1
|
Yu SP, Choi E, Jiang MQ, Wei L. Acute and chronic excitotoxicity in ischemic stroke and late-onset Alzheimer's disease. Neural Regen Res 2025; 20:1981-1988. [PMID: 39101641 DOI: 10.4103/nrr.nrr-d-24-00398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 07/04/2024] [Indexed: 08/06/2024] Open
Abstract
Stroke and Alzheimer's disease are common neurological disorders and often occur in the same individuals. The comorbidity of the two neurological disorders represents a grave health threat to older populations. This review presents a brief background of the development of novel concepts and their clinical potentials. The activity of glutamatergic N-methyl-D-aspartate receptors and N-methyl-D-aspartate receptor-mediated Ca 2+ influx is critical for neuronal function. An ischemic insult induces prompt and excessive glutamate release and drastic increases of intracellular Ca 2+ mainly via N-methyl-D-aspartate receptors, particularly of those at the extrasynaptic site. This Ca 2+ -evoked neuronal cell death in the ischemic core is dominated by necrosis within a few hours and days known as acute excitotoxicity. Furthermore, mild but sustained Ca 2+ increases under neurodegenerative conditions such as in the distant penumbra of the ischemic brain and early stages of Alzheimer's disease are not immediately toxic, but gradually set off deteriorating Ca 2+ -dependent signals and neuronal cell loss mostly because of activation of programmed cell death pathways. Based on the Ca 2+ hypothesis of Alzheimer's disease and recent advances, this Ca 2+ -activated "silent" degenerative excitotoxicity evolves from years to decades and is recognized as a unique slow and chronic neuropathogenesis. The N-methyl-D-aspartate receptor subunit GluN3A, primarily at the extrasynaptic site, serves as a gatekeeper for the N-methyl-D-aspartate receptor activity and is neuroprotective against both acute and chronic excitotoxicity. Ischemic stroke and Alzheimer's disease, therefore, share an N-methyl-D-aspartate receptor- and Ca 2+ -mediated mechanism, although with much different time courses. It is thus proposed that early interventions to control Ca 2+ homeostasis at the preclinical stage are pivotal for individuals who are susceptible to sporadic late-onset Alzheimer's disease and Alzheimer's disease-related dementia. This early treatment simultaneously serves as a preconditioning therapy against ischemic stroke that often attacks the same individuals during abnormal aging.
Collapse
Affiliation(s)
- Shan Ping Yu
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA, USA
- Center for Visual and Neurocognitive Rehabilitation, Atlanta Veterans Affairs Medical Center, Decatur, GA, USA
| | - Emily Choi
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA, USA
| | - Michael Q Jiang
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA, USA
- Center for Visual and Neurocognitive Rehabilitation, Atlanta Veterans Affairs Medical Center, Decatur, GA, USA
| | - Ling Wei
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
2
|
Li J, Liu Y, Yin C, Zeng Y, Mei Y. Structural and functional remodeling of neural networks in β-amyloid driven hippocampal hyperactivity. Ageing Res Rev 2024; 101:102468. [PMID: 39218080 DOI: 10.1016/j.arr.2024.102468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 08/19/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024]
Abstract
Early detection of Alzheimer's disease (AD) is essential for improving the patients outcomes and advancing our understanding of disease, allowing for timely intervention and treatment. However, accurate biomarkers are still lacking. Recent evidence indicates that hippocampal hyperexcitability precedes the diagnosis of AD decades ago, can predict cognitive decline. Thus, could hippocampal hyperactivity be a robust biomarker for early-AD, and what drives hippocampal hyperactivity in early-AD? these critical questions remain to be answered. Increasing clinical and experimental studies suggest that early hippocampal activation is closely associated with longitudinal β-amyloid (Aβ) accumulation, Aβ aggregates, in turn, enhances hippocampal activity. Therefore, in this narrative review, we discuss the role of Aβ-induced altered intrinsic neuronal properties as well as structural and functional remodeling of glutamatergic, GABAergic, cholinergic, noradrenergic, serotonergic circuits in hippocampal hyperactivity. In addition, we analyze the available therapies and trials that can potentially be used clinically to attenuate hippocampal hyperexcitability in AD. Overall, the present review sheds lights on the mechanism behind Aβ-induced hippocampal hyperactivity, and highlights that hippocampal hyperactivity could be a robust biomarker and therapeutic target in prodromal AD.
Collapse
Affiliation(s)
- Jinquan Li
- Hubei Clinical Research Center for Alzheimer's Disease, Brain Science and Advanced Technology Institute, School of Medicine, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Yanjun Liu
- Hubei Clinical Research Center for Alzheimer's Disease, Brain Science and Advanced Technology Institute, School of Medicine, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Chuhui Yin
- Hubei Clinical Research Center for Alzheimer's Disease, Brain Science and Advanced Technology Institute, School of Medicine, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Yan Zeng
- Hubei Clinical Research Center for Alzheimer's Disease, Brain Science and Advanced Technology Institute, School of Medicine, Wuhan University of Science and Technology, Wuhan 430065, China.
| | - Yufei Mei
- Hubei Clinical Research Center for Alzheimer's Disease, Brain Science and Advanced Technology Institute, School of Medicine, Wuhan University of Science and Technology, Wuhan 430065, China.
| |
Collapse
|
3
|
Smeralda CL, Pandit S, Turrini S, Reilly J, Palmisano A, Sprugnoli G, Hampel H, Benussi A, Borroni B, Press D, Rotenberg A, El Fakhri G, Koch G, Rossi S, Santarnecchi E. The role of parvalbumin interneuron dysfunction across neurodegenerative dementias. Ageing Res Rev 2024; 101:102509. [PMID: 39306248 DOI: 10.1016/j.arr.2024.102509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 09/15/2024] [Accepted: 09/15/2024] [Indexed: 10/04/2024]
Abstract
Parvalbumin-positive (PV+) basket neurons are fast-spiking, non-adapting inhibitory interneurons whose oscillatory activity is essential for regulating cortical excitation/inhibition balance. Their dysfunction results in cortical hyperexcitability and gamma rhythm disruption, which have recently gained substantial traction as contributing factors as well as potential therapeutic targets for the treatment of Alzheimer's Disease (AD). Recent evidence indicates that PV+ cells are also impaired in Frontotemporal Dementia (FTD) and Dementia with Lewy bodies (DLB). However, no attempt has been made to integrate these findings into a coherent pathophysiological framework addressing the contribution of PV+ interneuron dysfunction to the generation of cortical hyperexcitability and gamma rhythm disruption in FTD and DLB. To fill this gap, we epitomized the most recent evidence on PV+ interneuron impairment in AD, FTD, and DLB, focusing on its contribution to the generation of cortical hyperexcitability and gamma oscillatory disruption and their interplay with misfolded protein accumulation, neuronal death, and clinical symptoms' onset. Our work deepens the current understanding concerning the role of PV+ interneuron dysfunction across neurodegenerative dementias, highlighting commonalities and differences among AD, FTD, and DLB, thus paving the way for identifying novel biomarkers and potential therapeutic targets for the treatment of these diseases.
Collapse
Affiliation(s)
- Carmelo Luca Smeralda
- Precision Neuroscience & Neuromodulation Program, Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Siena Brain Investigation & Neuromodulation Lab (Si-BIN Lab), Unit of Neurology and Clinical Neurophysiology, Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| | - Siddhartha Pandit
- Precision Neuroscience & Neuromodulation Program, Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Sonia Turrini
- Precision Neuroscience & Neuromodulation Program, Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Centro Studi e Ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia, University of Bologna, Italy
| | - Julianne Reilly
- Precision Neuroscience & Neuromodulation Program, Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Annalisa Palmisano
- Chair of Lifespan Developmental Neuroscience, TUD Dresden University of Technology, Dresden, Germany
| | - Giulia Sprugnoli
- Precision Neuroscience & Neuromodulation Program, Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Harald Hampel
- Sorbonne University, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Paris, France
| | - Alberto Benussi
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy; Neurology Unit, Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste, Italy
| | - Barbara Borroni
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Daniel Press
- Cognitive Neurology Unit, Beth Israel Deaconess Medical Center, 330 Brookline Avenue, Brookline, MA, USA
| | - Alexander Rotenberg
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Georges El Fakhri
- Gordon Center for Medical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Giacomo Koch
- Human Physiology Unit, Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara, Italy; Experimental Neuropsychophysiology Laboratory, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Simone Rossi
- Siena Brain Investigation & Neuromodulation Lab (Si-BIN Lab), Unit of Neurology and Clinical Neurophysiology, Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| | - Emiliano Santarnecchi
- Precision Neuroscience & Neuromodulation Program, Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
4
|
Sen A, Toniolo S, Tai XY, Akinola M, Symmonds M, Mura S, Galloway J, Hallam A, Chan JYC, Koychev I, Butler C, Geddes J, Jones GD, Tabi Y, Maio R, Frangou E, Love S, Thompson S, Van Der Putt R, Manohar SG, McShane R, Husain M. Safety, tolerability, and efficacy outcomes of the Investigation of Levetiracetam in Alzheimer's disease (ILiAD) study: a pilot, double-blind placebo-controlled crossover trial. Epilepsia Open 2024. [PMID: 39400461 DOI: 10.1002/epi4.13070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 09/04/2024] [Accepted: 09/14/2024] [Indexed: 10/15/2024] Open
Abstract
OBJECTIVE To assess whether the antiseizure medication levetiracetam may improve cognition in individuals with Alzheimer's disease who have not previously experienced a seizure. METHODS We performed a randomized, double-blind, placebo-controlled crossover pilot study in individuals with mild-to-moderate Alzheimer's disease. Electroencephalography was performed at baseline and those with active epileptiform discharges were excluded. Eligible participants were randomized to placebo for 12 weeks or an active arm of oral levetiracetam (4 weeks up-titration to levetiracetam 500 mg twice daily, 4 weeks maintained on this dose followed by 4 weeks down-titration to nil). Participants then crossed over to the other arm. The primary outcome was change in cognitive function assessed by the Oxford Memory Task, a task sensitive to hippocampal memory binding. Secondary outcomes included tolerability, other neuropsychological scales, and general questionnaires. RESULTS Recruitment numbers were severely limited owing to restrictions from the COVID-19 pandemic at the time of the study. Eight participants completed both arms of the study (mean age 68.4 years [SD = 9.2]; 5 females [62.5%]). No participants withdrew from the study and there was no significant difference between reported side effects in the active levetiracetam or placebo arm. Measures of mood and quality of life were also not significantly different between the two arms based on participant or carer reports. In limited data analysis, there was no statistically significant difference between participants in the active levetiracetam and placebo arm on the memory task. SIGNIFICANCE This pilot study demonstrates that levetiracetam was well tolerated in individuals with Alzheimer's disease who do not have a history of seizures and has no detrimental effect on mood or quality of life. Larger studies are needed to assess whether levetiracetam may have a positive effect on cognitive function in subsets of individuals with Alzheimer's disease. PLAIN LANGUAGE SUMMARY Abnormal electrical activity within the brain, such as is seen in seizures, might contribute to memory problems in people with dementia. We completed a clinical trial to see if an antiseizure medication, levetiracetam, could help with memory difficulties in people with Alzheimer's disease (the most common cause of dementia). In this pilot study, we could not prove whether levetiracetam helped memory function. We did show that the drug is safe and well tolerated in people with dementia who have not had a seizure. This work, therefore, offers a platform for future research exploring antiseizure medications in people with dementia.
Collapse
Affiliation(s)
- Arjune Sen
- Oxford Epilepsy Research Group, Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, Oxford, UK
- Department of Neurology, John Radcliffe Hospital, Oxford, UK
- Nuffield Department of Clinical Neuroscience, University of Oxford, Oxford, UK
| | - Sofia Toniolo
- Department of Neurology, John Radcliffe Hospital, Oxford, UK
- Nuffield Department of Clinical Neuroscience, University of Oxford, Oxford, UK
| | - Xin You Tai
- Oxford Epilepsy Research Group, Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, Oxford, UK
- Department of Neurology, John Radcliffe Hospital, Oxford, UK
- Nuffield Department of Clinical Neuroscience, University of Oxford, Oxford, UK
| | - Mary Akinola
- Local Clinical Trials Network, John Radcliffe Hospital, Oxford, UK
| | - Mkael Symmonds
- Oxford Epilepsy Research Group, Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, Oxford, UK
- Nuffield Department of Clinical Neuroscience, University of Oxford, Oxford, UK
- Department of Clinical Neurophysiology, John Radcliffe Hospital, Oxford, UK
| | - Sergio Mura
- Clinical Trials Pharmacy, John Radcliffe Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | | | - Angela Hallam
- St Mary's Pharmaceutical Unit, Cardiff University, Cardiff, UK
| | - Jane Y C Chan
- Freeline Therapeutics, King's Court, Stevenage, UK
- Translational Medicine, UCB Pharma, Slough, UK
| | - Ivan Koychev
- Department of Psychiatry, University of Oxford, Oxford, UK
| | - Chris Butler
- Faculty of Medicine, Department of Brain Sciences, Imperial College, Sir Alexander Fleming Building, South Kensington Campus, London, UK
| | - John Geddes
- Department of Psychiatry, University of Oxford, Oxford, UK
| | - Gabriel Davis Jones
- Oxford Epilepsy Research Group, Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, Oxford, UK
- Nuffield Department of Women's Health, Women's Centre, John Radcliffe Hospital, Oxford, UK
| | - Younes Tabi
- Department of Neurology, University Hospital of Kiel, Kiel, Germany
| | - Raquel Maio
- Nuffield Department of Clinical Neuroscience, University of Oxford, Oxford, UK
| | - Eleni Frangou
- MRC Clinical Trials Unit at UCL, Faculty of Pop Health Sciences, Institute of Clinical Trials & Methodology, University College London, London, UK
- Centre for Statistics in Medicine, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Sharon Love
- MRC Clinical Trials Unit at UCL, Faculty of Pop Health Sciences, Institute of Clinical Trials & Methodology, University College London, London, UK
- Centre for Statistics in Medicine, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Sian Thompson
- Department of Neurology, John Radcliffe Hospital, Oxford, UK
| | - Rohan Van Der Putt
- Memory and Cognition Research Delivery Team, Warneford Hospital, Oxford, UK
| | - Sanjay G Manohar
- Department of Neurology, John Radcliffe Hospital, Oxford, UK
- Nuffield Department of Clinical Neuroscience, University of Oxford, Oxford, UK
| | - Rupert McShane
- Department of Psychiatry, University of Oxford, Oxford, UK
| | - Masud Husain
- Department of Neurology, John Radcliffe Hospital, Oxford, UK
- Nuffield Department of Clinical Neuroscience, University of Oxford, Oxford, UK
- Cognitive Neurology Research Group, Nuffield Department Clinical Neurosciences & Department of Experimental Psychology, University of Oxford, West Wing, John Radcliffe Hospital, Oxford, UK
| |
Collapse
|
5
|
Maiella M, Mencarelli L, Casula EP, Borghi I, Assogna M, di Lorenzo F, Bonnì S, Pezzopane V, Martorana A, Koch G. Breakdown of TMS evoked EEG signal propagation within the default mode network in Alzheimer's disease. Clin Neurophysiol 2024; 167:177-188. [PMID: 39332078 DOI: 10.1016/j.clinph.2024.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 09/09/2024] [Accepted: 09/13/2024] [Indexed: 09/29/2024]
Abstract
BACKGROUND The neural activity of the Default Mode Network (DMN) is disrupted in patients with In Alzheimer's disease (AD). OBJECTIVES We used a novel multimodal approach to track neural signal propagation within the DMN in AD patients. METHODS Twenty mild to moderate AD patients were recruited. We used transcranial magnetic stimulation (TMS) pulses to probe with a millisecond time resolution the propagation of evoked electroencephalography (EEG) signal following the neural activation of the Precuneus (PC), which is a key hub area of the DMN. Moreover, functional and structural magnetic resonance imaging (MRI) data were collected to reconstruct individual features of the DMN. RESULTS In AD patients a probe TMS pulse applied over the PC evokes an increased local activity unmasking underlying hyperexcitability. In contrast, the EEG evoked neural signal did not propagate efficiently within the DMN showing a remarkable breakdown of signal propagation. fMRI and structural tractography showed that impaired signal propagation was related to the same connectivity matrices derived from DMN BOLD signal and transferred by specific white matter bundles forming the cingulum. These features were not detectable stimulating other areas (left dorsolateral prefrontal cortex) or for different networks (fronto-parietal network). Finally, connectivity breakdown was associated with cognitive impairment, as measured with the Clinical Dementia Rating Scale sum of boxes (CDR-SB). CONCLUSIONS TMS-EEG in AD shows both local hyperexcitability and a lack of signal propagation within the DMN. These neurophysiological features also correlate with structural and cognitive attributes of the patients. SIGNIFICANCE Neuronavigated TMS-EEG may be used as a novel neurophysiological biomarker of DMN connectivity in AD patients.
