1
|
Gomez P, García EV, Céspedes García ME, Furnus CC, Barrera AD. Expression patterns of folate metabolism-related enzymes in the bovine oviduct: estrous cycle-dependent modulation and responsiveness to folic acid. Theriogenology 2024; 230:233-242. [PMID: 39342825 DOI: 10.1016/j.theriogenology.2024.09.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 09/10/2024] [Accepted: 09/23/2024] [Indexed: 10/01/2024]
Abstract
Folate metabolism is required for important biochemical processes that regulate cell functioning, but its role in female reproductive physiology in cattle during peri- and post-conceptional periods has not been thoroughly explored. Previous studies have shown the presence of folate in bovine oviductal fluid, as well as finely regulated gene expression of folate receptors and transporters in bovine oviduct epithelial cells (BOECs). Additionally, extracellular folic acid (FA) affects the transcriptional levels of genes important for the functioning of BOECs. However, it remains unknown whether the anatomical and cyclic features inherent to the oviduct affect regulation of folate metabolism. The present study aimed to characterize the gene expression pattern of folate cycle enzymes in BOECs from different anatomical regions during the estrous cycle and to determine the transcriptional response of these genes to increasing concentrations of exogenous FA. A first PCR screening showed the presence of transcripts encoding dihydrofolate reductase (DHFR), methylenetetrahydrofolate reductase (MTHFR), and methionine synthase (MTR) in bovine reproductive tissues (ovary, oviduct and uterus), with expression levels in oviductal tissues comparable to, or even higher than, those detected in ovarian and uterine tissues. Moreover, expression analysis through RT-qPCR in BOECs from the ampulla and isthmus during different stages of the estrous cycle demonstrated that folate metabolism-related enzymes exhibited cycle-dependent variations. In both anatomical regions, DHFR was upregulated during the preovulatory stage, while MTHFR and MTR exhibited increased expression levels during the postovulatory stage. Under in vitro culture conditions, ampullary and isthmic cells were cultured in the presence of 10, 50, and 100 μM FA for 24 h. Under these conditions, isthmus epithelial cells exhibited a unique transcriptional response to exogenous FA, showing a pronounced increase in MTR expression levels. Our results suggest that the expression of folate metabolism-related genes in BOECs is differentially regulated during the estrous cycle and may respond to exogenous levels of folate. This offers a new perspective on the transcriptional regulation of genes associated with the folate cycle in oviductal cells and provides groundwork for future studies on their functional and epigenetic implications within the oviductal microenvironment.
Collapse
Affiliation(s)
- Paula Gomez
- Laboratorio de Biología Molecular, Facultad de Ciencias Agrarias y Veterinarias, Universidad Católica de Salta (UCASAL), Campus Castañares, A4400EDD, Salta, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Elina Vanesa García
- Laboratorio de Biología Molecular, Facultad de Ciencias Agrarias y Veterinarias, Universidad Católica de Salta (UCASAL), Campus Castañares, A4400EDD, Salta, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Mario Exequiel Céspedes García
- Laboratorio de Biología Molecular, Facultad de Ciencias Agrarias y Veterinarias, Universidad Católica de Salta (UCASAL), Campus Castañares, A4400EDD, Salta, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Cecilia Cristina Furnus
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina; IGEVET- Instituto de Genética Veterinaria "Ing. Fernando N. Dulout" (UNLP-CONICET LA PLATA), Facultad de Ciencias Veterinarias UNLP, Calles 60 y 118, B1904AMA, La Plata, Buenos Aires, Argentina
| | - Antonio Daniel Barrera
- Laboratorio de Biología Molecular, Facultad de Ciencias Agrarias y Veterinarias, Universidad Católica de Salta (UCASAL), Campus Castañares, A4400EDD, Salta, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina.
| |
Collapse
|
2
|
Zhang L, Zhang Y, Sun H. Protein Modifications During Early Embryo Development. Am J Reprod Immunol 2024; 92:e70007. [PMID: 39460606 DOI: 10.1111/aji.70007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 08/18/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND Infertility is a global reproductive health burden. Assisted reproductive technologies (ARTs) have been widely used to help patients become pregnant. Few embryos develop to the blastocyst stage with ARTs, leading to relatively low live birth rates. Protein modifications play crucial roles in nearly every aspect of cell biology, including reproductive processes. The aim of this study was to explore the characteristics of protein modifications during embryonic development. METHODS Proteomic data from humans and mice were acquired from the integrated proteome resources (iProX) of ProteomeXchange (PXD024267) and a tandem mass tag (TMT)-mass spectrometry dataset. Gene ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis were applied for functional annotation. Protein-protein interactions (PPIs) of the modification-related genes were revealed by the STRING database. Modified proteins during mouse embryogenesis were visualized through heatmaps of hierarchically clustering using k-means. RESULTS We identified modification-related proteins in human embryo development and characterized them through heatmaps, GO analysis, KEGG analysis, and PPI network analysis. We found that the 4-cell stage to the 8-cell stage might be the demarcation period for modification-related protein expression patterns during embryo development. Using quantitative mass spectrometry, we elucidated the methylation, acetylation, and ubiquitination events that occur during mouse embryogenesis to validate our findings in human embryonic development to some extent. CONCLUSIONS The results of our study suggest that the posttranslational modifications (PTMs) of human preimplantation embryos might exhibit the same trends as those in mice to exert synergistic and fine-tuned regulatory effects during embryonic development.
Collapse
Affiliation(s)
- Le Zhang
- Center for Reproductive Medicine, the Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| | - Yanbing Zhang
- Center for Reproductive Medicine, the Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| | - Hailong Sun
- Center for Reproductive Medicine, the Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| |
Collapse
|
3
|
Li C, Lu T, Chen H, Yu Z, Chen C. The up-regulation of SYNCRIP promotes the proliferation and tumorigenesis via DNMT3A/p16 in colorectal cancer. Sci Rep 2024; 14:21570. [PMID: 39284825 PMCID: PMC11405714 DOI: 10.1038/s41598-024-59575-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 04/12/2024] [Indexed: 09/20/2024] Open
Abstract
Heterogeneous nuclear ribonucleoproteins (hnRNPs), a group of proteins that control gene expression, have been implicated in many post-transcriptional processes. SYNCRIP (also known as hnRNP Q), a subtype of hnRNPs, has been reported to be involved in mRNA splicing and translation. In addition, the deregulation of SYNCRIP was found in colorectal cancer (CRC). However, the role of SYNCRIP in regulating CRC growth remains largely unknown. Here, we found that SYNCRIP was highly expressed in colorectal cancer by analyzing TCGA and GEPIA database. Furthermore, we confirmed the expression of SYNCRIP expression in CRC tumor and CRC cell lines. Functionally, SYNCRIP depletion using shRNA in CRC cell lines (SW480 and HCT 116) resulted in increased caspase3/7 activity and decreased cell proliferation, as well as migration. Meanwhile, overexpression of SYNCRIP showed opposite results. Mechanistically, SYNCRIP regulated the expression of DNA methyltransferases (DNMT) 3A, but not DNMT1 or DNMT3B, which affected the expression of tumor suppressor, p16. More importantly, our in vivo experiments showed that SYNCRIP depletion significantly inhibited colorectal tumor growth. Taken all together, our results suggest SYNCRIP as a potent therapeutic target in colorectal cancer.
