1
|
Zhou L, Bai L, Zhu H, Guo C, Liu S, Yin L, Sun J. Establishing nomograms for predicting disease-free survival and overall survival in patients with breast cancer. J OBSTET GYNAECOL 2024; 44:2361435. [PMID: 39007780 DOI: 10.1080/01443615.2024.2361435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 05/23/2024] [Indexed: 07/16/2024]
Abstract
BACKGROUND Prognostic factors-based nomograms have been utilised to detect the likelihood of the specific cancer events. We have focused on the roles of aldehyde dehydrogenase 1 (ALDH1) and p-AKT in predicting the prognosis of BC patients. This study was designed to establish nomograms based on the integration of aldehyde dehydrogenase 1 (ALDH1) and p-AKT in predicting the disease-free survival (DFS) and overall survival (OS) of breast cancer (BC) patients. METHODS Demographic and clinical data were obtained from BC patients admitted to our hospital between September 2015 and August 2016. Univariate and multivariate Cox regression analyses were utilised to analyse the risk factors of recurrence and mortality. The nomograms for predicting the DFS and OS were established using the screened risk factors. Stratified analysis was performed with the cut-off value of exp (pi) of 4.0-fold in DFS and OS, respectively. RESULTS Multivariate Cox regression analysis indicated that ALDH, p-AKT and pathological stage III were independent risk factors for the recurrence among BC patients. ALDH1, p-AKT, pathological stage III and ER-/PR-/HER2- were independent risk factors for the mortality among BC patients. The established nomograms based on these factors were effective for predicting the DFS and OS with good agreement to the calibration curve and acceptable area under the receiver operating characteristic (ROC) curve. Finally, stratified analyses showed patients with a low pi showed significant decrease in the DFS and OS compared with those of high risk. CONCLUSION We established nomograms for predicting the DFS and OS of BC patients based on ALDH1, p-AKT and pathological stages. The ER-/PR-/HER2- may be utilised to predict the OS rather than DFS in the BC patients.
Collapse
Affiliation(s)
- Ling Zhou
- Department of Thyroid, Breast and Vascular Surgery, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Lifen Bai
- Department of Thyroid, Breast and Vascular Surgery, Shanghai Fourth People's Hospital, Shanghai, China
| | - Huiyin Zhu
- Department of Thyroid, Breast and Vascular Surgery, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Chongyong Guo
- Department of Breast Surgery, Binzhou People's Hospital Affiliated to Shandong First Medical University, Binzhou, China
| | - Sheng Liu
- Department of Thyroid, Breast and Vascular Surgery, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Lu Yin
- Diagnostic and Treatment Center for Refractory Diseases of Abdomen Surgery, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jian Sun
- Department of Thyroid, Breast and Vascular Surgery, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
2
|
Zhang X, Jiang X, Deng H, Yu G, Yang N, Al Mamun A, Lian F, Chen T, Zhang H, Lai Y, Huang J, Xu S, Cai F, Li X, Zhou K, Xiao J. Engineering exosomes from fibroblast growth factor 1 pre-conditioned adipose-derived stem cells promote ischemic skin flaps survival by activating autophagy. Mater Today Bio 2024; 29:101314. [PMID: 39534677 PMCID: PMC11554927 DOI: 10.1016/j.mtbio.2024.101314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/16/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024] Open
Abstract
Background The recovery of ischemic skin flaps is a major concern in clinical settings. The purpose of this study is to evaluate the effects of engineered exosomes derived from FGF1 pre-conditioned adipose-derived stem cells (FEXO) on ischemic skin flaps. Method 6 patients who suffered from pressure ulcer at stage 4 and underwent skin flaps surgery were recruited in this study to screen the potential targets of ischemic skin flaps in FGF family. FGF1 was co-incubated with adipose stem cells, and ultracentrifugation was applied to extract FEXO. Transcriptome sequencing analysis was used to determine the most effective microRNA in FEXO. Animal skin flaps models were established in our study to verify the effects of FEXO. Immunofluorescence (IF), western blotting (WB) and other molecular strategy were used to evaluate the effects and mechanism of FEXO. Results FGF1 was expected to be the therapeutic and diagnostic target of ischemic skin flaps, but there is still some deficiency in rescuing skin flaps. FEXO significantly improved the viability of RPSFs and endothelial cells by inhibiting oxidative stress and alleviating apoptosis and pyroptosis through augmenting autophagy flux. In addition, FEXO inhibited the over-activated inflammation responses. Transcriptome sequencing analysis showed that miR-183-5p was significantly elevated in FEXO, and inhibiting miR-183-5p resulted in impaired protective effects of autophagy in skin flaps. The exosomal miR-183-5p markedly enhanced cell viability, inhibited oxidative stress and alleviated apoptosis and pyroptosis in endothelial cells by targeting GPR137 through Pi3k/Akt/mTOR pathway, indicating that GPR137 could also be a therapeutic target of ischemic skin flap. It was also notabale that FGF1 increased the number of exosomes by upregulating VAMP3, which may be a promising strategy for clinical translation. Conclusion FEXO markedly improved the survivial rate of ischemic skin flaps through miR-183-5p/GPR137/Pi3k/Akt/mTOR axis, which would be a promising strategy to rescue ischemic skin flaps.
Collapse
Affiliation(s)
- Xuanlong Zhang
- Department of Wound Healing, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325015, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Xiaoqiong Jiang
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
- College of Nursing, Wenzhou Medical University, Wenzhou, 325000, China
| | - Huiming Deng
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Gaoxiang Yu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
| | - Ningning Yang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
| | - Abdullah Al Mamun
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Feifei Lian
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Tianling Chen
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Haijuan Zhang
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Yingying Lai
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
| | - Jiayi Huang
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Shi Xu
- College of Nursing, Wenzhou Medical University, Wenzhou, 325000, China
| | - Fuman Cai
- College of Nursing, Wenzhou Medical University, Wenzhou, 325000, China
| | - Xiaokun Li
- Department of Wound Healing, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325015, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Kailiang Zhou
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
| | - Jian Xiao
- Department of Wound Healing, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325015, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
| |
Collapse
|
3
|
Miao W, Wang Z, Gao J, Ohno Y. Polyphyllin II inhibits breast cancer cell proliferation via the PI3K/Akt signaling pathway. Mol Med Rep 2024; 30:224. [PMID: 39364737 PMCID: PMC11465422 DOI: 10.3892/mmr.2024.13348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 09/05/2024] [Indexed: 10/05/2024] Open
Abstract
Paridis Rhizoma saponins (PRS) are significant components of Rhizoma Paridis and have inhibitory effects on various tumors, such as bladder, breast, liver and colon cancer. Polyphyllin II (PPII), one of the PRS, has an unclear effect on breast cancer. The present study aimed to explore the effect and mechanism of PPII in breast cancer. A network pharmacology approach was employed to predict the core components and breast cancer‑related targets of PRS. Moreover, a xenograft tumor model was established to determine the anti‑breast cancer effect of PPII in vivo. The viability of MDA‑MB‑231 cells was determined by a Cell Counting Kit‑8 assay. Apoptosis was analyzed using annexin V/PI double staining. Additionally, Transwell and scratch assays were performed to evaluate invasion and migration. The potential mechanism was predicted by Kyoto Encyclopedia of Genes and Genomes enrichment analysis and molecular docking analysis and verified by western blot analysis. The effect of PPII on aerobic glycolysis in breast cancer cells was detected by lactic acid and pyruvate kits and Western blotting of glycolytic rate‑limiting enzymes. Network pharmacology analysis revealed 26 core targets involved in breast cancer and that PPII was the core active component of PRS. The in vivo studies showed that PPII could inhibit the growth of breast cancer in mice. In vitro experiments confirmed that PPII induced cancer cell apoptosis and inhibited invasion and migration. Furthermore, PPII was capable of suppressing the expression of key proteins in the PI3K/Akt signaling pathway, reducing the generation of aerobic glycolytic products, and diminishing the protein expression levels of hexokinase 2 and pyruvate kinase M2. The results indicated that PPII inhibited aerobic glycolysis in breast cancer cells through the PI3K/Akt signaling pathway, thereby inhibiting breast cancer growth.
Collapse
Affiliation(s)
- Weiwei Miao
- Department of Health Science, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
- College of Pharmacy, Shanghai University of Medicine & Health Sciences, Shanghai 201318, P.R. China
| | - Zhixiong Wang
- College of Health Management, Shanghai Jian Qiao University, Shanghai 201306, P.R. China
| | - Jianwen Gao
- College of Health Management, Shanghai Jian Qiao University, Shanghai 201306, P.R. China
| | - Yuko Ohno
- Department of Health Science, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
4
|
Lee S, Park J, Piao Y, Lee D, Lee D, Kim S. Multi-layered knowledge graph neural network reveals pathway-level agreement of three breast cancer multi-gene assays. Comput Struct Biotechnol J 2024; 23:1715-1724. [PMID: 38689720 PMCID: PMC11058099 DOI: 10.1016/j.csbj.2024.04.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 04/14/2024] [Accepted: 04/15/2024] [Indexed: 05/02/2024] Open
Abstract
Multi-gene assays have been widely used to predict the recurrence risk for hormone receptor (HR)-positive breast cancer patients. However, these assays lack explanatory power regarding the underlying mechanisms of the recurrence risk. To address this limitation, we proposed a novel multi-layered knowledge graph neural network for the multi-gene assays. Our model elucidated the regulatory pathways of assay genes and utilized an attention-based graph neural network to predict recurrence risk while interpreting transcriptional subpathways relevant to risk prediction. Evaluation on three multi-gene assays-Oncotype DX, Prosigna, and EndoPredict-using SCAN-B dataset demonstrated the efficacy of our method. Through interpretation of attention weights, we found that all three assays are mainly regulated by signaling pathways driving cancer proliferation especially RTK-ERK-ETS-mediated cell proliferation for breast cancer recurrence. In addition, our analysis highlighted that the important regulatory subpathways remain consistent across different knowledgebases used for constructing the multi-level knowledge graph. Furthermore, through attention analysis, we demonstrated the biological significance and clinical relevance of these subpathways in predicting patient outcomes. The source code is available at http://biohealth.snu.ac.kr/software/ExplainableMLKGNN.
Collapse
Affiliation(s)
| | | | - Yinhua Piao
- Department of Computer Science and Engineering, South Korea
| | - Dohoon Lee
- Bioinformatics Institute, South Korea
- BK21 FOUR Intelligence Computing, South Korea
| | - Danyeong Lee
- Interdisciplinary Program in Bioinformatics, South Korea
| | - Sun Kim
- Department of Computer Science and Engineering, South Korea
- Interdisciplinary Program in Bioinformatics, South Korea
- Interdisciplinary Program in Artificial Intelligence, Seoul National University, Gwanak-ro 1, Gwanak-gu, Seoul, 08826, South Korea
- AIGENDRUG Co., Ltd., Gwanak-ro 1, Gwanak-gu, Seoul, 08826, South Korea
| |
Collapse
|
5
|
Mafi A, Hedayati N, Kahkesh S, Khoshayand S, Alimohammadi M, Farahani N, Hushmandi K. The landscape of circRNAs in gliomas temozolomide resistance: Insights into molecular pathways. Noncoding RNA Res 2024; 9:1178-1189. [PMID: 39022676 PMCID: PMC11250881 DOI: 10.1016/j.ncrna.2024.05.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/01/2024] [Accepted: 05/20/2024] [Indexed: 07/20/2024] Open
Abstract
As the deadliest type of primary brain tumor, gliomas represent a significant worldwide health concern. Circular RNA (circRNA), a unique non-coding RNA molecule, seems to be one of the most alluring target molecules involved in the pathophysiology of many kinds of cancers. CircRNAs have been identified as prospective targets and biomarkers for the diagnosis and treatment of numerous disorders, particularly malignancies. Recent research has established a clinical link between temozolomide (TMZ) resistance and certain circRNA dysregulations in glioma tumors. CircRNAs may play a therapeutic role in controlling or overcoming TMZ resistance in gliomas and may provide guidance for a novel kind of individualized glioma therapy. To address the biological characteristics of circRNAs and their potential to induce resistance to TMZ, this review has highlighted and summarized the possible roles that circRNAs may play in molecular pathways of drug resistance, including the Ras/Raf/ERK PI3K/Akt signaling pathway and metabolic processes in gliomas.
