zagreb, Croatia
| | - Marija Baković
- Laboratory for Aquaculture Biotechnology, Division of Materials Chemistry, Ruđer Bošković Institute, Bijenička 54, 10000 Zagreb, Croatia
| | - Sanja Babić
- Laboratory for Aquaculture Biotechnology, Division of Materials Chemistry, Ruđer Bošković Institute, Bijenička 54, 10000 Zagreb, Croatia
- Center of Excellence for Marine Bioprospecting (BioProCro), Ruđer Bošković Institute, Bijenička 54, 10000 Zagreb, Croatia
| | - Dmitry S. Kosyakov
- Laboratory of Natural Compounds Chemistry and Bioanalytics, Northern (Arctic) Federal University, Nab. Severnoy Dviny 17, 163002 Arkhangelsk, Russia
| | - Polonca Trebše
- Faculty of Health Sciences, University of Ljubljana, Zdravstvena pot 5, 1000 Ljubljana, Slovenia
| | - Rozelindra Čož-Rakovac
- Laboratory for Aquaculture Biotechnology, Division of Materials Chemistry, Ruđer Bošković Institute, Bijenička 54, 10000 Zagreb, Croatia
- Center of Excellence for Marine Bioprospecting (BioProCro), Ruđer Bošković Institute, Bijenička 54, 10000 Zagreb, Croatia
| |
Collapse
|
38
|
Calabrone L, Carlini V, Noonan DM, Festa M, Ferrario C, Morelli D, Macis D, Fontana A, Pistelli L, Brunet C, Sansone C, Albini A. Skeletonema marinoi Extracts and Associated Carotenoid Fucoxanthin Downregulate Pro-Angiogenic Mediators on Prostate Cancer and Endothelial Cells. Cells 2023; 12:cells12071053. [PMID: 37048126 PMCID: PMC10093511 DOI: 10.3390/cells12071053] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 03/17/2023] [Accepted: 03/24/2023] [Indexed: 04/03/2023] Open
Abstract
The exploration of natural preventive molecules for nutraceutical and pharmaceutical use has recently increased. In this scenario, marine microorganisms represent an underestimated source of bioactive products endowed with beneficial effects on health that include anti-oxidant, anti-inflammatory, differentiating, anti-tumor, and anti-angiogenic activities. Here, we tested the potential chemopreventive and anti-angiogenic activities of an extract from the marine coastal diatom Skeletonema marinoi Sarno and Zingone (Sm) on prostate cancer (PCa) and endothelial cells. We also tested one of the main carotenoids of the diatom, the xanthophyll pigment fucoxanthin (Fuco). Fuco from the literature is a potential candidate compound involved in chemopreventive activities. Sm extract and Fuco were able to inhibit PCa cell growth and hinder vascular network formation of endothelial cells. The reduced number of cells was partially due to growth inhibition and apoptosis. We studied the molecular targets by qPCR and membrane antibody arrays. Angiogenesis and inflammation molecules were modulated. In particular, Fuco downregulated the expression of Angiopoietin 2, CXCL5, TGFβ, IL6, STAT3, MMP1, TIMP1 and TIMP2 in both prostate and endothelial cells. Our study confirmed microalgae-derived drugs as potentially relevant sources of novel nutraceuticals, providing candidates for potential dietary or dietary supplement intervention in cancer prevention approaches.
Collapse
Affiliation(s)
- Luana Calabrone
- IRCCS MultiMedica, 20138 Milan, Italy
- Correspondence: (L.C.); (A.A.)
| | | | - Douglas M. Noonan
- Department of Biotechnology and Life Sciences, University of Insubria, 21100 Varese, Italy
| | | | | | | | - Debora Macis
- IRCCS Istituto Europeo di Oncologia IEO, 20141 Milan, Italy
| | - Angelo Fontana
- Institute of Biomolecular Chemistry, Italian National Research Council (CNR), 80078 Pozzuoli, Italy
- Department of Biology, Università di Napoli “Federico II”, 80126 Napoli, Italy
| | - Luigi Pistelli
- Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy
| | | | | | - Adriana Albini
- IRCCS Istituto Europeo di Oncologia IEO, 20141 Milan, Italy
- Correspondence: (L.C.); (A.A.)