Collapse
Affiliation(s)
- Michele Maiella
- Department of Behavioural and Clinical Neurology, Santa Lucia Foundation IRCCS, Rome, Italy; Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Lucia Mencarelli
- Department of Behavioural and Clinical Neurology, Santa Lucia Foundation IRCCS, Rome, Italy
| | - Elias P Casula
- Department of Behavioural and Clinical Neurology, Santa Lucia Foundation IRCCS, Rome, Italy; Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Ilaria Borghi
- Department of Behavioural and Clinical Neurology, Santa Lucia Foundation IRCCS, Rome, Italy; Department of Neuroscience and Rehabilitation, University of Ferrara, and Center for Translational Neurophysiology of Speech and Communication (CTNSC), Italian Institute of Technology (IIT), Ferrara, Italy
| | - Martina Assogna
- Department of Behavioural and Clinical Neurology, Santa Lucia Foundation IRCCS, Rome, Italy; Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Francesco di Lorenzo
- Department of Behavioural and Clinical Neurology, Santa Lucia Foundation IRCCS, Rome, Italy
| | - Sonia Bonnì
- Department of Behavioural and Clinical Neurology, Santa Lucia Foundation IRCCS, Rome, Italy
| | - Valentina Pezzopane
- Department of Behavioural and Clinical Neurology, Santa Lucia Foundation IRCCS, Rome, Italy; Department of Neuroscience and Rehabilitation, University of Ferrara, and Center for Translational Neurophysiology of Speech and Communication (CTNSC), Italian Institute of Technology (IIT), Ferrara, Italy
| | | | - Giacomo Koch
- Department of Behavioural and Clinical Neurology, Santa Lucia Foundation IRCCS, Rome, Italy; Department of Neuroscience and Rehabilitation, University of Ferrara, and Center for Translational Neurophysiology of Speech and Communication (CTNSC), Italian Institute of Technology (IIT), Ferrara, Italy.
| |
Collapse
|
6
|
Wei X, Campagna JJ, Jagodzinska B, Wi D, Cohn W, Lee JT, Zhu C, Huang CS, Molnár L, Houser CR, John V, Mody I. A therapeutic small molecule enhances γ-oscillations and improves cognition/memory in Alzheimer's disease model mice. Proc Natl Acad Sci U S A 2024; 121:e2400420121. [PMID: 39106304 PMCID: PMC11331084 DOI: 10.1073/pnas.2400420121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 07/08/2024] [Indexed: 08/09/2024] Open
Abstract
Brain rhythms provide the timing for recruitment of brain activity required for linking together neuronal ensembles engaged in specific tasks. The γ-oscillations (30 to 120 Hz) orchestrate neuronal circuits underlying cognitive processes and working memory. These oscillations are reduced in numerous neurological and psychiatric disorders, including early cognitive decline in Alzheimer's disease (AD). Here, we report on a potent brain-permeable small molecule, DDL-920 that increases γ-oscillations and improves cognition/memory in a mouse model of AD, thus showing promise as a class of therapeutics for AD. We employed anatomical, in vitro and in vivo electrophysiological, and behavioral methods to examine the effects of our lead therapeutic candidate small molecule. As a novel in central nervous system pharmacotherapy, our lead molecule acts as a potent, efficacious, and selective negative allosteric modulator of the γ-aminobutyric acid type A receptors most likely assembled from α1β2δ subunits. These receptors, identified through anatomical and pharmacological means, underlie the tonic inhibition of parvalbumin (PV) expressing interneurons (PV+INs) critically involved in the generation of γ-oscillations. When orally administered twice daily for 2 wk, DDL-920 restored the cognitive/memory impairments of 3- to 4-mo-old AD model mice as measured by their performance in the Barnes maze. Our approach is unique as it is meant to enhance cognitive performance and working memory in a state-dependent manner by engaging and amplifying the brain's endogenous γ-oscillations through enhancing the function of PV+INs.
Collapse
Affiliation(s)
- Xiaofei Wei
- Department of Neurology, The David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA90095
- Department of Neurosurgery, The David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA90095
| | - Jesus J. Campagna
- Department of Neurology, Drug Development Laboratory, Mary S. Easton Center for Alzheimer’s Disease Research and Care, The David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA90095
| | - Barbara Jagodzinska
- Department of Neurology, Drug Development Laboratory, Mary S. Easton Center for Alzheimer’s Disease Research and Care, The David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA90095
| | - Dongwook Wi
- Department of Neurology, Drug Development Laboratory, Mary S. Easton Center for Alzheimer’s Disease Research and Care, The David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA90095
| | - Whitaker Cohn
- Department of Neurology, Drug Development Laboratory, Mary S. Easton Center for Alzheimer’s Disease Research and Care, The David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA90095
| | - Jessica T. Lee
- Department of Neurology, Drug Development Laboratory, Mary S. Easton Center for Alzheimer’s Disease Research and Care, The David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA90095
| | - Chunni Zhu
- Department of Neurology, Drug Development Laboratory, Mary S. Easton Center for Alzheimer’s Disease Research and Care, The David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA90095
| | - Christine S. Huang
- Department of Neurobiology, The David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA90095
| | - László Molnár
- Department of Electrical Engineering, Sapientia Hungarian University of Transylvania, Târgu Mureş540485, Romania
| | - Carolyn R. Houser
- Department of Neurobiology, The David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA90095
| | - Varghese John
- Department of Neurology, Drug Development Laboratory, Mary S. Easton Center for Alzheimer’s Disease Research and Care, The David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA90095
| | - Istvan Mody
- Department of Neurology, The David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA90095
- Department of Physiology, The David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA90095
| |
Collapse
|
7
|
Zhuang D, Yu N, Han S, Zhang X, Ju C. The Kv7 channel opener Retigabine reduces neuropathology and alleviates behavioral deficits in APP/PS1 transgenic mice. Behav Brain Res 2024; 471:115137. [PMID: 38971432 DOI: 10.1016/j.bbr.2024.115137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 06/19/2024] [Accepted: 07/01/2024] [Indexed: 07/08/2024]
Abstract
Hyperexcitability of neuronal networks is central to the pathogenesis of Alzheimer's disease (AD). Pharmacological activation of Kv7 channels is an effective way to reduce neuronal firing. Our results showed that that pharmacologically activating the Kv7 channel with Retigabine (RTG) can alleviate cognitive impairment in mice without affecting spontaneous activity. RTG could also ameliorate damage to the Nissl bodies in cortex and hippocampal CA and DG regions in 9-month-old APP/PS1 mice. Additionally, RTG could reduce the Aβ plaque number in the hippocampus and cortex of both 6-month-old and 9-month-old mice. By recordings of electroencephalogram, we showed that a decrease in the number of abnormal discharges in the brains of the AD model mice when the Kv7 channel was opened. Moreover, Western blot analysis revealed a reduction in the expression of the p-Tau protein in both the hippocampus and cortex upon Kv7 channel opening. These findings suggest that Kv7 channel opener RTG may ameliorate cognitive impairment in AD, most likely by reducing brain excitability.
Collapse
Affiliation(s)
- Dongpei Zhuang
- Department of Pharmacology, School of Pharmacy, Qingdao University Qingdao Medical College, China.
| | - Nan Yu
- Department of Pharmacy, Qingdao Eighth People's Hospital, China.
| | - Shuo Han
- Department of Pharmacology, School of Pharmacy, Qingdao University Qingdao Medical College, China.
| | - Xinyao Zhang
- Department of Pharmacology, School of Pharmacy, Qingdao University Qingdao Medical College, China.
| | - Chuanxia Ju
- Department of Pharmacology, School of Pharmacy, Qingdao University Qingdao Medical College, China.
| |
Collapse
|
8
|
Ottoy J, Kang MS, Tan JXM, Boone L, Vos de Wael R, Park BY, Bezgin G, Lussier FZ, Pascoal TA, Rahmouni N, Stevenson J, Fernandez Arias J, Therriault J, Hong SJ, Stefanovic B, McLaurin J, Soucy JP, Gauthier S, Bernhardt BC, Black SE, Rosa-Neto P, Goubran M. Tau follows principal axes of functional and structural brain organization in Alzheimer's disease. Nat Commun 2024; 15:5031. [PMID: 38866759 PMCID: PMC11169286 DOI: 10.1038/s41467-024-49300-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 05/24/2024] [Indexed: 06/14/2024] Open
Abstract
Alzheimer's disease (AD) is a brain network disorder where pathological proteins accumulate through networks and drive cognitive decline. Yet, the role of network connectivity in facilitating this accumulation remains unclear. Using in-vivo multimodal imaging, we show that the distribution of tau and reactive microglia in humans follows spatial patterns of connectivity variation, the so-called gradients of brain organization. Notably, less distinct connectivity patterns ("gradient contraction") are associated with cognitive decline in regions with greater tau, suggesting an interaction between reduced network differentiation and tau on cognition. Furthermore, by modeling tau in subject-specific gradient space, we demonstrate that tau accumulation in the frontoparietal and temporo-occipital cortices is associated with greater baseline tau within their functionally and structurally connected hubs, respectively. Our work unveils a role for both functional and structural brain organization in pathology accumulation in AD, and supports subject-specific gradient space as a promising tool to map disease progression.
Collapse
Affiliation(s)
- Julie Ottoy
- Sunnybrook Research Institute, University of Toronto, Toronto, ON, Canada
| | - Min Su Kang
- Sunnybrook Research Institute, University of Toronto, Toronto, ON, Canada
| | | | - Lyndon Boone
- Sunnybrook Research Institute, University of Toronto, Toronto, ON, Canada
| | - Reinder Vos de Wael
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada
| | - Bo-Yong Park
- Department of Data Science, Inha University, Incheon, Republic of Korea
- Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon, Republic of Korea
| | - Gleb Bezgin
- Translational Neuroimaging laboratory, McGill Centre for Studies in Aging, McGill University, Montreal, QC, Canada
- Neuroinformatics for Personalized Medicine lab, Montreal Neurological Institute, McGill University, Montréal, QC, Canada
| | - Firoza Z Lussier
- Translational Neuroimaging laboratory, McGill Centre for Studies in Aging, McGill University, Montreal, QC, Canada
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Tharick A Pascoal
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Nesrine Rahmouni
- Translational Neuroimaging laboratory, McGill Centre for Studies in Aging, McGill University, Montreal, QC, Canada
| | - Jenna Stevenson
- Translational Neuroimaging laboratory, McGill Centre for Studies in Aging, McGill University, Montreal, QC, Canada
| | - Jaime Fernandez Arias
- Translational Neuroimaging laboratory, McGill Centre for Studies in Aging, McGill University, Montreal, QC, Canada
| | - Joseph Therriault
- Translational Neuroimaging laboratory, McGill Centre for Studies in Aging, McGill University, Montreal, QC, Canada
| | - Seok-Jun Hong
- Department of Biomedical Engineering, Sungkyunkwan University, Suwon, Republic of Korea
| | - Bojana Stefanovic
- Sunnybrook Research Institute, University of Toronto, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
- Physical Sciences Platform, Sunnybrook Research Institute, University of Toronto, Toronto, ON, Canada
| | - JoAnne McLaurin
- Sunnybrook Research Institute, University of Toronto, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- Biological Sciences Platform, Sunnybrook Research Institute, University of Toronto, Toronto, ON, Canada
| | - Jean-Paul Soucy
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada
| | - Serge Gauthier
- Translational Neuroimaging laboratory, McGill Centre for Studies in Aging, McGill University, Montreal, QC, Canada
| | - Boris C Bernhardt
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada
| | - Sandra E Black
- Sunnybrook Research Institute, University of Toronto, Toronto, ON, Canada
- Department of Medicine (Division of Neurology), University of Toronto, Toronto, ON, Canada
| | - Pedro Rosa-Neto
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada
- Translational Neuroimaging laboratory, McGill Centre for Studies in Aging, McGill University, Montreal, QC, Canada
| | - Maged Goubran
- Sunnybrook Research Institute, University of Toronto, Toronto, ON, Canada.
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada.
- Physical Sciences Platform, Sunnybrook Research Institute, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
9
|
Sharma M, Pal P, Gupta SK. The neurotransmitter puzzle of Alzheimer's: Dissecting mechanisms and exploring therapeutic horizons. Brain Res 2024; 1829:148797. [PMID: 38342422 DOI: 10.1016/j.brainres.2024.148797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/10/2024] [Accepted: 02/06/2024] [Indexed: 02/13/2024]
Abstract
Alzheimer's Disease (AD) represents a complex interplay of neurological pathways and molecular mechanisms, with significant impacts on patients' lives. This review synthesizes the latest developments in AD research, focusing on both the scientific advancements and their clinical implications. We examine the role of microglia in AD, highlighting their contribution to the disease's inflammatory aspects. The cholinergic hypothesis, a cornerstone of AD research, is re-evaluated, including the role of Alpha-7 Nicotinic Acetylcholine Receptors in disease progression. This review places particular emphasis on the neurotransmission systems, exploring the therapeutic potential of GABAergic neurotransmitters and the role of NMDA inhibitors in the context of glutamatergic neurotransmission. By analyzing the interactions and implications of neurotransmitter pathways in AD, we aim to shed light on emerging therapeutic strategies. In addition to molecular insights, the review addresses the clinical and personal aspects of AD, underscoring the need for patient-centered approaches in treatment and care. The final section looks at the future directions of AD research and treatment, discussing the integration of scientific innovation with patient care. This review aims to provide a comprehensive update on AD, merging scientific insights with practical considerations, suitable for both specialists and those new to the field.
Collapse
Affiliation(s)
- Monika Sharma
- Faculty of Pharmacy, Department of Pharmacology, Swami Vivekanand Subharti University, Meerut, Uttar Pradesh, India
| | - Pankaj Pal
- Department of Pharmacy, Banasthali Vidyapith, Rajasthan, India
| | - Sukesh Kumar Gupta
- Department of Anatomy and Neurobiology, School of Medicine, University of California, USA.
| |
Collapse
|
10
|
Altuna M, Estanga A, Garrido A, Saldias J, Cañada M, Echeverria M, Larrea JÁ, Ayo P, Fiz A, Muñoz M, Santa-Inés J, García-Landarte V, García-Sebastián M. Down Syndrome-Basque Alzheimer Initiative (DS-BAI): Clinic-Biological Cohort. J Clin Med 2024; 13:1139. [PMID: 38398452 PMCID: PMC10889106 DOI: 10.3390/jcm13041139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 02/14/2024] [Accepted: 02/15/2024] [Indexed: 02/25/2024] Open
Abstract
BACKGROUND Down syndrome (DS) is the most common genetically determined intellectual disability. In recent decades, it has experienced an exponential increase in life expectancy, leading to a rise in age-related diseases, including Alzheimer's disease (AD). Specific health plans for the comprehensive care of the DS community are an unmet need, which is crucial for the early and accurate diagnosis of main medical comorbidities. We present the protocol of a newly created clinical and research cohort and its feasibility in real life. METHODS The Down Syndrome-Basque Alzheimer Initiative (DS-BAI) is a population-based, inclusive, multidisciplinary initiative for the clinical-assistance and clinical-biological research approach to aging in DS led by the CITA-Alzheimer Foundation (Donostia, Basque Country). It aims to achieve the following: (1) provide comprehensive care for adults with DS, (2) optimize access to rigorous and quality training for socio-family and healthcare references, and (3) create a valuable multimodal clinical-biological research platform. RESULTS During the first year, 114 adults with DS joined the initiative, with 36% of them showing symptoms indicative of AD. Furthermore, adherence to training programs for healthcare professionals and families has been high, and the willingness to collaborate in basic and translational research has been encouraging. CONCLUSION Specific health plans for DS and conducting clinical and translational research on the challenges of aging, including AD, are necessary and feasible.