Collapse
Affiliation(s)
- Chenglong Li
- Department of Gastrointestinal Surgery, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, 410005, Hunan Province, China
| | - Tailiang Lu
- Department of Gastrointestinal Surgery, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, 410005, Hunan Province, China
| | - Hongxi Chen
- Department of Gastrointestinal Surgery, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, 410005, Hunan Province, China
| | - Zhige Yu
- Department of Gastrointestinal Surgery, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, 410005, Hunan Province, China.
| | - Chaowu Chen
- Department of Gastrointestinal Surgery, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, 410005, Hunan Province, China.
| |
Collapse
|
4
|
Li W, Liu Y, Xu R, Zong Y, He L, Hu J, Li G. M 6A modification in cardiovascular disease: With a focus on programmed cell death. Genes Dis 2024; 11:101039. [PMID: 38988324 PMCID: PMC11233881 DOI: 10.1016/j.gendis.2023.05.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 04/11/2023] [Accepted: 05/25/2023] [Indexed: 07/12/2024] Open
Abstract
N6-methyladenosine (m6A) methylation is one of the most predominant internal RNA modifications in eukaryotes and has become a hot spot in the field of epigenetics in recent years. Cardiovascular diseases (CVDs) are a leading cause of death globally. Emerging evidence demonstrates that RNA modifications, such as the m6A modification, are associated with the development and progression of many diseases, including CVDs. An increasing body of studies has indicated that programmed cell death (PCD) plays a vital role in CVDs. However, the molecular mechanisms underlying m6A modification and PCD in CVDs remain poorly understood. Herein, elaborating on the highly complex connections between the m6A mechanisms and different PCD signaling pathways and clarifying the exact molecular mechanism of m6A modification mediating PCD have significant meaning in developing new strategies for the prevention and therapy of CVDs. There is great potential for clinical application.
Collapse
Affiliation(s)
- Wen Li
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Department of Pathophysiology, MOE Key Lab of Rare Pediatric Diseases, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Yao Liu
- Department of Cardiovascular Medicine, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Ruiyan Xu
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Department of Pathophysiology, MOE Key Lab of Rare Pediatric Diseases, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Yuan Zong
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Department of Pathophysiology, MOE Key Lab of Rare Pediatric Diseases, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Lu He
- Department of Obstetrics and Gynecology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Jun Hu
- Department of Cardiovascular Surgery, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Guohua Li
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Department of Pathophysiology, MOE Key Lab of Rare Pediatric Diseases, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| |
Collapse
|
5
|
Pietruszyńska-Reszetarska A, Pietruszyński R, Irzmański R. The Significance of Genetically Determined Methylation and Folate Metabolism Disorders in the Pathogenesis of Coronary Artery Disease: A Target for New Therapies? Int J Mol Sci 2024; 25:6924. [PMID: 39000032 PMCID: PMC11241586 DOI: 10.3390/ijms25136924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 06/18/2024] [Accepted: 06/21/2024] [Indexed: 07/14/2024] Open
Abstract
Methylation is a biochemical process involving the addition of a methyl group (-CH3) to various chemical compounds. It plays a crucial role in maintaining the homeostasis of the endothelium, which lines the interior surface of blood vessels, and has been linked, among other conditions, to coronary artery disease (CAD). Despite significant progress in CAD diagnosis and treatment, intensive research continues into genotypic and phenotypic CAD biomarkers. This review explores the significance of the methylation pathway and folate metabolism in CAD pathogenesis, with a focus on endothelial dysfunction resulting from deficiency in the active form of folate (5-MTHF). We discuss emerging areas of research into CAD biomarkers and factors influencing the methylation process. By highlighting genetically determined methylation disorders, particularly the MTHFR polymorphism, we propose the potential use of the active form of folate (5-MTHF) as a novel CAD biomarker and personalized pharmaceutical for selected patient groups. Our aim is to improve the identification of individuals at high risk of CAD and enhance their prognosis.
Collapse
Affiliation(s)
| | - Robert Pietruszyński
- Cardiology Outpatient Clinic, Military Medical Academy Memorial Teaching Hospital of the Medical University of Lodz—Central Veterans’ Hospital, 90-549 Lodz, Poland;
| | - Robert Irzmański
- Department of Internal Medicine, Rehabilitation and Physical Medicine, Medical University of Lodz, 90-645 Lodz, Poland;
| |
Collapse
|
6
|
Jiang J, Duan M, Wang Z, Lai Y, Zhang C, Duan C. RNA epigenetics in pulmonary diseases: Insights into methylation modification of lncRNAs in lung cancer. Biomed Pharmacother 2024; 175:116704. [PMID: 38749181 DOI: 10.1016/j.biopha.2024.116704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/26/2024] [Accepted: 05/02/2024] [Indexed: 06/03/2024] Open
Abstract
Long non-coding RNAs (lncRNAs) are pivotal controllers of gene expression through epigenetic mechanisms, Methylation, a prominent area of study in epigenetics, significantly impacts cellular processes. Various RNA base methylations, including m6A, m5C, m1A, and 2'-O-methylation, profoundly influence lncRNA folding, interactions, and stability, thereby shaping their functionality. LncRNAs and methylation significantly contribute to tumor development, especially in lung cancer. Their roles encompass cell differentiation, proliferation, the generation of cancer stem cells, and modulation of immune responses. Recent studies have suggested that dysregulation of lncRNA methylation can contribute to lung cancer development. Furthermore, methylation modifications of lncRNAs hold potential for clinical application in lung cancer. Dysregulated lncRNA methylation can promote lung cancer progression and may offer insights into potential biomarker or therapeutic target. This review summarizes the current knowledge of lncRNA methylation in lung cancer and its implications for RNA epigenetics and pulmonary diseases.
Collapse
Affiliation(s)
- Junjie Jiang
- Department of Thoracic Surgery, Xiangya Hospital, Central South University, Changsha 410008, Hunan, People's Republic of China; Hunan Engineering Research Center for Pulmonary Nodules Precise Diagnosis & Treatment, Changsha, 410008, Hunan, People's Republic of China
| | - Minghao Duan
- Department of Public Health Laboratory Sciences, School of Public Health, Hengyang Medical School, University of South China, Hengyang, 412017, Hunan, People's Republic of China
| | - Zheng Wang
- Department of Thoracic Surgery, Xiangya Hospital, Central South University, Changsha 410008, Hunan, People's Republic of China; Hunan Engineering Research Center for Pulmonary Nodules Precise Diagnosis & Treatment, Changsha, 410008, Hunan, People's Republic of China
| | - Yuwei Lai
- Department of Thoracic Surgery, Xiangya Hospital, Central South University, Changsha 410008, Hunan, People's Republic of China; Hunan Engineering Research Center for Pulmonary Nodules Precise Diagnosis & Treatment, Changsha, 410008, Hunan, People's Republic of China
| | - Chunfang Zhang
- Department of Thoracic Surgery, Xiangya Hospital, Central South University, Changsha 410008, Hunan, People's Republic of China; Hunan Engineering Research Center for Pulmonary Nodules Precise Diagnosis & Treatment, Changsha, 410008, Hunan, People's Republic of China; Xiangya Lung Cancer Center, Xiangya Hospital, Central South University, Changsha 410008, Hunan, People's Republic of China
| | - Chaojun Duan
- Department of Thoracic Surgery, Xiangya Hospital, Central South University, Changsha 410008, Hunan, People's Republic of China; Hunan Engineering Research Center for Pulmonary Nodules Precise Diagnosis & Treatment, Changsha, 410008, Hunan, People's Republic of China; Xiangya Lung Cancer Center, Xiangya Hospital, Central South University, Changsha 410008, Hunan, People's Republic of China; Institute of Medical Sciences, Xiangya Hospital, Central South University, Changsha 410008, Hunan, People's Republic of China; National Clinical Research Center for Geriatric Disorders, Changsha 410008, Hunan, People's Republic of China.
| |
Collapse
|
7
|
Xia Y, Chen K, Yang Q, Chen Z, Jin L, Zhang L, Yu X, Wang L, Xie C, Zhao Y, Shen Y, Tong J. Methylation in cornea and corneal diseases: a systematic review. Cell Death Discov 2024; 10:169. [PMID: 38589350 PMCID: PMC11002037 DOI: 10.1038/s41420-024-01935-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 03/24/2024] [Accepted: 03/25/2024] [Indexed: 04/10/2024] Open
Abstract
Corneal diseases are among the primary causes of blindness and vision loss worldwide. However, the pathogenesis of corneal diseases remains elusive, and diagnostic and therapeutic tools are limited. Thus, identifying new targets for the diagnosis and treatment of corneal diseases has gained great interest. Methylation, a type of epigenetic modification, modulates various cellular processes at both nucleic acid and protein levels. Growing evidence shows that methylation is a key regulator in the pathogenesis of corneal diseases, including inflammation, fibrosis, and neovascularization, making it an attractive potential therapeutic target. In this review, we discuss the major alterations of methylation and demethylation at the DNA, RNA, and protein levels in corneal diseases and how these dynamics contribute to the pathogenesis of corneal diseases. Also, we provide insights into identifying potential biomarkers of methylation that may improve the diagnosis and treatment of corneal diseases.