| |
Collapse
|
39
|
Akram W, Rihan M, Ahmed S, Arora S, Ahmad S, Vashishth R. Marine-Derived Compounds Applied in Cardiovascular Diseases: Submerged Medicinal Industry. Mar Drugs 2023; 21:md21030193. [PMID: 36976242 PMCID: PMC10052127 DOI: 10.3390/md21030193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/20/2023] [Accepted: 02/20/2023] [Indexed: 03/29/2023] Open
Abstract
Cardiovascular diseases (CVDs) are among the most impactful illnesses globally. Currently, the available therapeutic option has several side effects, including hypotension, bradycardia, arrhythmia, and alteration in different ion concentrations. Recently, bioactive compounds from natural sources, including plants, microorganisms, and marine creatures, have gained a lot of interest. Marine sources serve as reservoirs for new bioactive metabolites with various pharmacological activities. The marine-derived compound such as omega-3 acid ethyl esters, xyloketal B, asperlin, and saringosterol showed promising results in several CVDs. The present review focuses on marine-derived compounds' cardioprotective potential for hypertension, ischemic heart disease, myocardial infarction, and atherosclerosis. In addition to therapeutic alternatives, the current use of marine-derived components, the future trajectory, and restrictions are also reviewed.
Collapse
Affiliation(s)
- Wasim Akram
- Department of Pharmacology, SPER, Jamia Hamdard, New Delhi 110062, India
| | - Mohd Rihan
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Mohali 160062, India
| | - Sakeel Ahmed
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Mohali 160062, India
| | - Swamita Arora
- Department of Pharmacology, R. V. Northland Institute of Pharmacy, Dadri 203207, India
| | - Sameer Ahmad
- Department of Food Technology Jamia Hamdard, New Delhi 110062, India
| | - Rahul Vashishth
- School of BioSciences and Technology-Food Technology, Vellore Institute of Technology, Vellore 632014, India
| |
Collapse
|
40
|
Intranasal Lipid Nanoparticles Containing Bioactive Compounds Obtained from Marine Sources to Manage Neurodegenerative Diseases. Pharmaceuticals (Basel) 2023. [DOI: 10.3390/ph16020311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023] Open
Abstract
Marine sources contain several bioactive compounds with high therapeutic potential, such as remarkable antioxidant activity that can reduce oxidative stress related to the pathogenesis of neurodegenerative diseases. Indeed, there has been a growing interest in these natural sources, especially those resulting from the processing of marine organisms (i.e., marine bio-waste), to obtain natural antioxidants as an alternative to synthetic antioxidants in a sustainable approach to promote circularity by recovering and creating value from these bio-wastes. However, despite their expected potential to prevent, delay, or treat neurodegenerative diseases, antioxidant compounds may have difficulty reaching the brain due to the need to cross the blood–brain barrier (BBB). In this regard, alternative delivery systems administered by different routes have been proposed, including intranasal administration of lipid nanoparticles, such as solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC), which have shown promising results. Intranasal administration shows several advantages, including the fact that molecules do not need to cross the BBB to reach the central nervous system (CNS), as they can be transported directly from the nasal cavity to the brain (i.e., nose-to-brain transport). The benefits of using SLN and NLC for intranasal delivery of natural bioactive compounds for the treatment of neurodegenerative diseases have shown relevant outcomes through in vitro and in vivo studies. Noteworthy, for bioactive compounds obtained from marine bio-waste, few studies have been reported, showing the open potential of this research area. This review updates the state of the art of using SLN and NLC to transport bioactive compounds from different sources, in particular, those obtained from marine bio-waste, and their potential application in the treatment of neurodegenerative diseases.