Collapse
Affiliation(s)
- Miren Altuna
- Fundación CITA-Alzheimer Fundazioa, 20009 Donostia, Spain
- Debabarrena Integrated Health Organization, Osakidetza Basque Health Service, 20690 Gipuzkoa, Spain
- Department of Medicine, Faculty of Health Sciences, University of Deusto, 48007 Bilbo, Spain
| | - Ainara Estanga
- Fundación CITA-Alzheimer Fundazioa, 20009 Donostia, Spain
| | - Adolfo Garrido
- Donostialdea Integrated Health Organisation, Clinical Biochemistry Department, Osakidetza Basque Health Service, 20014 Donostia, Spain
| | - Jon Saldias
- Fundación CITA-Alzheimer Fundazioa, 20009 Donostia, Spain
| | - Marta Cañada
- Fundación CITA-Alzheimer Fundazioa, 20009 Donostia, Spain
| | - Maitane Echeverria
- Donostialdea Integrated Health Organisation, Clinical Biochemistry Department, Osakidetza Basque Health Service, 20014 Donostia, Spain
| | - José Ángel Larrea
- Department of Medicine, Faculty of Health Sciences, University of Deusto, 48007 Bilbo, Spain
- Donostialdea Integrated Health Organisation, Radiology Department, Osakidetza Basque Health Service, 20014 Donostia, Spain
| | | | | | - María Muñoz
- Fundación Goyeneche de San Sebastián, 20018 Donostia, Spain
| | | | | | | |
Collapse
|
11
|
Vicente M, Addo-Osafo K, Vossel K. Latest advances in mechanisms of epileptic activity in Alzheimer's disease and dementia with Lewy Bodies. Front Neurol 2024; 15:1277613. [PMID: 38390593 PMCID: PMC10882721 DOI: 10.3389/fneur.2024.1277613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 01/12/2024] [Indexed: 02/24/2024] Open
Abstract
Alzheimer's disease (AD) and dementia with Lewy bodies (DLB) stand as the prevailing sources of neurodegenerative dementia, impacting over 55 million individuals across the globe. Patients with AD and DLB exhibit a higher prevalence of epileptic activity compared to those with other forms of dementia. Seizures can accompany AD and DLB in early stages, and the associated epileptic activity can contribute to cognitive symptoms and exacerbate cognitive decline. Aberrant neuronal activity in AD and DLB may be caused by several mechanisms that are not yet understood. Hyperexcitability could be a biomarker for early detection of AD or DLB before the onset of dementia. In this review, we compare and contrast mechanisms of network hyperexcitability in AD and DLB. We examine the contributions of genetic risk factors, Ca2+ dysregulation, glutamate, AMPA and NMDA receptors, mTOR, pathological amyloid beta, tau and α-synuclein, altered microglial and astrocytic activity, and impaired inhibitory interneuron function. By gaining a deeper understanding of the molecular mechanisms that cause neuronal hyperexcitability, we might uncover therapeutic approaches to effectively ease symptoms and slow down the advancement of AD and DLB.
Collapse
Affiliation(s)
- Mariane Vicente
- Mary S. Easton Center for Alzheimer's Research and Care, Department of Neurology, David Geffen School of Medicine at University of California, Los Angeles, CA, United States
| | - Kwaku Addo-Osafo
- Mary S. Easton Center for Alzheimer's Research and Care, Department of Neurology, David Geffen School of Medicine at University of California, Los Angeles, CA, United States
| | - Keith Vossel
- Mary S. Easton Center for Alzheimer's Research and Care, Department of Neurology, David Geffen School of Medicine at University of California, Los Angeles, CA, United States
| |
Collapse
|
12
|
Burton CP, Chumin EJ, Collins AY, Persohn SA, Onos KD, Pandey RS, Quinney SK, Territo PR. Levetiracetam modulates brain metabolic networks and transcriptomic signatures in the 5XFAD mouse model of Alzheimer's disease. Front Neurosci 2024; 17:1336026. [PMID: 38328556 PMCID: PMC10847229 DOI: 10.3389/fnins.2023.1336026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 12/13/2023] [Indexed: 02/09/2024] Open
Abstract
Introduction Subcritical epileptiform activity is associated with impaired cognitive function and is commonly seen in patients with Alzheimer's disease (AD). The anti-convulsant, levetiracetam (LEV), is currently being evaluated in clinical trials for its ability to reduce epileptiform activity and improve cognitive function in AD. The purpose of the current study was to apply pharmacokinetics (PK), network analysis of medical imaging, gene transcriptomics, and PK/PD modeling to a cohort of amyloidogenic mice to establish how LEV restores or drives alterations in the brain networks of mice in a dose-dependent basis using the rigorous preclinical pipeline of the MODEL-AD Preclinical Testing Core. Methods Chronic LEV was administered to 5XFAD mice of both sexes for 3 months based on allometrically scaled clinical dose levels from PK models. Data collection and analysis consisted of a multi-modal approach utilizing 18F-FDG PET/MRI imaging and analysis, transcriptomic analyses, and PK/PD modeling. Results Pharmacokinetics of LEV showed a sex and dose dependence in Cmax, CL/F, and AUC0-∞, with simulations used to estimate dose regimens. Chronic dosing at 10, 30, and 56 mg/kg, showed 18F-FDG specific regional differences in brain uptake, and in whole brain covariance measures such as clustering coefficient, degree, network density, and connection strength (i.e., positive and negative). In addition, transcriptomic analysis via nanoString showed dose-dependent changes in gene expression in pathways consistent 18F-FDG uptake and network changes, and PK/PD modeling showed a concentration dependence for key genes, but not for network covariance modeling. Discussion This study represents the first report detailing the relationships of metabolic covariance and transcriptomic network changes resulting from LEV administration in 5XFAD mice. Overall, our results highlight non-linear kinetics based on dose and sex, where gene expression analysis demonstrated LEV dose- and concentration-dependent changes, along with cerebral metabolism, and/or cerebral homeostatic mechanisms relevant to human AD, which aligned closely with network covariance analysis of 18F-FDG images. Collectively, this study show cases the value of a multimodal connectomic, transcriptomic, and pharmacokinetic approach to further investigate dose dependent relationships in preclinical studies, with translational value toward informing clinical study design.
Collapse
Affiliation(s)
- Charles P. Burton
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Evgeny J. Chumin
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, United States
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Alyssa Y. Collins
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Scott A. Persohn
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, United States
| | | | - Ravi S. Pandey
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, United States
| | - Sara K. Quinney
- Department of Medicine, Division of Clinical Pharmacology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Paul R. Territo
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, United States
- Department of Medicine, Division of Clinical Pharmacology, Indiana University School of Medicine, Indianapolis, IN, United States
| |
Collapse
|
13
|
Wang X, Song Y, Cong P, Wang Z, Liu Y, Xu J, Xue C. Docosahexaenoic Acid-Acylated Astaxanthin Monoester Ameliorates Amyloid-β Pathology and Neuronal Damage by Restoring Autophagy in Alzheimer's Disease Models. Mol Nutr Food Res 2024; 68:e2300414. [PMID: 37991232 DOI: 10.1002/mnfr.202300414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/29/2023] [Indexed: 11/23/2023]
Abstract
SCOPE Astaxanthin (AST) is ubiquitous in aquatic foods and microorganisms. The study previously finds that docosahexaenoic acid-acylated AST monoester (AST-DHA) improves cognitive function in Alzheimer's disease (AD), although the underlying mechanism remains unclear. Moreover, autophagy is reportedly involved in amyloid-β (Aβ) clearance and AD pathogenesis. Therefore, this study aims to evaluate the preventive effect of AST-DHA and elucidates the mechanism of autophagy modulation in Aβ pathology. METHODS AND RESULTS In the cellular AD model, AST-DHA significantly reduces toxic Aβ1-42 levels and alleviated the accumulation of autophagic markers (LC3II/I and p62) in Aβ25-35 -induced SH-SY5Y cells. Notably, AST-DHA restores the autophagic flux in SH-SY5YmRFP-GFP-LC3 cells. In APP/PS1 mice, a 3-month dietary supplementation of AST-DHA exceeded free-astaxanthin (F-AST) capacity to increase hippocampal and cortical autophagy. Mechanistically, AST-DHA restores autophagy by activating the ULK1 signaling pathway and restoring autophagy-lysosome fusion. Moreover, AST-DHA relieves ROS production and mitochondrial stress affecting autophagy in AD. As a favorable outcome of restored autophagy, AST-DHA mitigates cerebral Aβ and p-Tau deposition, ultimately improving neuronal function. CONCLUSION The findings demonstrate that AST-DHA can rectify autophagic impairment in AD, and confer neuroprotection in Aβ-related pathology, which supports the future application of AST as an autophagic inducer for maintaining brain health.
Collapse
Affiliation(s)
- Xiaoxu Wang
- A State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, No. 1299, Sansha Road, Qingdao, Shandong Province, 266235, China
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao, Shandong Province, 266003, China
| | - Yu Song
- A State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, No. 1299, Sansha Road, Qingdao, Shandong Province, 266235, China
| | - Peixu Cong
- A State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, No. 1299, Sansha Road, Qingdao, Shandong Province, 266235, China
| | - Zhigao Wang
- A State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, No. 1299, Sansha Road, Qingdao, Shandong Province, 266235, China
| | - Yanjun Liu
- A State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, No. 1299, Sansha Road, Qingdao, Shandong Province, 266235, China
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu Province, 214122, China
| | - Jie Xu
- A State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, No. 1299, Sansha Road, Qingdao, Shandong Province, 266235, China
| | - Changhu Xue
- A State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, No. 1299, Sansha Road, Qingdao, Shandong Province, 266235, China
- Qingdao Marine Science and Technology Center, Qingdao, Shandong Province, 266235, China
| |
Collapse
|
14
|
Burton CP, Chumin EJ, Collins AY, Persohn SA, Onos KD, Pandey RS, Quinney SK, Territo PR. Levetiracetam Modulates Brain Metabolic Networks and Transcriptomic Signatures in the 5XFAD Mouse Model of Alzheimer's disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.10.566574. [PMID: 38014102 PMCID: PMC10680636 DOI: 10.1101/2023.11.10.566574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
INTRODUCTION Subcritical epileptiform activity is associated with impaired cognitive function and is commonly seen in patients with Alzheimer's disease (AD). The anti-convulsant, levetiracetam (LEV), is currently being evaluated in clinical trials for its ability to reduce epileptiform activity and improve cognitive function in AD. The purpose of the current study was to apply pharmacokinetics (PK), network analysis of medical imaging, gene transcriptomics, and PK/PD modeling to a cohort of amyloidogenic mice to establish how LEV restores or drives alterations in the brain networks of mice in a dose-dependent basis using the rigorous preclinical pipeline of the MODEL-AD Preclinical Testing Core. METHODS Chronic LEV was administered to 5XFAD mice of both sexes for 3 months based on allometrically scaled clinical dose levels from PK models. Data collection and analysis consisted of a multi-modal approach utilizing 18F-FDG PET/MRI imaging and analysis, transcriptomic analyses, and PK/PD modeling. RESULTS Pharmacokinetics of LEV showed a sex and dose dependence in Cmax, CL/F, and AUC0-∞, with simulations used to estimate dose regimens. Chronic dosing at 10, 30, and 56 mg/kg, showed 18F-FDG specific regional differences in brain uptake, and in whole brain covariance measures such as clustering coefficient, degree, network density, and connection strength (i.e. positive and negative). In addition, transcriptomic analysis via nanoString showed dose-dependent changes in gene expression in pathways consistent 18F-FDG uptake and network changes, and PK/PD modeling showed a concentration dependence for key genes, but not for network covariance modeling. DISCUSSION This study represents the first report detailing the relationships of metabolic covariance and transcriptomic network changes resulting from LEV administration in 5XFAD mice. Overall, our results highlight non-linear kinetics based on dose and sex, where gene expression analysis demonstrated LEV dose- and concentration- dependent changes, along with cerebral metabolism, and/or cerebral homeostatic mechanisms relevant to human AD, which aligned closely with network covariance analysis of 18F-FDG images. Collectively, this study show cases the value of a multimodal connectomic, transcriptomic, and pharmacokinetic approach to further investigate dose dependent relationships in preclinical studies, with translational value towards informing clinical study design.
Collapse
Affiliation(s)
- Charles P. Burton
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis IN 46202 USA
| | - Evgeny J. Chumin
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis IN 46202 USA
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis IN 46202
| | - Alyssa Y. Collins
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis IN 46202 USA
| | - Scott A. Persohn
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis IN 46202 USA
| | | | - Ravi S. Pandey
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032
| | - Sara K. Quinney
- Department of Medicine, Division of Clinical Pharmacology, Indiana University School of Medicine, Indianapolis IN 46202 USA
| | - Paul R. Territo
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis IN 46202 USA
- Department of Medicine, Division of Clinical Pharmacology, Indiana University School of Medicine, Indianapolis IN 46202 USA
| |
Collapse
|
15
|
Wei X, Campagna JJ, Jagodzinska B, Wi D, Cohn W, Lee J, Zhu C, Huang CS, Molnár L, Houser CR, John V, Mody I. A therapeutic small molecule lead enhances γ-oscillations and improves cognition/memory in Alzheimer's disease model mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.04.569994. [PMID: 38106006 PMCID: PMC10723366 DOI: 10.1101/2023.12.04.569994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Brain rhythms provide the timing and concurrence of brain activity required for linking together neuronal ensembles engaged in specific tasks. In particular, the γ-oscillations (30-120 Hz) orchestrate neuronal circuits underlying cognitive processes and working memory. These oscillations are reduced in numerous neurological and psychiatric disorders, including early cognitive decline in Alzheimer's disease (AD). Here we report on a potent brain permeable small molecule, DDL-920 that increases γ-oscillations and improves cognition/memory in a mouse model of AD, thus showing promise as a new class of therapeutics for AD. As a first in CNS pharmacotherapy, our lead candidate acts as a potent, efficacious, and selective negative allosteric modulator (NAM) of the γ-aminobutyric acid type A receptors (GABA A Rs) assembled from α1β2δ subunits. We identified these receptors through anatomical and pharmacological means to mediate the tonic inhibition of parvalbumin (PV) expressing interneurons (PV+INs) critically involved in the generation of γ-oscillations. Our approach is unique as it is meant to enhance cognitive performance and working memory in a state-dependent manner by engaging and amplifying the brain's endogenous γ-oscillations through enhancing the function of PV+INs.
Collapse
|
16
|
Ciliento R, Gjini K, Dabbs K, Hermann B, Riedner B, Jones S, Fatima S, Johnson S, Bendlin B, Lam AD, Boly M, Struck AF. Prevalence and localization of nocturnal epileptiform discharges in mild cognitive impairment. Brain Commun 2023; 5:fcad302. [PMID: 37965047 PMCID: PMC10642616 DOI: 10.1093/braincomms/fcad302] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 09/18/2023] [Accepted: 11/06/2023] [Indexed: 11/16/2023] Open
Abstract
Recent evidence shows that identifying and treating epileptiform abnormalities in patients with Alzheimer's disease could represent a potential avenue to improve clinical outcome. Specifically, animal and human studies have revealed that in the early phase of Alzheimer's disease, there is an increased risk of seizures. It has also been demonstrated that the administration of anti-seizure medications can slow the functional progression of the disease only in patients with EEG signs of cortical hyperexcitability. In addition, although it is not known at what disease stage hyperexcitability emerges, there remains no consensus regarding the imaging and diagnostic methods best able to detect interictal events to further distinguish different phenotypes of Alzheimer's disease. In this exploratory work, we studied 13 subjects with amnestic mild cognitive impairment and 20 healthy controls using overnight high-density EEG with 256 channels. All participants also underwent MRI and neuropsychological assessment. Electronic source reconstruction was also used to better select and localize spikes. We found spikes in six of 13 (46%) amnestic mild cognitive impairment compared with two of 20 (10%) healthy control participants (P = 0.035), representing a spike prevalence similar to that detected in previous studies of patients with early-stage Alzheimer's disease. The interictal events were low-amplitude temporal spikes more prevalent during non-rapid eye movement sleep. No statistically significant differences were found in cognitive performance between amnestic mild cognitive impairment patients with and without spikes, but a trend in immediate and delayed memory was observed. Moreover, no imaging findings of cortical and subcortical atrophy were found between amnestic mild cognitive impairment participants with and without epileptiform spikes. In summary, our exploratory study shows that patients with amnestic mild cognitive impairment reveal EEG signs of hyperexcitability early in the disease course, while no other significant differences in neuropsychological or imaging features were observed among the subgroups. If confirmed with longitudinal data, these exploratory findings could represent one of the first signatures of a preclinical epileptiform phenotype of amnestic mild cognitive impairment and its progression.