Collapse
Affiliation(s)
- Yutong Xia
- Department of Ophthalmology, The First Affiliated Hospital of Zhejiang University, Hangzhou, 310003, China
| | - Kuangqi Chen
- Department of Ophthalmology, The First Affiliated Hospital of Zhejiang University, Hangzhou, 310003, China
| | - Qianjie Yang
- Department of Ophthalmology, The First Affiliated Hospital of Zhejiang University, Hangzhou, 310003, China
| | - Zhitong Chen
- Department of Ophthalmology, The First Affiliated Hospital of Zhejiang University, Hangzhou, 310003, China
| | - Le Jin
- Department of Ophthalmology, The First Affiliated Hospital of Zhejiang University, Hangzhou, 310003, China
| | - Liyue Zhang
- Department of Ophthalmology, The First Affiliated Hospital of Zhejiang University, Hangzhou, 310003, China
| | - Xin Yu
- Department of Ophthalmology, The First Affiliated Hospital of Zhejiang University, Hangzhou, 310003, China
| | - Liyin Wang
- Department of Ophthalmology, The First Affiliated Hospital of Zhejiang University, Hangzhou, 310003, China
| | - Chen Xie
- Department of Ophthalmology, The First Affiliated Hospital of Zhejiang University, Hangzhou, 310003, China
| | - Yuan Zhao
- Department of Ophthalmology, The First Affiliated Hospital of Zhejiang University, Hangzhou, 310003, China
| | - Ye Shen
- Department of Ophthalmology, The First Affiliated Hospital of Zhejiang University, Hangzhou, 310003, China.
| | - Jianping Tong
- Department of Ophthalmology, The First Affiliated Hospital of Zhejiang University, Hangzhou, 310003, China.
| |
Collapse
|
8
|
Di Gregorio J, Di Giuseppe L, Terreri S, Rossi M, Battafarano G, Pagliarosi O, Flati V, Del Fattore A. Protein Stability Regulation in Osteosarcoma: The Ubiquitin-like Modifications and Glycosylation as Mediators of Tumor Growth and as Targets for Therapy. Cells 2024; 13:537. [PMID: 38534381 DOI: 10.3390/cells13060537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/11/2024] [Accepted: 03/16/2024] [Indexed: 03/28/2024] Open
Abstract
The identification of new therapeutic targets and the development of innovative therapeutic approaches are the most important challenges for osteosarcoma treatment. In fact, despite being relatively rare, recurrence and metastatic potential, particularly to the lungs, make osteosarcoma a deadly form of cancer. In fact, although current treatments, including surgery and chemotherapy, have improved survival rates, the disease's recurrence and metastasis are still unresolved complications. Insights for analyzing the still unclear molecular mechanisms of osteosarcoma development, and for finding new therapeutic targets, may arise from the study of post-translational protein modifications. Indeed, they can influence and alter protein structure, stability and function, and cellular interactions. Among all the post-translational modifications, ubiquitin-like modifications (ubiquitination, deubiquitination, SUMOylation, and NEDDylation), as well as glycosylation, are the most important for regulating protein stability, which is frequently altered in cancers including osteosarcoma. This review summarizes the relevance of ubiquitin-like modifications and glycosylation in osteosarcoma progression, providing an overview of protein stability regulation, as well as highlighting the molecular mediators of these processes in the context of osteosarcoma and their possible targeting for much-needed novel therapy.
Collapse
Affiliation(s)
- Jacopo Di Gregorio
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | - Laura Di Giuseppe
- Department of Clinical, Internal, Anaesthesiological and Cardiovascular Sciences, Sapienza University, 00185 Rome, Italy
| | - Sara Terreri
- Bone Physiopathology Research Unit, Translational Pediatrics and Clinical Genetics Research Division, Bambino Gesù Children's Hospital, IRCCS, 00146 Rome, Italy
| | - Michela Rossi
- Bone Physiopathology Research Unit, Translational Pediatrics and Clinical Genetics Research Division, Bambino Gesù Children's Hospital, IRCCS, 00146 Rome, Italy
| | - Giulia Battafarano
- Bone Physiopathology Research Unit, Translational Pediatrics and Clinical Genetics Research Division, Bambino Gesù Children's Hospital, IRCCS, 00146 Rome, Italy
| | - Olivia Pagliarosi
- Bone Physiopathology Research Unit, Translational Pediatrics and Clinical Genetics Research Division, Bambino Gesù Children's Hospital, IRCCS, 00146 Rome, Italy
| | - Vincenzo Flati
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | - Andrea Del Fattore
- Bone Physiopathology Research Unit, Translational Pediatrics and Clinical Genetics Research Division, Bambino Gesù Children's Hospital, IRCCS, 00146 Rome, Italy
| |
Collapse
|
9
|
Vargas-López V, Prada LF, Alméciga-Díaz CJ. Evidence of epigenetic landscape shifts in mucopolysaccharidosis IIIB and IVA. Sci Rep 2024; 14:3961. [PMID: 38368436 PMCID: PMC10874391 DOI: 10.1038/s41598-024-54626-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 02/14/2024] [Indexed: 02/19/2024] Open
Abstract
Lysosomal storage diseases (LSDs) are a group of monogenic diseases characterized by mutations in genes coding for proteins associated with the lysosomal function. Despite the monogenic nature, LSDs patients exhibit variable and heterogeneous clinical manifestations, prompting investigations into epigenetic factors underlying this phenotypic diversity. In this study, we focused on the potential role of epigenetic mechanisms in the pathogenesis of mucopolysaccharidosis IIIB (MPS IIIB) and mucopolysaccharidosis IVA (MPS IVA). We analyzed DNA methylation (5mC) and histone modifications (H3K14 acetylation and H3K9 trimethylation) in MPS IIIB and MPS IVA patients' fibroblasts and healthy controls. The findings revealed that global DNA hypomethylation is present in cell lines for both diseases. At the same time, histone acetylation was increased in MPS IIIB and MPS IVA cells in a donor-dependent way, further indicating a shift towards relaxed open chromatin in these MPS. Finally, the constitutive heterochromatin marker, histone H3K9 trimethylation, only showed reduced clustering in MPS IIIB cells, suggesting limited alterations in heterochromatin organization. These findings collectively emphasize the significance of epigenetic mechanisms in modulating the phenotypic variations observed in LSDs. While global DNA hypomethylation could contribute to the MPS pathogenesis, the study also highlights individual-specific epigenetic responses that might contribute to phenotypic heterogeneity. Further research into the specific genes and pathways affected by these epigenetic changes could provide insights into potential therapeutic interventions for these MPS and other LSDs.
Collapse
Affiliation(s)
- Viviana Vargas-López
- Institute for the Study of Inborn Errors of Metabolism, Faculty of Science, Pontificia Universidad Javeriana, Cra. 7 No. 43-82 Edificio 54, Laboratorio 305A, Bogotá D.C., 110231, Colombia
| | - Luisa F Prada
- Institute for the Study of Inborn Errors of Metabolism, Faculty of Science, Pontificia Universidad Javeriana, Cra. 7 No. 43-82 Edificio 54, Laboratorio 305A, Bogotá D.C., 110231, Colombia
| | - Carlos J Alméciga-Díaz
- Institute for the Study of Inborn Errors of Metabolism, Faculty of Science, Pontificia Universidad Javeriana, Cra. 7 No. 43-82 Edificio 54, Laboratorio 305A, Bogotá D.C., 110231, Colombia.
| |
Collapse
|
10
|
Ren Y, Zeng Y, Wu Y, Zhang Q, Xiao X. Maternal methyl donor supplementation: A potential therapy for metabolic disorder in offspring. J Nutr Biochem 2024; 124:109533. [PMID: 37977406 DOI: 10.1016/j.jnutbio.2023.109533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 11/07/2023] [Accepted: 11/11/2023] [Indexed: 11/19/2023]
Abstract
The prevalences of diabetes mellitus and obesity are increasing yearly and has become a serious social burden. In addition to genetic factors, environmental factors in early life development are critical in influencing the prevalence of metabolic disorders in offspring. A growing body of evidence suggests the critical role of early methyl donor intervention in offspring health. Emerging studies have shown that methyl donors can influence offspring metabolism through epigenetic modifications and changing metabolism-related genes. In this review, we focus on the role of folic acid, betaine, vitamin B12, methionine, and choline in protecting against metabolic disorders in offspring. To address the current evidence on the potential role of maternal methyl donors, we summarize clinical studies as well as experimental animal models that support the impact of maternal methyl donors on offspring metabolism and discuss the mechanisms of action that may bring about these positive effects. Given the worldwide prevalence of metabolic disorders, these findings could be utilized in clinical practice, in which methyl donor supplementation in the early life years may reverse metabolic disorders in offspring and block the harmful intergenerational effect.
