1
|
Dong T, Hao T, Hakeem A, Ren Y, Fang J. Synergistic variation in abscisic acid and brassinolide treatment signaling component alleviates fruit quality of 'Shine Muscat' grape during cold storage. Food Chem 2024; 464:141584. [PMID: 39423526 DOI: 10.1016/j.foodchem.2024.141584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 09/02/2024] [Accepted: 10/06/2024] [Indexed: 10/21/2024]
Abstract
Grape fruit are harvested in the late summer or early fall and need to be stored at low temperatures to prevent enfeeblement and prolong their shelf-life. This study aimed to determine the effects of abscisic acid (ABA), brassinolide (BR) and ABA + BR (ABR) treatment on the berry quality of 'Shine Muscat' under low temperatures. ABA and BR maintained fruit appearance, cellular structure, weight, firmness. ABR treatments reduced the loss of fruit aroma. Furthermore, the transcriptome and metabolome analysis revealed that ABA, BR, and ABR treatments maintained the quality of fruits during the low temperatures period by influencing chlorophyll metabolism, carotenoid metabolism, flavonoid metabolism, unsaturated fatty acid, and terpene metabolism. These findings identify key genes and metabolites for ABA and BR-induced maintenance of grape fruit quality during cold storage, expanding our understanding of postharvest storage quality maintenance of grape fruit at the transcript and metabolic levels.
Collapse
Affiliation(s)
- Tianyu Dong
- Department of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, China; Fruit Crop Genetic Improvement and Seedling Propagation Engineering Center of Jiangsu Province, Nanjing 210095, China
| | - Tianyi Hao
- Department of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, China; Fruit Crop Genetic Improvement and Seedling Propagation Engineering Center of Jiangsu Province, Nanjing 210095, China
| | - Abdul Hakeem
- Department of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, China; Fruit Crop Genetic Improvement and Seedling Propagation Engineering Center of Jiangsu Province, Nanjing 210095, China
| | - Yanhua Ren
- Department of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, China; Fruit Crop Genetic Improvement and Seedling Propagation Engineering Center of Jiangsu Province, Nanjing 210095, China
| | - Jinggui Fang
- Department of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, China; Fruit Crop Genetic Improvement and Seedling Propagation Engineering Center of Jiangsu Province, Nanjing 210095, China.
| |
Collapse
|
2
|
Bonello F, Danieli F, Ragkousi V, Ferrandino A, Petrozziello M, Asproudi A, La Notte P, Pirolo CS, Roseti V. Aromatic Profiling of New Table Grape Varieties Using Gas Chromatography/Mass Spectrometry and Olfactometry. PLANTS (BASEL, SWITZERLAND) 2024; 13:1820. [PMID: 38999660 PMCID: PMC11244391 DOI: 10.3390/plants13131820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/14/2024] [Accepted: 06/17/2024] [Indexed: 07/14/2024]
Abstract
The aim of this study is the aromatic characterization of new table grape varieties, namely Guzun (V. vinifera), Melona (V. vinifera), Cotton Candy (V. vinifera), IVC SA3 (V. labrusca), and IVC SB1 (V. labrusca). The qualitative and quantitative analysis of odorant molecules present in the berries allows for the definition of the aroma profile of the grape. This analysis benefits from the progress of analytical techniques and sensory methodologies. Gas chromatography/mass detection enable the efficient detection of the substances present and their concentrations. Through the coupling of gas chromatography with sensory detection (gas chromatography-olfactometry), it is possible to correlate the compounds detected by gas chromatography with olfactory stimuli, exploiting the human olfactory system. Aroma, a significant flavor component, is an important attribute of table grape that contributes to defining their quality. This characteristic is highly valued by consumers, and consequently, the market asks for table grapes with a particular or new aroma. Aromatic characterization is a crucial step in the study of the table grape varieties to evaluate their potential at the commercial level or, for instance, in breeding programs focusing on organoleptic properties.