Collapse
Affiliation(s)
- Rosario Ciliento
- Department of Neurology, University of Wisconsin-Madison, Madison, WI 53726, USA
| | - Klevest Gjini
- Department of Neurology, University of Wisconsin-Madison, Madison, WI 53726, USA
| | - Kevin Dabbs
- Department of Neurology, University of Wisconsin-Madison, Madison, WI 53726, USA
| | - Bruce Hermann
- Department of Neurology, University of Wisconsin-Madison, Madison, WI 53726, USA
| | - Brady Riedner
- Department of Psychiatry, University of Wisconsin-Madison, Madison, WI 53719, USA
| | - Stephanie Jones
- Department of Psychiatry, University of Wisconsin-Madison, Madison, WI 53719, USA
| | - Safoora Fatima
- Department of Neurology, University of Wisconsin-Madison, Madison, WI 53726, USA
| | - Sterling Johnson
- Department of Medicine, University of Wisconsin, Madison, WI 53705, USA
| | - Barbara Bendlin
- Department of Medicine, University of Wisconsin, Madison, WI 53705, USA
| | - Alice D Lam
- Department of Neurology, Harvard Medical School, Massachusetts General Hospital, Boston, MA 02115, USA
| | - Melanie Boly
- Department of Neurology, University of Wisconsin-Madison, Madison, WI 53726, USA
| | - Aaron F Struck
- Department of Neurology, University of Wisconsin-Madison, Madison, WI 53726, USA
- Department of Neurology, William S. Middleton Veterans Administration Hospital, Madison, WI 53705, USA
| |
Collapse
|
17
|
Moradi F, van den Berg M, Mirjebreili M, Kosten L, Verhoye M, Amiri M, Keliris GA. Early classification of Alzheimer's disease phenotype based on hippocampal electrophysiology in the TgF344-AD rat model. iScience 2023; 26:107454. [PMID: 37599835 PMCID: PMC10432721 DOI: 10.1016/j.isci.2023.107454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 04/27/2023] [Accepted: 07/19/2023] [Indexed: 08/22/2023] Open
Abstract
The hippocampus plays a vital role in navigation, learning, and memory, and is affected in Alzheimer's disease (AD). This study investigated the classification of AD-transgenic rats versus wild-type littermates using electrophysiological activity recorded from the hippocampus at an early, presymptomatic stage of the disease (6 months old) in the TgF344-AD rat model. The recorded signals were filtered into low frequency (LFP) and high frequency (spiking activity) signals, and machine learning classifiers were employed to identify the rat genotype (TG vs. WT). By analyzing specific frequency bands in the low frequency signals and calculating distance metrics between spike trains in the high frequency signals, accurate classification was achieved. Gamma band power emerged as a valuable signal for classification, and combining information from both low and high frequency signals improved the accuracy further. These findings provide valuable insights into the early stage effects of AD on different regions of the hippocampus.
Collapse
Affiliation(s)
- Faraz Moradi
- Faculty of Engineering, University of Ottawa, Ottawa, ON, Canada
| | - Monica van den Berg
- Bio-Imaging Lab, University of Antwerp, Antwerp, Belgium
- μNEURO Research Centre of Excellence, University of Antwerp, Antwerp, Belgium
| | | | - Lauren Kosten
- Bio-Imaging Lab, University of Antwerp, Antwerp, Belgium
- μNEURO Research Centre of Excellence, University of Antwerp, Antwerp, Belgium
| | - Marleen Verhoye
- Bio-Imaging Lab, University of Antwerp, Antwerp, Belgium
- μNEURO Research Centre of Excellence, University of Antwerp, Antwerp, Belgium
| | - Mahmood Amiri
- Medical Technology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Georgios A. Keliris
- Bio-Imaging Lab, University of Antwerp, Antwerp, Belgium
- μNEURO Research Centre of Excellence, University of Antwerp, Antwerp, Belgium
- Institute of Computer Science, Foundation for Research & Technology - Hellas, Heraklion, Crete, Greece
| |
Collapse
|
18
|
Baumgartner TJ, Haghighijoo Z, Goode NA, Dvorak NM, Arman P, Laezza F. Voltage-Gated Na + Channels in Alzheimer's Disease: Physiological Roles and Therapeutic Potential. Life (Basel) 2023; 13:1655. [PMID: 37629512 PMCID: PMC10455313 DOI: 10.3390/life13081655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/11/2023] [Accepted: 07/26/2023] [Indexed: 08/27/2023] Open
Abstract
Alzheimer's disease (AD) is the most common cause of dementia and is classically characterized by two major histopathological abnormalities: extracellular plaques composed of amyloid beta (Aβ) and intracellular hyperphosphorylated tau. Due to the progressive nature of the disease, it is of the utmost importance to develop disease-modifying therapeutics that tackle AD pathology in its early stages. Attenuation of hippocampal hyperactivity, one of the earliest neuronal abnormalities observed in AD brains, has emerged as a promising strategy to ameliorate cognitive deficits and abate the spread of neurotoxic species. This aberrant hyperactivity has been attributed in part to the dysfunction of voltage-gated Na+ (Nav) channels, which are central mediators of neuronal excitability. Therefore, targeting Nav channels is a promising strategy for developing disease-modifying therapeutics that can correct aberrant neuronal phenotypes in early-stage AD. This review will explore the role of Nav channels in neuronal function, their connections to AD pathology, and their potential as therapeutic targets.
Collapse
Affiliation(s)
| | | | | | | | | | - Fernanda Laezza
- Department of Pharmacology & Toxicology, The University of Texas Medical Branch, Galveston, TX 77555, USA; (T.J.B.); (Z.H.); (N.A.G.); (N.M.D.); (P.A.)
| |
Collapse
|
19
|
Yu SP, Jiang MQ, Shim SS, Pourkhodadad S, Wei L. Extrasynaptic NMDA receptors in acute and chronic excitotoxicity: implications for preventive treatments of ischemic stroke and late-onset Alzheimer's disease. Mol Neurodegener 2023; 18:43. [PMID: 37400870 DOI: 10.1186/s13024-023-00636-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 06/01/2023] [Indexed: 07/05/2023] Open
Abstract
Stroke and late-onset Alzheimer's disease (AD) are risk factors for each other; the comorbidity of these brain disorders in aging individuals represents a significant challenge in basic research and clinical practice. The similarities and differences between stroke and AD in terms of pathogenesis and pathophysiology, however, have rarely been comparably reviewed. Here, we discuss the research background and recent progresses that are important and informative for the comorbidity of stroke and late-onset AD and related dementia (ADRD). Glutamatergic NMDA receptor (NMDAR) activity and NMDAR-mediated Ca2+ influx are essential for neuronal function and cell survival. An ischemic insult, however, can cause rapid increases in glutamate concentration and excessive activation of NMDARs, leading to swift Ca2+ overload in neuronal cells and acute excitotoxicity within hours and days. On the other hand, mild upregulation of NMDAR activity, commonly seen in AD animal models and patients, is not immediately cytotoxic. Sustained NMDAR hyperactivity and Ca2+ dysregulation lasting from months to years, nevertheless, can be pathogenic for slowly evolving events, i.e. degenerative excitotoxicity, in the development of AD/ADRD. Specifically, Ca2+ influx mediated by extrasynaptic NMDARs (eNMDARs) and a downstream pathway mediated by transient receptor potential cation channel subfamily M member (TRPM) are primarily responsible for excitotoxicity. On the other hand, the NMDAR subunit GluN3A plays a "gatekeeper" role in NMDAR activity and a neuroprotective role against both acute and chronic excitotoxicity. Thus, ischemic stroke and AD share an NMDAR- and Ca2+-mediated pathogenic mechanism that provides a common receptor target for preventive and possibly disease-modifying therapies. Memantine (MEM) preferentially blocks eNMDARs and was approved by the Federal Drug Administration (FDA) for symptomatic treatment of moderate-to-severe AD with variable efficacy. According to the pathogenic role of eNMDARs, it is conceivable that MEM and other eNMDAR antagonists should be administered much earlier, preferably during the presymptomatic phases of AD/ADRD. This anti-AD treatment could simultaneously serve as a preconditioning strategy against stroke that attacks ≥ 50% of AD patients. Future research on the regulation of NMDARs, enduring control of eNMDARs, Ca2+ homeostasis, and downstream events will provide a promising opportunity to understand and treat the comorbidity of AD/ADRD and stroke.
Collapse
Affiliation(s)
- Shan P Yu
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA, 30322, USA.
- Center for Visual & Neurocognitive Rehabilitation, Atlanta VA Medical Center, Decatur, GA, 30033, USA.
| | - Michael Q Jiang
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA, 30322, USA
- Center for Visual & Neurocognitive Rehabilitation, Atlanta VA Medical Center, Decatur, GA, 30033, USA
| | - Seong S Shim
- Center for Visual & Neurocognitive Rehabilitation, Atlanta VA Medical Center, Decatur, GA, 30033, USA
| | - Soheila Pourkhodadad
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA, 30322, USA
- Center for Visual & Neurocognitive Rehabilitation, Atlanta VA Medical Center, Decatur, GA, 30033, USA
| | - Ling Wei
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA, 30322, USA.
| |
Collapse
|
20
|
King D, Holt K, Toombs J, HE X, Dando O, Okely JA, Tzioras M, Rose J, Gunn C, Correia A, Montero C, McAlister H, Tulloch J, Lamont D, Taylor AM, Harris SE, Redmond P, Cox SR, Henstridge CM, Deary IJ, Smith C, Spires‐Jones TL. Synaptic resilience is associated with maintained cognition during ageing. Alzheimers Dement 2023; 19:2560-2574. [PMID: 36547260 PMCID: PMC11497288 DOI: 10.1002/alz.12894] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 09/01/2022] [Accepted: 09/19/2022] [Indexed: 12/24/2022]
Abstract
INTRODUCTION It remains unclear why age increases risk of Alzheimer's disease and why some people experience age-related cognitive decline in the absence of dementia. Here we test the hypothesis that resilience to molecular changes in synapses contribute to healthy cognitive ageing. METHODS We examined post-mortem brain tissue from people in mid-life (n = 15), healthy ageing with either maintained cognition (n = 9) or lifetime cognitive decline (n = 8), and Alzheimer's disease (n = 13). Synapses were examined with high resolution imaging, proteomics, and RNA sequencing. Stem cell-derived neurons were challenged with Alzheimer's brain homogenate. RESULTS Synaptic pathology increased, and expression of genes involved in synaptic signaling decreased between mid-life, healthy ageing and Alzheimer's. In contrast, brain tissue and neurons from people with maintained cognition during ageing exhibited decreases in synaptic signaling genes compared to people with cognitive decline. DISCUSSION Efficient synaptic networks without pathological protein accumulation may contribute to maintained cognition during ageing.
Collapse
Affiliation(s)
- Declan King
- UK Dementia Research Institute and Centre for Discovery Brain Sciences at the University of EdinburghEdinburghUK
| | - Kris Holt
- UK Dementia Research Institute and Centre for Discovery Brain Sciences at the University of EdinburghEdinburghUK
| | - Jamie Toombs
- UK Dementia Research Institute and Centre for Discovery Brain Sciences at the University of EdinburghEdinburghUK
| | - Xin HE
- UK Dementia Research Institute and Centre for Discovery Brain Sciences at the University of EdinburghEdinburghUK
| | - Owen Dando
- UK Dementia Research Institute and Centre for Discovery Brain Sciences at the University of EdinburghEdinburghUK
| | - Judith A Okely
- Lothian Birth CohortsDepartment of PsychologyUniversity of EdinburghEdinburghUK
| | - Makis Tzioras
- UK Dementia Research Institute and Centre for Discovery Brain Sciences at the University of EdinburghEdinburghUK
| | - Jamie Rose
- UK Dementia Research Institute and Centre for Discovery Brain Sciences at the University of EdinburghEdinburghUK
| | - Ciaran Gunn
- UK Dementia Research Institute and Centre for Discovery Brain Sciences at the University of EdinburghEdinburghUK
| | - Adele Correia
- UK Dementia Research Institute and Centre for Discovery Brain Sciences at the University of EdinburghEdinburghUK
| | - Carmen Montero
- UK Dementia Research Institute and Centre for Discovery Brain Sciences at the University of EdinburghEdinburghUK
| | - Hannah McAlister
- UK Dementia Research Institute and Centre for Discovery Brain Sciences at the University of EdinburghEdinburghUK
| | - Jane Tulloch
- UK Dementia Research Institute and Centre for Discovery Brain Sciences at the University of EdinburghEdinburghUK
| | - Douglas Lamont
- FingerPrints Proteomics FacilitySchool of Life SciencesUniversity of DundeeDundeeUK
| | - Adele M Taylor
- Lothian Birth CohortsDepartment of PsychologyUniversity of EdinburghEdinburghUK
| | - Sarah E Harris
- Lothian Birth CohortsDepartment of PsychologyUniversity of EdinburghEdinburghUK
| | - Paul Redmond
- Lothian Birth CohortsDepartment of PsychologyUniversity of EdinburghEdinburghUK
| | - Simon R Cox
- Lothian Birth CohortsDepartment of PsychologyUniversity of EdinburghEdinburghUK
| | | | - Ian J Deary
- Lothian Birth CohortsDepartment of PsychologyUniversity of EdinburghEdinburghUK
| | - Colin Smith
- NeuropathologyCentre for Clinical Brain SciencesUniversity of EdinburghEdinburghUK
| | - Tara L Spires‐Jones
- UK Dementia Research Institute and Centre for Discovery Brain Sciences at the University of EdinburghEdinburghUK
| |
Collapse
|
21
|
Corniello C, Dono F, Evangelista G, Consoli S, De Angelis S, Cipollone S, Liviello D, Polito G, Melchiorre S, Russo M, Granzotto A, Anzellotti F, Onofrj M, Thomas A, Sensi SL. Diagnosis and treatment of late-onset myoclonic epilepsy in Down syndrome (LOMEDS): A systematic review with individual patients' data analysis. Seizure 2023; 109:62-67. [PMID: 37267668 DOI: 10.1016/j.seizure.2023.05.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 05/18/2023] [Accepted: 05/20/2023] [Indexed: 06/04/2023] Open
Abstract
INTRODUCTION The late onset myoclonic epilepsy in Down Syndrome (LOMEDS) is a peculiar epilepsy type characterized by cortical myoclonus and generalized tonic-clonic seizures (GTCS), in people suffering from cognitive decline in Down syndrome (DS). In this review, we analyzed available data on the diagnostic and therapeutic management of individuals with LOMEDS. METHODS We performed a systematic search of the literature to identify the diagnostic and therapeutic management of patients with LOMEDS. The following databases were used: PubMed, Google Scholar, EMBASE, CrossRef. The protocol was registered on PROSPERO (registration code: CRD42023390748). RESULTS Data from 46 patients were included. DS was diagnosed according to the patient's clinical and genetic characteristics. Diagnosis of Alzheimer's dementia (AD) preceded the onset of epilepsy in all cases. Both myoclonic seizures (MS) and generalized tonic-clonic seizures (GTCS) were reported, the latter preceding the onset of MS in 28 cases. EEG was performed in 45 patients, showing diffuse theta/delta slowing with superimposed generalized spike-and-wave or polyspike-and-wave. A diffuse cortical atrophy was detected in 34 patients on neuroimaging. Twenty-seven patients were treated with antiseizure medication (ASM) monotherapy, with reduced seizure frequency in 17 patients. Levetiracetam and valproic acid were the most used ASMs. Up to 41% of patients were unresponsive to first-line treatment and needed adjunctive therapy for seizure control. CONCLUSIONS AD-related pathological changes in the brain may play a role in LOMEDS onset, although the mechanism underlying this phenomenon is still unknown. EEG remains the most relevant investigation to be performed. A significant percentage of patients developed a first-line ASM refractory epilepsy. ASMs which modulate the glutamatergic system may represent a good therapeutic option.