Collapse
|
41
|
Wang Y, Yang J, Wang Y, Chang Y, Xue C, Zhang T. Preparation and properties of fucoxanthin-loaded liposomes stabilized by sea cucumber derived cholesterol sulfate instead of cholesterol. J Biosci Bioeng 2023; 135:160-166. [PMID: 36494249 DOI: 10.1016/j.jbiosc.2022.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 10/25/2022] [Accepted: 11/09/2022] [Indexed: 12/12/2022]
Abstract
The preparation of steady-state phospholipid liposomes requires cholesterol as a stabilizer, but excessive intake of cholesterol may increase the risk of cardiovascular disease. The sulfated sterols extracted from sea cucumber, mainly including sulfated 24-methylene cholesterol and cholesterol sulfate, have been reported to have a variety of physiological activities. Sulfated sterols are similar to cholesterol in structure and have the potential to replace cholesterol to prepare novel stable multifunctional liposomes, allowing the liposomes to act as carriers for the delivery of less bioavailable nutrients while allowing sulfated sterols in the lipid bilayer to exert physiologically active effects. This study aimed to prepare a novel multifunctional nanoliposome stabilized with sulfated sterols from sea cucumber instead of cholesterol by ultrasound-assisted thin-film dispersion method. The results showed that stable and uniformly dispersed nanoliposomes could be formed when the substitution ratio of sea cucumber-derived cholesterol sulfate was 100% and the ratio of lecithin to cholesterol sulfate was 3:1. Fucoxanthin encapsulated liposome with egg yolk lecithin/sea cucumber-derived cholesterol sulfate/fucoxanthin mass ratio of 6:2:3 was successfully prepared, with an average particle size of 214 ± 3 nm, polydispersity index (PDI) value of 0.297 ± 0.006, the zeta potential of -57.2 ± 1.10 mV, and the encapsulation efficiency of 85.5 ± 0.8%. The results of digestion and absorption in vitro and in vivo showed that liposomes could significantly improve the bioavailability of fucoxanthin and prolong its residence time in serum. As an efficient multifunctional carrier, this novel liposome has great potential for applications in functional foods and biomedicine.
Collapse
Affiliation(s)
- Yunling Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Jinyue Yang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Yuming Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China
| | - Yaoguang Chang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China
| | - Changhu Xue
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China
| | - Tiantian Zhang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China.
| |
Collapse
|
42
|
Oliyaei N, Moosavi-Nasab M, Tanideh N, Iraji A. Multiple roles of fucoxanthin and astaxanthin against Alzheimer's disease: Their pharmacological potential and therapeutic insights. Brain Res Bull 2023; 193:11-21. [PMID: 36435362 DOI: 10.1016/j.brainresbull.2022.11.018] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 11/14/2022] [Accepted: 11/22/2022] [Indexed: 11/24/2022]
Abstract
Alzheimer's disease (AD) is the most devastating neurodegenerative disorder affecting the elderly. The exact pathology of AD is not yet fully understood and several hallmarks such as the deposition of amyloid-β, tau hyperphosphorylation, and neuroinflammation, as well as mitochondrial, metal ions, autophagy, and cholinergic dysfunctions are known as pathologic features of AD. Since no definitive treatment has been proposed to target AD to date, many natural products have shown promising preventive potentials and contributed to slowing down the disease progression. Algae is a promising source of novel bioactive substances known to prevent neurodegenerative disorders including AD. In this context, fucoxanthin and astaxanthin, natural carotenoids abundant in algae, has shown to possess neuroprotective properties through antioxidant, and anti-inflammatory characteristics in modulating the symptoms of AD. Fucoxanthin and astaxanthin exhibit anti-AD activities by inhibition of AChE, BuChE, BACE-1, and MAO, suppression of Aβ accumulation. Also, fucoxanthin and astaxanthin inhibit apoptosis induced by Aβ1-42 and H2O2-induced cytotoxicity, and modulate the antioxidant enzymes (SOD and CAT), through inhibition of the ERK pathway. Moreover, cellular and animal studies on the beneficial effects of fucoxanthin and astaxanthin against AD were also reviewed. The potential role of fucoxanthin and astaxanthin exhibits great efficacy for the management of AD by acting on multiple targets.
Collapse
Affiliation(s)
- Najmeh Oliyaei
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Seafood Processing Research Center, School of Agriculture, Shiraz University, Shiraz, Iran
| | - Marzieh Moosavi-Nasab
- Seafood Processing Research Center, School of Agriculture, Shiraz University, Shiraz, Iran; Department of Food Science and Technology, School of Agriculture, Shiraz University, Shiraz, Iran.