Collapse
Affiliation(s)
- Alireza Mafi
- Nutrition and Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Neda Hedayati
- School of Medicine, Iran University of Medical Science, Tehran, Iran
| | - Samaneh Kahkesh
- Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Sara Khoshayand
- School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mina Alimohammadi
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Najma Farahani
- Department of Genetics and Molecular Biology, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| |
Collapse
|
6
|
Mallick S, Duttaroy AK, Dutta S. The PIK3CA gene and its pivotal role in tumor tropism of triple-negative breast cancer. Transl Oncol 2024; 50:102140. [PMID: 39369580 PMCID: PMC11491976 DOI: 10.1016/j.tranon.2024.102140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 09/04/2024] [Accepted: 09/23/2024] [Indexed: 10/08/2024] Open
Abstract
The PIK3CA gene is a linchpin in the intricate molecular network governing triple-negative breast cancer (TNBC) tumor tropism, serving as a focal point for understanding this aggressive disease. Anchored within the PI3K/AKT/mTOR signaling axis, PIK3CA mutations exert substantial influence, driving cellular processes that highlight the unique biology of TNBC. This review meticulously highlights the association between PIK3CA mutations and distinct TNBC subtypes, elucidating the gene's multifaceted contributions to tumor tropism. Molecular dissection reveals how PIK3CA mutations dynamically modulate chemokine responses, growth factor signaling, and extracellular matrix interactions, orchestrating the complex migratory behaviour characteristic of TNBC cells. A detailed exploration of PIK3CA-targeted strategies in the therapeutic arena is presented, outlining the current landscape of clinical trials and precision medicine approaches. As the scientific narrative converges, this review underscores the critical role of PIK3CA in shaping the molecular intricacies of TNBC tumor tropism and illuminates pathways toward tailored interventions, promising a paradigm shift in the clinical management of TNBC.
Collapse
Affiliation(s)
- Sumit Mallick
- Stem Cells and Regenerative Medicine Centre, Yenepoya Research Centre, Yenepoya (Deemed to be University), University Road, Mangalore, Karnataka, India
| | - Asim K Duttaroy
- Department of Nutrition, Faculty of Medicine, Institute of Basic Medical Sciences, University of Oslo, Norway.
| | - Suman Dutta
- Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, UK; Dorothy Crowfoot Hodgkin Building, Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, UK.
| |
Collapse
|
7
|
Gao L, Zhang Y, Feng M, Shen M, Yang L, Wei B, Zhou Y, Zhang Z. HER3: Updates and current biology function, targeted therapy and pathologic detecting methods. Life Sci 2024; 357:123087. [PMID: 39366553 DOI: 10.1016/j.lfs.2024.123087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 09/18/2024] [Accepted: 09/28/2024] [Indexed: 10/06/2024]
Abstract
Being a member of the EGFR tyrosine kinase family, HER3 has been shown to be overexpressed in a number of cancers, including breast cancer (BC). The kinase activity of HER3 is extremely low, and it forms heterodimers with partners, HER2 in particular, that promote biological processes like cell migration, survival, and proliferation by activating downstream carcinogenic signaling pathways. The overexpression of HER3 is also directly linked to tumor invasion, metastasis, and a poor prognosis. Despite the relatively low expression of HER3 compared to EGFR and HER2, a lot of targeted drugs are making their way into clinical trials and seem to have a bright further. This review aims to summarize the relationship between HER3 overexpression, mutations, and carcinogenicity and drug resistance, starting from the unique structure and kinase activity of HER3. Simultaneously, numerous approaches to HER3 targeted therapy are enumerated, and the clinical detection methods for HER3 that are commonly employed in pathology are sorted and contrasted to offer physicians a range of options. We think that a better knowledge of the mechanisms underlying HER3 in tumors and the advancement of targeted HER3 therapy will contribute to an improved prognosis for cancer patients and an increase in the efficacy of anticancer therapies.
Collapse
Affiliation(s)
- Leyi Gao
- Department of Pathology, West China Hospital, Sichuan University, No.37, Guo Xue Xiang, Chengdu 610041, Sichuan, China
| | - Yu Zhang
- Department of Pathology, West China Hospital, Sichuan University, No.37, Guo Xue Xiang, Chengdu 610041, Sichuan, China
| | - Mengna Feng
- Department of Pathology, West China Hospital, Sichuan University, No.37, Guo Xue Xiang, Chengdu 610041, Sichuan, China
| | - Mengjia Shen
- Department of Pathology, West China Hospital, Sichuan University, No.37, Guo Xue Xiang, Chengdu 610041, Sichuan, China
| | - Libo Yang
- Department of Pathology, West China Hospital, Sichuan University, No.37, Guo Xue Xiang, Chengdu 610041, Sichuan, China
| | - Bing Wei
- Department of Pathology, West China Hospital, Sichuan University, No.37, Guo Xue Xiang, Chengdu 610041, Sichuan, China
| | - Yongjie Zhou
- Laboratory of Liver Transplantation, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Zhang Zhang
- Department of Pathology, West China Hospital, Sichuan University, No.37, Guo Xue Xiang, Chengdu 610041, Sichuan, China.
| |
Collapse
|
8
|
Zaman A, Ghosh A, Ghosh AK, Das PK. DON encapsulated carbon dot-vesicle conjugate in therapeutic intervention of lung adenocarcinoma by dual targeting of CD44 and SLC1A5. NANOSCALE 2024. [PMID: 39513401 DOI: 10.1039/d4nr00426d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
Lung adenocarcinoma, recognized as one of the most formidable malignancies with a dismal prognosis and low survival rates, poses a significant challenge in its treatment. This article delineates the design and development of a carbon dot-vesicle conjugate (HACD-TMAV) for efficient cytotoxicity towards lung cancer cells by target selective delivery of the glutamine inhibitor 6-diazo-5-oxo-L-norleucine (DON) within CD44-enriched A549 cancer cells. HACD-TMAV is composed of hyaluronic acid-based carbon dots (HACDs) and trimesic acid-based vesicles (TMAV), which are bound via electrostatic interactions. TMAVs are formed by positively charged trimesic acid-based amphiphiles through H-type aggregation in water. HACDs were synthesized through a one-step hydrothermal route. The blue-emitting HACD-TMAV conjugate demonstrated selective bioimaging in CD44-overexpressed A549 lung cancer cells due to specific ligand-receptor interactions between HA and CD44. HACD-TMAV exhibited notably improved DON loading efficiency compared to individual nano-vehicles. HACD-TMAV-DON exhibited remarkable (∼6.0-fold higher) cytotoxicity against CD44-overexpressing A549 cells compared to CD44- HepG2 cells and HEK 293 normal cells. Also, DON-loaded HACD-TMAV showed ∼2.0-fold higher cytotoxicity against A549 cells compared to individual carriers and ∼4.5-fold higher cytotoxicity than by DON. Furthermore, HACD-TMAV-DON induced a ∼3.5-fold reduction in the size of 3D tumor spheroids of A549 cells. The enhanced anticancer effectiveness was attributed to starvation of the A549 cells of glutamine by dual targeting of glutamine metabolism and solute linked carrier family 1 member A5 (SLC1A5) through HA-linked CD44-mediated targeted delivery of DON. This led to over-production of reactive oxygen species (ROS) that induced apoptosis of cancer cells through downregulation of the PI3K/AKT/mTOR signaling cascade.
Collapse
Affiliation(s)
- Afreen Zaman
- School of Biological Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata - 700032, India.
| | - Aparajita Ghosh
- School of Biological Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata - 700032, India.
| | - Anup Kumar Ghosh
- School of Biological Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata - 700032, India.
| | - Prasanta Kumar Das
- School of Biological Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata - 700032, India.
| |
Collapse
|
9
|
Huang X, Xia K, Wei Z, Liu W, Wei Z, Guo W. SLC38A5 suppresses ferroptosis through glutamine-mediated activation of the PI3K/AKT/mTOR signaling in osteosarcoma. J Transl Med 2024; 22:1004. [PMID: 39511570 PMCID: PMC11542360 DOI: 10.1186/s12967-024-05803-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 10/24/2024] [Indexed: 11/15/2024] Open
Abstract
BACKGROUND Solute carrier family 38 member 5 (SLC38A5) is an amino acid transporter that plays a significant role in various cellular biological processes and may be involved in regulating the progression of tumors However, its function and underlying mechanism in osteosarcoma remain unexplored. METHODS Utilizing various database analyses and experiments, we have explored the dysregulation of SLC38A5 in osteosarcoma and its prognostic value. A series of in vitro functional experiments, including CCK-8, colony formation, wound healing, and transwell invasion assays, were conducted to evaluate the effects of SLC38A5 on the proliferation, migration, and invasion of osteosarcoma cells. Downstream pathways of SLC38A5 were explored through methods such as western blot and metabolic assays, followed by a series of validations. Finally, we constructed a subcutaneous xenograft tumor model in nude mice to explore SLC38A5 function in vivo. RESULTS SLC38A5 is upregulated in osteosarcoma and is associated with poor prognosis in patients. Upregulation of SLC38A5 promotes proliferation, migration, and invasion of osteosarcoma cells, while the PI3K inhibitor BKM120 can counteract these effects. Additionally, silencing of SLC38A5 inhibits tumor growth in vivo. Mechanistically, SLC38A5 mediates the activation of the PI3K/AKT/mTOR signaling pathway by transporting glutamine, which subsequently enhances the SREBP1/SCD-1 signaling pathway, thereby suppressing ferroptosis in osteosarcoma cells. CONCLUSION SLC38A5 promotes osteosarcoma cell proliferation, migration, and invasion via the glutamine-mediated PI3K/AKT/mTOR signaling pathway and inhibits ferroptosis. Targeting SLC38A5 and the PI3K/AKT signaling axis may provide a meaningful therapeutic strategy for the future treatment of osteosarcoma.
Collapse
Affiliation(s)
- Xinghan Huang
- Department of Orthopaedics, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, 430060, China
| | - Kezhou Xia
- Department of Orthopaedics, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, 430060, China
| | - Zhun Wei
- Department of Orthopaedics, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, 430060, China
| | - Wenda Liu
- Department of Orthopaedics, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, 430060, China
| | - Zicheng Wei
- Department of Orthopaedics, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, 430060, China
| | - Weichun Guo
- Department of Orthopaedics, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, 430060, China.
| |
Collapse
|
10
|
Manjunath GK, Sharma S, Nashier D, Vasanthaiah S, Jha S, Bage S, Mitra T, Goyal P, Neerathilingam M, Kumar A. Breast cancer genomic analyses reveal genes, mutations, and signaling networks. Funct Integr Genomics 2024; 24:206. [PMID: 39496981 DOI: 10.1007/s10142-024-01484-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/17/2024] [Accepted: 10/22/2024] [Indexed: 11/06/2024]
Abstract
Breast cancer (BC) is the most commonly diagnosed cancer and the predominant cause of death in women. BC is a complex disorder, and the exploration of several types of BC omic data, highlighting genes, perturbations, signaling and cellular mechanisms, is needed. We collected mutational data from 9,555 BC samples using cBioPortal. We classified 1174 BC genes (mutated ≥ 40 samples) into five tiers (BCtier_I-V) and subjected them to pathway and protein‒protein network analyses using EnrichR and STRING 11, respectively. BCtier_I possesses 12 BC genes with mutational frequencies > 5%, with only 5 genes possessing > 10% frequencies, namely, PIK3CA (35.7%), TP53 (34.3%), GATA3 (11.5%), CDH1 (11.4%) and MUC16 (11%), and the next seven BC genes are KMT2C (8.8%), TTN (8%), MAP3K1 (8%), SYNE1 (7.2%), AHNAK2 (7%), USH2A (5.5%), and RYR2 (5.4%). Our pathway analyses revealed that the five top BC pathways were the PI3K-AKT, TP53, NOTCH, HIPPO, and RAS pathways. We found that BC panels share only seven genes. These findings show that BC arises from genetic disruptions evident in BC signaling and protein networks.