Collapse
Affiliation(s)
- Yaolin Ren
- Key Laboratory of Endocrinology, Ministry of Health, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Yuan Zeng
- Key Laboratory of Endocrinology, Ministry of Health, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Yifan Wu
- Key Laboratory of Endocrinology, Ministry of Health, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Qian Zhang
- Key Laboratory of Endocrinology, Ministry of Health, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China.
| | - Xinhua Xiao
- Key Laboratory of Endocrinology, Ministry of Health, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China.
| |
Collapse
|
11
|
Chitambala T, Ny V, Ceacero F, Bartoň L, Bureš D, Kotrba R, Needham T. Effects of Immunocastration and Amino Acid Supplementation on Yearling Fallow Deer ( Dama dama) Testes Development. Animals (Basel) 2023; 14:115. [PMID: 38200846 PMCID: PMC10778327 DOI: 10.3390/ani14010115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/15/2023] [Accepted: 12/25/2023] [Indexed: 01/12/2024] Open
Abstract
Forty-four fallow deer bucks (10 months old; 22.9 ± 2.4 kg) were utilized to investigate the effects of immunocastration and amino acid supplementation on testes development. Immunocastrated bucks were administered Improvac® at weeks 1, 8, and 20 of this study (control group: intact males). Starting at week 8, half of each sex received rumen-protected lysine and methionine (3:1) supplementation. At slaughter (week 37/39), body size, internal fat deposits, antler size parameters, testes weight, testes surface color, cauda epididymal sperm viability and morphology, and seminiferous tubule circumference and epithelium thickness were determined. Animals with larger body sizes, greater forequarter development, and antler growth also had greater testes development. Whilst the result of immunocastration on testes size is unexpected, testes tissue showed impaired development (atrophied seminiferous tubules), decreased sperm viability, and normal morphology. Testes tissue from immunocastrated deer was less red, possibly indicating reduced blood supply. Conversely, amino acid supplementation increased testes' redness and sperm viability, and intact males fed amino acids showed the greatest seminiferous tubule development. Thus, immunocastration may be a welfare-friendly alternative for venison production. Whilst the results support findings from the literature that testes size is not a reliable indicator of immunocastration success, this warrants further investigation in deer over different physiological development stages.
Collapse
Affiliation(s)
- Thoniso Chitambala
- Department of Animal Science and Food Processing, Faculty of Tropical AgriSciences, Czech University of Life Sciences Prague, 16500 Prague, Czech Republic; (T.C.); (V.N.); (F.C.); (R.K.)
| | - Veit Ny
- Department of Animal Science and Food Processing, Faculty of Tropical AgriSciences, Czech University of Life Sciences Prague, 16500 Prague, Czech Republic; (T.C.); (V.N.); (F.C.); (R.K.)
- Department of Cattle Breeding, Institute of Animal Science, 10400 Prague, Czech Republic; (L.B.); (D.B.)
| | - Francisco Ceacero
- Department of Animal Science and Food Processing, Faculty of Tropical AgriSciences, Czech University of Life Sciences Prague, 16500 Prague, Czech Republic; (T.C.); (V.N.); (F.C.); (R.K.)
| | - Luděk Bartoň
- Department of Cattle Breeding, Institute of Animal Science, 10400 Prague, Czech Republic; (L.B.); (D.B.)
| | - Daniel Bureš
- Department of Cattle Breeding, Institute of Animal Science, 10400 Prague, Czech Republic; (L.B.); (D.B.)
- Department of Food Science, Faculty of Agrobiology, Food and Natural Sciences, Czech University of Life Sciences Prague, 16500 Prague, Czech Republic
| | - Radim Kotrba
- Department of Animal Science and Food Processing, Faculty of Tropical AgriSciences, Czech University of Life Sciences Prague, 16500 Prague, Czech Republic; (T.C.); (V.N.); (F.C.); (R.K.)
- Department of Ethology, Institute of Animal Science, 10400 Prague, Czech Republic
| | - Tersia Needham
- Department of Animal Science and Food Processing, Faculty of Tropical AgriSciences, Czech University of Life Sciences Prague, 16500 Prague, Czech Republic; (T.C.); (V.N.); (F.C.); (R.K.)
| |
Collapse
|
12
|
Beiraghdar M, Beiraghdar M, Khosravi S. The methylation status of GATA3 potentially predicts the outcomes of assisted reproductive technologies. HUM FERTIL 2023; 26:1279-1285. [PMID: 36625441 DOI: 10.1080/14647273.2023.2164871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 10/30/2022] [Indexed: 01/11/2023]
Abstract
Evaluation of methylation status of genes in sperm samples has been suggested for diagnosis of male infertility as well as prognosis of assisted reproductive technologies (ART) outcomes. In this study, we compared the methylation pattern of the GATA3 gene in infertile and fertile men as well as in infertile men with positive and negative ART outcome based on clinical pregnancy. Ejaculates were obtained from 42 infertile men with a negative ART outcome (group 1), 30 infertile men with a positive ART outcome (group 2), and 21 fertile men (control). Then, samples were subjected to genomic DNA isolation and subsequent TUNEL assay and methylation-specific PCR. The number of infertile men with at least one methylated allele of GATA3 was significantly higher compared to the control group (p = 0.022). Also, the number of patients with at least one methylated allele was significantly higher in group 1 compared to group 2 (p = 0.013). Moreover, the TUNEL assay revealed that the amount of sperm DNA fragmentation is higher in group 1 compared to group 2 (p = 0.008). The findings of our study demonstrated that the degree of GATA3 methylation can potentially differentiate between infertile and fertile men and more importantly can potentially predict the outcome of ART.
Collapse
Affiliation(s)
- Mina Beiraghdar
- Department of Biology, Faculty of Basic Science, Islamic Azad University of Center Tehran Branch, Tehran, Iran
| | - Mozhdeh Beiraghdar
- Department of pathology, specialist of anatomical and clinical pathology, University of Isfahan, Isfahan, Iran
| | - Sharifeh Khosravi
- Department of Genetics and Molecular Biology, Isfahan University of Medical Science, Isfahan, Iran
- Genetic Lab in Majesty of Maryam Infertility Center, Martyr Beheshti Hospital, Isfahan University of Medical Science, Isfahan, Iran
| |
Collapse
|
13
|
Shukla S, Shrivastava D. Unraveling the Link Between Serum Homocysteine Levels and Nutrient Deficiency in Subfertility: A Comprehensive Review. Cureus 2023; 15:e49296. [PMID: 38957192 PMCID: PMC11218609 DOI: 10.7759/cureus.49296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 11/23/2023] [Indexed: 07/04/2024] Open
Abstract
Subfertility, a prevalent and emotionally taxing condition affecting couples worldwide, has garnered increasing attention in reproductive health. While its etiology remains multifaceted, emerging research has explored the role of serum homocysteine levels and nutrient deficiencies in influencing subfertility. This comprehensive review synthesizes current knowledge, beginning with an introduction to subfertility and the significance of investigating serum homocysteine levels. It proceeds to elucidate the role of nutrient deficiencies, particularly folate and vitamin B12, in homocysteine metabolism and examines existing research linking homocysteine to subfertility. The review explores potential mechanisms underlying this relationship, addressing the variability in study findings and their contributing factors. Implications for clinical practice, including assessing serum homocysteine levels, nutritional interventions, and personalized medicine, are discussed. Moreover, the review underscores the importance of ongoing research. It offers a call to action for advancing our understanding of subfertility and improving the lives of individuals and couples navigating reproduction challenges.