| | - Nader Tanideh
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Aida Iraji
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Central Research laboratory, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
43
|
Thabet NM, Abdel-Rafei MK, Askar MA, Abdelmohsen SA, Ahmed OM, Elbakry MM. Nanocomposite zinc oxide@ γ-linolenic acid-canagliflozin-fucoxanthin and/or γ-radiation perturbs key metabolic effectors and suppresses the proliferation of breast cancer cells in vitro. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
44
|
Liu F, Xu J, Yang R, Liu S, Hu S, Yan M, Han F. New light on treatment of cervical cancer: Chinese medicine monomers can be effective for cervical cancer by inhibiting the PI3K/Akt signaling pathway. Biomed Pharmacother 2023; 157:114084. [PMID: 36481407 DOI: 10.1016/j.biopha.2022.114084] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/27/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
Cervical cancer (CC), as the most common malignant tumor of the female reproductive system, is infamous for its high morbidity and mortality rates. Its development and metastasis are intricate because numerous signaling pathways are involved. Since the cancer and the PI3K/Akt signaling pathway are closely intertwined, direct inhibition of either the PI3K/Akt pathway or its target genes and molecules may be remarkably constructive for treatment. Albeit remarkable advances in the treatment of CC, existing common anti-cancer medications are not without problems. These problems include myelotoxicity, cardiotoxicity, genotoxicity, and vasospasm, which are the most common and well-recognized toxicities associated with these medications. Therefore, it is necessary and urgent to develop novel, potent, secure, and more reasonably priced anticancer medications that are void of the above problems. Against this backdrop, Chinese medicine monomers have received more attention in recent years owing to their safety, low toxicity, few side effects, and anti-tumor properties. By regulating the PI3K/Akt signaling pathway, Chinese medicine monomers are effective not only in inhibiting CC growth, proliferation, apoptosis, invasion, migration, and reversing drug resistance but also in a variety of targets. Most previous earlier studies focused on the use of a single traditional Chinese medicine monomer to treat CC by regulating the PI3K/Akt signaling pathway rather than a combination of several such monomers. More importantly, to our knowledge, there has hardly been any study providing an exhaustive and comprehensive review of all the Chinese medicine monomers at CC. In response to this scarcity, we attempt in this paper to provide a comprehensive review of all the literature to date on traditional Chinese medicine monomers at cervical cancer, highlight the mechanisms and future prospects for their use in the prevention and treatment of cervical cancer.
Collapse
Affiliation(s)
- Fangyuan Liu
- Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Jiayue Xu
- Xi'an Hospital of Chinese Medicine, Xi'an 710021, China
| | - Rui Yang
- Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Shaoxuan Liu
- Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Siya Hu
- Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Mengyu Yan
- Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Fengjuan Han
- The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin 150040, China.
| |
Collapse
|
45
|
Ahmed SA, Mendonca P, Elhag R, Soliman KFA. Anticancer Effects of Fucoxanthin through Cell Cycle Arrest, Apoptosis Induction, Angiogenesis Inhibition, and Autophagy Modulation. Int J Mol Sci 2022; 23:16091. [PMID: 36555740 PMCID: PMC9785196 DOI: 10.3390/ijms232416091] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 12/09/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
Cancer accounts for one in seven deaths worldwide and is the second leading cause of death in the United States, after heart disease. One of the standard cancer treatments is chemotherapy which sometimes can lead to chemoresistance and treatment failure. Therefore, there is a great need for novel therapeutic approaches to treat these patients. Novel natural products have exhibited anticancer effects that may be beneficial in treating many kinds of cancer, having fewer side effects, low toxicity, and affordability. Numerous marine natural compounds have been found to inhibit molecular events and signaling pathways associated with various stages of cancer development. Fucoxanthin is a well-known marine carotenoid of the xanthophyll family with bioactive compounds. It is profusely found in brown seaweeds, providing more than 10% of the total creation of natural carotenoids. Fucoxanthin is found in edible brown seaweed macroalgae such as Undaria pinnatifida, Laminaria japonica, and Eisenia bicyclis. Many of fucoxanthin's pharmacological properties include antioxidant, anti-tumor, anti-inflammatory, antiobesity, anticancer, and antihypertensive effects. Fucoxanthin inhibits many cancer cell lines' proliferation, angiogenesis, migration, invasion, and metastasis. In addition, it modulates miRNA and induces cell cycle growth arrest, apoptosis, and autophagy. Moreover, the literature shows fucoxanthin's ability to inhibit cytokines and growth factors such as TNF-α and VEGF, which stimulates the activation of downstream signaling pathways such as PI3K/Akt autophagy, and pathways of apoptosis. This review highlights the different critical mechanisms by which fucoxanthin inhibits diverse cancer types, such as breast, prostate, gastric, lung, and bladder development and progression. Moreover, this article reviews the existing literature and provides critical supportive evidence for fucoxanthin's possible therapeutic use in cancer.