Collapse
Affiliation(s)
- Clarissa Corniello
- Department of Neuroscience, Imaging and Clinical Science, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy; Epilepsy Center, "SS Annunziata" Hospital, Chieti, Italy
| | - Fedele Dono
- Department of Neuroscience, Imaging and Clinical Science, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy; Epilepsy Center, "SS Annunziata" Hospital, Chieti, Italy; Behavioral Neurology and Molecular Neurology Units, Center for Advanced Studies and Technology - CAST, University "G. d'Annunzio" of Chieti-Pescara, Italy.
| | - Giacomo Evangelista
- Department of Neuroscience, Imaging and Clinical Science, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy; Epilepsy Center, "SS Annunziata" Hospital, Chieti, Italy; Behavioral Neurology and Molecular Neurology Units, Center for Advanced Studies and Technology - CAST, University "G. d'Annunzio" of Chieti-Pescara, Italy
| | - Stefano Consoli
- Department of Neuroscience, Imaging and Clinical Science, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy; Epilepsy Center, "SS Annunziata" Hospital, Chieti, Italy; Behavioral Neurology and Molecular Neurology Units, Center for Advanced Studies and Technology - CAST, University "G. d'Annunzio" of Chieti-Pescara, Italy
| | - Sibilla De Angelis
- Department of Neuroscience, Imaging and Clinical Science, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy; Epilepsy Center, "SS Annunziata" Hospital, Chieti, Italy
| | - Sara Cipollone
- Department of Neuroscience, Imaging and Clinical Science, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy; Epilepsy Center, "SS Annunziata" Hospital, Chieti, Italy
| | - Davide Liviello
- Department of Neuroscience, Imaging and Clinical Science, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy; Epilepsy Center, "SS Annunziata" Hospital, Chieti, Italy
| | - Gaetano Polito
- Department of Neuroscience, Imaging and Clinical Science, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Sara Melchiorre
- Department of Neuroscience, Imaging and Clinical Science, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Mirella Russo
- Department of Neuroscience, Imaging and Clinical Science, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy; Behavioral Neurology and Molecular Neurology Units, Center for Advanced Studies and Technology - CAST, University "G. d'Annunzio" of Chieti-Pescara, Italy
| | - Alberto Granzotto
- Department of Neuroscience, Imaging and Clinical Science, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy; Behavioral Neurology and Molecular Neurology Units, Center for Advanced Studies and Technology - CAST, University "G. d'Annunzio" of Chieti-Pescara, Italy
| | | | - Marco Onofrj
- Department of Neuroscience, Imaging and Clinical Science, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy; Behavioral Neurology and Molecular Neurology Units, Center for Advanced Studies and Technology - CAST, University "G. d'Annunzio" of Chieti-Pescara, Italy
| | - Astrid Thomas
- Department of Neuroscience, Imaging and Clinical Science, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy; Behavioral Neurology and Molecular Neurology Units, Center for Advanced Studies and Technology - CAST, University "G. d'Annunzio" of Chieti-Pescara, Italy
| | - Stefano L Sensi
- Department of Neuroscience, Imaging and Clinical Science, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy; Behavioral Neurology and Molecular Neurology Units, Center for Advanced Studies and Technology - CAST, University "G. d'Annunzio" of Chieti-Pescara, Italy; Institute for Advanced Biomedical Technologies, University of Chieti-Pescara, Chieti, Italy
| |
Collapse
|
22
|
Hosseinzadeh Sahafi O, Sardari M, Alijanpour S, Rezayof A. Shared Mechanisms of GABAergic and Opioidergic Transmission Regulate Corticolimbic Reward Systems and Cognitive Aspects of Motivational Behaviors. Brain Sci 2023; 13:brainsci13050815. [PMID: 37239287 DOI: 10.3390/brainsci13050815] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/12/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
The functional interplay between the corticolimbic GABAergic and opioidergic systems plays a crucial role in regulating the reward system and cognitive aspects of motivational behaviors leading to the development of addictive behaviors and disorders. This review provides a summary of the shared mechanisms of GABAergic and opioidergic transmission, which modulate the activity of dopaminergic neurons located in the ventral tegmental area (VTA), the central hub of the reward mechanisms. This review comprehensively covers the neuroanatomical and neurobiological aspects of corticolimbic inhibitory neurons that express opioid receptors, which act as modulators of corticolimbic GABAergic transmission. The presence of opioid and GABA receptors on the same neurons allows for the modulation of the activity of dopaminergic neurons in the ventral tegmental area, which plays a key role in the reward mechanisms of the brain. This colocalization of receptors and their immunochemical markers can provide a comprehensive understanding for clinicians and researchers, revealing the neuronal circuits that contribute to the reward system. Moreover, this review highlights the importance of GABAergic transmission-induced neuroplasticity under the modulation of opioid receptors. It discusses their interactive role in reinforcement learning, network oscillation, aversive behaviors, and local feedback or feedforward inhibitions in reward mechanisms. Understanding the shared mechanisms of these systems may lead to the development of new therapeutic approaches for addiction, reward-related disorders, and drug-induced cognitive impairment.
Collapse
Affiliation(s)
- Oveis Hosseinzadeh Sahafi
- Department of Animal Biology, School of Biology, College of Science, University of Tehran, Tehran 14155-6465, Iran
- Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Maryam Sardari
- Department of Animal Biology, School of Biology, College of Science, University of Tehran, Tehran 14155-6465, Iran
| | - Sakineh Alijanpour
- Department of Biology, Faculty of Science, Gonbad Kavous University, Gonbad Kavous 4971799151, Iran
| | - Ameneh Rezayof
- Department of Animal Biology, School of Biology, College of Science, University of Tehran, Tehran 14155-6465, Iran
| |
Collapse
|
23
|
Rizzello E, Pimpinella D, Pignataro A, Titta G, Merenda E, Saviana M, Porcheddu G, Paolantoni C, Malerba F, Giorgi C, Curia G, Middei S, Marchetti C. Lamotrigine rescues neuronal alterations and prevents seizure-induced memory decline in an Alzheimer's disease mouse model. Neurobiol Dis 2023; 181:106106. [PMID: 37001613 DOI: 10.1016/j.nbd.2023.106106] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/17/2023] [Accepted: 03/25/2023] [Indexed: 03/31/2023] Open
Abstract
Epilepsy is a comorbidity associated with Alzheimer's disease (AD), often starting many years earlier than memory decline. Investigating this association in the early pre-symptomatic stages of AD can unveil new mechanisms of the pathology as well as guide the use of antiepileptic drugs to prevent or delay hyperexcitability-related pathological effects of AD. We investigated the impact of repeated seizures on hippocampal memory and amyloid-β (Aβ) load in pre-symptomatic Tg2576 mice, a transgenic model of AD. Seizure induction caused memory deficits and an increase in oligomeric Aβ42 and fibrillary species selectively in pre-symptomatic transgenic mice, and not in their wildtype littermates. Electrophysiological patch-clamp recordings in ex vivo CA1 pyramidal neurons and immunoblots were carried out to investigate the neuronal alterations associated with the behavioral outcomes of Tg2576 mice. CA1 pyramidal neurons exhibited increased intrinsic excitability and lower hyperpolarization-activated Ih current. CA1 also displayed lower expression of the hyperpolarization-activated cyclic nucleotide-gated HCN1 subunit, a protein already identified as downregulated in the AD human proteome. The antiepileptic drug lamotrigine restored electrophysiological alterations and prevented both memory deficits and the increase in extracellular Aβ induced by seizures. Thus our study provides evidence of pre-symptomatic hippocampal neuronal alterations leading to hyperexcitability and associated with both higher susceptibility to seizures and to AD-specific seizure-induced memory impairment. Our findings also provide a basis for the use of the antiepileptic drug lamotrigine as a way to counteract acceleration of AD induced by seizures in the early phases of the pathology.
Collapse
|
24
|
Lehmann DJ, Elshorbagy A, Hurley MJ. Many Paths to Alzheimer's Disease: A Unifying Hypothesis Integrating Biological, Chemical, and Physical Risk Factors. J Alzheimers Dis 2023; 95:1371-1382. [PMID: 37694367 DOI: 10.3233/jad-230295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Sporadic Alzheimer's disease (AD) is a complex, multifactorial disease. We should therefore expect to find many factors involved in its causation. The known neuropathology seen at autopsy in patients dying with AD is not consistently seen in all patients with AD and is sometimes seen in patients without dementia. This suggests that patients follow different paths to AD, with different people having slightly different combinations of predisposing physical, chemical and biologic risk factors, and varying neuropathology. This review summarizes what is known of the biologic and chemical predisposing factors and features in AD. We postulate that, underlying the neuropathology of AD is a progressive failure of neurons, with advancing age or other morbidity, to rid themselves of entropy, i.e., the disordered state resulting from brain metabolism. Understanding the diverse causes of AD may allow the development of new therapies targeted at blocking the paths that lead to dementia in each subset of patients.
Collapse
Affiliation(s)
- Donald J Lehmann
- Oxford Project to Investigate Memory and Ageing (OPTIMA), Department of Pharmacology, University of Oxford, Oxford, UK
| | - Amany Elshorbagy
- Department of Pharmacology, University of Oxford, Oxford, UK
- Department of Physiology, Faculty of Medicine, University of Alexandria, Alexandria, Egypt
| | - Michael J Hurley
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
| |
Collapse
|
25
|
Is non-invasive brain stimulation effective for cognitive enhancement in Alzheimer's disease? An updated meta-analysis. Clin Neurophysiol 2022; 144:23-40. [PMID: 36215904 DOI: 10.1016/j.clinph.2022.09.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 08/30/2022] [Accepted: 09/18/2022] [Indexed: 11/23/2022]
Abstract
OBJECTIVE Alzheimer's disease dementia (AD) and its preclinical stage, mild cognitive impairment (MCI), are critical issues confronting the aging society. Non-invasive brain stimulation (NIBS) techniques have the potential to be effective tools for enhancing cognitive functioning. The main objective of our meta-analysis was to quantify and update the status of the efficacy of repetitive Transcranial Magnetic Stimulation (rTMS) and Transcranial Direct Current Stimulation (tDCS) when applied in AD and MCI. METHODS The systematic literature search was conducted in PubMed and Web of Science according to PRISMA statement. RESULTS Pooled effect sizes (Hedges' g) from 32 studies were analyzed using random effect models. We found both, rTMS and tDCS to have significant immediate cognition-enhancing effect in AD with rTMS inducing also beneficial long-term effects. We found no evidence for synergistic effect of cognitive training with NIBS. CONCLUSIONS In AD a clinical recommendation can be made for NEURO-ADTM system and for high-frequency rTMS over the left dorsolateral prefrontal cortex (DLPFC) as probably effective protocols (B-level of evidence) and for anodal tDCS over the left DLPFC as a possibly effective. SIGNIFICANCE According to scientific literature, NIBS may be an effective method for improving cognition in AD and possibly in MCI.
Collapse
|
26
|
van Nifterick AM, Gouw AA, van Kesteren RE, Scheltens P, Stam CJ, de Haan W. A multiscale brain network model links Alzheimer’s disease-mediated neuronal hyperactivity to large-scale oscillatory slowing. Alzheimers Res Ther 2022; 14:101. [PMID: 35879779 PMCID: PMC9310500 DOI: 10.1186/s13195-022-01041-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 07/02/2022] [Indexed: 01/30/2023]
Abstract
Background Neuronal hyperexcitability and inhibitory interneuron dysfunction are frequently observed in preclinical animal models of Alzheimer’s disease (AD). This study investigates whether these microscale abnormalities explain characteristic large-scale magnetoencephalography (MEG) activity in human early-stage AD patients. Methods To simulate spontaneous electrophysiological activity, we used a whole-brain computational network model comprised of 78 neural masses coupled according to human structural brain topology. We modified relevant model parameters to simulate six literature-based cellular scenarios of AD and compare them to one healthy and six contrast (non-AD-like) scenarios. The parameters include excitability, postsynaptic potentials, and coupling strength of excitatory and inhibitory neuronal populations. Whole-brain spike density and spectral power analyses of the simulated data reveal mechanisms of neuronal hyperactivity that lead to oscillatory changes similar to those observed in MEG data of 18 human prodromal AD patients compared to 18 age-matched subjects with subjective cognitive decline. Results All but one of the AD-like scenarios showed higher spike density levels, and all but one of these scenarios had a lower peak frequency, higher spectral power in slower (theta, 4–8Hz) frequencies, and greater total power. Non-AD-like scenarios showed opposite patterns mainly, including reduced spike density and faster oscillatory activity. Human AD patients showed oscillatory slowing (i.e., higher relative power in the theta band mainly), a trend for lower peak frequency and higher total power compared to controls. Combining model and human data, the findings indicate that neuronal hyperactivity can lead to oscillatory slowing, likely due to hyperexcitation (by hyperexcitability of pyramidal neurons or greater long-range excitatory coupling) and/or disinhibition (by reduced excitability of inhibitory interneurons or weaker local inhibitory coupling strength) in early AD. Conclusions Using a computational brain network model, we link findings from different scales and models and support the hypothesis of early-stage neuronal hyperactivity underlying E/I imbalance and whole-brain network dysfunction in prodromal AD. Supplementary Information The online version contains supplementary material available at 10.1186/s13195-022-01041-4.
Collapse
|
27
|
Spatial Memory Training Counteracts Hippocampal GIRK Channel Decrease in the Transgenic APPSw,Ind J9 Alzheimer’s Disease Mouse Model. Int J Mol Sci 2022; 23:ijms232113444. [PMID: 36362230 PMCID: PMC9659077 DOI: 10.3390/ijms232113444] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 10/21/2022] [Accepted: 11/01/2022] [Indexed: 11/06/2022] Open
Abstract
G-protein-gated inwardly rectifying potassium (GIRK) channels are critical determinants of neuronal excitability. They have been proposed as potential targets to restore excitatory/inhibitory balance in acute amyloidosis models, where hyperexcitability is a hallmark. However, the role of GIRK signaling in transgenic mice models of Alzheimer’s disease (AD) is largely unknown. Here, we study whether progressive amyloid-β (Aβ) accumulation in the hippocampus during aging alters GIRK channel expression in mutant β-amyloid precursor protein (APPSw,Ind J9) transgenic AD mice. Additionally, we examine the impact of spatial memory training in a hippocampal-dependent task, on protein expression of GIRK subunits and Regulator of G-protein signaling 7 (RGS7) in the hippocampus of APPSw,Ind J9 mice. Firstly, we found a reduction in GIRK2 expression (the main neuronal GIRK channels subunit) in the hippocampus of 6-month-old APPSw,Ind J9 mice. Moreover, we found an aging effect on GIRK2 and GIRK3 subunits in both wild type (WT) and APPSw,Ind J9 mice. Finally, when 6-month-old animals were challenged to a spatial memory training, GIRK2 expression in the APPSw,Ind J9 mice were normalized to WT levels. Together, our results support the evidence that GIRK2 could account for the excitatory/inhibitory neurotransmission imbalance found in AD models, and training in a cognitive hippocampal dependent task may have therapeutic benefits of reversing this effect and lessen early AD deficits.
Collapse
|
28
|
Yener G, Öz D. Innovations in Neurophysiology and Their Use in Neuropsychiatry. Noro Psikiyatr Ars 2022; 59:S67-S74. [PMID: 36578987 PMCID: PMC9767126 DOI: 10.29399/npa.28234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 07/31/2022] [Indexed: 12/31/2022] Open
Abstract
Many structural and functional tests are used to explore the nature of neurodevelopmental and neurodegenerative diseases. Cognitive involvement has become more and more remarkable in many neurological and psychiatric diseases. This condition evoked a paradigm shift, and today disorders are addressed from a neuroscientific perspective, including silent symptoms. The spatial resolution of structural studies is lacking and is combined with the unique temporal resolution of EEG methods. In our current clinical practice, EEG does not have definitive diagnostic value in psychiatric disorders, but it helps to make a correct diagnosis by excluding other neurological diseases. However, the use of EEG for research purposes is promising in both groups. In this review; there is up-to-date information on the use of electrophysiological examinations in neurological diseases, especially Alzheimer's disease, Parkinson's disease, Frontotemporal dementia, and psychiatric disorders such as schizophrenia, mood disorders, attention deficit and hyperactivity disorder, and obsessive-compulsive disorder, to define the point we have reached in our journey to understand these disorders.
Collapse
Affiliation(s)
- Görsev Yener
- İzmir University of Economics, Faculty of Medicine, Department of Neurology, İzmir, Turkey,İzmir Biomedicine and Genom Center, İzmir, Turkey,Dokuz Eylül University Brain Dynamics Multidisciplinary Research Center, İzmir, Turkey
| | - Didem Öz
- Dokuz Eylül University Brain Dynamics Multidisciplinary Research Center, İzmir, Turkey,Dokuz Eylül University Hospital, Department of Neurology, İzmir, Turkey,Dokuz Eylül University, Medical Science Faculty, Neuroscience Department, İzmir, Turkey,Global Brain Health Institute, San Francisco, USA,Correspondence Address: Didem Öz, Dokuz Eylül Üniversitesi, Tıp Fakültesi, Nöroloji Anabilim Dalı, 15 Temmuz Sağlık ve Sanat Yerleşkesi, İnciraltı 35340, İzmir, Turkey • E-mail:
| |
Collapse
|
29
|
Jin R, Chan AKY, Wu J, Lee TMC. Relationships between Inflammation and Age-Related Neurocognitive Changes. Int J Mol Sci 2022; 23:12573. [PMID: 36293430 PMCID: PMC9604276 DOI: 10.3390/ijms232012573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/28/2022] [Accepted: 07/29/2022] [Indexed: 11/18/2022] Open
Abstract
The relationship between inflammation and age-related neurocognitive changes is significant, which may relate to the age-related immune dysfunctions characterized by the senescence of immune cells and elevated inflammatory markers in the peripheral circulation and the central nervous system. In this review, we discuss the potential mechanisms, including the development of vascular inflammation, neuroinflammation, organelle dysfunctions, abnormal cholesterol metabolism, and glymphatic dysfunctions as well as the role that the key molecules play in the immune-cognition interplay. We propose potential therapeutic pharmacological and behavioral strategies for ameliorating age-related neurocognitive changes associated with inflammation. Further research to decipher the multidimensional roles of chronic inflammation in normal and pathological aging processes will help unfold the pathophysiological mechanisms underpinning neurocognitive disorders. The insight gained will lay the path for developing cost-effective preventative measures and the buffering or delaying of age-related neurocognitive decline.