Collapse
Affiliation(s)
- Swasti Shukla
- Obstetrics and Gynecology, Acharya Vinoba Bhave Rural Hospital, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Deepti Shrivastava
- Obstetrics and Gynecology, Acharya Vinoba Bhave Rural Hospital, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| |
Collapse
|
14
|
Mader IM. Recovery from (treatment-resistant) depression after lifestyle changes and micronutrient precision supplementation: a preliminary field study in patients. BMC Psychol 2023; 11:229. [PMID: 37568156 PMCID: PMC10422823 DOI: 10.1186/s40359-023-01263-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 07/26/2023] [Indexed: 08/13/2023] Open
Abstract
BACKGROUND AND PURPOSE The incidence of depression is increasing, despite continued advances in psychological and pharmacological interventions. New treatment approaches are urgently needed. Here we assess the effects on depression of individualized micronutrient supplementation, in concert with a standard set of lifestyle changes. METHODS We conducted a small field-study with 17 participants in Austria. Patients with depression (n = 11) and healthy volunteers (n = 6) underwent laboratory serum analysis and filled out the DASS-21 and a questionnaire about their medical history and condition. The list of parameters to be tested in the serum analysis was derived from an expert heuristic compilation of factors known to influence depression, narrowed down to a workable list to be tested in this initial study. On the basis of the results, the participants (n = 17) received individualized recommendations for micronutrient supplementation, in collaboration with their treating physician. Participants followed the individual supplementation regime for two months, along with a standard set of lifestyle changes. After two months the laboratory serum analyses, the DASS-21, and the questionnaire were repeated. RESULTS All patients with micronutrient deficiencies were in the patient group; none of the healthy volunteers showed any micronutrient deficiencies. After two months of precision supplementation and lifestyle changes, all but one patient had recovered from their depression or had considerably improved. The one patient who didn't recover was the only one with a known trigger of their depression (trauma). Of 11 patients with depression, the trigger was unknown for the other ten. CONCLUSIONS These results have promising implications for further research, treatment, drug development, and public health. We propose that systematic screening of patients with symptoms of depression be developed for future research, medical care, and practice. Psychiatry and psychotherapy may see improved results once they no longer have to push against the underlying constraints of existing micronutrient deficiencies.
Collapse
|
15
|
Song B, Xie B, Liu M, Li H, Shi D, Zhao F. Bibliometric and visual analysis of RAN methylation in cardiovascular disease. Front Cardiovasc Med 2023; 10:1110718. [PMID: 37063953 PMCID: PMC10098125 DOI: 10.3389/fcvm.2023.1110718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 03/07/2023] [Indexed: 03/31/2023] Open
Abstract
BackgroundRNA methylation is associated with cardiovascular disease (CVD) occurrence and development. The purpose of this study is to visually analyze the results and research trends of global RNA methylation in CVD.MethodsArticles and reviews on RNA methylation in CVD published before 6 November 2022 were searched in the Web of Science Core Collection. Visual and statistical analysis was performed using CiteSpace 1.6.R4 advanced and VOSviewer 1.6.18.ResultsThere were 847 papers from 1,188 institutions and 63 countries/regions. Over approximately 30 years, there was a gradual increase in publications and citations on RNA methylation in CVD. America and China had the highest output (284 and 259 papers, respectively). Nine of the top 20 institutions that published articles were from China, among which Fudan University represented the most. The International Journal of Molecular Sciences was the journal with the most studies. Nature was the most co-cited journal. The most influential writers were Zhang and Wang from China and Mathiyalagan from the United States. After 2015, the primary keywords were cardiac development, heart, promoter methylation, RNA methylation, and N6-methyladenosine. Nuclear RNA, m6A methylation, inhibition, and myocardial infarction were the most common burst keywords from 2020 to the present.ConclusionsA bibliometric analysis reveals research hotspots and trends of RNA methylation in CVD. The regulatory mechanisms of RNA methylation related to CVD and the clinical application of their results, especially m6A methylation, are likely to be the focus of future research.
Collapse
Affiliation(s)
- Boce Song
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Beili Xie
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Mingwang Liu
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Haohao Li
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Dazhuo Shi
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- National Clinical Research Center for Chinese Medicine Cardiology, Beijing, China
| | - Fuhai Zhao
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- National Clinical Research Center for Chinese Medicine Cardiology, Beijing, China
- Correspondence: Fuhai Zhao
| |
Collapse
|
16
|
Wang Z, Liu X, Wang W, Xu J, Sun H, Wei J, Yu Y, Zhao Y, Wang X, Liao Z, Sun W, Jia L, Zhang Y. UPLC-MS based integrated plasma proteomic and metabolomic profiling of TSC-RAML and its relationship with everolimus treatment. Front Mol Biosci 2023; 10:1000248. [PMID: 36891236 PMCID: PMC9986496 DOI: 10.3389/fmolb.2023.1000248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 02/10/2023] [Indexed: 02/22/2023] Open
Abstract
Aim: To profile the plasma proteomics and metabolomics of patients with renal cysts, sporadic angiomyolipoma (S-AML) and tuberous sclerosis complex related angiomyolipoma (TSC-RAML) before and after everolimus treatment, and to find potential diagnostic and prognostic biomarkers as well as reveal the underlying mechanism of TSC tumorigenesis. Materials and Methods: We retrospectively measured the plasma proteins and metabolites from November 2016 to November 2017 in a cohort of pre-treatment and post-treatment TSC-RAML patients and compared them with renal cyst and S-AML patients by ultra-performance liquid chromatography-mass spectrometer (UPLC-MS). The tumor reduction rates of TSC-RAML were assessed and correlated with the plasma protein and metabolite levels. In addition, functional analysis based on differentially expressed molecules was performed to reveal the underlying mechanisms. Results: Eighty-five patients with one hundred and ten plasma samples were enrolled in our study. Multiple proteins and metabolites, such as pre-melanosome protein (PMEL) and S-adenosylmethionine (SAM), demonstrated both diagnostic and prognostic effects. Functional analysis revealed many dysregulated pathways, including angiogenesis synthesis, smooth muscle proliferation and migration, amino acid metabolism and glycerophospholipid metabolism. Conclusion: The plasma proteomics and metabolomics pattern of TSC-RAML was clearly different from that of other renal tumors, and the differentially expressed plasma molecules could be used as prognostic and diagnostic biomarkers. The dysregulated pathways, such as angiogenesis and amino acid metabolism, may shed new light on the treatment of TSC-RAML.
Collapse
Affiliation(s)
- Zhan Wang
- Department of Urology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Xiaoyan Liu
- School of Basic Medical College, Core facility of instrument, Institution of Basic Medical Sciences, Chinese Academy of Medical Sciences, Beijing, China
| | - Wenda Wang
- Department of Urology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Jiyu Xu
- School of Basic Medical College, Core facility of instrument, Institution of Basic Medical Sciences, Chinese Academy of Medical Sciences, Beijing, China
| | - Haidan Sun
- School of Basic Medical College, Core facility of instrument, Institution of Basic Medical Sciences, Chinese Academy of Medical Sciences, Beijing, China
| | - Jing Wei
- Clinical Research Center, National Center for Children's Health, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Yuncui Yu
- Clinical Research Center, National Center for Children's Health, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Yang Zhao
- Department of Urology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Xu Wang
- Department of Urology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Zhangcheng Liao
- Department of Urology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Wei Sun
- School of Basic Medical College, Core facility of instrument, Institution of Basic Medical Sciences, Chinese Academy of Medical Sciences, Beijing, China
| | - Lulu Jia
- Clinical Research Center, National Center for Children's Health, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Yushi Zhang
- Department of Urology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| |
Collapse
|
17
|
LncRNA FPASL suppresses fibroblast proliferation through its DNA methylation via DNMT3b in hypertrophic scar. Acta Biochim Biophys Sin (Shanghai) 2022; 54:1-9. [PMID: 36514215 PMCID: PMC10157635 DOI: 10.3724/abbs.2022181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) are increasingly being implicated as key regulators of cell proliferation, apoptosis, and differentiation. However, the molecular mechanisms of specific lncRNAs in the context of hypertrophic scar remain largely unclear. Here, we find that the lncRNA FPASL (fibroblast proliferation-associated LncRNA) is downregulated in HS, and FPASL reduces fibroblast proliferation and colony formation and blocks cell cycle progression. Using GO annotation enrichment analysis along with AZC (a specific inhibitor of DNA methylation), we identify that DNA methylation is responsible for downregulating FPASL in hypertrophic scar. Subsequent studies demonstrate that high expression of DNMT3b inhibits FPASL expression in HS. Mechanistic study reveals a significant increase in fibroblast proliferation after transfection with LNA-FPASL, which is further inhibited by knockdown of DNMT3b. Thus, our study reveals that DNMT3b mediates hypermethylation of the lncRNA FPASL promoter and the downregulation of lncRNA FPASL promotes fibroblast proliferation in hypertrophic scar.