Collapse
Affiliation(s)
- Shade’ A. Ahmed
- Division of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Institute of Public Health, Florida A&M University, Tallahassee, FL 32307, USA
| | - Patricia Mendonca
- Department of Biology, College of Science and Technology, Florida A&M University, Tallahassee, FL 32307, USA
| | - Rashid Elhag
- Department of Biology, College of Science and Technology, Florida A&M University, Tallahassee, FL 32307, USA
| | - Karam F. A. Soliman
- Division of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Institute of Public Health, Florida A&M University, Tallahassee, FL 32307, USA
| |
Collapse
|
46
|
Chen S, Zhu L, Li J. Fucoxanthin ameliorates oxidative injury and inflammation of human bronchial epithelial cells induced by cigarette smoke extract via the PPARγ/NF‑κB signaling pathway. Exp Ther Med 2022; 25:69. [PMID: 36605523 PMCID: PMC9798150 DOI: 10.3892/etm.2022.11768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 08/12/2022] [Indexed: 12/15/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a prevalent and long-term airway disease. It has been reported that fucoxanthin (FX) exhibits anti-inflammatory and antioxidant effects. However, the underlying mechanism of FX in COPD remains unknown. Therefore, to investigate the effect of FX on COPD, BEAS-2B cells were treated with cigarette smoke extract (CSE). The viability of BEAS-2B cells treated with increasing doses of FX was assessed by Cell Counting Kit-8. Lactate dehydrogenase (LDH) levels were measured using a corresponding kit. In addition, ELISA was carried out to detect the content of TNF-α, IL-1β and IL-6. Additionally, a TUNEL assay and western blot analysis were performed to assess the cell apoptosis rate. Furthermore, 2',7'-dichlorodihydrofluorescein diacetate was used to measure reactive oxygen species levels, while the contents of oxidative stress-associated indexes were determined using the corresponding kits. Bioinformatics analysis using the search tool for interactions of chemicals database predicted that peroxisome proliferator-activated receptor γ (PPARγ) may be a target of FX. The binding capacity of FTX with PPARγ was confirmed by molecular docking. The protein expression levels of the PPARγ/NF-κB signaling-associated factors were detected by western blot analysis. Finally, the regulatory mechanism of FX in COPD was revealed following cell treatment with the PPARγ inhibitor, T0070907. The results demonstrated that FX enhanced CSE-induced BEAS-2B cell viability and attenuated CSE-induced BEAS-2B cell inflammation and oxidative damage, possibly via triggering PPARγ/NF-κB signaling. Pre-treatment of BEAS-2B cells with the PPARγ inhibitor, T0070907, could reverse the protective effects of FX on CSE-induced BEAS-2B cells. Overall, the present study suggested that FX could ameliorate oxidative damage as well as inflammation in CSE-treated human bronchial epithelial in patients with COPD via modulating the PPARγ/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Shaolei Chen
- Department of Nursing, Shandong College of Traditional Chinese Medicine, Yantai, Shandong 264199, P.R. China
| | - Lin Zhu
- Department of Nursing, Shandong College of Traditional Chinese Medicine, Yantai, Shandong 264199, P.R. China
| | - Jun Li
- Department of General Medicine, The Third Affiliated Hospital of Nantong University, Nantong, Jiangsu 226000, P.R. China,Correspondence to: Dr Jun Li, Department of General Medicine The Third Affiliated Hospital of Nantong University, 60 Qingnian Middle Road, Nangtong, Jiangsu 226000, P.R. China
| |
Collapse
|
47
|
The Complex of Phycobiliproteins, Fucoxanthin, and Krill Oil Ameliorates Obesity through Modulation of Lipid Metabolism and Antioxidants in Obese Rats. Nutrients 2022; 14:nu14224815. [PMID: 36432501 PMCID: PMC9693846 DOI: 10.3390/nu14224815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/05/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022] Open
Abstract
Phycobiliproteins, fucoxanthin, and krill oil are natural marine products with excellent activities. In the study, we prepared the complex of phycobiliproteins, fucoxanthin, and krill oil (PFK) and assessed the anti-obesity, lipid-lowering, and antioxidant activities in high-fat diet rats. The results showed that the rats significantly and safely reduced body weight gain and regulated serum biochemical parameters at 50 mg/kg phycobiliproteins, 10 mg/kg fucoxanthin, and 100 mg/kg krill oil. Furthermore, the molecular mechanism study suggested that the complex of PFK confined the enzyme activities of lipid synthesis and enhanced antioxidant activity to improve obesity indirectly. The conclusions demonstrated that the complex of PFK has potent anti-obesity and hypolipidemic effects which have potential use as a natural and healthy food and medicine for anti-obesity and lowering blood lipids in the future.