Collapse
Affiliation(s)
- Run Jin
- State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong 999077, China
- Laboratory of Neuropsychology and Human Neuroscience, The University of Hong Kong, Hong Kong 999077, China
| | - Aidan Kai Yeung Chan
- State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong 999077, China
- Faculty of Medicine, The University of Hong Kong, Hong Kong 999077, China
| | - Jingsong Wu
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350108, China
| | - Tatia Mei Chun Lee
- State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong 999077, China
- Laboratory of Neuropsychology and Human Neuroscience, The University of Hong Kong, Hong Kong 999077, China
| |
Collapse
|
30
|
Purushotham M, Tashrifwala F, Jena R, Vudugula SA, Patil RS, Agrawal A. The Association Between Alzheimer's Disease and Epilepsy: A Narrative Review. Cureus 2022; 14:e30195. [DOI: 10.7759/cureus.30195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/11/2022] [Indexed: 11/07/2022] Open
|
31
|
Deng Y, Bi M, Delerue F, Forrest SL, Chan G, van der Hoven J, van Hummel A, Feiten AF, Lee S, Martinez-Valbuena I, Karl T, Kovacs GG, Morahan G, Ke YD, Ittner LM. Loss of LAMP5 interneurons drives neuronal network dysfunction in Alzheimer's disease. Acta Neuropathol 2022; 144:637-650. [PMID: 35780436 PMCID: PMC9467963 DOI: 10.1007/s00401-022-02457-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 05/30/2022] [Accepted: 06/21/2022] [Indexed: 01/28/2023]
Abstract
In Alzheimer's disease (AD), where amyloid-β (Aβ) and tau deposits in the brain, hyperexcitation of neuronal networks is an underlying disease mechanism, but its cause remains unclear. Here, we used the Collaborative Cross (CC) forward genetics mouse platform to identify modifier genes of neuronal hyperexcitation. We found LAMP5 as a novel regulator of hyperexcitation in mice, critical for the survival of distinct interneuron populations. Interestingly, synaptic LAMP5 was lost in AD brains and LAMP5 interneurons degenerated in different AD mouse models. Genetic reduction of LAMP5 augmented functional deficits and neuronal network hypersynchronicity in both Aβ- and tau-driven AD mouse models. To this end, our work defines the first specific function of LAMP5 interneurons in neuronal network hyperexcitation in AD and dementia with tau pathology.
Collapse
Affiliation(s)
- Yuanyuan Deng
- Dementia Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Mian Bi
- Dementia Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Fabien Delerue
- Dementia Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Shelley L Forrest
- Dementia Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Gabriella Chan
- Dementia Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Julia van der Hoven
- Dementia Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Annika van Hummel
- Dementia Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Astrid F Feiten
- Dementia Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Seojin Lee
- Tanz Centre for Research in Neurodegenerative Disease, University of Toronto, Toronto, ON, M5S 1A1, Canada
| | - Ivan Martinez-Valbuena
- Tanz Centre for Research in Neurodegenerative Disease, University of Toronto, Toronto, ON, M5S 1A1, Canada
| | - Tim Karl
- School of Medicine, Western Sydney University, Sydney, NSW, 2560, Australia
| | - Gabor G Kovacs
- Tanz Centre for Research in Neurodegenerative Disease, University of Toronto, Toronto, ON, M5S 1A1, Canada
- Department of Laboratory Medicine and Pathobiology and Department of Medicine, University of Toronto, Toronto, ON, M5S 1A8, Canada
- Laboratory Medicine Program and Krembil Brain Institute, University Health Network, Toronto, ON, M5S 2S1, Canada
| | - Grant Morahan
- Centre for Diabetes Research, Harry Perkins Institute of Medical Research, Perth, WA, 6150, Australia
| | - Yazi D Ke
- Dementia Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Lars M Ittner
- Dementia Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, 2109, Australia.
| |
Collapse
|
32
|
Epilepsy in Older Persons. Neurol Clin 2022; 40:891-905. [DOI: 10.1016/j.ncl.2022.03.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
33
|
Onos KD, Quinney SK, Jones DR, Masters AR, Pandey R, Keezer KJ, Biesdorf C, Metzger IF, Meyers JA, Peters J, Persohn SC, McCarthy BP, Bedwell AA, Figueiredo LL, Cope ZA, Sasner M, Howell GR, Williams HM, Oblak AL, Lamb BT, Carter GW, Rizzo SJS, Territo PR. Pharmacokinetic, pharmacodynamic, and transcriptomic analysis of chronic levetiracetam treatment in 5XFAD mice: A MODEL-AD preclinical testing core study. ALZHEIMER'S & DEMENTIA (NEW YORK, N. Y.) 2022; 8:e12329. [PMID: 36016830 PMCID: PMC9398229 DOI: 10.1002/trc2.12329] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 04/06/2022] [Accepted: 06/01/2022] [Indexed: 11/08/2022]
Abstract
Introduction Hyperexcitability and epileptiform activity are commonplace in Alzheimer's disease (AD) patients and associated with impaired cognitive function. The anti-seizure drug levetiracetam (LEV) is currently being evaluated in clinical trials for ability to reduce epileptiform activity and improve cognitive function in AD. The purpose of our studies was to establish a pharmacokinetic/pharmacodynamic (PK/PD) relationship with LEV in an amyloidogenic mouse model of AD to enable predictive preclinical to clinical translation, using the rigorous preclinical testing pipeline of the Model Organism Development and Evaluation for Late-Onset Alzheimer's Disease Preclinical Testing Core. Methods A multi-tier approach was applied that included quality assurance and quality control of the active pharmaceutical ingredient, PK/PD modeling, positron emission tomography/magnetic resonance imaging (PET/MRI), functional outcomes, and transcriptomics. 5XFAD mice were treated chronically with LEV for 3 months at doses in line with those allometrically scaled to the clinical dose range. Results Pharmacokinetics of LEV demonstrated sex differences in Cmax, AUC0-∞, and CL/F, and a dose dependence in AUC0-∞. After chronic dosing at 10, 30, 56 mg/kg, PET/MRI tracer 18F-AV45, and 18F-fluorodeoxyglucose (18F-FDG) showed specific regional differences with treatment. LEV did not significantly improve cognitive outcomes. Transcriptomics performed by nanoString demonstrated drug- and dose-related changes in gene expression relevant to human brain regions and pathways congruent with changes in 18F-FDG uptake. Discussion This study represents the first report of PK/PD assessment of LEV in 5XFAD mice. Overall, these results highlighted non-linear kinetics based on dose and sex. Plasma concentrations of the 10 mg/kg dose in 5XFAD overlapped with human plasma concentrations used for studies of mild cognitive impairment, while the 30 and 56 mg/kg doses were reflective of doses used to treat seizure activity. Post-treatment gene expression analysis demonstrated LEV dose-related changes in immune function and neuronal-signaling pathways relevant to human AD, and aligned with regional 18F-FDG uptake. Overall, this study highlights the importance of PK/PD relationships in preclinical studies to inform clinical study design. Highlights Significant sex differences in pharmacokinetics of levetiracetam were observed in 5XFAD mice.Plasma concentrations of 10 mg/kg levetiracetam dose in 5XFAD overlapped with human plasma concentration used in the clinic.Drug- and dose-related differences in gene expression relevant to human brain regions and pathways were also similar to brain region-specific changes in 18F-fluorodeoxyglucose uptake.
Collapse
Affiliation(s)
| | | | - David R. Jones
- Indiana University School of MedicineIndianapolisIndianaUSA
| | | | | | | | - Carla Biesdorf
- Indiana University School of MedicineIndianapolisIndianaUSA
| | | | - Jill A. Meyers
- Indiana University School of MedicineIndianapolisIndianaUSA
| | | | | | | | | | | | | | | | | | | | | | - Bruce T. Lamb
- Indiana University School of MedicineIndianapolisIndianaUSA
| | | | | | | |
Collapse
|
34
|
Synaptic Effects of Palmitoylethanolamide in Neurodegenerative Disorders. Biomolecules 2022; 12:biom12081161. [PMID: 36009055 PMCID: PMC9405819 DOI: 10.3390/biom12081161] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 08/03/2022] [Accepted: 08/06/2022] [Indexed: 02/06/2023] Open
Abstract
Increasing evidence strongly supports the key role of neuroinflammation in the pathophysiology of neurodegenerative diseases, such as Alzheimer’s disease, frontotemporal dementia, and amyotrophic lateral sclerosis. Neuroinflammation may alter synaptic transmission contributing to the progression of neurodegeneration, as largely documented in animal models and in patients’ studies. In the last few years, palmitoylethanolamide (PEA), an endogenous lipid mediator, and its new composite, which is a formulation constituted of PEA and the well-recognized antioxidant flavonoid luteolin (Lut) subjected to an ultra-micronization process (co-ultraPEALut), has been identified as a potential therapeutic agent in different disorders by exerting potential beneficial effects on neurodegeneration and neuroinflammation by modulating synaptic transmission. In this review, we will show the potential therapeutic effects of PEA in animal models and in patients affected by neurodegenerative disorders.
Collapse
|
35
|
Taipala E, Pfitzer JC, Hellums M, Reed MN, Gramlich MW. rTg(TauP301L)4510 mice exhibit increased VGlut1 in hippocampal presynaptic glutamatergic vesicles and increased extracellular glutamate release. Front Synaptic Neurosci 2022; 14:925546. [PMID: 35989711 PMCID: PMC9383415 DOI: 10.3389/fnsyn.2022.925546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 07/01/2022] [Indexed: 11/13/2022] Open
Abstract
The molecular pathways that contribute to the onset of symptoms in tauopathy models, including Alzheimer’s disease (AD), are difficult to distinguish because multiple changes can happen simultaneously at different stages of disease progression. Understanding early synaptic alterations and their supporting molecular pathways is essential to develop better pharmacological targets to treat AD. Here, we focus on an early onset rTg(TauP301L)4510 tauopathy mouse model that exhibits hyperexcitability in hippocampal neurons of adult mice that is correlated with presynaptic changes and increased extracellular glutamate levels. However, it is not clear if increased extracellular glutamate is caused by presynaptic changes alone, or if presynaptic changes are a contributing factor among other factors. To determine whether pathogenic tau alters presynaptic function and glutamate release, we studied cultured hippocampal neurons at 14–18 days in vitro (DIV) from animals of both sexes to measure presynaptic changes in tauP301L positive mice. We observed that presynaptic vesicles exhibit increased vesicular glutamate transporter 1 (VGlut1) using immunohistochemistry of fixed cells and an established pH-sensitive green fluorescent protein approach. We show that tauP301L positive neurons exhibit a 40% increase in VGlut1 per vesicle compared to tauP301L negative littermates. Further, we use the extracellular glutamate reporter iGluSnFR to show that increased VGlut1 per vesicle directly translates into a 40% increase in extracellular glutamate. Together, these results show that increased extracellular glutamate levels observed in tauP301L mice are not caused by increased vesicle exocytosis probability but rather are directly related to increased VGlut1 transporters per synaptic vesicle.
Collapse
Affiliation(s)
- Erika Taipala
- Department of Physics, Auburn University, Auburn, AL, United States
| | | | - Morgan Hellums
- Department of Physics, Auburn University, Auburn, AL, United States
| | - Miranda N. Reed
- Harrison School of Pharmacy, Auburn University, Auburn, AL, United States
| | - Michael W. Gramlich
- Department of Physics, Auburn University, Auburn, AL, United States
- *Correspondence: Michael W. Gramlich,
| |
Collapse
|
36
|
Husain M. Molecular pathology and biomarker of progression in Alzheimer's disease. Brain 2022; 145:2229-2230. [PMID: 35905467 DOI: 10.1093/brain/awac209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
37
|
Tok S, Maurin H, Delay C, Crauwels D, Manyakov NV, Van Der Elst W, Moechars D, Drinkenburg WHIM. Pathological and neurophysiological outcomes of seeding human-derived tau pathology in the APP-KI NL-G-F and NL-NL mouse models of Alzheimer's Disease. Acta Neuropathol Commun 2022; 10:92. [PMID: 35739575 PMCID: PMC9219251 DOI: 10.1186/s40478-022-01393-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 06/07/2022] [Indexed: 12/02/2022] Open
Abstract
The two main histopathological hallmarks that characterize Alzheimer’s Disease are the presence of amyloid plaques and neurofibrillary tangles. One of the current approaches to studying the consequences of amyloid pathology relies on the usage of transgenic animal models that incorporate the mutant humanized form of the amyloid precursor protein (hAPP), with animal models progressively developing amyloid pathology as they age. However, these mice models generally overexpress the hAPP protein to facilitate the development of amyloid pathology, which has been suggested to elicit pathological and neuropathological changes unrelated to amyloid pathology. In this current study, we characterized APP knock-in (APP-KI) animals, that do not overexpress hAPP but still develop amyloid pathology to understand the influence of protein overexpression. We also induced tau pathology via human-derived tau seeding material to understand the neurophysiological effects of amyloid and tau pathology. We report that tau-seeded APP-KI animals progressively develop tau pathology, exacerbated by the presence of amyloid pathology. Interestingly, older amyloid-bearing, tau-seeded animals exhibited more amyloid pathology in the entorhinal area, isocortex and hippocampus, but not thalamus, which appeared to correlate with impairments in gamma oscillations before seeding. Tau-seeded animals also featured immediate deficits in power spectra values and phase-amplitude indices in the hippocampus after seeding, with gamma power spectra deficits persisting in younger animals. Both deficits in hippocampal phase-amplitude coupling and gamma power differentiate tau-seeded, amyloid-positive animals from buffer controls. Based on our results, impairments in gamma oscillations appear to be strongly associated with the presence and development of amyloid and tau pathology, and may also be an indicator of neuropathology, network dysfunction, and even potential disposition to the future development of amyloid pathology.
Collapse
Affiliation(s)
- S Tok
- Department of Neuroscience, Janssen Research and Development, Janssen Pharmaceutica NV, Turnhoutseweg 30, 2340, Beerse, Belgium.,Groningen Institute for Evolutionary Life Sciences, Faculty of Science and Engineering, University of Groningen, Groningen, The Netherlands
| | - H Maurin
- Department of Neuroscience, Janssen Research and Development, Janssen Pharmaceutica NV, Turnhoutseweg 30, 2340, Beerse, Belgium
| | - C Delay
- Department of Neuroscience, Janssen Research and Development, Janssen Pharmaceutica NV, Turnhoutseweg 30, 2340, Beerse, Belgium
| | - D Crauwels
- Department of Neuroscience, Janssen Research and Development, Janssen Pharmaceutica NV, Turnhoutseweg 30, 2340, Beerse, Belgium
| | - N V Manyakov
- Data Sciences, Janssen Research and Development, Janssen Pharmaceutica NV, Turnhoutseweg 30, 2340, Beerse, Belgium
| | - W Van Der Elst
- Quantitative Sciences Janssen Research and Development, Janssen Pharmaceutica NV, Turnhoutseweg 30, 2340, Beerse, Belgium
| | - D Moechars
- Department of Neuroscience, Janssen Research and Development, Janssen Pharmaceutica NV, Turnhoutseweg 30, 2340, Beerse, Belgium
| | - W H I M Drinkenburg
- Department of Neuroscience, Janssen Research and Development, Janssen Pharmaceutica NV, Turnhoutseweg 30, 2340, Beerse, Belgium. .,Groningen Institute for Evolutionary Life Sciences, Faculty of Science and Engineering, University of Groningen, Groningen, The Netherlands.
| |
Collapse
|
38
|
Chou YH, Sundman M, Ton That V, Green J, Trapani C. Cortical excitability and plasticity in Alzheimer's disease and mild cognitive impairment: A systematic review and meta-analysis of transcranial magnetic stimulation studies. Ageing Res Rev 2022; 79:101660. [PMID: 35680080 DOI: 10.1016/j.arr.2022.101660] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 05/13/2022] [Accepted: 05/30/2022] [Indexed: 11/01/2022]
Abstract
BACKGROUND Transcranial magnetic stimulation (TMS) is a non-invasive neuromodulation technique. When stimulation is applied over the primary motor cortex and coupled with electromyography measures, TMS can probe functions of cortical excitability and plasticity in vivo. The purpose of this meta-analysis is to evaluate the utility of TMS-derived measures for differentiating patients with Alzheimer's disease (AD) and mild cognitive impairment (MCI) from cognitively normal older adults (CN). METHODS Databases searched included PubMed, Embase, APA PsycInfo, Medline, and CINAHL Plus from inception to July 2021. RESULTS Sixty-one studies with a total of 2728 participants (1454 patients with AD, 163 patients with MCI, and 1111 CN) were included. Patients with AD showed significantly higher cortical excitability, lower cortical inhibition, and impaired cortical plasticity compared to the CN cohorts. Patients with MCI exhibited increased cortical excitability and reduced plasticity compared to the CN cohort. Additionally, lower cognitive performance was significantly associated with higher cortical excitability and lower inhibition. No seizure events due to TMS were reported, and the mild adverse response rate is approximately 3/1000 (i.e., 9/2728). CONCLUSIONS Findings of our meta-analysis demonstrate the potential of using TMS-derived cortical excitability and plasticity measures as diagnostic biomarkers and therapeutic targets for AD and MCI.