Collapse
|
18
|
Ye X, Wang R, Yu X, Wang Z, Hu H, Zhang H. m6A/ m1A /m5C/m7G-related methylation modification patterns and immune characterization in prostate cancer. Front Pharmacol 2022; 13:1030766. [PMID: 36313300 PMCID: PMC9596993 DOI: 10.3389/fphar.2022.1030766] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 09/28/2022] [Indexed: 11/24/2022] Open
Abstract
Methylation has a close relationship with immune reactions, metastasis, and cancer cell growth. Additionally, RNA methylation-related proteins have emerged as potential cancer therapeutic targets. The connection between the tumor microenvironment (TME) and methylation-related genes (MRGs) remains unclear. We explored the expression patterns of the MRGs in the genome and transcriptional fields of 796 prostate cancer (PCa) samples using two separate data sets. We identified a relationship between patient clinicopathological characteristics, prognosis, TME cell infiltrating qualities, and different MRG changes, as well as the identification of two distinct molecular groupings. Then, we formed an MRGs model to predict overall survival (OS), and we tested the accuracy of the model in patients with PCa. In addition, we developed a very accurate nomogram to improve the MRG model’s clinical applicability. The low-risk group had fewer tumor mutational burden (TMB), greater tumor immune dysfunction and exclusion (TIDE) ratings, fewer mutant genes, and better OS prospects. We discuss how MGRs may affect the prognosis, clinically important traits, TME, and immunotherapy responsiveness in PCa. In order to get a better understanding of MRGs in PCa, we could further explore the prognosis and create more effective immunotherapy regimens to open new avenues.
Collapse
Affiliation(s)
- Xin Ye
- Department of Urology, Institute of Urology, West China Hospital of Sichuan University, Chengdu, China
| | - Ruyi Wang
- Department of Urology, The Affilated Hospital and Clinical Medical College of Chengdu University, Chengdu, China
| | - Xiaoqian Yu
- Molecular Medicine Research Center and National Clinical Research Center for Geriatrics, West China Hospital, and State Key Laboratory of Biotherapy, Sichuan University, Chengdu, China
| | - Zili Wang
- Department of Urology, The Affilated Hospital and Clinical Medical College of Chengdu University, Chengdu, China
| | - Haifeng Hu
- Department of Urology, The Affilated Hospital and Clinical Medical College of Chengdu University, Chengdu, China
| | - Hanchao Zhang
- Department of Urology, The Affilated Hospital and Clinical Medical College of Chengdu University, Chengdu, China
- Medical College of Soochow University, Suzhou, China
- *Correspondence: Hanchao Zhang,
| |
Collapse
|
19
|
Clément P, Alvarez S, Jacquesson-Fournols L, Cornet D, Clément A, Brack M, Lalau-Keraly M, Delafontaine D, Cohen M, Menezo Y. T677T Methylenetetrahydrofolate Reductase Single Nucleotide Polymorphisms Increased Prevalence in a Subgroup of Infertile Patients with Endometriosis. J Womens Health (Larchmt) 2022; 31:1501-1506. [PMID: 35788150 PMCID: PMC9618369 DOI: 10.1089/jwh.2022.0019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
<b><i>Background:</i></b> Approximately 10% (190 million) of women worldwide are affected by endometriosis, ectopic deposits of endometrial tissue that create a major source of pain that affects lifestyle and reproductive function. The pathogenesis of endometriosis is an estrogen-dependent inflammatory process, influenced/catalyzed by oxidative stress and consequently defective methylation, with biochemical features centered around the folate and one-carbon cycles. We aimed to determine whether a link could be found between the two major methylenetetrahydrofolate reductase single nucleotide polymorphisms (MTHFR SNPs), c.677C>T and c.1298A>C, involved in methylation process/epigenetic marking failures, and endometriosis. <b><i>Material and Methods:</i></b> We studied a population of 158 patients in a group of >1500 referred for treatment of infertility. All the patients had experienced >2 failed assisted reproductive technology cycles and/or >2 miscarriages, a classical cohort for investigation in our group. Patients with endometriosis had at least stage 2+ disease confirmed by laparoscopy. <b><i>Results:</i></b> The prevalence of the homozygous c.677C>T isoform is doubled in the endometriosis group, 21.5% versus 10.2% in the non-endometriosis group (<i>p</i> > 0.01). Symmetrically, the percentage of patients in the endometriosis group with the wild type MTHFR significantly decreased by one-half (8.2%-17.2%) in the non-endometriosis group (<i>p</i> < 0.001). <b><i>Conclusion:</i></b> Determination of MTHFR c.677C>T should not be overlooked in patients with harmful endometriosis affecting their fertility. As folates metabolism is impaired in these MTHFR SNPs carrier patients, co-treatment with 5-methyl folate may constitute a successful (co)-treatment modality.
Collapse
Affiliation(s)
- Patrice Clément
- Laboratoire CLEMENT, Department of Genetics and Assisted Reproduction, Paris, France
| | - Silvia Alvarez
- Cabinet Médical, Gynecologie et Obstetrique, Paris, France
| | | | | | - Arthur Clément
- Laboratoire CLEMENT, Department of Genetics and Assisted Reproduction, Paris, France
| | | | | | | | - Marc Cohen
- Clinique Natecia Lyon, Gynecologie et Obstetrique, Lyon, France
| | - Yves Menezo
- Laboratoire CLEMENT, Department of Genetics and Assisted Reproduction, Paris, France.,Address correspondence to: Yves Menezo, PhD, Laboratoire CLEMENT, Department of Genetics and Assisted Reproduction, 17 Avenue d'Eylau, Paris 75016, France
| |
Collapse
|
20
|
Ny V, Needham T, Ceacero F. Potential benefits of amino acid supplementation for cervid performance and nutritional ecology, with special focus on lysine and methionine: A review. ANIMAL NUTRITION 2022; 11:391-401. [PMID: 36382203 PMCID: PMC9633987 DOI: 10.1016/j.aninu.2022.09.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 07/22/2022] [Accepted: 09/06/2022] [Indexed: 12/02/2022]
Abstract
Deer farming is a thriving industry for venison, velvet antlers, trophy hunting, and other by-products. Feeding and nutrition are important factors for improving production performance, especially dietary protein and amino acids (AAs), as they are the main components of all tissues. Only a few studies on AA supplementation (Lys, Met, Arg) have been performed on cervids, which show positive effects on weight gain, ADG, feed-:gain ratio, plasma AAs, carcass weight, dressing percentage, yield of high-quality muscles, storage of internal fat during winter, DM and CP digestibility, plasma protein- and fat-related metabolite concentrations, antler burr perimeter, weight, length and mineralisation, velvet antler yield, rumen volatile fatty acids, and microbiome composition. All these effects are relevant for supporting the production of cervids products, from venison to velvet or trophy antlers, as well as their general performance and well-being of captive-bred cervids. The current available information suggests that AA supplementation can be especially interesting for animals fed low protein rations, and growing animals, but should be avoided in high rations and during winter, since it may promote the accumulation of internal fat. Potential effects on milk production and the concentrations of different hormones involved in the regulation of the antler cycle should be further explored.