Collapse
|
48
|
Pestana CJ, Santos AA, Capelo-Neto J, Melo VMM, Reis KC, Oliveira S, Rogers R, Pacheco ABF, Hui J, Skillen NC, Barros MUG, Edwards C, Azevedo SMFO, Robertson PKJ, Irvine JTS, Lawton LA. Suppressing cyanobacterial dominance by UV-LED TiO 2-photocatalysis in a drinking water reservoir: A mesocosm study. WATER RESEARCH 2022; 226:119299. [PMID: 36323220 DOI: 10.1016/j.watres.2022.119299] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 10/21/2022] [Accepted: 10/23/2022] [Indexed: 06/16/2023]
Abstract
Cyanobacteria and their toxic secondary metabolites present challenges for water treatment globally. In this study we have assessed TiO2 immobilized onto recycled foamed glass beads by a facile calcination method, combined in treatment units with 365 nm UV-LEDs. The treatment system was deployed in mesocosms within a eutrophic Brazilian drinking water reservoir. The treatment units were deployed for 7 days and suppressed cyanobacterial abundance by 85% while at the same time enhancing other water quality parameters; turbidity and transparency improved by 40 and 81% respectively. Genomic analysis of the microbiota in the treated mesocosms revealed that the composition of the cyanobacterial community was affected and the abundance of Bacteroidetes and Proteobacteria increased during cyanobacterial suppression. The effect of the treatment on zooplankton and other eukaryotes was also monitored. The abundance of zooplankton decreased while Chrysophyte and Alveolata loadings increased. The results of this proof-of-concept study demonstrate the potential for full-scale, in-reservoir application of advanced oxidation processes as complementary water treatment processes.
Collapse
Affiliation(s)
- Carlos J Pestana
- School of Pharmacy and Life Sciences, Robert Gordon University, Aberdeen, UK.
| | - Allan A Santos
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - José Capelo-Neto
- Department of Hydraulic and Environmental Engineering, Federal University of Ceará, Fortaleza, Brazil
| | - Vânia M M Melo
- Department of Biology, Federal University of Ceará, Fortaleza, Brazil
| | - Kelly C Reis
- Department of Hydraulic and Environmental Engineering, Federal University of Ceará, Fortaleza, Brazil
| | - Samylla Oliveira
- Department of Hydraulic and Environmental Engineering, Federal University of Ceará, Fortaleza, Brazil
| | - Ricardo Rogers
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ana B F Pacheco
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Jianing Hui
- School of Chemistry, University of St. Andrews, St. Andrews, UK
| | - Nathan C Skillen
- School of Chemistry and Chemical Engineering, Queen's University Belfast, Belfast, UK
| | - Mário U G Barros
- Ceára Water Resources Management Company (COGERH), Fortaleza, Brazil
| | - Christine Edwards
- School of Pharmacy and Life Sciences, Robert Gordon University, Aberdeen, UK
| | - Sandra M F O Azevedo
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Peter K J Robertson
- School of Chemistry and Chemical Engineering, Queen's University Belfast, Belfast, UK
| | - John T S Irvine
- School of Chemistry, University of St. Andrews, St. Andrews, UK
| | - Linda A Lawton
- School of Pharmacy and Life Sciences, Robert Gordon University, Aberdeen, UK
| |
Collapse
|
49
|
Wang W, Fu C, Lin M, Lu Y, Lian S, Xie X, Zhou G, Li W, Zhang Y, Jia L, Zhong C, Huang M. Fucoxanthin prevents breast cancer metastasis by interrupting circulating tumor cells adhesion and transendothelial migration. Front Pharmacol 2022; 13:960375. [PMID: 36160416 PMCID: PMC9500434 DOI: 10.3389/fphar.2022.960375] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 08/12/2022] [Indexed: 11/13/2022] Open
Abstract
Metastasis is the leading cause of cancer-related death and a critical challenge in improving cancer treatment today. Circulating tumor cells (CTCs) adhesion to and across the vascular endothelium are critical steps in the establishment of micrometastatic foci away from the primary tumor. Therefore, we believe that interrupting CTCs adhesion to endothelium and transendothelial migration may efficiently prevent cancer metastasis. Fucoxanthin (Fx) is an algal carotenoid widely distributed in brown algae, macroalgae, and diatoms. Previous studies have found that Fx has various pharmacological activities, including antidiabetic, antioxidant, anti-inflammatory, anti-obesity, antimalarial, anticancer, and so on. However, it remains unclear whether Fx has a