Collapse
Affiliation(s)
- Federica Bonello
- Council for Agricultural Research and Economics-Research Centre for Viticulture and Enology (CREA-VE), Via P. Micca 35, 14100 Asti, Italy
| | - Fabio Danieli
- Department of Agricultural, Forest, and Food Sciences (DISAFA), University of Turin, Largo Paolo Braccini 2, 10095 Grugliasco, Italy
| | - Vasiliki Ragkousi
- Council for Agricultural Research and Economics-Research Centre for Viticulture and Enology (CREA-VE), Via P. Micca 35, 14100 Asti, Italy
| | - Alessandra Ferrandino
- Department of Agricultural, Forest, and Food Sciences (DISAFA), University of Turin, Largo Paolo Braccini 2, 10095 Grugliasco, Italy
| | - Maurizio Petrozziello
- Council for Agricultural Research and Economics-Research Centre for Viticulture and Enology (CREA-VE), Via P. Micca 35, 14100 Asti, Italy
| | - Andriani Asproudi
- Council for Agricultural Research and Economics-Research Centre for Viticulture and Enology (CREA-VE), Via P. Micca 35, 14100 Asti, Italy
| | - Pierfederico La Notte
- CRSFA-Centro di Ricerca e Sperimentazione e Formazione in Agricoltura "Basile Caramia", Via Cisternino, 281, 70010 Locorotondo, Italy
| | - Costantino Silvio Pirolo
- Italian Variety Club, Via Cisternino, 281 c/o CRSFA Basile Caramia, 70015 Locorotondo, Italy
- SINAGRI S.r.l.-Spin off of the University of Bari, Via G. Amendola, 165/A, 70126 Bari, Italy
| | - Vincenzo Roseti
- CRSFA-Centro di Ricerca e Sperimentazione e Formazione in Agricoltura "Basile Caramia", Via Cisternino, 281, 70010 Locorotondo, Italy
- Italian Variety Club, Via Cisternino, 281 c/o CRSFA Basile Caramia, 70015 Locorotondo, Italy
| |
Collapse
|
3
|
Nan X, Li W, Shao M, Cui Z, Wang H, Huo J, Chen L, Chen B, Ma Z. Shading Treatment Reduces Grape Sugar Content by Suppressing Photosynthesis-Antenna Protein Pathway Gene Expression in Grape Berries. Int J Mol Sci 2024; 25:5029. [PMID: 38732247 PMCID: PMC11084848 DOI: 10.3390/ijms25095029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/30/2024] [Accepted: 05/01/2024] [Indexed: 05/13/2024] Open
Abstract
To explore the impact of shade treatment on grape berries, 'Marselan' grape berries were bagged under different light transmission rates (100% (CK), 75% (A), 50% (B), 25% (C), 0% (D)). It was observed that this treatment delayed the ripening of the grape berries. The individual weight of the grape berries, as well as the content of fructose, glucose, soluble sugars, and organic acids in the berries, was measured at 90, 100, and 125 days after flowering (DAF90, DAF100, DAF125). The results revealed that shading treatment reduced the sugar content in grape berries; the levels of fructose and glucose were higher in the CK treatment compared to the other treatments, and they increased with the duration of the shading treatment. Conversely, the sucrose content exhibited the opposite trend. Additionally, as the weight of the grape berries increased, the content of soluble solids and soluble sugars in the berries also increased, while the titratable acidity decreased. Furthermore, 16 differentially expressed genes (DEGs) were identified in the photosynthesis-antenna protein pathway from the transcriptome sequencing data. Correlation analysis revealed that the expression levels of genes VIT_08s0007g02190 (Lhcb4) and VIT_15s0024g00040 (Lhca3) were positively correlated with sugar content in the berries at DAF100, but negatively correlated at DAF125. qRT-PCR results confirmed the correlation analysis. This indicates that shading grape clusters inhibits the expression of genes in the photosynthesis-antenna protein pathway in the grape berries, leading to a decrease in sugar content. This finding contributes to a deeper understanding of the impact mechanisms of grape cluster shading on berry quality, providing important scientific grounds for improving grape berry quality.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Zonghuan Ma
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China (J.H.)