Collapse
Affiliation(s)
- Gowrang Kasaba Manjunath
- Manipal Academy of Higher Education (MAHE), Manipal, 576104, Karnataka, India
- Institute of Bioinformatics, International Technology Park, Whitefield, Bangalore, 560066, Karnataka, India
| | - Srihari Sharma
- Institute of Bioinformatics, International Technology Park, Whitefield, Bangalore, 560066, Karnataka, India
| | - Disha Nashier
- Manipal Academy of Higher Education (MAHE), Manipal, 576104, Karnataka, India
- Institute of Bioinformatics, International Technology Park, Whitefield, Bangalore, 560066, Karnataka, India
| | - Shruthi Vasanthaiah
- Manipal Academy of Higher Education (MAHE), Manipal, 576104, Karnataka, India
- Institute of Bioinformatics, International Technology Park, Whitefield, Bangalore, 560066, Karnataka, India
| | - Spriha Jha
- Institute of Bioinformatics, International Technology Park, Whitefield, Bangalore, 560066, Karnataka, India
| | - Saloni Bage
- Department of Biotechnology, School of Life Sciences, Central University of Rajasthan, Ajmer, Rajasthan, India
| | - Tamoghna Mitra
- Manipal Academy of Higher Education (MAHE), Manipal, 576104, Karnataka, India
- Institute of Bioinformatics, International Technology Park, Whitefield, Bangalore, 560066, Karnataka, India
| | - Pankaj Goyal
- Department of Biotechnology, School of Life Sciences, Central University of Rajasthan, Ajmer, Rajasthan, India
| | - Muniasamy Neerathilingam
- Manipal Academy of Higher Education (MAHE), Manipal, 576104, Karnataka, India
- Institute of Bioinformatics, International Technology Park, Whitefield, Bangalore, 560066, Karnataka, India
| | - Abhishek Kumar
- Manipal Academy of Higher Education (MAHE), Manipal, 576104, Karnataka, India.
- Institute of Bioinformatics, International Technology Park, Whitefield, Bangalore, 560066, Karnataka, India.
| |
Collapse
|
11
|
Das A, Bhattacharya B, Gayen S, Roy S. Unraveling the chemotherapeutic potential of taxifolin ruthenium-p-cymene complex in breast carcinoma: Insights into AhR signaling pathway in vitro and in vivo. Transl Oncol 2024; 49:102107. [PMID: 39181115 PMCID: PMC11388270 DOI: 10.1016/j.tranon.2024.102107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 01/21/2024] [Accepted: 08/18/2024] [Indexed: 08/27/2024] Open
Abstract
BACKGROUND Mammary carcinoma is the most frequently diagnosed form of carcinoma in women worldwide. The organometallic compounds showed a prospective anticancer activity. This research explored the anticancer efficacy of taxifolin ruthenium-p-cymene counter to breast cancer. METHODS The anticancer efficacy of the novel organometallic compound was investigated via various in vitro and in vivo techniques using breast cancer cell lines and breast cancer model of rat. RESULTS Target proteins were identified via pharmacophore analysis, which revealed a high binding affinity towards AhR, EGFR, and β-catenin. The compound induced apoptotic events and prevented cancer cell colony formation. Furthermore, decreased expression of AhR, EGFR, and N-cadherin inhibited cancer cell growth, migration, and proliferation. The compound provoked the cell cycle arrest at sub G0/G1 phase, S phase and G2/M phase and inaugurated the caspase-3 dependent apoptotic events. The in-vivo experimentation displayed the fruitful restoration of breast tissue since the complex treatment in DMBA persuaded breast carcinoma in rat. Moreover, the upstream of p53 and caspase-3 expression along with substantially downstream of vimentin, β-catenin, m-TOR and Akt expression. CONCLUSIONS In conclusion, the compound repressed the cancerous cellular viability, migration, and EMT via modulating the AhR/EGFR/ PI3K transduction pathway and the expression of EMT biomarkers such as N-cadherin, E-cadherin, thus eventually revoked the EMT facilitated metastasis of malignant cells.
Collapse
Affiliation(s)
- Abhijit Das
- Department of Pharmacy, NSHM Knowledge Campus- Kolkata, 124 BL. Saha Road, Kolkata, West Bengal 700053, India
| | - Barshana Bhattacharya
- Department of Pharmacy, NSHM Knowledge Campus- Kolkata, 124 BL. Saha Road, Kolkata, West Bengal 700053, India
| | - Sakuntala Gayen
- Department of Pharmacy, NSHM Knowledge Campus- Kolkata, 124 BL. Saha Road, Kolkata, West Bengal 700053, India
| | - Souvik Roy
- Department of Pharmacy, NSHM Knowledge Campus- Kolkata, 124 BL. Saha Road, Kolkata, West Bengal 700053, India.
| |
Collapse
|
12
|
Deldadeh N, Shahbazi S, Ghiasvand S, Shahriari F, Javidi MA. COVID-19 vaccination anti-cancer impact on the PI3K/AKT signaling pathway in MC4L2 mice models. Microb Pathog 2024; 196:106955. [PMID: 39303961 DOI: 10.1016/j.micpath.2024.106955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 08/28/2024] [Accepted: 09/17/2024] [Indexed: 09/22/2024]
Abstract
The most promising method of containing the COVID-19 pandemic is considered to be vaccination against SARS-CoV-2 infection. However, research on the relationship between vaccination against COVID-19 and cancer has primarily examined induced immunity rather than the disease itself. Considering that breast cancer is the most common cancer among women, the main goal of this study was to examine the impact of the Sinopharm and AstraZeneca vaccination on tumor characteristics such as tumor size, important tumor markers, tumor-infiltrating lymphocytes, metastasis to vital organs, and investigation of the PI3K/AKT signaling pathway, and the expression levels of relevant genes (PTEN, mTOR, AKT, PI3K, GSK3, and FoxO1) of the luminal B (MC4L2) mouse model. The tumor size of the mice was measured and monitored every two days, and after thirty days, the mice were euthanized. Remarkably, after vaccination, all vaccinated mice showed a decrease in the size of their tumor and an increase in the number of lymphocytes that had invaded the tumors. Tumor marker levels (VEGF, Ki-67, MMP-2/9), CD4/CD8 ratio, metastasis to vital organs, hormone receptors (ER, PR, and HER-2), and expression of genes related to the advancement of the PI3K/AKT signaling pathway were lower in vaccinated mice. Our research showed that the COVID-19 vaccine can have an anti-cancer effect by slowing the tumor progression and metastasis.
Collapse
Affiliation(s)
- Negar Deldadeh
- Department of Integrative Oncology, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Sahba Shahbazi
- Protein Biotechnology Research Lab (PBRL), Department of Cell and Molecular Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Saeedeh Ghiasvand
- Department of Biology, Faculty of Science, Malayer University, Malayer, Iran.
| | - Fatemeh Shahriari
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mohammad Amin Javidi
- Department of Integrative Oncology, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran.
| |
Collapse
|
13
|
Wang W, Ye L, Li H, Mao W, Xu X. Targeting esophageal carcinoma: molecular mechanisms and clinical studies. MedComm (Beijing) 2024; 5:e782. [PMID: 39415846 PMCID: PMC11480525 DOI: 10.1002/mco2.782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 09/24/2024] [Accepted: 09/24/2024] [Indexed: 10/19/2024] Open
Abstract
Esophageal cancer (EC) is identified as a predominant health threat worldwide, with its highest incidence and mortality rates reported in China. The complex molecular mechanisms underlying EC, coupled with the differential incidence of esophageal squamous cell carcinoma (ESCC) and esophageal adenocarcinoma (EAC) across various regions, highlight the necessity for in-depth research targeting molecular pathogenesis and innovative treatment strategies. Despite recent progress in targeted therapy and immunotherapy, challenges such as drug resistance and the lack of effective biomarkers for patient selection persist, impeding the optimization of therapeutic outcomes. Our review delves into the molecular pathology of EC, emphasizing genetic and epigenetic alterations, aberrant signaling pathways, tumor microenvironment factors, and the mechanisms of metastasis and immune evasion. We further scrutinize the current landscape of targeted therapies, including the roles of EGFR, HER2, and VEGFR, alongside the transformative impact of ICIs. The discussion extends to evaluating combination therapies, spotlighting the synergy between targeted and immune-mediated treatments, and introduces the burgeoning domain of antibody-drug conjugates, bispecific antibodies, and multitarget-directed ligands. This review lies in its holistic synthesis of EC's molecular underpinnings and therapeutic interventions, fused with an outlook on future directions including overcoming resistance mechanisms, biomarker discovery, and the potential of novel drug formulations.
Collapse
Affiliation(s)
- Wenjing Wang
- Department of Medical Thoracic OncologyZhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of SciencesHangzhouZhejiangChina
- Postgraduate Training Base AllianceWenzhou Medical UniversityWenzhouZhejiangChina
| | - Lisha Ye
- Department of Medical Thoracic OncologyZhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of SciencesHangzhouZhejiangChina
- Postgraduate Training Base AllianceWenzhou Medical UniversityWenzhouZhejiangChina
| | - Huihui Li
- Department of Medical Thoracic OncologyZhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of SciencesHangzhouZhejiangChina
- Postgraduate Training Base AllianceWenzhou Medical UniversityWenzhouZhejiangChina
| | - Weimin Mao
- Postgraduate Training Base AllianceWenzhou Medical UniversityWenzhouZhejiangChina
- The Cancer Hospital of the University of Chinese Academy of Sciences, Institute of Basic Medicine and Cancer (IBMC)Chinese Academy of SciencesHangzhouZhejiangChina
| | - Xiaoling Xu
- Postgraduate Training Base AllianceWenzhou Medical UniversityWenzhouZhejiangChina
- Department of Radiation OncologyShanghai Pulmonary Hospital, Tongji University School of MedicineShanghaiChina
| |
Collapse
|
14
|
Al-Hawary SIS, Altalbawy FMA, Jasim SA, Jyothi S R, Jamal A, Naiyer MM, Mahajan S, Kalra H, Jawad MA, Zwamel AH. Inhibitors of the mTOR signaling pathway can play an important role in breast cancer immunopathogenesis. Cell Biol Int 2024; 48:1601-1611. [PMID: 39164963 DOI: 10.1002/cbin.12231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/27/2024] [Accepted: 07/31/2024] [Indexed: 08/22/2024]
Abstract
This study explores the critical role of inhibitors targeting the mammalian target of rapamycin (mTOR) signaling pathway in breast cancer research and treatment. The mTOR pathway, a central regulator of cellular processes, has been identified as a crucial factor in the development and progression of breast cancer. The essay explains the complex molecular mechanisms through which mTOR inhibitors, such as rapamycin and its analogs, exert their anticancer effects. These inhibitors can stop cell growth, proliferation, and survival in breast cancer cells by blocking critical signaling pathways within the mTOR pathway. Furthermore, the essay discusses the implications of using mTOR inhibitors as a comprehensive therapeutic strategy. It emphasizes the potential benefits of combining mTOR inhibitors with other treatment approaches to enhance the effectiveness of breast cancer treatment. The evolving landscape of breast cancer research underscores the significance of mTOR as a therapeutic target and highlights ongoing efforts to improve and optimize mTOR inhibitors for clinical use. In conclusion, the essay asserts that inhibitors of the mTOR signaling pathway offer a promising approach in the fight against breast cancer. These inhibitors provide a focused and effective intervention targeting specific dysregulations within the mTOR pathway. As research advances, the integration of mTOR inhibitors into customized combination therapies holds excellent potential for shaping a more effective and personalized approach to breast cancer treatment, ultimately leading to improved outcomes for individuals affected by this complex and diverse disease.