Collapse
Affiliation(s)
- Ying-Hui Chou
- Brain Imaging and TMS Laboratory, Department of Psychology, University of Arizona, Tucson, USA; Evelyn F McKnight Brain Institute, Arizona Center on Aging, and BIO5 Institute, University of Arizona, Tucson, USA.
| | - Mark Sundman
- Brain Imaging and TMS Laboratory, Department of Psychology, University of Arizona, Tucson, USA
| | - Viet Ton That
- Brain Imaging and TMS Laboratory, Department of Psychology, University of Arizona, Tucson, USA
| | - Jacob Green
- Brain Imaging and TMS Laboratory, Department of Psychology, University of Arizona, Tucson, USA
| | - Chrisopher Trapani
- Brain Imaging and TMS Laboratory, Department of Psychology, University of Arizona, Tucson, USA
| |
Collapse
|
39
|
Rummel NG, Butterfield DA. Altered Metabolism in Alzheimer Disease Brain: Role of Oxidative Stress. Antioxid Redox Signal 2022; 36:1289-1305. [PMID: 34416829 PMCID: PMC9229240 DOI: 10.1089/ars.2021.0177] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Significance: Alzheimer disease (AD) is an all-too-common condition in the aging population. However, aging does not automatically equal neurodegeneration and memory decline. Recent Advances: This review article involves metabolic changes in the AD brain that are related to oxidative stress. Selected pathways are identified as potential targets for intervention in AD. Critical Issues: One of the main factors of AD is the oxidative imbalance within the central nervous system, causing a disruption in metabolic processes. Reactive oxygen species (ROS) are a natural consequence of many cellular processes, especially those associated with mitochondria, such as the electron transport chain. Some ROS, when kept under control and maintained at reasonable levels, often play roles in cell signaling. The cellular damage of ROS arises when oxidative imbalance occurs, in which case ROS are not controlled, leading to a myriad of alterations in cellular metabolic processes. These altered pathways include, among others, dysfunctional glycolysis, calcium regulation, lipid metabolism, mitochondrial processes, and mammalian target of rapamycin pathway dysregulation. Future Directions: Understanding how ROS can lead to these alterations can, ideally, elucidate therapeutic options for retarding AD progression in the aging population. Antioxid. Redox Signal. 36, 1289-1305.
Collapse
Affiliation(s)
- Nicole G Rummel
- Department of Chemistry and University of Kentucky, Lexington, Kentucky, USA
| | - D Allan Butterfield
- Department of Chemistry and University of Kentucky, Lexington, Kentucky, USA.,Sanders-Brown Center on Aging, University of Kentucky, Lexington, Kentucky, USA
| |
Collapse
|
40
|
Treatment effects on event-related EEG potentials and oscillations in Alzheimer's disease. Int J Psychophysiol 2022; 177:179-201. [PMID: 35588964 DOI: 10.1016/j.ijpsycho.2022.05.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 05/11/2022] [Accepted: 05/12/2022] [Indexed: 11/23/2022]
Abstract
Alzheimer's disease dementia (ADD) is the most diffuse neurodegenerative disorder belonging to mild cognitive impairment (MCI) and dementia in old persons. This disease is provoked by an abnormal accumulation of amyloid-beta and tauopathy proteins in the brain. Very recently, the first disease-modifying drug has been licensed with reserve (i.e., Aducanumab). Therefore, there is a need to identify and use biomarkers probing the neurophysiological underpinnings of human cognitive functions to test the clinical efficacy of that drug. In this regard, event-related electroencephalographic potentials (ERPs) and oscillations (EROs) are promising candidates. Here, an Expert Panel from the Electrophysiology Professional Interest Area of the Alzheimer's Association and Global Brain Consortium reviewed the field literature on the effects of the most used symptomatic drug against ADD (i.e., Acetylcholinesterase inhibitors) on ERPs and EROs in ADD patients with MCI and dementia at the group level. The most convincing results were found in ADD patients. In those patients, Acetylcholinesterase inhibitors partially normalized ERP P300 peak latency and amplitude in oddball paradigms using visual stimuli. In these same paradigms, those drugs partially normalize ERO phase-locking at the theta band (4-7 Hz) and spectral coherence between electrode pairs at the gamma (around 40 Hz) band. These results are of great interest and may motivate multicentric, double-blind, randomized, and placebo-controlled clinical trials in MCI and ADD patients for final cross-validation.
Collapse
|
41
|
Tok S, Maurin H, Delay C, Crauwels D, Manyakov NV, Van Der Elst W, Moechars D, Drinkenburg WHIM. Neurophysiological effects of human-derived pathological tau conformers in the APPKM670/671NL.PS1/L166P amyloid mouse model of Alzheimer's disease. Sci Rep 2022; 12:7784. [PMID: 35546164 PMCID: PMC9094605 DOI: 10.1038/s41598-022-11582-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 04/19/2022] [Indexed: 11/09/2022] Open
Abstract
Alzheimer’s Disease (AD) is a neurodegenerative disease characterized by two main pathological hallmarks: amyloid plaques and intracellular tau neurofibrillary tangles. However, a majority of studies focus on the individual pathologies and seldom on the interaction between the two pathologies. Herein, we present the longitudinal neuropathological and neurophysiological effects of a combined amyloid-tau model by hippocampal seeding of human-derived tau pathology in the APP.PS1/L166P amyloid animal model. We statistically assessed both neurophysiological and pathological changes using linear mixed modelling to determine if factors such as the age at which animals were seeded, genotype, seeding or buffer, brain region where pathology was quantified, and time-post injection differentially affect these outcomes. We report that AT8-positive tau pathology progressively develops and is facilitated by the amount of amyloid pathology present at the time of injection. The amount of AT8-positive tau pathology was influenced by the interaction of age at which the animal was injected, genotype, and time after injection. Baseline pathology-related power spectra and Higuchi Fractal Dimension (HFD) score alterations were noted in APP.PS1/L166P before any manipulations were performed, indicating a baseline difference associated with genotype. We also report immediate localized hippocampal dysfunction in the electroencephalography (EEG) power spectra associated with tau seeding which returned to comparable levels at 1 month-post-injection. Longitudinal effects of seeding indicated that tau-seeded wild-type mice showed an increase in gamma power earlier than buffer control comparisons which was influenced by the age at which the animal was injected. A reduction of hippocampal broadband power spectra was noted in tau-seeded wild-type mice, but absent in APP.PS1 animals. HFD scores appeared to detect subtle effects associated with tau seeding in APP.PS1 animals, which was differentially influenced by genotype. Notably, while tau histopathological changes were present, a lack of overt longitudinal electrophysiological alterations was noted, particularly in APP.PS1 animals that feature both pathologies after seeding, reiterating and underscoring the difficulty and complexity associated with elucidating physiologically relevant and translatable biomarkers of Alzheimer’s Disease at the early stages of the disease.
Collapse
Affiliation(s)
- S Tok
- Department of Neuroscience, Janssen Research and Development, Janssen Pharmaceutica NV, Turnhoutseweg 30, 2340, Beerse, Belgium. .,Faculty of Science and Engineering, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands.
| | - H Maurin
- Department of Neuroscience, Janssen Research and Development, Janssen Pharmaceutica NV, Turnhoutseweg 30, 2340, Beerse, Belgium
| | - C Delay
- Department of Neuroscience, Janssen Research and Development, Janssen Pharmaceutica NV, Turnhoutseweg 30, 2340, Beerse, Belgium
| | - D Crauwels
- Department of Neuroscience, Janssen Research and Development, Janssen Pharmaceutica NV, Turnhoutseweg 30, 2340, Beerse, Belgium
| | - N V Manyakov
- Data Sciences, Janssen Research and Development, Janssen Pharmaceutica NV, Turnhoutseweg 30, 2340, Beerse, Belgium
| | - W Van Der Elst
- Quantitative Sciences Janssen Research and Development, Janssen Pharmaceutica NV, Turnhoutseweg 30, 2340, Beerse, Belgium
| | - D Moechars
- Department of Neuroscience, Janssen Research and Development, Janssen Pharmaceutica NV, Turnhoutseweg 30, 2340, Beerse, Belgium
| | - W H I M Drinkenburg
- Department of Neuroscience, Janssen Research and Development, Janssen Pharmaceutica NV, Turnhoutseweg 30, 2340, Beerse, Belgium.,Faculty of Science and Engineering, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
42
|
Mechanisms Involved in Epileptogenesis in Alzheimer's Disease and Their Therapeutic Implications. Int J Mol Sci 2022; 23:ijms23084307. [PMID: 35457126 PMCID: PMC9030029 DOI: 10.3390/ijms23084307] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 04/09/2022] [Accepted: 04/11/2022] [Indexed: 12/22/2022] Open
Abstract
Epilepsy and Alzheimer's disease (AD) incidence increases with age. There are reciprocal relationships between epilepsy and AD. Epilepsy is a risk factor for AD and, in turn, AD is an independent risk factor for developing epilepsy in old age, and abnormal AD biomarkers in PET and/or CSF are frequently found in late-onset epilepsies of unknown etiology. Accordingly, epilepsy and AD share pathophysiological processes, including neuronal hyperexcitability and an early excitatory-inhibitory dysregulation, leading to dysfunction in the inhibitory GABAergic and excitatory glutamatergic systems. Moreover, both β-amyloid and tau protein aggregates, the anatomopathological hallmarks of AD, have proepileptic effects. Finally, these aggregates have been found in the resection material of refractory temporal lobe epilepsies, suggesting that epilepsy leads to amyloid and tau aggregates. Some epileptic syndromes, such as medial temporal lobe epilepsy, share structural and functional neuroimaging findings with AD, leading to overlapping symptomatology, such as episodic memory deficits and toxic synergistic effects. In this respect, the existence of epileptiform activity and electroclinical seizures in AD appears to accelerate the progression of cognitive decline, and the presence of cognitive decline is much more prevalent in epileptic patients than in elderly patients without epilepsy. Notwithstanding their clinical significance, the diagnosis of clinical seizures in AD is a challenge. Most are focal and manifest with an altered level of consciousness without motor symptoms, and are often interpreted as cognitive fluctuations. Finally, despite the frequent association of epilepsy and AD dementia, there is a lack of clinical trials to guide the use of antiseizure medications (ASMs). There is also a potential role for ASMs to be used as disease-modifying drugs in AD.
Collapse
|
43
|
B. Szabo A, Cretin B, Gérard F, Curot J, J. Barbeau E, Pariente J, Dahan L, Valton L. Sleep: The Tip of the Iceberg in the Bidirectional Link Between Alzheimer's Disease and Epilepsy. Front Neurol 2022; 13:836292. [PMID: 35481265 PMCID: PMC9035794 DOI: 10.3389/fneur.2022.836292] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 02/14/2022] [Indexed: 11/13/2022] Open
Abstract
The observation that a pathophysiological link might exist between Alzheimer's disease (AD) and epilepsy dates back to the identification of the first cases of the pathology itself and is now strongly supported by an ever-increasing mountain of literature. An overwhelming majority of data suggests not only a higher prevalence of epilepsy in Alzheimer's disease compared to healthy aging, but also that AD patients with a comorbid epileptic syndrome, even subclinical, have a steeper cognitive decline. Moreover, clinical and preclinical investigations have revealed a marked sleep-related increase in the frequency of epileptic activities. This characteristic might provide clues to the pathophysiological pathways underlying this comorbidity. Furthermore, the preferential sleep-related occurrence of epileptic events opens up the possibility that they might hasten cognitive decline by interfering with the delicately orchestrated synchrony of oscillatory activities implicated in sleep-related memory consolidation. Therefore, we scrutinized the literature for mechanisms that might promote sleep-related epileptic activity in AD and, possibly dementia onset in epilepsy, and we also aimed to determine to what degree and through which processes such events might alter the progression of AD. Finally, we discuss the implications for patient care and try to identify a common basis for methodological considerations for future research and clinical practice.
Collapse
Affiliation(s)
- Anna B. Szabo
- Centre de Recherches sur la Cognition Animale, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, Toulouse, France
- Centre de Recherche Cerveau & Cognition (CerCo), UMR 5549, CNRS-UPS, Toulouse, France
- *Correspondence: Anna B. Szabo
| | - Benjamin Cretin
- Clinical Neuropsychology Unit, Neurology Department, CM2R (Memory Resource and Research Centre), University Hospital of Strasbourg, Strasbourg, France
- CNRS, ICube Laboratory, UMR 7357 and FMTS (Fédération de Médecine Translationnelle de Strasbourg), Team IMIS, University of Strasbourg, Strasbourg, France
- CMRR d'Alsace, Service de Neurologie des Hôpitaux Universitaires de Strasbourg, Pôle Tête et Cou, Strasbourg, France
| | - Fleur Gérard
- Centre de Recherche Cerveau & Cognition (CerCo), UMR 5549, CNRS-UPS, Toulouse, France
- Neurology Department, Hôpital Purpan Centre Hospitalier Universitaire de Toulouse, Toulouse, France
| | - Jonathan Curot
- Centre de Recherche Cerveau & Cognition (CerCo), UMR 5549, CNRS-UPS, Toulouse, France
- Neurology Department, Hôpital Purpan Centre Hospitalier Universitaire de Toulouse, Toulouse, France
| | - Emmanuel J. Barbeau
- Centre de Recherche Cerveau & Cognition (CerCo), UMR 5549, CNRS-UPS, Toulouse, France
| | - Jérémie Pariente
- Neurology Department, Hôpital Purpan Centre Hospitalier Universitaire de Toulouse, Toulouse, France
- Toulouse NeuroImaging Center (ToNIC), INSERM-University of Toulouse Paul Sabatier, Toulouse, France
| | - Lionel Dahan
- Centre de Recherches sur la Cognition Animale, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Luc Valton
- Centre de Recherche Cerveau & Cognition (CerCo), UMR 5549, CNRS-UPS, Toulouse, France
- Neurology Department, Hôpital Purpan Centre Hospitalier Universitaire de Toulouse, Toulouse, France
- Luc Valton
| |
Collapse
|
44
|
Csernus EA, Werber T, Kamondi A, Horvath AA. The Significance of Subclinical Epileptiform Activity in Alzheimer's Disease: A Review. Front Neurol 2022; 13:856500. [PMID: 35444602 PMCID: PMC9013745 DOI: 10.3389/fneur.2022.856500] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 02/21/2022] [Indexed: 01/20/2023] Open
Abstract
Hyperexcitability is a recently recognized contributor to the pathophysiology of Alzheimer's disease (AD). Subclinical epileptiform activity (SEA) is a neurophysiological sign of cortical hyperexcitability; however, the results of the studies in this field vary due to differences in the applied methodology. The aim of this review is to summarize the results of the related studies aiming to describe the characteristic features and significance of subclinical epileptiform discharges in the pathophysiologic process of AD from three different directions: (1) what SEA is; (2) why we should diagnose SEA, and (3) how we should diagnose SEA. We scrutinized both the completed and ongoing antiepileptic drug trials in AD where SEA served as a grouping variable or an outcome measure. SEA seems to appear predominantly in slow-wave sleep and in the left temporal region and to compromise cognitive functions. We clarify using supportive literature the high sensitivity of overnight electroencephalography (EEG) in the detection of epileptiform discharges. Finally, we present the most important research questions around SEA and provide an overview of the possible solutions.