| |
Collapse
|
4
|
Feng Y, Suo K, Zhang Y, Yang Z, Zhou C, Shi L, Chen W, Wang J, Wang C, Zheng Y. Ultrasound synergistic slightly acidic electrolyzed water treatment of grapes: Impacts on microbial loads, wettability, and postharvest storage quality. ULTRASONICS SONOCHEMISTRY 2024; 103:106751. [PMID: 38241946 PMCID: PMC10825514 DOI: 10.1016/j.ultsonch.2023.106751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 12/26/2023] [Accepted: 12/30/2023] [Indexed: 01/21/2024]
Abstract
Microbial contamination is the principal factor in the deterioration of postharvest storage quality in grapes. To mitigate this issue, we explored a synergistic treatment which combines ultrasound (US) and slightly acidic electrolyzed water (SAEW), and rigorously compared with conventional water cleaning (CW), exclusive US treatment, and standalone SAEW treatment. The US + SAEW treatment proved to be markedly superior in reducing total bacterial, mold & yeast counts on grapes. Specifically, it achieved reductions of 2.23 log CFU/g and 2.76 log CFU/g, respectively, exceeding the efficiencies of SAEW (0.78, 0.75), US (0.58, 0.65), and CW (0.24, 0.46). The efficacy of this synergistic treatment is attributed to the ultrasound removal of the wax layer on grape skins, which transitions the skin from hydrophobic to hydrophilic. This alteration increases the contact area between the grape surface and SAEW, thereby enhancing the antimicrobial efficacy of SAEW. From a physicochemical quality standpoint, the US + SAEW treatment exhibited multiple advantages. It not only minimized weight loss, color deviations, polyphenol oxidase activity and malondialdehyde synthesis in comparison to CW-treated samples but also preserved firmness, sugar-acid ratio and the activities of key enzymes including phenylalanine ammonia-lyase, superoxide dismutase and catalase, and thus maintaining high levels of total phenolics, total ascorbic acid, total anthocyanins, and antioxidants. Consequently, US + SAEW treatment put off the times of decay onset in grapes by 12 days, outperforming both SAEW (8) and US (4) in comparison to CW. These results highlight the potential of US + SAEW as an effective strategy for maintaining grape quality during their postharvest storage period.
Collapse
Affiliation(s)
- Yabin Feng
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo 315100, China; Haitong Food (Ninghai) Co., Ltd, Ningbo 315602, China.
| | - Kui Suo
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo 315100, China
| | - Yang Zhang
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo 315100, China
| | - Zhenfeng Yang
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo 315100, China.
| | - Cunshan Zhou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Liyu Shi
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo 315100, China
| | - Wei Chen
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo 315100, China
| | | | - Caiying Wang
- Haitong Food (Ninghai) Co., Ltd, Ningbo 315602, China
| | | |
Collapse
|
5
|
Wang H, Wang X, Yan A, Liu Z, Ren J, Xu H, Sun L. Metabolomic and transcriptomic integrated analysis revealed the decrease of monoterpenes accumulation in table grapes during long time low temperature storage. Food Res Int 2023; 174:113601. [PMID: 37986463 DOI: 10.1016/j.foodres.2023.113601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 10/09/2023] [Accepted: 10/13/2023] [Indexed: 11/22/2023]
Abstract
Low temperature is the commonly used technique for maintaining the quality of table grapes during postharvest storage. However, this technique could strongly affect the aromatic flavor of fruit. Monoterpenes are the key compounds contributing to the Muscat aromas of grapes. The detailed information and molecular mechanisms underlying the changes in monoterpenes during postharvest low temperature storage have not been thoroughly characterized. In this study, the effects of low temperature storage on the free and bound monoterpene profiles in four cultivars of table grape were determined at both the transcriptomic and metabolomic levels. A total of 27 compounds in both free and bound forms were identified in the four cultivars and showed quantitative differences between the cultivars. Hierarchical cluster and principal component analysis indicated that the free and bound monoterpene profiles were remarkably affected by the low temperature storage. The monoterpenes in the same biosynthesis pathway were clustered together and showed similar evolution trends during low temperature storage. And the content of most of free monoterpenes underwent a rapid decline during low-temperature storage at a certain stage, but the time was different in 4 grape cultivars. Transcriptomic analysis revealed that the expression of DXS, HDR, GPPS and TPS genes involved in the monoterpene synthesis pathway were consistent with the changes in the accumulation of monoterpene compounds. While the expression of HMGS, HMGR genes in MVA pathway and branch genes GGPPS and FPPS were negatively correlated with the accumulation of monoterpenes. The findings provide new insights into the underlying mechanisms of the berry aroma flavor change during low temperature storage.