Collapse
Affiliation(s)
| | - Farag M A Altalbawy
- Department of Chemistry, University College of Duba, University of Tabuk, Tabuk, Saudi Arabia
| | - Saade Abdalkareem Jasim
- Medical Laboratory Techniques Department, College of Health and Medical Technology, University of Al-Maarif, Anbar, Iraq
| | - Renuka Jyothi S
- Department of Biotechnology and Genetics, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India
| | - Azfar Jamal
- Health and Basic Science Research Centre, Majmaah University, Al-Majmaah, Saudi Arabia
- Department of Biology, College of Science Al-Zulfi, Majmaah University, Al-Majmaah, Saudi Arabia
| | - Mohammed M Naiyer
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, London, UK
| | - Shriya Mahajan
- Department of Allied Healthcare and Sciences, Vivekananda Global University, Jaipur, Rajasthan, India
| | - Hitesh Kalra
- Chandigarh Pharmacy College, Chandigarh Group of Colleges, Jhanjheri, Mohali, Punjab, India
| | | | - Ahmed Hussein Zwamel
- Medical Laboratory Technique College, The Islamic University, Najaf, Iraq
- Medical Laboratory Technique College, The Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
- Medical Laboratory Technique College, The Islamic University of Babylon, Babylon, Iraq
| |
Collapse
|
15
|
Kumar A, Sharma V, Behl T, Ganesan S, Nathiya D, Gulati M, Khalid M, Elossaily GM, Chigurupati S, Sachdeva M. Insights into medicinal attributes of imidazo[1,2-a]pyridine derivatives as anticancer agents. Arch Pharm (Weinheim) 2024; 357:e2400402. [PMID: 39221527 DOI: 10.1002/ardp.202400402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/10/2024] [Accepted: 08/13/2024] [Indexed: 09/04/2024]
Abstract
Cancer ranks among the most life-threatening diseases worldwide and is continuously affecting all age groups. Consequently, many research studies are being carried out to develop new cancer treatments, but many of them experience resistance and cause severe toxicity to the patients. Therefore, there is a continuous need to design novel anticancer agents that are target-based, have a higher potency, and have minimal toxicity. The imidazo[1,2-a]pyridine (IP) pharmacophore has been found to be a prominent moiety in the field of medicinal chemistry due to its vast biological properties. Also, it holds immense potential for combating cancer with minimal side effects, depending on the substitution patterns of the core structure. IPs exhibit significant capability in regulating various cellular pathways, offering possibilities for targeted anticancer effects. The present review summarizes the anticancer profile of numerous IP derivatives synthesized and developed by various researchers from 2016 till now, as inhibitors of phosphoinositide-3-kinase/mammalian target of rapamycin (PI3K/mTOR), protein kinase B/mammalian target of rapamycin (Akt/mTOR), aldehyde dehydrogenase (ALDH), and tubulin polymerization. This review provides a comprehensive analysis of the anticancer activity afforded by the discussed IP compounds, emphasizing the structure-activity-relationships (SARs). The aim is also to underscore the potential therapeutic future of the IP moiety as a potent partial structure for upcoming cancer drug development and to aid researchers in the field of rational drug design.
Collapse
Affiliation(s)
- Ankush Kumar
- Amity School of Pharmaceutical Sciences, Amity University, Mohali, Punjab, India
| | - Vishakha Sharma
- Amity School of Pharmaceutical Sciences, Amity University, Mohali, Punjab, India
| | - Tapan Behl
- Amity School of Pharmaceutical Sciences, Amity University, Mohali, Punjab, India
| | - Subbulakshmi Ganesan
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India
| | - Deepak Nathiya
- Department of Pharmacy Practice, Institute of Pharmacy, NIMS University, Jaipur, Rajasthan, India
| | - Monica Gulati
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
- ARCCIM, Faculty of Health, University of Technology Sydney, Ultimo, Sydney, New South Wales, Australia
| | - Mohammad Khalid
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Gehan M Elossaily
- Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, Riyadh, Saudi Arabia
| | - Sridevi Chigurupati
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Qassim University, Buraydah, Kingdom of Saudi Arabia
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Monika Sachdeva
- Fatimah College of Health Sciences, Al Ain, United Arab Emirates
| |
Collapse
|
16
|
Ganai AM, Vrettos EI, Kyrkou SG, Zoi V, Khan Pathan T, Karpoormath R, Bouziotis P, Alexiou GA, Kastis GA, Protonotarios NE, Tzakos AG. Design Principles and Applications of Fluorescent Kinase Inhibitors for Simultaneous Cancer Bioimaging and Therapy. Cancers (Basel) 2024; 16:3667. [PMID: 39518106 PMCID: PMC11545566 DOI: 10.3390/cancers16213667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 10/12/2024] [Accepted: 10/17/2024] [Indexed: 11/16/2024] Open
Abstract
Kinase inhibitors are potent therapeutic agents in cancer treatment, but their effectiveness is frequently restricted by the inability to image the tumor microenvironment. To address this constraint, kinase inhibitor-fluorophore conjugates have emerged as promising theranostic agents, allowing for simultaneous cancer diagnosis and treatment. These conjugates are gaining attention for their ability to visualize malignant tissues and concurrently enhance therapeutic interventions. This review explores the design principles governing the development of multimodal inhibitors, highlighting their potential as platforms for kinase tracking and inhibition via bioimaging. The structural aspects of constructing such theranostic agents are critically analyzed. This work could shed light on this intriguing field and provide adequate impetus for developing novel theranostic compounds based on small molecule inhibitors and fluorophores.
Collapse
Affiliation(s)
- Ab Majeed Ganai
- Department of Chemistry, Section of Organic Chemistry and Biochemistry, University of Ioannina, 45110 Ioannina, Greece; (A.M.G.); (E.I.V.); (S.G.K.); (T.K.P.)
| | - Eirinaios I. Vrettos
- Department of Chemistry, Section of Organic Chemistry and Biochemistry, University of Ioannina, 45110 Ioannina, Greece; (A.M.G.); (E.I.V.); (S.G.K.); (T.K.P.)
| | - Stavroula G. Kyrkou
- Department of Chemistry, Section of Organic Chemistry and Biochemistry, University of Ioannina, 45110 Ioannina, Greece; (A.M.G.); (E.I.V.); (S.G.K.); (T.K.P.)
| | - Vasiliki Zoi
- Neurosurgical Institute, University of Ioannina, 45110 Ioannina, Greece; (V.Z.); (G.A.A.)
| | - Tabasum Khan Pathan
- Department of Chemistry, Section of Organic Chemistry and Biochemistry, University of Ioannina, 45110 Ioannina, Greece; (A.M.G.); (E.I.V.); (S.G.K.); (T.K.P.)
- Department of Pharmaceutical Chemistry, Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal (Westville), Durban 4000, South Africa;
| | - Rajshekhar Karpoormath
- Department of Pharmaceutical Chemistry, Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal (Westville), Durban 4000, South Africa;
| | - Penelope Bouziotis
- Institute of Nuclear and Radiological Science and Technology, Energy and Safety (INRASTES), National Center for Scientific Research “Demokritos”, 15310 Athens, Greece; (P.B.); (G.A.K.); (N.E.P.)
| | - George A. Alexiou
- Neurosurgical Institute, University of Ioannina, 45110 Ioannina, Greece; (V.Z.); (G.A.A.)
| | - George A. Kastis
- Institute of Nuclear and Radiological Science and Technology, Energy and Safety (INRASTES), National Center for Scientific Research “Demokritos”, 15310 Athens, Greece; (P.B.); (G.A.K.); (N.E.P.)
- Mathematics Research Center, Academy of Athens, 11527 Athens, Greece
| | - Nicholas E. Protonotarios
- Institute of Nuclear and Radiological Science and Technology, Energy and Safety (INRASTES), National Center for Scientific Research “Demokritos”, 15310 Athens, Greece; (P.B.); (G.A.K.); (N.E.P.)
- Mathematics Research Center, Academy of Athens, 11527 Athens, Greece
| | - Andreas G. Tzakos
- Department of Chemistry, Section of Organic Chemistry and Biochemistry, University of Ioannina, 45110 Ioannina, Greece; (A.M.G.); (E.I.V.); (S.G.K.); (T.K.P.)
- Institute of Materials Science and Computing, University Research Center of Ioannina (URCI), Ioannina 45110, Greece
| |
Collapse
|
17
|
Chen C, Xiang A, Lin X, Guo J, Liu J, Hu S, Rui T, Ye Q. Mitophagy: insights into its signaling molecules, biological functions, and therapeutic potential in breast cancer. Cell Death Discov 2024; 10:457. [PMID: 39472438 PMCID: PMC11522701 DOI: 10.1038/s41420-024-02226-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 10/18/2024] [Accepted: 10/23/2024] [Indexed: 11/02/2024] Open
Abstract
Mitophagy, a form of selective autophagy that removes damaged or dysfunctional mitochondria, plays a crucial role in maintaining mitochondrial and cellular homeostasis. Recent findings suggest that defective mitophagy is closely associated with various diseases, including breast cancer. Moreover, a better understanding of the multifaceted roles of mitophagy in breast cancer progression is crucial for the treatment of this disease. Here, we will summarize the molecular mechanisms of mitophagy process. In addition, we highlight the expression patterns and roles of mitophagy-related signaling molecules in breast cancer progression and the potential implications of mitophagy for the development of breast cancer, aiming to provide better therapeutic strategies for breast cancer treatment.
Collapse
Affiliation(s)
- Cong Chen
- Department of Breast Surgery, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, China
| | - Aizhai Xiang
- Department of Breast Surgery, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, China
| | - Xia Lin
- Department of Breast Surgery, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, China
| | - Jufeng Guo
- Department of Breast Surgery, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, China
| | - Jian Liu
- Department of Breast Surgery, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, China
| | - Shufang Hu
- Department of Breast Surgery, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, China
| | - Tao Rui
- Department of Breast Surgery, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, China
| | - Qianwei Ye
- Department of Breast Surgery, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, China.
| |
Collapse
|
18
|
Cascardo F, Vivanco M, Perrone MC, Werbach A, Enrico D, Mando P, Amat M, Martínez-Vazquez P, Burruchaga J, Mac Donnell M, Lanari C, Zwenger A, Waisberg F, Novaro V. Higher risk of recurrence in early-stage breast cancer patients with increased levels of ribosomal protein S6. Sci Rep 2024; 14:25136. [PMID: 39448637 PMCID: PMC11502685 DOI: 10.1038/s41598-024-75154-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 10/03/2024] [Indexed: 10/26/2024] Open
Abstract
PI3K/AKT/mTOR pathway is implicated in breast cancer progression and recurrence. The identification of PIK3CA and AKT1 mutations and loss of PTEN serve as selection criterion for targeted therapies involving selective inhibitors. However, they do not consistently align with pathway activation, and high-cost determinations limit their routine application. PI3K-downstream epigenetic regulatory mechanisms broaden the alterations that amplify pathway activity and, consequently, sensitivity to selective inhibitors. In this retrospective observational study, conducted within a cohort of early-stage breast cancer patients, we determined phosphorylated ribosomal protein S6 (pS6) at Ser240/244 by immunohistochemistry as an indicator of PI3K pathway activation. Log-Rank test and Cox proportional hazards regression were used to analyze the clinical relevance of pS6, alone and together with clinicopathological variables, regarding recurrence-free survival. ROC curves and the area under the curves were used to evaluate the calibration and discrimination properties of uni- and multivariate models. Our results show that a high percentage of pS6 positive tumor cells was associated with an unfavorable prognosis in a cohort of 129 hormone receptor positive/HER2 negative breast cancer patients (Hazard Ratio = 5.92; Log-Rank p = 9.5e-08; median follow-up = 53 months). When assessed in combination with lymph node status, the predictive capacity was higher compared to both univariate models individually. In conclusion, pS6 could represent a novel independent marker for predicting recurrence risk in luminal breast cancer.