Collapse
Affiliation(s)
- Emoke Anna Csernus
- School of PhD Studies, Semmelweis University, Budapest, Hungary
- Neurocognitive Research Center, National Institute of Mental Health, Neurology and Neurosurgery, Budapest, Hungary
| | - Tom Werber
- Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Anita Kamondi
- Neurocognitive Research Center, National Institute of Mental Health, Neurology and Neurosurgery, Budapest, Hungary
- Department of Neurology, Semmelweis University, Budapest, Hungary
| | - Andras Attila Horvath
- Neurocognitive Research Center, National Institute of Mental Health, Neurology and Neurosurgery, Budapest, Hungary
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
- *Correspondence: Andras Attila Horvath
| |
Collapse
|
45
|
Hanke JM, Schindler KA, Seiler A. On the relationships between epilepsy, sleep, and Alzheimer's disease: A narrative review. Epilepsy Behav 2022; 129:108609. [PMID: 35176650 DOI: 10.1016/j.yebeh.2022.108609] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 02/01/2022] [Accepted: 02/01/2022] [Indexed: 12/21/2022]
Abstract
Epilepsy, sleep, and Alzheimer's disease (AD) are tightly and potentially causally interconnected. The aim of our review was to investigate current research directions on these relationships. Our hope is that they may indicate preventive measures and new treatment options for early neurodegeneration. We included articles that assessed all three topics and were published during the last ten years. We found that this literature corroborates connections on various pathophysiological levels, including sleep-stage-related epileptiform activity in AD, the negative consequences of different sleep disorders on epilepsy and cognition, common biochemical pathways as well as network dysfunctions. Here we provide a detailed overview of these topics and we discuss promising diagnostic and therapeutic consequences.
Collapse
Affiliation(s)
- Julie M Hanke
- Department of Neurology, Inselspital, Sleep-Wake-Epilepsy-Center, Bern University Hospital, University Bern, Bern, Switzerland
| | - Kaspar A Schindler
- Department of Neurology, Inselspital, Sleep-Wake-Epilepsy-Center, Bern University Hospital, University Bern, Bern, Switzerland
| | - Andrea Seiler
- Department of Neurology, Inselspital, Sleep-Wake-Epilepsy-Center, Bern University Hospital, University Bern, Bern, Switzerland.
| |
Collapse
|
46
|
Devos H, Gustafson K, Liao K, Ahmadnezhad P, Estes B, Martin LE, Mahnken JD, Brooks WM, Burns JM. EEG/ERP evidence of possible hyperexcitability in older adults with elevated beta-amyloid. Transl Neurodegener 2022; 11:8. [PMID: 35139917 PMCID: PMC8827181 DOI: 10.1186/s40035-022-00282-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 01/12/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Although growing evidence links beta-amyloid (Aβ) and neuronal hyperexcitability in preclinical mouse models of Alzheimer's disease (AD), a similar association in humans is yet to be established. The first aim of the study was to determine the association between elevated Aβ (Aβ+) and cognitive processes measured by the P3 event-related potential (ERP) in cognitively normal (CN) older adults. The second aim was to compare the event-related power between CNAβ+ and CNAβ-. METHODS Seventeen CNAβ+ participants (age: 73 ± 5, 11 females, Montreal Cognitive Assessment [MoCA] score 26 ± 2) and 17 CNAβ- participants group-matched for age, sex, and MOCA completed a working memory task (n-back with n = 0, 1, 2) test while wearing a 256-channel electro-encephalography net. P3 peak amplitude and latency of the target, nontarget and task difference effect (nontarget-target), and event-related power in the delta, theta, alpha, and beta bands, extracted from Fz, Cz, and Pz, were compared between groups using linear mixed models. P3 amplitude of the task difference effect at Fz and event-related power in the delta band were considered main outcomes. Correlations of mean Aβ standard uptake value ratios (SUVR) using positron emission tomography with P3 amplitude and latency of the task difference effect were analyzed using Pearson Correlation Coefficient r. RESULTS The P3 peak amplitude of the task difference effect at Fz was lower in the CNAβ+ group (P = 0.048). Similarly, power was lower in the delta band for nontargets at Fz in the CNAβ+ participants (P = 0.04). The CNAβ+ participants also demonstrated higher theta and alpha power in channels at Cz and Pz, but no changes in P3 ERP. Strong correlations were found between the mean Aβ SUVR and the latency of the 1-back (r = - 0.69; P = 0.003) and 2-back (r = - 0.69; P = 0.004) of the task difference effect at channel Fz in the CNAβ+ group. CONCLUSIONS Our data suggest that the elevated amyloid in cognitively normal older adults is associated with neuronal hyperexcitability. The decreased P3 task difference likely reflects early impairments in working memory processes. Further research is warranted to determine the validity of ERP in predicting clinical, neurobiological, and functional manifestations of AD.
Collapse
Affiliation(s)
- Hannes Devos
- Department of Physical Therapy, Rehabilitation Science, and Athletic Training, University of Kansas Medical Center, Kansas City, KS, 66160, USA.
| | - Kathleen Gustafson
- Department of Neurology, University of Kansas Medical Center, Kansas City, KS, 66160, USA
- Hoglund Biomedical Imaging Center, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Ke Liao
- Hoglund Biomedical Imaging Center, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Pedram Ahmadnezhad
- Department of Physical Therapy, Rehabilitation Science, and Athletic Training, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Bradley Estes
- Department of Physical Therapy, Rehabilitation Science, and Athletic Training, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Laura E Martin
- Hoglund Biomedical Imaging Center, University of Kansas Medical Center, Kansas City, KS, 66160, USA
- Department of Population Health, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Jonathan D Mahnken
- Department of Biostatistics and Data Science, University of Kansas Medical Center, Kansas City, KS, 66160, USA
- University of Kansas Alzheimer's Disease Center, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - William M Brooks
- Department of Neurology, University of Kansas Medical Center, Kansas City, KS, 66160, USA
- Hoglund Biomedical Imaging Center, University of Kansas Medical Center, Kansas City, KS, 66160, USA
- University of Kansas Alzheimer's Disease Center, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Jeffrey M Burns
- Department of Neurology, University of Kansas Medical Center, Kansas City, KS, 66160, USA
- University of Kansas Alzheimer's Disease Center, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| |
Collapse
|
47
|
Shoji H, Kunugi H, Miyakawa T. Acute and chronic effects of oral administration of a medium-chain fatty acid, capric acid, on locomotor activity and anxiety-like and depression-related behaviors in adult male C57BL/6J mice. Neuropsychopharmacol Rep 2022; 42:59-69. [PMID: 34994529 PMCID: PMC8919109 DOI: 10.1002/npr2.12226] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 11/08/2021] [Accepted: 12/09/2021] [Indexed: 01/06/2023] Open
Abstract
Aim Capric acid (also known as decanoic acid or C10) is one of the fatty acids in the medium‐chain triglycerides (MCTs) commonly found in dietary fats. Although dietary treatment with MCTs is recently of great interest for the potential therapeutic effects on neuropsychiatric disorders, the effects of oral administration of C10 on behavior remain to be examined. This study investigated acute and chronic effects of oral administration of C10 on locomotor activity and anxiety‐like and depression‐related behaviors in adult male C57BL/6J mice. Methods To explore the acute effects of C10 administration, mice were subjected to a series of behavioral tests in the following order: light/dark transition, open field, elevated plus maze, Porsolt forced swim, and tail suspension tests, 30 minutes after oral gavage of either vehicle or C10 solution (30 mmol/kg dose in Experiment 1; 0.1, 0.3, 1.0, 3.0 mmol/kg doses in Experiment 2). Next, to examine chronic effects of C10, mice repeatedly administered with either vehicle or C10 solution (0.3, 3.0 mmol/kg doses per day, for 21 days, in Experiment 3) were subjected to behavioral tests without oral administration immediately before each test. Results The mice administrated with the high dose of C10 (30 mmol/kg) showed lower body weights, shorter distance traveled, and more anxiety‐like behavior than vehicle‐treated mice, and the results reached study‐wide statistical significance. The C10 administration at a lower dose of 0.3 mmol/kg had no significant effects on body weights and induced nominally significantly longer distance traveled than vehicle administration. Repeated administration of C10 at a dose of 3.0 mmol/kg for more than 21 days caused lower body weights and decreased depression‐related behavior, although the behavioral differences did not reach study‐wide significance. Conclusions Although these results suggest dose‐dependent effects of oral administration of capric acid on locomotor activity and anxiety‐like and depression‐related behaviors, further study will be needed to replicate the findings and explore the underlying brain mechanisms. Repeated oral administration of the medium‐chain fatty acid, capric acid, decreased depression‐related behavior in C57BL/6J mice. This study suggests that capric acid exerts an antidepressant effect. ![]()
Collapse
Affiliation(s)
- Hirotaka Shoji
- Division of Systems Medical Science, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Japan
| | - Hiroshi Kunugi
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), Kodaira, Japan.,Department of Psychiatry, Teikyo University School of Medicine, Tokyo, Japan
| | - Tsuyoshi Miyakawa
- Division of Systems Medical Science, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Japan
| |
Collapse
|
48
|
Jeremic D, Jiménez-Díaz L, Navarro-López JD. Past, present and future of therapeutic strategies against amyloid-β peptides in Alzheimer's disease: a systematic review. Ageing Res Rev 2021; 72:101496. [PMID: 34687956 DOI: 10.1016/j.arr.2021.101496] [Citation(s) in RCA: 120] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 09/30/2021] [Accepted: 10/18/2021] [Indexed: 12/12/2022]
Abstract
Alzheimer's disease (AD) is the most prevalent neurodegenerative disease in ageing, affecting around 46 million people worldwide but few treatments are currently available. The etiology of AD is still puzzling, and new drugs development and clinical trials have high failure rates. Urgent outline of an integral (multi-target) and effective treatment of AD is needed. Accumulation of amyloid-β (Aβ) peptides is considered one of the fundamental neuropathological pillars of the disease, and its dyshomeostasis has shown a crucial role in AD onset. Therefore, many amyloid-targeted therapies have been investigated. Here, we will systematically review recent (from 2014) investigational, follow-up and review studies focused on anti-amyloid strategies to summarize and analyze their current clinical potential. Combination of anti-Aβ therapies with new developing early detection biomarkers and other therapeutic agents acting on early functional AD changes will be highlighted in this review. Near-term approval seems likely for several drugs acting against Aβ, with recent FDA approval of a monoclonal anti-Aβ oligomers antibody -aducanumab- raising hopes and controversies. We conclude that, development of oligomer-epitope specific Aβ treatment and implementation of multiple improved biomarkers and risk prediction methods allowing early detection, together with therapies acting on other factors such as hyperexcitability in early AD, could be the key to slowing this global pandemic.
Collapse
|
49
|
Costigan A, Umla-Runge K, Evans C, Raybould R, Graham K, Lawrence A. Evidence against altered excitatory/inhibitory balance in the posteromedial cortex of young adult APOE E4 carriers: A resting state 1H-MRS study. NEUROIMAGE. REPORTS 2021; 1:100059. [PMID: 36896169 PMCID: PMC9986794 DOI: 10.1016/j.ynirp.2021.100059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 09/09/2021] [Accepted: 10/04/2021] [Indexed: 11/20/2022]
Abstract
A strategy to gain insight into early changes that may predispose people to Alzheimer's disease (AD) is to study the brains of younger cognitively healthy people that are at increased genetic risk of AD. The Apolipoprotein (APOE) E4 allele is the strongest genetic risk factor for AD, and several neuroimaging studies comparing APOE E4 carriers with non-carriers at age ∼20-30 years have detected hyperactivity (or reduced deactivation) in posteromedial cortex (PMC), a key hub of the default network (DN), which has a high susceptibility to early amyloid deposition in AD. Transgenic mouse models suggest such early network activity alterations may result from altered excitatory/inhibitory (E/I) balance, but this is yet to be examined in humans. Here we test the hypothesis that PMC fMRI hyperactivity could be underpinned by altered levels of excitatory (glutamate) and/or inhibitory (GABA) neurotransmitters in this brain region. Forty-seven participants (20 APOE E4 carriers and 27 non-carriers) aged 18-25 years underwent resting-state proton magnetic resonance spectroscopy (1H-MRS), a non-invasive neuroimaging technique to measure glutamate and GABA in vivo. Metabolites were measured in a PMC voxel of interest and in a comparison voxel in the occipital cortex (OCC). There was no difference in either glutamate or GABA between the E4 carriers and non-carriers in either MRS voxel, or in the ratio of glutamate to GABA, a measure of E/I balance. Default Bayesian t-tests revealed evidence in support of this null finding. Our findings suggest that PMC hyperactivity in APOE E4 carriers is unlikely to be associated with, or possibly may precede, alterations in local resting-state PMC neurotransmitters, thus informing our understanding of the spatio-temporal sequence of early network alterations underlying APOE E4 related AD risk.
Collapse
Affiliation(s)
- A.G. Costigan
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Maindy Road, Cardiff, CF24 4HQ, UK
| | - K. Umla-Runge
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Maindy Road, Cardiff, CF24 4HQ, UK
| | - C.J. Evans
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Maindy Road, Cardiff, CF24 4HQ, UK
| | - R. Raybould
- UK Dementia Research Institute, Cardiff, Hadyn Ellis Building, Maindy Road, Cardiff, CF24 4HQ, UK
| | - K.S. Graham
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Maindy Road, Cardiff, CF24 4HQ, UK
| | - A.D. Lawrence
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Maindy Road, Cardiff, CF24 4HQ, UK
| |
Collapse
|
50
|
Gerasimov E, Erofeev A, Borodinova A, Bolshakova A, Balaban P, Bezprozvanny I, Vlasova OL. Optogenetic Activation of Astrocytes-Effects on Neuronal Network Function. Int J Mol Sci 2021; 22:9613. [PMID: 34502519 PMCID: PMC8431749 DOI: 10.3390/ijms22179613] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/24/2021] [Accepted: 09/01/2021] [Indexed: 01/04/2023] Open
Abstract
Optogenetics approach is used widely in neurobiology as it allows control of cellular activity with high spatial and temporal resolution. In most studies, optogenetics is used to control neuronal activity. In the present study optogenetics was used to stimulate astrocytes with the aim to modulate neuronal activity. To achieve this goal, light stimulation was applied to astrocytes expressing a version of ChR2 (ionotropic opsin) or Opto-α1AR (metabotropic opsin). Optimal optogenetic stimulation parameters were determined using patch-clamp recordings of hippocampal pyramidal neurons' spontaneous activity in brain slices as a readout. It was determined that the greatest increase in the number of spontaneous synaptic currents was observed when astrocytes expressing ChR2(H134R) were activated by 5 s of continuous light. For the astrocytes expressing Opto-α1AR, the greatest response was observed in the pulse stimulation mode (T = 1 s, t = 100 ms). It was also observed that activation of the astrocytic Opto-a1AR but not ChR2 results in an increase of the fEPSP slope in hippocampal neurons. Based on these results, we concluded that Opto-a1AR expressed in hippocampal astrocytes provides an opportunity to modulate the long-term synaptic plasticity optogenetically, and may potentially be used to normalize the synaptic transmission and plasticity defects in a variety of neuropathological conditions, including models of Alzheimer's disease and other neurodegenerative disorders.
Collapse
Affiliation(s)
- Evgenii Gerasimov
- Laboratory of Molecular Neurodegeneration, Peter the Great St. Petersburg Polytechnic University, Khlopina St. 11, 194021 St. Petersburg, Russia; (A.E.); (A.B.); (I.B.)
| | - Alexander Erofeev
- Laboratory of Molecular Neurodegeneration, Peter the Great St. Petersburg Polytechnic University, Khlopina St. 11, 194021 St. Petersburg, Russia; (A.E.); (A.B.); (I.B.)
| | - Anastasia Borodinova
- Cellular Neurobiology of Learning Lab, Institute of Higher Nervous Activity and Neurophysiology of the Russian Academy of Science, Butlerova St. 5A, 117485 Moscow, Russia; (A.B.); (P.B.)
| | - Anastasia Bolshakova
- Laboratory of Molecular Neurodegeneration, Peter the Great St. Petersburg Polytechnic University, Khlopina St. 11, 194021 St. Petersburg, Russia; (A.E.); (A.B.); (I.B.)
| | - Pavel Balaban
- Cellular Neurobiology of Learning Lab, Institute of Higher Nervous Activity and Neurophysiology of the Russian Academy of Science, Butlerova St. 5A, 117485 Moscow, Russia; (A.B.); (P.B.)
| | - Ilya Bezprozvanny
- Laboratory of Molecular Neurodegeneration, Peter the Great St. Petersburg Polytechnic University, Khlopina St. 11, 194021 St. Petersburg, Russia; (A.E.); (A.B.); (I.B.)
- Department of Physiology, UT Southwestern Medical Center at Dallas, Dallas, TX 75390, USA
| | - Olga L. Vlasova
- Laboratory of Molecular Neurodegeneration, Peter the Great St. Petersburg Polytechnic University, Khlopina St. 11, 194021 St. Petersburg, Russia; (A.E.); (A.B.); (I.B.)
| |
Collapse
|