Collapse
Affiliation(s)
- Huiling Wang
- Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100093, PR China
| | - Xiaoyue Wang
- Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100093, PR China
| | - Ailing Yan
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture and Rural Affairs, Beijing 100093, PR China
| | - Zhenhua Liu
- Beijing Engineering Research Center for Deciduous Fruit Trees, Beijing 100093, PR China
| | - Jiancheng Ren
- Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100093, PR China
| | - Haiying Xu
- Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100093, PR China; Beijing Engineering Research Center for Deciduous Fruit Trees, Beijing 100093, PR China.
| | - Lei Sun
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture and Rural Affairs, Beijing 100093, PR China.
| |
Collapse
|
6
|
Zenoni S, Savoi S, Busatto N, Tornielli GB, Costa F. Molecular regulation of apple and grape ripening: exploring common and distinct transcriptional aspects of representative climacteric and non-climacteric fruits. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:6207-6223. [PMID: 37591311 PMCID: PMC10627160 DOI: 10.1093/jxb/erad324] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 08/14/2023] [Indexed: 08/19/2023]
Abstract
Fleshy fruits of angiosperms are organs specialized for promoting seed dispersal by attracting herbivores and enticing them to consume the organ and the seeds it contains. Ripening can be broadly defined as the processes serving as a plant strategy to make the fleshy fruit appealing to animals, consisting of a coordinated series of changes in color, texture, aroma, and flavor that result from an intricate interplay of genetically and epigenetically programmed events. The ripening of fruits can be categorized into two types: climacteric, which is characterized by a rapid increase in respiration rate typically accompanied by a burst of ethylene production, and non-climacteric, in which this pronounced peak in respiration is absent. Here we review current knowledge of transcriptomic changes taking place in apple (Malus × domestica, climacteric) and grapevine (Vitis vinifera, non-climacteric) fruit during ripening, with the aim of highlighting specific and common hormonal and molecular events governing the process in the two species. With this perspective, we found that specific NAC transcription factor members participate in ripening initiation in grape and are involved in restoring normal physiological ripening progression in impaired fruit ripening in apple. These elements suggest the existence of a common regulatory mechanism operated by NAC transcription factors and auxin in the two species.