Collapse
Affiliation(s)
- Florencia Cascardo
- Instituto de Biología y Medicina Experimental (IBYME) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Micaela Vivanco
- Instituto de Biología y Medicina Experimental (IBYME) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - María Cecilia Perrone
- Instituto de Biología y Medicina Experimental (IBYME) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Andrea Werbach
- Instituto de Biología y Medicina Experimental (IBYME) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Diego Enrico
- Instituto Alexander Fleming (IAF), Buenos Aires, Argentina
| | - Pablo Mando
- Centro de Educación Médica e Investigaciones Clínicas (CEMIC), Buenos Aires, Argentina
| | - Mora Amat
- Instituto Alexander Fleming (IAF), Buenos Aires, Argentina
| | | | - Javier Burruchaga
- Hospital de Agudos "Magdalena V. de Martínez", General Pacheco, Buenos Aires, Argentina
| | - María Mac Donnell
- Hospital Provincial de Neuquén "Dr. Castro Rendón", Neuquén, Argentina
| | - Claudia Lanari
- Instituto de Biología y Medicina Experimental (IBYME) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Ariel Zwenger
- Hospital Provincial de Neuquén "Dr. Castro Rendón", Neuquén, Argentina
- Grupo Oncológico Cooperativo del Sur (GOCS), Neuquén, Argentina
| | | | - Virginia Novaro
- Instituto de Biología y Medicina Experimental (IBYME) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.
| |
Collapse
|
19
|
Alqahtani J, Mosalam EM, Abo Mansour HE, Elberri AI, Ibrahim HA, Mahgoub S, Hussein IA, Hawwal MF, Al Hmoudi M, Moglad E, Ahmed R, Mokhtar FA, Elekhnawy E, Negm WA. Anticancer Effect of Cycas media: Molecular Basis Through Modulation of PI3K/AKT/mTOR Signaling Pathway. Molecules 2024; 29:5013. [PMID: 39519654 PMCID: PMC11547819 DOI: 10.3390/molecules29215013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 10/13/2024] [Accepted: 10/17/2024] [Indexed: 11/16/2024] Open
Abstract
Many researchers are focusing on screening the biological activities of plants owing to their safety and possible pharmacological actions. Consequently, we aimed to explore the antiproliferative and cytotoxic properties of Cycas media methanolic extract on HepG2 cell lines. Moreover, we also explore the antitumor action against the experimentally induced solid Ehrlich carcinoma (SEC) model and investigate the possible involved molecular mechanisms. Also, the antibacterial action of the extract was elucidated. Different concentrations of the extract were incubated with HepG2 to determine cytotoxicity, followed by cell cycle analysis. The in vivo experiment was accomplished by grouping the animals into four different groups (n = 10); normal control, SEC, C. media 100, and C. media 200. The extract was administered at 100 and 200 mg/kg. Tumor volume, tumor inhibition rate, toxicity profile, and antioxidant biomarkers were determined. Moreover, the PI3K/AKT/mTOR signaling pathway was investigated as a possible underlying antitumor mechanism. The tumor control group showed a remarkable upregulation for PI3K, p-AKT, and p-mTOR, along with downregulation for the antioxidant SOD and GPX4, as well as decreased levels of GSH and MDA. C. media extract reversed these parameters to a significant level and the higher dose showed a superior antitumor effect. C. media extract showed antiproliferative effects against HepG2 cells, along with a suppressive action on the PI3K/AKT/mTOR pathway and an antioxidant effect. Additionally, C. media had antibacterial consequences against S. aureus isolates with minimum inhibitory concentrations from 32 to 128 µg/mL. It also caused a noteworthy growth delay as well as a notable reduction in the membrane integrity of S. aureus isolates. These beneficial outcomes suggest C. media to have potential antitumor and antibacterial activities.
Collapse
Affiliation(s)
- Jawaher Alqahtani
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11495, Saudi Arabia;
| | - Esraa M. Mosalam
- Biochemistry Department, Faculty of Pharmacy, Menoufia University, Shebin El-Kom 32511, Egypt;
- Department of Pharm D, Faculty of Pharmacy, Jadara University, Irbid 21110, Jordan
| | - Hend E. Abo Mansour
- Biochemistry Department, Faculty of Pharmacy, Menoufia University, Shebin El-Kom 32511, Egypt;
- Biochemistry Department, Faculty of Pharmacy, Menoufia National University, Birket El-Sab 32651, Egypt
| | - Aya Ibrahim Elberri
- Genetic Engineering and Molecular Biology Division, Department of Zoology, Faculty of Science, Menoufia University, Shebin El-Kom 32511, Egypt;
| | - Hanaa A. Ibrahim
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt;
| | - Sebaey Mahgoub
- Food Analysis Laboratory, Ministry of Health, Zagazig 44511, Egypt;
| | - Ismail A. Hussein
- Department of Pharmacognosy and Medicinal Plants, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11884, Egypt;
| | - Mohammed F. Hawwal
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11495, Saudi Arabia;
| | - Maryam Al Hmoudi
- Fujairah Research Centre, Sakamkam Road, Fujairah 00000, United Arab Emirates
| | - Ehssan Moglad
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam bin Abdulaziz University, Alkharj 11942, Saudi Arabia;
| | - Rehab Ahmed
- Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, University of Tabuk, Tabuk 47713, Saudi Arabia;
| | - Fatma Alzahraa Mokhtar
- Department of Pharmacognosy, Faculty of Pharmacy, El Saleheya El Gadida University, El Saleheya El Gadida 44813, Egypt;
| | - Engy Elekhnawy
- Pharmaceutical Microbiology Department, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt
| | - Walaa A. Negm
- Department of Pharmacognosy, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt
| |
Collapse
|
20
|
Iksen I, Singharajkomron N, Nguyen HM, Hoang HNT, Ho DV, Pongrakhananon V. Adunctin E from Conamomum rubidum Induces Apoptosis in Lung Cancer via HSP90AA1 Modulation: A Network Pharmacology and In Vitro Study. Int J Mol Sci 2024; 25:11368. [PMID: 39518920 PMCID: PMC11546842 DOI: 10.3390/ijms252111368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/17/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024] Open
Abstract
Lung cancer stands out as a leading cause of death among various cancer types, highlighting the urgent need for effective anticancer drugs and the discovery of new compounds with potent therapeutic properties. Natural sources, such as the Conamomum genus, offer various bioactive compounds. Adunctin E (AE), a dihydrochalcone derived from Conamomum rubidum, exhibited several pharmacological activities, and its potential as an anticancer agent remains largely unexplored. Thus, this study aimed to elucidate its apoptotic-inducing effect and identify its molecular targets. The network pharmacology analysis led to the identification of 71 potential targets of AE against lung cancer. Subsequent gene ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and Reactome pathway enrichment analyses revealed the involvement of these targets in cancer-associated signaling pathways. Notably, HSP90AA1, MAPK1, and PIK3CA emerged as key players in apoptosis. In silico molecular docking and dynamic simulations suggested a strong and stable interaction between AE and HSP90AA1. In vitro experiments further confirmed a significant apoptotic-inducing effect of AE on lung cancer cell lines A549 and H460. Furthermore, immunoblot analysis exhibited a substantial decrease in HSP90AA1 levels in response to AE treatment. These findings support the potential anticancer activity of AE through the HSP90AA1 mechanism, underscoring its promise as a novel compound worthy of further research and development for anti-lung cancer therapy.
Collapse
Affiliation(s)
- Iksen Iksen
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand; (I.I.); (N.S.)
| | - Natsaranyatron Singharajkomron
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand; (I.I.); (N.S.)
| | - Hien Minh Nguyen
- Faculty of Pharmacy, Ton Duc Thang University, Ho Chi Minh City 700000, Vietnam;
| | - Hanh Nhu Thi Hoang
- Faculty of Engineering and Food Technology, Hue University of Agriculture and Forestry, Hue University, Hue City 49000, Vietnam;
- Faculty of Pharmacy, Hue University of Medicine and Pharmacy, Hue University, Hue City 49000, Vietnam;
| | - Duc Viet Ho
- Faculty of Pharmacy, Hue University of Medicine and Pharmacy, Hue University, Hue City 49000, Vietnam;
| | - Varisa Pongrakhananon
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand; (I.I.); (N.S.)
- Preclinical Toxicity and Efficacy Assessment of Medicines and Chemicals Research Unit, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
21
|
Giliberti G, Marrapodi MM, Di Feo G, Pota E, Di Martino M, Di Pinto D, Rossi F, Di Paola A. Curcumin and Methotrexate: A Promising Combination for Osteosarcoma Treatment via Hedgehog Pathway Inhibition. Int J Mol Sci 2024; 25:11300. [PMID: 39457084 PMCID: PMC11509055 DOI: 10.3390/ijms252011300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 10/16/2024] [Accepted: 10/17/2024] [Indexed: 10/28/2024] Open
Abstract
Osteosarcoma (OS) is the most severe bone tumor in children. A chemotherapy regimen includes a combination of high-dose Methotrexate (MTX), doxorubicin, and cisplatin. These drugs cause acute and chronic side effects, such as infections, thrombocytopenia, neutropenia, DNA damage, and inflammation. Therefore, to identify new therapeutic strategies, effective and with a safety profile, is necessary. The Hedgehog (Hh) signaling pathway involved in tumorigenesis is active in OS. Hh components Patched receptor 1 (PTCH1), Smoothened (SMO), and glioma-associated oncogene homolog transcription factors (GLI1 and GLI2) are overexpressed in OS cell lines and patient samples. Curcumin (CUR)-with antioxidant and anti-cancer properties-downregulates Hh components in cancer, inhibiting progression. This study investigates CUR effects on the MG-63 OS cell line, alone and combined with MTX, to propose a novel therapeutic approach. Our study suggests CUR as a novel therapeutic agent in OS, particularly when combined with MTX. Targeting the Hh signaling pathway, CUR and MTX showed significant pro-apoptotic effects, increasing the BAX/Bcl-2 ratio and total apoptotic cell percentage. They reduced the expression of Hh pathway components (PTCH1, SMO, GLI1, and GLI2), inhibiting OS cell proliferation, survival, and invasion. CUR and MTX combined determined a β-Catenin decrease and a trend toward reducing NF-kB and matrix metalloproteinases (MMP-2 and MMP-9). Our findings suggest CUR as a support to OS treatment, improving outcomes and reducing the adverse effects of current therapies.