Collapse
Affiliation(s)
- Veit Ny
- Department of Animal Science and Food Processing, Faculty of Tropical AgriSciences, Czech University of Life Sciences Prague, Czech Republic
- Department of Cattle Breeding, Institute of Animal Science, Prague, Czech Republic
- Food Research Institute Prague, Czech Republic
| | - Tersia Needham
- Department of Animal Science and Food Processing, Faculty of Tropical AgriSciences, Czech University of Life Sciences Prague, Czech Republic
| | - Francisco Ceacero
- Department of Animal Science and Food Processing, Faculty of Tropical AgriSciences, Czech University of Life Sciences Prague, Czech Republic
- Corresponding author.
| |
Collapse
|
21
|
MTHFR SNPs (Methyl Tetrahydrofolate Reductase, Single Nucleotide Polymorphisms) C677T and A1298C Prevalence and Serum Homocysteine Levels in >2100 Hypofertile Caucasian Male Patients. Biomolecules 2022; 12:biom12081086. [PMID: 36008980 PMCID: PMC9405832 DOI: 10.3390/biom12081086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/15/2022] [Accepted: 08/04/2022] [Indexed: 11/26/2022] Open
Abstract
Methylation is a crucially important ubiquitous biochemical process, which covalently adds methyl groups to a variety of molecular targets. It is the key regulatory process that determines the acquisition of imprinting and epigenetic marks during gametogenesis. Methylation processes are dependent upon two metabolic cycles, the folates and the one-carbon cycles. The activity of these two cycles is compromised by single nucleotide polymorphisms (SNPs) in the gene encoding the Methylenetetrahydrofolate reductase (MTHFR) enzyme. These SNPs affect spermatogenesis and oocyte maturation, creating cytologic/chromosomal anomalies. The two main MTHFR SNP variants C677T (c.6777C>T) and A1298C (c.1298A>C) together with serum homocysteine levels were tested in men with >3 years’ duration of infertility who had failed several ART attempts with the same partner. These patients are often classified as having “idiopathic infertility”. We observed that the genetic status with highest prevalence in this group is the heterozygous C677T, followed by the combined heterozygous C677T/A1298C, and then A1298C; these three variants represent 65% of our population. Only 13.1% of the patients tested are wild type (WT), C677C/A1298A). The homozygous 677TT and the combined heterozygote 677CT/1298AC groups have the highest percentage of patients with an elevated circulating homocysteine level of >15 µMolar (57.8% and 18.8%, respectively, which is highly significant for both). Elevated homocysteine is known to be detrimental to spermatogenesis, and the population with this parameter is not marginal. In conclusion, determination of these two SNPs and serum homocysteine should not be overlooked for patients with severe infertility of long duration, including those with repeated miscarriages. Patients must also be informed about pleiotropic medical implications relevant to their own health, as well as to the health of future children.
Collapse
|
22
|
Correlation Analysis of DNA Methylation in the von Willebrand Factor Promoter Region and the Risk of Unexplained Recurrent Hemophilia: Systematic Review and Meta-Analysis. CONTRAST MEDIA & MOLECULAR IMAGING 2022; 2022:3977289. [PMID: 35711531 PMCID: PMC9187466 DOI: 10.1155/2022/3977289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 05/09/2022] [Indexed: 01/19/2023]
Abstract
This study systematically reviewed the effect of DNA methylation in the promoter region of the coagulation factor vWF gene on the risk of unexplained recurrent hemophilia. PubMed, Medline, Web of Science, and other computers were used to search the database, and the statistical randomized controlled trials of coagulation factor vWF in the risk analysis of unknown recurrent hemophilia were collected. The Cochrane systematic evaluation method was used to evaluate the quality of the included kinds of literature, and Revman5 software was used to sort out and analyze the kinds of literature. Meta-analysis showed that there was a statistical difference between the experimental group and the control group in case fatality rate (OR = 1.76, 95% CI (1.29, 2.39), P=0.0003, I2 = 0%, Z = 3.58), adverse events (OR = 2.38, 95% CI (1.65, 3.45), P < 0.00001, I2 = 0%, Z = 4.60), incidence of joint hemorrhage (OR = 2.52, 95% CI (1.62, 3.91), P < 0.00001, I2 = 0%, Z = 4.12), incidence of subcutaneous stasis (OR = 1.76, 95% CI (1.26, 2.45), P=0.0009, I2 = 5%, Z = 3.33), and hematoma volume (OR = 1.78, 95% CI (1.32, 2.40), P=0.0001, I2 = 23%, Z = 3.80). DNA methylation in the promoter region of the coagulation factor vWF gene was significantly associated with the risk of unexplained recurrent hemophilia. Whether demethylation can improve the bleeding index of patients with recurrent hemophilia remains to be further explored.
Collapse
|
23
|
Meccariello R. Central and Local Modulators of Reproduction and Fertility: An Update. Int J Mol Sci 2022; 23:ijms23095285. [PMID: 35563677 PMCID: PMC9102892 DOI: 10.3390/ijms23095285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 05/05/2022] [Indexed: 02/01/2023] Open
Affiliation(s)
- Rosaria Meccariello
- Department of Movement Sciences and Wellness, University of Naples Parthenope, Via Medina 40, 80133 Naples, Italy
| |
Collapse
|
24
|
Madhu NR, Sarkar B, Slama P, Jha NK, Ghorai SK, Jana SK, Govindasamy K, Massanyi P, Lukac N, Kumar D, Kalita JC, Kesari KK, Roychoudhury S. Effect of Environmental Stressors, Xenobiotics, and Oxidative Stress on Male Reproductive and Sexual Health. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1391:33-58. [PMID: 36472815 DOI: 10.1007/978-3-031-12966-7_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
This article examines the environmental factor-induced oxidative stress (OS) and their effects on male reproductive and sexual health. There are several factors that induce OS, i.e. radition, metal contamination, xenobiotic compounds, and cigarette smoke and lead to cause toxicity in the cells through metabolic or bioenergetic processes. These environmental factors may produce free radicals and enhance the reactive oxygen species (ROS). Free radicals are molecules that include oxygen and disbalance the amount of electrons that can create major chemical chains in the body and cause oxidation. Oxidative damage to cells may impair male fertility and lead to abnormal embryonic development. Moreover, it does not only cause a vast number of health issues such as ageing, cancer, atherosclerosis, insulin resistance, diabetes mellitus, cardiovascular diseases, ischemia-reperfusion injury, and neurodegenerative disorders but also decreases the motility of spermatozoa while increasing sperm DNA damage, impairing sperm mitochondrial membrane lipids and protein kinases. This chapter mainly focuses on the environmental stressors with further discussion on the mechanisms causing congenital impairments due to poor sexual health and transmitting altered signal transduction pathways in male gonadal tissues.