Collapse
Affiliation(s)
- Sara Zenoni
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134, Verona, Italy
| | - Stefania Savoi
- Department of Agricultural, Forest, and Food Sciences, University of Turin, Largo Paolo Braccini 2, 10095 Grugliasco (Torino), Italy
| | - Nicola Busatto
- Research and Innovation Centre, Fondazione Edmund Mach, Via Mach 1, 39098 San Michele all’Adige (Trento), Italy
| | | | - Fabrizio Costa
- Center Agriculture Food Environment (C3A), University of Trento, Via Mach 1, 39098 San Michele all’Adige (Trento), Italy
| |
Collapse
|
7
|
Wu C, Wang Y, Ai D, Li Z, Wang Y. Biocontrol yeast T-2 improves the postharvest disease resistance of grape by stimulation of the antioxidant system. Food Sci Nutr 2022; 10:3219-3229. [PMID: 36249987 PMCID: PMC9548374 DOI: 10.1002/fsn3.2940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 04/29/2022] [Accepted: 05/04/2022] [Indexed: 11/13/2022] Open
Abstract
Table grapes are susceptible to external pathogens during postharvest storage. The resulting continuous oxidative stress causes damage and aging, thereby reducing the defense against disease. In this study, the effect of biocontrol yeast T-2 on the storage performance of grapes was evaluated. After T-2 treatment, the grapefruits rot rate and lesion diameter caused by Botrytis cinerea (B. cinerea) were significantly decreased at 2-5 days after inoculation (DAI). Additionally, the browning rate and shedding rate of grapefruit during storage were significantly reduced at 2-5 DAI, and the weight loss rate was significantly reduced at 3-5 DAI. The decreased malondialdehyde (MDA) content in grapefruits at 1-5 DAI with T-2 indicated a reduction in oxidative damage. Furthermore, the activities of antioxidant enzymes such as peroxidase (POD), catalase (CAT), phenylalanin ammonia-lyase (PAL) were significantly increased during most storage time after being treated with T-2. Moreover, the contents of total phenolics and flavonoids and the expression levels of key enzyme genes in metabolic pathways were increased after T-2 treatment during most postharvest storage time, providing evidence that T-2 changed the biological process of phenolic flavonoid metabolism. The increase in enzymatic and nonenzymatic antioxidants after treatment with T-2 reflected the strengthening of the antioxidant system, hence postponing fruit senescence and promoting storage performance under the stress of B. cinerea.
Collapse
Affiliation(s)
| | - Yuci Wang
- Tianjin Agricultural UniversityTianjinChina
| | - Dan Ai
- Tianjin Agricultural UniversityTianjinChina
| | - Zhuoran Li
- Tianjin Agricultural UniversityTianjinChina
| | | |
Collapse
|
8
|
Romero I, Escribano MI, Merodio C, Sanchez-Ballesta MT. Postharvest High-CO 2 Treatments on the Quality of Soft Fruit Berries: An Integrated Transcriptomic, Proteomic, and Metabolomic Approach. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:8593-8597. [PMID: 35792090 PMCID: PMC9305969 DOI: 10.1021/acs.jafc.2c01305] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Soft fruits are appreciated for their taste qualities and for being a source of health-promoting compounds. However, their postharvest is affected by their high respiratory rates and susceptibility to fungal decay. Our aim here is to provide a perspective on the application of short-term high-CO2 treatments at a low temperature to maintain the postharvest quality of soft fruits. This work also suggests using a multi-omics approach to better understand the role of the cell wall and phenolic compounds in maintaining quality. Finally, the contribution of high-throughput transcriptomic technologies to understand the mechanisms modulated by the short-term gaseous treatments is also highlighted.