Collapse
Affiliation(s)
- Giulia Giliberti
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Napoli, Italy;
| | - Maria Maddalena Marrapodi
- Department of Woman, Child and General and Specialist Surgery, University of Campania “Luigi Vanvitelli”, 80138 Napoli, Italy; (M.M.M.); (G.D.F.); (E.P.); (M.D.M.); (D.D.P.); (A.D.P.)
| | - Giuseppe Di Feo
- Department of Woman, Child and General and Specialist Surgery, University of Campania “Luigi Vanvitelli”, 80138 Napoli, Italy; (M.M.M.); (G.D.F.); (E.P.); (M.D.M.); (D.D.P.); (A.D.P.)
| | - Elvira Pota
- Department of Woman, Child and General and Specialist Surgery, University of Campania “Luigi Vanvitelli”, 80138 Napoli, Italy; (M.M.M.); (G.D.F.); (E.P.); (M.D.M.); (D.D.P.); (A.D.P.)
| | - Martina Di Martino
- Department of Woman, Child and General and Specialist Surgery, University of Campania “Luigi Vanvitelli”, 80138 Napoli, Italy; (M.M.M.); (G.D.F.); (E.P.); (M.D.M.); (D.D.P.); (A.D.P.)
| | - Daniela Di Pinto
- Department of Woman, Child and General and Specialist Surgery, University of Campania “Luigi Vanvitelli”, 80138 Napoli, Italy; (M.M.M.); (G.D.F.); (E.P.); (M.D.M.); (D.D.P.); (A.D.P.)
| | - Francesca Rossi
- Department of Woman, Child and General and Specialist Surgery, University of Campania “Luigi Vanvitelli”, 80138 Napoli, Italy; (M.M.M.); (G.D.F.); (E.P.); (M.D.M.); (D.D.P.); (A.D.P.)
| | - Alessandra Di Paola
- Department of Woman, Child and General and Specialist Surgery, University of Campania “Luigi Vanvitelli”, 80138 Napoli, Italy; (M.M.M.); (G.D.F.); (E.P.); (M.D.M.); (D.D.P.); (A.D.P.)
- Department of Life Sciences, Health and Health Professions, Link Campus University, 00165 Rome, Italy
| |
Collapse
|
22
|
Bahrami N, Abdi M. Knockout of histone deacetylase 8 gene in breast cancer cells may alter the expression pattern of the signaling molecules. Adv Med Sci 2024; 70:27-32. [PMID: 39437892 DOI: 10.1016/j.advms.2024.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 07/26/2024] [Accepted: 10/18/2024] [Indexed: 10/25/2024]
Abstract
PURPOSE Breast cancer (BC) is the most common cancer diagnosed in the world and it is also the main leading cause of cancer deaths in women. Change in epigenetic mechanisms promotes BC initiation and progression. Histone deacetylase 8 (HDAC8) was found to act as a potential oncogene in different malignancies. For better understanding of the HDAC8 function in BC development, we investigated the effect of HDAC8 deletion on the expression of genes involved in signaling pathways. MATERIALS AND METHODS In this study, CRISPR technology was used to knockout the HDAC8 gene in MDA-MB-468, MDA-MB-231 and MCF-7 cell lines. For this purpose, two gRNAs were designed and cloned into the PX459 vector. The gRNA-containing vectors were transfected into the BC cell lines and then the effect of this deletion on the expression of genes involved in signaling pathway was determined using quantitative real-time PCR (qRT-PCR). RESULTS Analysis of qRT-PCR results showed a reduction in the expression of studied genes in BC cell lines after deletion of the HDAC8 gene compared to untreated controls. Although this decline was not significant for FGF2 and FGFR1 genes, however the mTOR, IGF1R, INSR, VEGFA and VEGFR2 genes showed statistically significant reduction in the studied BC cell lines. In addition, the down-regulation of PDGFC and PDGFRA genes were only significant in the TNBC cell lines. CONCLUSION Overall, our study showed that HDAC8 can exert its oncogenic effects by altering the expression level of molecules involved in some signaling pathways, and inhibiting HDAC8 can revert these effects.
Collapse
Affiliation(s)
- Nahid Bahrami
- Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Mohammad Abdi
- Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran; Department of Clinical Biochemistry, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran.
| |
Collapse
|
23
|
Kapri A, Singh D, Onteru SK. Deciphering Aflatoxin B1 affected critical molecular pathways governing cancer: A bioinformatics study using CTD and PANTHER databases. Mycotoxin Res 2024:10.1007/s12550-024-00563-0. [PMID: 39417919 DOI: 10.1007/s12550-024-00563-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 09/17/2024] [Accepted: 09/24/2024] [Indexed: 10/19/2024]
Abstract
Aflatoxin B1 (AFB1) is a fungal toxin consistently found as a contaminant in food products such as cereals, nuts, spices, and oilseeds. AFB1 exposure can lead to hepatotoxicity, cancer, immune suppression, reproductive deficiency, nutritional dysfunction, and growth impairment. AFB1 has also been listed as one of the most potent human carcinogens by the International Agency for Research on Cancer. Although the correlation between AFB1 exposure and cancer initiation and progression is already reported in the literature, very little information is available about what molecular pathways are affected during cancer development. Considering this, we first selected AFB1-responsive genes involved in five deadliest cancer types including lung, colorectal, liver, stomach, and breast cancers from the Comparative Toxicogenomics Database (CTD). Then, using the PANTHER database, a statistical overrepresentation test was performed to identify the significantly affected pathways in each cancer type. The gonadotropin-releasing hormone receptor (GnRHR) pathway, the CCKR signaling pathway, and angiogenesis were found to be the most affected pathways in lung, breast, liver, and stomach cancers. In addition, AFB1 toxicity majorly impacted apoptosis and Wnt signaling pathways in liver and stomach cancers, respectively. Moreover, the most affected pathways in colorectal cancer were the Wnt, CCKR, and GnRHR pathways. Furthermore, gene analysis was also performed for the most affected pathways associated with each cancer and identified thirteen key genes (e.g., FOS, AKT1) that may serve as biological markers for a particular type of AFB1-induced cancer as well as for in vitro AFB1 toxicological studies using specific cancer cell lines.
Collapse
Affiliation(s)
- Ankita Kapri
- Molecular Endocrinology, Functional Genomics & Systems Biology Laboratory, Animal Biochemistry Division, ICAR-National Dairy Research Institute, Karnal, 132001, Haryana, India
| | - Dheer Singh
- Molecular Endocrinology, Functional Genomics & Systems Biology Laboratory, Animal Biochemistry Division, ICAR-National Dairy Research Institute, Karnal, 132001, Haryana, India
| | - Suneel Kumar Onteru
- Molecular Endocrinology, Functional Genomics & Systems Biology Laboratory, Animal Biochemistry Division, ICAR-National Dairy Research Institute, Karnal, 132001, Haryana, India.
| |
Collapse
|
24
|
Saini H, Gupta PK, Mahapatra AK, Rajagopala S, Tripathi R, Nesari T. Deciphering the multi-scale mechanism of herbal phytoconstituents in targeting breast cancer: a computational pharmacological perspective. Sci Rep 2024; 14:23795. [PMID: 39394443 PMCID: PMC11479599 DOI: 10.1038/s41598-024-75059-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 10/01/2024] [Indexed: 10/13/2024] Open
Abstract
Breast Cancer (BC) is the most common cause of cancer-associated deaths in females worldwide. Despite advancements in BC treatment driven by extensive characterization of its molecular hallmarks, challenges such as drug resistance, tumor relapse, and metastasis persist. Therefore, there is an urgent need for alternative treatment approaches with multi-modal efficacy to overcome these hurdles. In this context, natural bioactives are increasingly recognized for their pivotal role as anti-cancer compounds. This study focuses on predicting molecular targets for key herbal phytoconstituents-gallic acid, piperine, quercetin, resveratrol, and beta-sitosterol-present in the polyherbal formulation, Krishnadi Churna. Using an in-silico network pharmacology model, key genes were identified and docked against these marker compounds and controls. Mammary carcinoma emerged as the most significant phenotype of the putative targets. Analysis of an online database revealed that out of 135 predicted targets, 134 were mutated in breast cancer patients. Notably, ESR1, CYP19A1, and EGFR were identified as key genes which are known to regulate the BC progression. Docking studies demonstrated that the herbal phytoconstituents had similar or better docking scores than positive controls for these key genes, with convincing protein-ligand interactions confirmed by molecular dynamics simulations, MM/GBSA and free energy landscape (FEL) analysis. Overall, this study highlights the predictive potential of herbal phytoconstituents in targeting BC genes, suggesting their promise as a basis for developing new therapeutic formulations for BC.
Collapse
Affiliation(s)
- Heena Saini
- Integrated Translational Molecular Biology Unit (ITMBU), Department of Rog Nidan Evam Vikriti Vigyan (Pathology), All India Institute of Ayurveda, New Delhi, 110076, India.
| | - Prashant Kumar Gupta
- Ayurinformatics Laboratory, Department of Kaumarabhritya (Pediatrics), All India Institute of Ayurveda, New Delhi, 110076, India
| | - Arun Kumar Mahapatra
- Ayurinformatics Laboratory, Department of Kaumarabhritya (Pediatrics), All India Institute of Ayurveda, New Delhi, 110076, India
| | - Shrikrishna Rajagopala
- Ayurinformatics Laboratory, Department of Kaumarabhritya (Pediatrics), All India Institute of Ayurveda, New Delhi, 110076, India
| | - Richa Tripathi
- Integrated Translational Molecular Biology Unit (ITMBU), Department of Rog Nidan Evam Vikriti Vigyan (Pathology), All India Institute of Ayurveda, New Delhi, 110076, India
| | - Tanuja Nesari
- Department of DravyaGuna (Materia Medica & Pharmacology), All India Institute of Ayurveda, New Delhi, 110076, India.
| |
Collapse
|
25
|
Li H, Wang M, Huang Y. Anthracycline-induced cardiotoxicity: An overview from cellular structural perspective. Biomed Pharmacother 2024; 179:117312. [PMID: 39167843 DOI: 10.1016/j.biopha.2024.117312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/28/2024] [Accepted: 08/13/2024] [Indexed: 08/23/2024] Open
Abstract
Anthracyclines are broad-spectrum anticancer drugs, but their clinical use is limited due to their severe cardiotoxicity. Anthracycline-induced cardiotoxicity (AIC) remains a significant cause of heart disease-related mortality in many cancer survivors. The underlying mechanisms of AIC have been explored over the past few decades. Reactive oxygen species and drug-induced inhibition of topoisomerase II beta are well-studied mechanisms, with mitochondria being a prominently investigated organelle. Emerging mechanisms such as ferroptosis, Ca2+ overload, autophagy and inflammation mediators have been implicated in recent years. In this review, our goal is to summarize and update the roles of various mechanisms in AIC, focusing on different cellular levels and further explore promising therapeutic approaches targeting these organelles or pathways.