Collapse
Affiliation(s)
- Nithar Ranjan Madhu
- Department of Zoology, Acharya Prafulla Chandra College, New Barrackpore, Kolkata, West Bengal, India
| | - Bhanumati Sarkar
- Department of Botany, Acharya Prafulla Chandra College, New Barrackpore, Kolkata, West Bengal, India
| | - Petr Slama
- Department of Animal Morphology, Physiology and Genetics, Faculty of AgriSciences, Mendel University in Brno, Brno, Czech Republic
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering & Technology (SET), Sharda University, Greater Noida, India
| | | | - Sandip Kumar Jana
- Department of Zoology, Bajkul Milani Mahavidyalaya, Purba Medinipur, West Bengal, India
| | - Kadirvel Govindasamy
- Animal Production Division, ICAR Research Complex for NEH Region, Indian Council of Agricultural Research, Umiam, Meghalaya, India
| | - Peter Massanyi
- Department of Animal Physiology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Nitra, Slovak Republic
| | - Norbert Lukac
- Department of Animal Physiology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Nitra, Slovak Republic
| | - Dhruv Kumar
- School of Health Sciences & Technology, UPES University, Dehradun, Uttarakhand, India
| | - Jogen C Kalita
- Department of Zoology, Gauhati University, Guwahati, India
| | | | | |
Collapse
|
25
|
Jing X, Xu G, Gong Y, Li J, LingfengWu, Zhu W, He Y, Li Z, Pan S. A five-gene methylation signature predicts overall survival of patients with clear cell renal cell carcinoma. J Clin Lab Anal 2021; 35:e24031. [PMID: 34716619 PMCID: PMC8649352 DOI: 10.1002/jcla.24031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 09/14/2021] [Accepted: 09/19/2021] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND In this study, we aimed to screen methylation signatures associated with the prognosis of patients with clear cell renal cell carcinoma (ccRCC). METHODS Gene expression and methylation profiles of ccRCC patients were downloaded from publicly available databases, and differentially expressed genes (DEGs)-differentially methylated genes (DMGs) were obtained. Subsequently, gene set enrichment and transcription factor (TF) regulatory network analyses were performed. In addition, a prognostic model was constructed and the relationship between disease progression and immunity was analyzed. RESULTS A total of 23 common DEGs-DMGs were analyzed, among which 14 DEGs-DMGs were obtained with a cutoff value of PCC < 0 and p < 0.05. The enrichment analysis showed that the 14 DEGs-DMGs were enriched in three GO terms and three KEGG pathways. In addition, a total of six TFs were shown to be associated with the 14 DEGs-DMGs, including RP58, SOX9, NF-κB65, ATF6, OCT, and IK2. A prognostic model using five optimized DEGs-DMGs which efficiently predicted survival was constructed and validated using the GSE105288 dataset. Additionally, four types of immune cells (NK cells, macrophages, neutrophils, and cancer-associated fibroblasts), as well as ESTIMATE, immune, and stromal scores were found to be significantly correlated with ccRCC progression (normal, primary, and metastasis) in addition to the five optimized DEGs-DMGs. CONCLUSION A five-gene methylation signature with the predictive ability for ccRCC prognosis was investigated in this study, consisting of CCNB2, CDKN1C, CTSH, E2F2, and ERMP1. In addition, potential targets for methylation-mediated immunotherapy were highlighted.
Collapse
Affiliation(s)
- Xiao Jing
- Department of Urology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Gang Xu
- Department of Urology, Shaoxing People's Hospital, Shaoxing, China
| | - Yu Gong
- Department of Urology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Junlong Li
- Department of Urology, Shaoxing People's Hospital, Shaoxing, China
| | - LingfengWu
- Department of Urology, The Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Wei Zhu
- Department of Urology, The Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Yi He
- Department of Urology, The Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Zhongyi Li
- Department of Urology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Shouhua Pan
- Department of Urology, Shaoxing People's Hospital, Shaoxing, China
| |
Collapse
|
26
|
Ménézo Y, Patrizio P, Alvarez S, Amar E, Brack M, Brami C, Chouteau J, Clement A, Clement P, Cohen M, Cornet D, Dale B, D' Amato G, Jacquesson-Fournols L, Mares P, Neveux P, Sage JC, Servy E, Huong TM, Viot G. MTHFR (methylenetetrahydrofolate reductase: EC 1.5.1.20) SNPs (single-nucleotide polymorphisms) and homocysteine in patients referred for investigation of fertility. J Assist Reprod Genet 2021; 38:2383-2389. [PMID: 33914208 PMCID: PMC8490548 DOI: 10.1007/s10815-021-02200-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 04/18/2021] [Indexed: 11/26/2022] Open
Abstract
Purpose MTHFR, one of the major enzymes in the folate cycle, is known to acquire single-nucleotide polymorphisms that significantly reduce its activity, resulting in an increase in circulating homocysteine. Methylation processes are of crucial importance in gametogenesis, involved in the regulation of imprinting and epigenetic tags on DNA and histones. We have retrospectively assessed the prevalence of MTHFR SNPs in a population consulting for infertility according to gender and studied the impact of the mutations on circulating homocysteine levels. Methods More than 2900 patients having suffered at least two miscarriages (2 to 9) or two failed IVF/ICSI (2 to 10) attempts were included for analysis of MTHFR SNPs C677T and A1298C. Serum homocysteine levels were measured simultaneously. Results We observed no difference in the prevalence of different genetic backgrounds between men and women; only 15% of the patients were found to be wild type. More than 40% of the patients are either homozygous for one SNP or compound heterozygous carriers. As expected, the C677T SNP shows the greatest adverse effect on homocysteine accumulation. The impact of MTHFR SNPs on circulating homocysteine is different in men than in women. Conclusions Determination of MTHFR SNPs in both men and women must be seriously advocated in the presence of long-standing infertility; male gametes, from MTHFR SNPs carriers, are not exempted from exerting a hazardous impact on fertility. Patients should be informed of the pleiotropic medical implications of these SNPs for their own health, as well as for the health of future children.
Collapse
Affiliation(s)
- Yves Ménézo
- Laboratoire Clement, Avenue d Eylau, 75016, Paris, France.
- London Fertility Associates, Harley St, London, UK.
| | | | | | - Edouard Amar
- Hopital Américain de Paris, Neuilly-sur-Seine, France
| | | | - Charles Brami
- Hopital Américain de Paris, Neuilly-sur-Seine, France
| | | | - Arthur Clement
- Laboratoire Clement, Avenue d Eylau, 75016, Paris, France
| | | | | | | | - Brian Dale
- London Fertility Associates, Harley St, London, UK
- Centro Fecondazione Assistita, Napoli, Italy
| | | | | | | | | | | | | | - To Minh Huong
- VINMEC International Hospital, 458 Minh Khai, Hanoi, Vietnam
| | | |
Collapse
|
27
|
Wang A, Xu Q, Sha R, Bao T, Xi X, Guo G. MicroRNA-29a inhibits cell proliferation and arrests cell cycle by modulating p16 methylation in cervical cancer. Oncol Lett 2021; 21:272. [PMID: 33717269 PMCID: PMC7885157 DOI: 10.3892/ol.2021.12533] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 12/14/2020] [Indexed: 02/07/2023] Open
Abstract
Cervical cancer is the second most common gynecological malignancy. Accumulating evidence has suggested that microRNAs (miRNAs) are involved in the occurrence and development of cervical cancer. The present study aimed to investigate the function and underlying molecular mechanism of microRNA (miRNA/miR)-29a in cervical cancer. Reverse transcription-quantitative PCR and methylation-specific PCR were used to examine the expression of miR-29a and methylated status of p16 promoter, respectively. Cell Counting Kit-8 analysis and flow cytometry were performed to evaluate cell viability and cycle, respectively. Dual-luciferase reporter assay was performed to verify the interaction between miR-29a and its targets. Western blot analysis was performed to detect the protein levels of DNA methyltransferases (DNMT)3A and DNMT3B. The results demonstrated that miR-29a expression was downregulated in cervical cancer tissues and cells, and negatively correlated with p16 promoter hypermethylation. Furthermore, cell experiments confirmed that miR-29a suppressed cell proliferation and induced cell cycle arrest in HeLa and C-33A cells. Mechanically, miR-29a restored normal methylation pattern of the p16 gene by sponging DNMT3A and DNMT3B. Taken together, the results of the present study demonstrated the epigenetic regulation of tumor suppressor p16 by miR-29a as a unique mechanism, thus providing a rationale for the development of miRNA-based strategies in the treatment of cervical cancer.
Collapse
Affiliation(s)
- Anjin Wang
- School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei 430072, P.R. China
| | - Qiying Xu
- Department of Gynecology, Affiliated Hospital of Qinghai University, Xining, Qinghai 810100, P.R. China
| | - Rengaowa Sha
- Department of Gynecology, Affiliated Hospital of Qinghai University, Xining, Qinghai 810100, P.R. China
| | - Tonghui Bao
- Department of Gynecology, Affiliated Hospital of Qinghai University, Xining, Qinghai 810100, P.R. China
| | - Xiaoli Xi
- Department of Medicine, Qinghai University, Xining, Qinghai 810016, P.R. China
| | - Guilan Guo
- Department of Gynecology, Affiliated Hospital of Qinghai University, Xining, Qinghai 810100, P.R. China
| |
Collapse
|