Collapse
|
9
|
Qi M, Luo Z, Wu B, Wang L, Yang M, Zhang X, Lin X, Xu Y, Li X, Li L. Spatial distribution and time-course of polyphenol accumulation in grape berry (Vitis labruscana cv. ‘Kyoho’). J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2021.104353] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
10
|
Liu N, Xie G, Yin W, Xinhua W. Quality characteristics of Niagara grapes and their storage life as affected by 1-MCP combined with sulfur dioxide treatment and modified atmosphere packaging. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2022. [DOI: 10.1080/10942912.2021.2019272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Na Liu
- Food and Pharmaceutical Engineering InstituteGuizhou Engineering Research Center for Fruit Processing, Guiyang University, Guiyang, Guizhou, China
| | - Guofang Xie
- Food and Pharmaceutical Engineering InstituteGuizhou Engineering Research Center for Fruit Processing, Guiyang University, Guiyang, Guizhou, China
| | - Wu Yin
- Food and Pharmaceutical Engineering InstituteGuizhou Engineering Research Center for Fruit Processing, Guiyang University, Guiyang, Guizhou, China
| | - Wang Xinhua
- Food and Pharmaceutical Engineering InstituteGuizhou Engineering Research Center for Fruit Processing, Guiyang University, Guiyang, Guizhou, China
| |
Collapse
|
11
|
Romero I, Vazquez-Hernandez M, Tornel M, Escribano MI, Merodio C, Sanchez-Ballesta MT. The Effect of Ethanol Treatment on the Quality of a New Table Grape Cultivar It 681-30 Stored at Low Temperature and after a 7-Day Shelf-Life Period at 20 °C: A Molecular Approach. Int J Mol Sci 2021; 22:ijms22158138. [PMID: 34360903 PMCID: PMC8347068 DOI: 10.3390/ijms22158138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 07/21/2021] [Accepted: 07/26/2021] [Indexed: 11/24/2022] Open
Abstract
Despite the fact that many studies have examined the effectiveness of different gaseous postharvest treatments applied at low temperature to maintain table grape quality, the use of ethanol vapor has hardly been investigated. Thus, this work has studied the effectiveness of ethanol vapor-generating sachets in the maintenance of It 681–30 table grape quality, a new cultivar, during storage at low temperature and after the shelf-life period at 20 °C. To this end, various quality assessments have been carried out and the effect of the ethanol treatment on the expression of different genes (phenylpropanoids, transcription factors, PRs, and aquaporins) was determined. The results indicated that the application of ethanol vapor reduced the total decay incidence, weight loss, and the rachis browning index in It 681–30 grapes stored at 0 °C and after the shelf-life period at 20 °C, as compared to non-treated samples. Moreover, the modulation of STS7 and the different PR genes analyzed seems to play a part in the molecular mechanisms activated to cope with fungal attacks during the postharvest of It 681–30 grapes, and particularly during the shelf-life period at 20 °C. Furthermore, the expression of aquaporin transcripts was activated in samples showing higher weight loss. Although further work is needed to elucidate the role of ethanol in table grape quality, the results obtained in this work provide new insight into the transcriptional regulation triggered by ethanol treatment.
Collapse
Affiliation(s)
- Irene Romero
- Department of Characterization, Quality and Safety, Institute of Food Science, Technology and Nutrition, Spanish National Research Council (ICTAN-CSIC), José Antonio Novais 10, E-28040 Madrid, Spain; (I.R.); (M.V.-H.); (M.I.E.); (C.M.)
| | - Maria Vazquez-Hernandez
- Department of Characterization, Quality and Safety, Institute of Food Science, Technology and Nutrition, Spanish National Research Council (ICTAN-CSIC), José Antonio Novais 10, E-28040 Madrid, Spain; (I.R.); (M.V.-H.); (M.I.E.); (C.M.)
| | - Manuel Tornel
- Instituto Murciano de Investigación y Desarrollo Agrario y Medioambiental (IMIDA), Mayor, s/n, La Alberca, E-30150 Murcia, Spain;
| | - M. Isabel Escribano
- Department of Characterization, Quality and Safety, Institute of Food Science, Technology and Nutrition, Spanish National Research Council (ICTAN-CSIC), José Antonio Novais 10, E-28040 Madrid, Spain; (I.R.); (M.V.-H.); (M.I.E.); (C.M.)
| | - Carmen Merodio
- Department of Characterization, Quality and Safety, Institute of Food Science, Technology and Nutrition, Spanish National Research Council (ICTAN-CSIC), José Antonio Novais 10, E-28040 Madrid, Spain; (I.R.); (M.V.-H.); (M.I.E.); (C.M.)
| | - M. Teresa Sanchez-Ballesta
- Department of Characterization, Quality and Safety, Institute of Food Science, Technology and Nutrition, Spanish National Research Council (ICTAN-CSIC), José Antonio Novais 10, E-28040 Madrid, Spain; (I.R.); (M.V.-H.); (M.I.E.); (C.M.)
- Correspondence:
| |
Collapse
|