Collapse
Affiliation(s)
- Hansheng Li
- Department of Cardiology and Cardiovascular Research Institute, Renmin Hospital of Wuhan University, Wuhan, Hubei Province 430060, China; Hubei Key Laboratory of Cardiology, Wuhan, Hubei Province 430060, China.
| | - Meilun Wang
- Department of Cardiology and Cardiovascular Research Institute, Renmin Hospital of Wuhan University, Wuhan, Hubei Province 430060, China; Hubei Key Laboratory of Cardiology, Wuhan, Hubei Province 430060, China.
| | - Yan Huang
- Department of Cardiology and Cardiovascular Research Institute, Renmin Hospital of Wuhan University, Wuhan, Hubei Province 430060, China; Hubei Key Laboratory of Cardiology, Wuhan, Hubei Province 430060, China.
| |
Collapse
|
26
|
Li JN, Loh ZJ, Chen HW, Lee IY, Tsai JH, Chen PS. SnoRNA U50A mediates everolimus resistance in breast cancer through mTOR downregulation. Transl Oncol 2024; 48:102062. [PMID: 39094511 PMCID: PMC11342273 DOI: 10.1016/j.tranon.2024.102062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/24/2024] [Accepted: 07/21/2024] [Indexed: 08/04/2024] Open
Abstract
Breast cancer remains the most prevalent cancer in women globally, posing significant challenges in treatment due to the inevitable development of resistance to targeted therapies like everolimus, an mTOR inhibitor. While several mechanisms of resistance have been proposed, the role of snoRNAs in this context remains inadequately explored. Our study unveils a novel connection between snoRNAs and everolimus resistance, focusing on the snoRNA U50A. We discovered that U50A negatively regulates mTOR signaling by transcriptionally downregulating mTOR gene expression, which consequently leads to decreased sensitivity to everolimus treatment. Through RNA sequencing, gene set enrichment analyses, and experimental validations, we established that U50A overexpression in breast cancer cells results in mTOR downregulation and subsequently, everolimus desensitization. Clinical results further supported our findings, showing a higher prevalence of everolimus resistance in tumors with elevated U50A expression. Moreover, our results suggest that U50A's effect on mTOR is mediated through the suppression of the transcription factors c-Myc, with a notable impact on cancer cell viability under everolimus treatment. This study not only highlights the complex role of snoRNAs in cancer drug resistance but also proposes U50A as a potential biomarker for predicting everolimus efficacy in breast cancer treatment.
Collapse
Affiliation(s)
- Jie-Ning Li
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Breast Medical Center, National Cheng Kung University Hospital, Tainan, Taiwan; Research Center for Medical Laboratory Biotechnology, National Cheng Kung University, Tainan, Taiwan
| | - Zhu-Jun Loh
- Breast Medical Center, National Cheng Kung University Hospital, Tainan, Taiwan; Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Hui-Wen Chen
- Breast Medical Center, National Cheng Kung University Hospital, Tainan, Taiwan; Department of Pathology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - I-Ying Lee
- Breast Medical Center, National Cheng Kung University Hospital, Tainan, Taiwan; Division of Plastic and Reconstructive Surgery, Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Jui-Hung Tsai
- Breast Medical Center, National Cheng Kung University Hospital, Tainan, Taiwan; Department of Oncology, National Cheng Kung University Hospital, Tainan, Taiwan.
| | - Pai-Sheng Chen
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Breast Medical Center, National Cheng Kung University Hospital, Tainan, Taiwan; Research Center for Medical Laboratory Biotechnology, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
27
|
Deng Z, Qing Q, Huang B. A bibliometric analysis of the application of the PI3K-AKT-mTOR signaling pathway in cancer. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:7255-7272. [PMID: 38709265 DOI: 10.1007/s00210-024-03112-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 04/18/2024] [Indexed: 05/07/2024]
Abstract
PI3K-AKT-mTOR plays as important role in the growth, metabolism, proliferation, and migration of cancer cells, and in apoptosis, autophagy, inflammation, and angiogenesis in cancer. In this study, the aim was to comprehensively review the current research landscape regarding the PI3K-AKT-mTOR pathway in cancer, using bibliometrics to analyze research hotspots, and provide ideas for future research directions. Literature published on the topic between January 2006 and May 2023 was retrieved from the Web of Science core database, and key information and a visualization map were analyzed using CiteSpace and VOSviewer. A total of 5800 articles from 95 countries/regions were collected, including from China and the USA. The number of publications on the topic increased year on year. The major research institution was the University of Texas MD Anderson Cancer Center. Oncotarget and Clinical Cancer Research were the most prevalent journals in the field. Of 26,621 authors, R Kurzrock published the most articles, and J Engelman was cited most frequently. "A549 cell," "first line treatment," "first in human phase I," and "inhibitor" were the keywords of emerging research hotspots. Inhibitors of the PI3K-AKT-mTOR pathway and their use in clinical therapeutic strategies for cancer were the main topics in the field, and future research should also focus on PI3K-AKT-mTOR pathway inhibitors. This study is the first to comprehensively summarize trends and development s in research into the PI3K-AKT-mTOR pathway in cancer. The information that was obtained clarified recent research frontiers and directions, providing references for scholars of cancer management.
Collapse
Affiliation(s)
- Zhengzheng Deng
- School of Public Health, University of South China, Hengyang, 421001, Hunan Province, China
| | - Qiancheng Qing
- School of Public Health, University of South China, Hengyang, 421001, Hunan Province, China
| | - Bo Huang
- School of Public Health, University of South China, Hengyang, 421001, Hunan Province, China.
| |
Collapse
|
28
|
Hasan‐Abad A, Atapour A, Sobhani‐Nasab A, Motedayyen H, ArefNezhad R. Plant-Based Anticancer Compounds With a Focus on Breast Cancer. Cancer Rep (Hoboken) 2024; 7:e70012. [PMID: 39453820 PMCID: PMC11506041 DOI: 10.1002/cnr2.70012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 07/11/2024] [Accepted: 08/11/2024] [Indexed: 10/27/2024] Open
Abstract
Breast cancer is a common form of cancer among women characterized by the growth of malignant cells in the breast tissue. The most common treatments for this condition include chemotherapy, surgical intervention, radiation therapy, hormone therapy, and biological therapy. The primary issues associated with chemotherapy and radiation therapy are their adverse events and significant financial burden among patients in underdeveloped countries. This highlights the need to explore and develop superior therapeutic options that are less detrimental and more economically efficient. Plants provide an abundant supply of innovative compounds and present a promising new avenue for investigating cancer. Plants and their derivations are undergoing a revolution due to their reduced toxicity, expediency, cost-effectiveness, safety, and simplicity in comparison to conventional treatment methods. Natural products are considered promising candidates for the development of anticancer drugs, due perhaps to the diverse pleiotropic effects on target events. The effects of plant-derived products are limited to cancer cells while leaving healthy cells unaffected. Identification of compounds with strong anticancer properties and development of plant-based medications for cancer treatment might be crucial steps in breast cancer therapy. Although bioactive compounds have potent anticancer properties, they also have drawbacks that need to be resolved before their application in clinical trials and improved for the approved drugs. This study aims to give comprehensive information on known anticancer compounds, including their sources and molecular mechanisms of actions, along with opportunities and challenges in plant-based anticancer therapies.
Collapse
Affiliation(s)
| | - Amir Atapour
- Department of Medical Biotechnology, School of Advanced Medical Sciences and TechnologiesShiraz University of Medical SciencesShirazIran
| | - Ali Sobhani‐Nasab
- Autoimmune Diseases Research CenterKashan University of Medical SciencesKashanIran
| | - Hossein Motedayyen
- Autoimmune Diseases Research CenterKashan University of Medical SciencesKashanIran
| | - Reza ArefNezhad
- Department of Anatomy, School of MedicineShiraz University of Medical SciencesShirazIran
| |
Collapse
|
29
|
Nogueiras-Álvarez R, Pérez Francisco I. Pharmacogenetics in Oncology: A useful tool for individualizing drug therapy. Br J Clin Pharmacol 2024; 90:2483-2508. [PMID: 39077855 DOI: 10.1111/bcp.16181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 06/28/2024] [Indexed: 07/31/2024] Open
Abstract
With the continuous development of genetics in healthcare, there has been a significant contribution to the development of precision medicine, which is ultimately aimed at improving the care of patients. Generally, drug treatments used in Oncology are characterized by a narrow therapeutic range and by their potential toxicity. Knowledge of pharmacogenomics and pharmacogenetics can be very useful in the area of Oncology, as they constitute additional tools that can help to individualize patients' treatment. This work includes a description of some genes that have been revealed to be useful in the field of Oncology, as they play a role in drug prescription and in the prediction of treatment response.
Collapse
Affiliation(s)
- Rita Nogueiras-Álvarez
- Osakidetza Basque Health Service, Galdakao-Usansolo University Hospital, Basque Country Pharmacovigilance Unit, Galdakao, Bizkaia/Vizcaya, Spain
| | - Inés Pérez Francisco
- Breast Cancer Research Group, Bioaraba Health Research Institute, Vitoria-Gasteiz, Araba/Álava, Spain
| |
Collapse
|
30
|
Qin S, Lu L, Tang X, Huang S, Guo Z, Tan G. Breast cancer promotes the expression of neurotransmitter receptor related gene groups and image simulation of prognosis model. SLAS Technol 2024; 29:100183. [PMID: 39218304 DOI: 10.1016/j.slast.2024.100183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/22/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Breast cancer (BC), a prevalent and severe malignancy, detrimentally affects women globally. Its prognostic implications are profoundly influenced by gene expression patterns. This study retrieved 509 BCE-associated oncogenes and 1,012 neurotransmitter receptor-related genes from the GSEA and KEGG databases, intersecting to identify 98 relevant genes. Clinical and transcriptomic expression data related to BC were downloaded from the TCGA, and differential genes were identified based on an FDR value <0.05 & |log2FC| ≥ 0.585. Univariate analysis of these genes revealed that high expression of NSF and low expression of HRAS, KIF17, and RPS6KA1 are closely associated with BC survival prognosis. A prognostic model constructed for these four genes demonstrated significant prognostic relevance for BC-TCGA patients (P < 0.001). Subsequently, an immunofunctional analysis of the BC oncogene-neurotransmitter receptor-related gene cluster revealed the involvement of immune cells such as T cells CD8, T cells CD4 memory resting, and Macrophages M2. Further analysis indicated that immune functions were primarily concentrated in APC_co_inhibition, APC_co_stimulation, CCR, and Check-point, among others. Lastly, a prognostic nomogram model was established, and ROC curve analysis revealed that the nomogram is a vital indicator for assessing BC prognosis, with 1-year, 3-year, and 5-year survival rates of 0.981, 0.897, and 0.802, respectively. This model demonstrates high calibration, clinical utility, and predictive capability, promising to offer an effective preliminary tool for clinical diagnostics.
Collapse
Affiliation(s)
- Shuting Qin
- Department of Breast and Thyroid Surgery,Liuzhou People's Hospital Affiliated to Guangxi Medical University, Liuzhou, Guangxi,China
| | - Linjie Lu
- Department of Breast Surgery, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, China
| | - Xi Tang
- Department of Breast and Thyroid Surgery,Liuzhou People's Hospital Affiliated to Guangxi Medical University, Liuzhou, Guangxi,China
| | - Shenli Huang
- Department of Breast and Thyroid Surgery,Liuzhou People's Hospital Affiliated to Guangxi Medical University, Liuzhou, Guangxi,China
| | - Zhongxin Guo
- Institute of Neuroscience and Guangxi Key Laboratory of Brain Science, Department of Human Anatomy, School of Basic Medical Sciences, Guangxi Medical University, Nanning, Guangxi, China
| | - Guohe Tan
- Institute of Neuroscience and Guangxi Key Laboratory of Brain Science, Department of Human Anatomy, School of Basic Medical Sciences, Guangxi Medical University, Nanning, Guangxi, China; Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education, Guangxi Health Commission Key Laboratory of Basic Research on Brain Function and Disease, Nanning, Guangxi, China; China-ASEAN Research Center for Innovation and Development in Brain Science, Nanning, Guangxi, China; Guangxi Key Laboratory of Regenerative Medicine, Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed by the Province and Ministry, Nanning, Guangxi, China.
| |
Collapse
|
31
|
Li GS, Huang ZG, He RQ, Zhang W, Tang YX, Liu ZS, Gan XY, Tang D, Li DM, Tang YL, Zhan YT, Dang YW, Zhou HF, Zheng JH, Jin MH, Tian J, Chen G. ITGB4 Serves as an Identification and Prognosis Marker Associated with Immune Infiltration in Small Cell Lung Carcinoma. Mol Biotechnol 2024; 66:2956-2971. [PMID: 37847361 DOI: 10.1007/s12033-023-00912-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 09/15/2023] [Indexed: 10/18/2023]
Abstract
Integrin beta 4 (ITGB4) is a vital factor for numerous cancers. However, no reports regarding ITGB4 in small cell lung carcinoma (SCLC) have been found in the existing literature. This study systematically investigated the expression and clinical value of ITGB4 in SCLC using multi-center and large-sample (n = 963) data. The ITGB4 expression levels between SCLC and control tissues were compared using standardized mean difference and Wilcoxon rank-sum test. The clinical significance of the gene in SCLC was observed using Cox regression and Kaplan-Meier curves. ITGB4 is overexpressed in multiple cancers and represents significant value in distinguishing among cancer samples (AUC = 0.91) and predicting the prognoses (p < 0.05) of patients with different cancers. In contrast, decreased ITGB4 mRNA expression was determined in SCLC (SMD < 0), and this finding was further confirmed at protein levels using in-house specimens (p < 0.05). This decrease in expression may be attributed to the regulatory role of estrogen receptor 1. ITGB4 may participate in the progression of SCLC by affecting several signaling pathways (e.g., tumor necrosis factor signaling pathway) and a series of immune cells (e.g., dendritic cells) (p < 0.05). The gene may serve as a potential marker for predicting the disease status (AUC = 0.97) and prognoses (p < 0.05) of patients with SCLC. Collectively, ITGB4 was identified as an identification and prognosis marker associated with immune infiltration in SCLC.