preventive effect on cancer metastasis. Here, we found that Fx interrupts breast cancer cells MCF-7 adhesion to endothelium and transendothelial migration, thus inhibiting CTCs-based pulmonary metastasis in vivo. The hetero-adhesion assay showed that Fx significantly inhibited the expression of inflammatory factor-induced cell adhesion molecules (CAMs) and the resulting adhesion between MCF-7 cells and endothelial cells. The wound-healing and transwell assays showed that Fx significantly inhibited the motility, invasion, and transendothelial migration abilities of MCF-7 cells. However, the same concentration of Fx did not significantly alter the cell viability, cell cycle, apoptosis, and ROS of breast cancer cells, thus excluding the possibility that Fx inhibits MCF-7 cell adhesion and transendothelial migration through cytotoxicity. Mechanistically, Fx inhibits the expression of CAMs on endothelial cells by inhibiting the NF-кB signaling pathway by down-regulating the phosphorylation level of IKK-α/β, IкB-α, and NF-кB p65. Fx inhibits transendothelial migration of MCF-7 cells by inhibiting Epithelial-to-mesenchymal transition (EMT), PI3K/AKT, and FAK/Paxillin signaling pathways. Moreover, we demonstrated that Fx significantly inhibits the formation of lung micrometastatic foci in immunocompetent syngeneic mouse breast cancer metastasis models. We also showed that Fx enhances antitumor immune responses by substantially increasing the subsets of cytotoxic T lymphocytes in the peripheral immune system. This new finding provides a basis for the application of Fx in cancer metastatic chemoprevention and suggests that interruption of the CTCs adhesion to endothelium and transendothelial migration may serve as a new avenue for cancer metastatic chemoprevention.
Collapse
Affiliation(s)
- Weiyu Wang
- Fujian Key Laboratory of Chinese Materia Medica, College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
- Fujian-Taiwan-Hongkong-Macao Science and Technology Cooperation Base of Intelligent Pharmaceutics, College of Material and Chemical Engineering, Minjiang University, Fuzhou, Fujian, China
- Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Fuzhou Institute of Oceanography, Minjiang University, Fuzhou, Fujian, China
| | - Chengbin Fu
- Department of Breast Surgery, Fujian Medical University Union Hospital, Fuzhou, China
- Breast Surgery Institute, Fujian Medical University, Fuzhou, China
| | - Mengting Lin
- Fujian Key Laboratory of Chinese Materia Medica, College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
- Fujian-Taiwan-Hongkong-Macao Science and Technology Cooperation Base of Intelligent Pharmaceutics, College of Material and Chemical Engineering, Minjiang University, Fuzhou, Fujian, China
- Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Fuzhou Institute of Oceanography, Minjiang University, Fuzhou, Fujian, China
| | - Yusheng Lu
- Fujian-Taiwan-Hongkong-Macao Science and Technology Cooperation Base of Intelligent Pharmaceutics, College of Material and Chemical Engineering, Minjiang University, Fuzhou, Fujian, China
- Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Fuzhou Institute of Oceanography, Minjiang University, Fuzhou, Fujian, China
- *Correspondence: Yusheng Lu, ; Chunlian Zhong, ; Mingqing Huang,
| | - Shu Lian
- Fujian-Taiwan-Hongkong-Macao Science and Technology Cooperation Base of Intelligent Pharmaceutics, College of Material and Chemical Engineering, Minjiang University, Fuzhou, Fujian, China
- Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Fuzhou Institute of Oceanography, Minjiang University, Fuzhou, Fujian, China
| | - Xiaodong Xie
- Fujian-Taiwan-Hongkong-Macao Science and Technology Cooperation Base of Intelligent Pharmaceutics, College of Material and Chemical Engineering, Minjiang University, Fuzhou, Fujian, China
- Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Fuzhou Institute of Oceanography, Minjiang University, Fuzhou, Fujian, China
| | - Guiyu Zhou
- Fujian-Taiwan-Hongkong-Macao Science and Technology Cooperation Base of Intelligent Pharmaceutics, College of Material and Chemical Engineering, Minjiang University, Fuzhou, Fujian, China
- Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Fuzhou Institute of Oceanography, Minjiang University, Fuzhou, Fujian, China
| | - Wulin Li
- Fujian-Taiwan-Hongkong-Macao Science and Technology Cooperation Base of Intelligent Pharmaceutics, College of Material and Chemical Engineering, Minjiang University, Fuzhou, Fujian, China
- Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Fuzhou Institute of Oceanography, Minjiang University, Fuzhou, Fujian, China
- College of Chemistry, Fuzhou University, Fuzhou, China
| | - Yiping Zhang
- Technical Innovation Center for Utilization of Marine Biological Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
| | - Lee Jia
- Fujian-Taiwan-Hongkong-Macao Science and Technology Cooperation Base of Intelligent Pharmaceutics, College of Material and Chemical Engineering, Minjiang University, Fuzhou, Fujian, China
- Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Fuzhou Institute of Oceanography, Minjiang University, Fuzhou, Fujian, China
| | - Chunlian Zhong
- Fujian-Taiwan-Hongkong-Macao Science and Technology Cooperation Base of Intelligent Pharmaceutics, College of Material and Chemical Engineering, Minjiang University, Fuzhou, Fujian, China
- Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Fuzhou Institute of Oceanography, Minjiang University, Fuzhou, Fujian, China
- *Correspondence: Yusheng Lu, ; Chunlian Zhong, ; Mingqing Huang,
| | - Mingqing Huang
- Fujian Key Laboratory of Chinese Materia Medica, College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
- *Correspondence: Yusheng Lu, ; Chunlian Zhong, ; Mingqing Huang,
| |
Collapse
|
50
|
Akinyemi F, Adewole D. Effects of brown seaweed products on growth performance, plasma biochemistry, immune response, and antioxidant capacity of broiler chickens challenged with heat stress. Poult Sci 2022; 101:102215. [PMID: 36288626 PMCID: PMC9593180 DOI: 10.1016/j.psj.2022.102215] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 09/20/2022] [Accepted: 09/26/2022] [Indexed: 11/28/2022] Open
Abstract
Brown seaweed (Ascophyllum nodosum) is an exceptional bioactive substance known for its excellent antioxidant ability. Given the potential benefits of brown seaweed, the current study was conducted to determine its efficacy on growth performance, blood biochemistry, immunoglobulins (IgG and IgM), and the antioxidant capacity of broiler chickens challenged with heat stress (HS). A total of 336 mixed-sex Ross 308 broiler chicks (one-day-old) were randomly assigned into two groups; The thermoneutral group (TN, broilers were raised at 24 ± 1°C); and the heat stress group (HS; broilers were exposed to 32°C to 34°C, 8 h/d from day 21 to 27; the temperature in the remaining time was same as TN group). All birds in each group were randomly allotted to 4 dietary treatments—Negative control (NC) (without seaweed), NC + 1 mL seaweed extract (SWE) in drinking water, NC + 2 mL SWE in drinking water, and NC + 2% seaweed meal (SWM) in feed. Each treatment was assigned to six replicates with 7 broilers/replicate. Average body weight gain (ABWG), average feed intake (AFI), average water intake (AWI), feed conversion ratio (FCR), and mortality were determined weekly. On day 28, two male birds/cage were euthanized to collect blood and immune organs for subsequent biochemical, antioxidant, and immune status analysis. Data were analyzed as a 4 × 2 factorial analysis of variance using the GLM procedure of Minitab software. Overall, 2% SWM inclusion significantly increased (P < 0.05) the AFI, ABWG, and AWI of broiler chickens irrespective of HS. HS significantly reduced (P < 0.05) AFI and increased (P < 0.05) the bird's rectal temperature, plasma concentrations of sodium, chloride, glucose, amylase, and uric acid compared to TN birds. HS increased (P < 0.05) serum IgM and IgG and decreased plasma glutathione reductase and glutathione peroxidase compared to TN birds, while the activity of superoxide dismutase was not affected by HS and dietary treatments. 1 mL SWE in water and 2% SWM in feed significantly reduced (P < 0.05) the plasma activity of alanine aminotransferase and gamma-glutamyl transferase of heat-stressed broilers, respectively compared to other treatments. Conclusively, dietary supplementation of brown seaweed improved the growth performance of birds irrespective of HS and may help to reduce the negative effects of HS by improving the plasma enzyme activities of heat-stressed birds.
Collapse
Affiliation(s)
- Fisayo Akinyemi
- Department of Animal Science and Aquaculture, Faculty of Agriculture, Dalhousie University, Truro, NS, B2N 5E3, Canada
| | - Deborah Adewole
- Department of Animal Science and Aquaculture, Faculty of Agriculture, Dalhousie University, Truro, NS, B2N 5E3, Canada.
| |
Collapse
|