Collapse
Affiliation(s)
- Guo-Sheng Li
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, People's Republic of China
| | - Zhi-Guang Huang
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, People's Republic of China
| | - Rong-Quan He
- Department of Medical Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, People's Republic of China
| | - Wei Zhang
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, People's Republic of China
| | - Yu-Xing Tang
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, People's Republic of China
| | - Zhi-Su Liu
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, People's Republic of China
| | - Xiang-Yu Gan
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, People's Republic of China
| | - Deng Tang
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, People's Republic of China
| | - Dong-Ming Li
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, People's Republic of China
| | - Yu-Lu Tang
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, People's Republic of China
| | - Yan-Ting Zhan
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, People's Republic of China
| | - Yi-Wu Dang
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, People's Republic of China
| | - Hua-Fu Zhou
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, People's Republic of China
| | - Jin-Hua Zheng
- Department of Pathology, The Affiliated Hospital of Guilin Medical University, Guilin, 541001, People's Republic of China
| | - Mei-Hua Jin
- Department of Pathology, The Affiliated Hospital of Guilin Medical University, Guilin, 541001, People's Republic of China
| | - Jia Tian
- Department of Pathology, The Affiliated Hospital of Guilin Medical University, Guilin, 541001, People's Republic of China
| | - Gang Chen
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, People's Republic of China.
| |
Collapse
|
32
|
Huang YK, Wang TM, Chen CY, Li CY, Wang SC, Irshad K, Pan Y, Chang KC. The role of ALDH1A1 in glioblastoma proliferation and invasion. Chem Biol Interact 2024; 402:111202. [PMID: 39128802 DOI: 10.1016/j.cbi.2024.111202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 07/07/2024] [Accepted: 08/08/2024] [Indexed: 08/13/2024]
Abstract
High-grade gliomas, including glioblastoma multiforme (GBM), continue to be a leading aggressive brain tumor in adults, marked by its rapid growth and invasive nature. Aldehyde dehydrogenase 1 family, member A1 (ALDH1A1), an enzyme, plays a significant role in tumor progression, yet its function in high-grade gliomas is still poorly investigated. In this study, we evaluated ALDH1A1 levels in clinical samples of GBM. We also assessed the prognostic significance of ALDH1A1 expression in GBM and LGG (low grade glioma) patients using TCGA (The Cancer Genome Atlas) database analysis. The MTT and transwell assays were utilized to examine cell growth and the invasive capability of U87 cells, respectively. We quantitatively examined markers for cell proliferation (Ki-67 and cyclin D1) and invasion (MMP2 and 9). A Western blot test was conducted to determine the downstream signaling of ALDH1A1. We found a notable increase in ALDH1A1 expression in high-grade gliomas compared to their low-grade counterparts. U87 cells that overexpressed ALDH1A1 showed increased cell growth and invasion. We found that ALDH1A1 promotes the phosphorylation of AKT, and inhibiting AKT phosphorylation mitigates the ALDH1A1's effects on tumor growth and migration. In summary, our findings suggest ALDH1A1 as a potential therapeutic target for GBM treatment.
Collapse
Affiliation(s)
- Yu-Kai Huang
- Division of Neurosurgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung, 80708, Taiwan; Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
| | - Tzu-Ming Wang
- Division of Neurosurgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung, 80708, Taiwan
| | - Chi-Yu Chen
- Department of Ophthalmology, Louis J. Fox Center for Vision Restoration, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Chia-Yang Li
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
| | - Shu-Chi Wang
- Department of Medical Laboratory Science and Biotechnology, Center for Liquid Biopsy and Cohort Research, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
| | - Khushboo Irshad
- Department of Symptom Research, University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Yuan Pan
- Department of Symptom Research, University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Kun-Che Chang
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan; Department of Ophthalmology, Louis J. Fox Center for Vision Restoration, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA; Department of Neurobiology, Center of Neuroscience, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA; Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA, 15261, USA.
| |
Collapse
|
33
|
Son B, Lee W, Kim H, Shin H, Park HH. Targeted therapy of cancer stem cells: inhibition of mTOR in pre-clinical and clinical research. Cell Death Dis 2024; 15:696. [PMID: 39349424 PMCID: PMC11442590 DOI: 10.1038/s41419-024-07077-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 09/10/2024] [Accepted: 09/13/2024] [Indexed: 10/02/2024]
Abstract
Cancer stem cells (CSCs) are a type of stem cell that possesses not only the intrinsic abilities of stem cells but also the properties of cancer cells. Therefore, CSCs are known to have self-renewal and outstanding proliferation capacity, along with the potential to differentiate into specific types of tumor cells. Cancers typically originate from CSCs, making them a significant target for tumor treatment. Among the related cascades of the CSCs, mammalian target of rapamycin (mTOR) pathway is regarded as one of the most important signaling pathways because of its association with significant upstream signaling: phosphatidylinositol 3‑kinase/protein kinase B (PI3K/AKT) pathway and mitogen‑activated protein kinase (MAPK) cascade, which influence various activities of stem cells, including CSCs. Recent studies have shown that the mTOR pathway not only affects generation of CSCs but also the maintenance of their pluripotency. Furthermore, the maintenance of pluripotency or differentiation into specific types of cancer cells depends on the regulation of the mTOR signal in CSCs. Consequently, the clinical potential and importance of mTOR in effective cancer therapy are increasing. In this review, we demonstrate the association between the mTOR pathway and cancer, including CSCs. Additionally, we discuss a new concept for anti-cancer drug development aimed at overcoming existing drawbacks, such as drug resistance, by targeting CSCs through mTOR inhibition.
Collapse
Affiliation(s)
- Boram Son
- Department of Bioengineering, Hanyang University, Seoul, 04763, Republic of Korea
- Department of Bio and Fermentation Convergence Technology, Kookmin University, Seoul, 02707, Republic of Korea
| | - Wonhwa Lee
- Department of Chemistry, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Hyeonjeong Kim
- Department of Bioengineering, Hanyang University, Seoul, 04763, Republic of Korea
| | - Heungsoo Shin
- Department of Bioengineering, Hanyang University, Seoul, 04763, Republic of Korea.
| | - Hee Ho Park
- Department of Bioengineering, Hanyang University, Seoul, 04763, Republic of Korea.
- Research Institute for Convergence of Basic Science, Hanyang University, Seoul, 04763, Republic of Korea.
| |
Collapse
|
34
|
Zhang X, Miao J, Song Y, Zhang J, Miao M. Review on effects and mechanisms of plant-derived natural products against breast cancer bone metastasis. Heliyon 2024; 10:e37894. [PMID: 39318810 PMCID: PMC11420494 DOI: 10.1016/j.heliyon.2024.e37894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 08/16/2024] [Accepted: 09/12/2024] [Indexed: 09/26/2024] Open
Abstract
Bone metastasis is the prevalent form of metastasis in breast cancer, resulting in severe pain, pathological fractures, nerve compression, hypercalcemia, and other complications that significantly impair patients' quality of life. The infiltration and colonization of breast cancer (BC) cells in bone tissue disrupt the delicate balance between osteoblasts and osteoclasts within the bone microenvironment, initiating a vicious cycle of bone metastasis. Once bone metastasis occurs, conventional medical therapy with bone-modifying agents is commonly used to alleviate bone-related complications and improve patients' quality of life. However, the utilization of bone-modifying agents may cause severe drug-related adverse effects. Plant-derived natural products such as terpenoids, alkaloids, coumarins, and phenols have anti-tumor, anti-inflammatory, and anti-angiogenic pharmacological properties with minimal side effects. Certain natural products that exhibit both anti-breast cancer and anti-bone metastasis effects are potential therapeutic agents for breast cancer bone metastasis (BCBM). This article reviewed the effects of plant-derived natural products against BCBM and their mechanisms to provide a reference for the research and development of drugs related to BCBM.
Collapse
Affiliation(s)
- Xiaolei Zhang
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Jinxin Miao
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Yagang Song
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Jiawen Zhang
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Mingsan Miao
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| |
Collapse
|
35
|
Glibetic N, Bowman S, Skaggs T, Weichhaus M. The Use of Patient-Derived Organoids in the Study of Molecular Metabolic Adaptation in Breast Cancer. Int J Mol Sci 2024; 25:10503. [PMID: 39408832 PMCID: PMC11477048 DOI: 10.3390/ijms251910503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 09/24/2024] [Accepted: 09/25/2024] [Indexed: 10/20/2024] Open
Abstract
Around 13% of women will likely develop breast cancer during their lifetime. Advances in cancer metabolism research have identified a range of metabolic reprogramming events, such as altered glucose and amino acid uptake, increased reliance on glycolysis, and interactions with the tumor microenvironment (TME), all of which present new opportunities for targeted therapies. However, studying these metabolic networks is challenging in traditional 2D cell cultures, which often fail to replicate the three-dimensional architecture and dynamic interactions of real tumors. To address this, organoid models have emerged as powerful tools. Tumor organoids are 3D cultures, often derived from patient tissue, that more accurately mimic the structural and functional properties of actual tumor tissues in vivo, offering a more realistic model for investigating cancer metabolism. This review explores the unique metabolic adaptations of breast cancer and discusses how organoid models can provide deeper insights into these processes. We evaluate the most advanced tools for studying cancer metabolism in three-dimensional culture models, including optical metabolic imaging (OMI), matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI), and recent advances in conventional techniques applied to 3D cultures. Finally, we explore the progress made in identifying and targeting potential therapeutic targets in breast cancer metabolism.
Collapse
Affiliation(s)
- Natalija Glibetic
- Laboratory of Molecular Cancer Research, School of Natural Sciences and Mathematics, Chaminade University of Honolulu, Honolulu, HI 96816, USA; (N.G.); (S.B.); (T.S.)
- The IDeA Networks of Biomedical Research Excellence (INBRE) Program, School of Natural Sciences and Mathematics, Chaminade University, Honolulu, HI 96816, USA
- United Nations CIFAL Honolulu Center, Chaminade University, Honolulu, HI 96816, USA
| | - Scott Bowman
- Laboratory of Molecular Cancer Research, School of Natural Sciences and Mathematics, Chaminade University of Honolulu, Honolulu, HI 96816, USA; (N.G.); (S.B.); (T.S.)
- Undergraduate Program in Biochemistry, School of Natural Sciences and Mathematics, Chaminade University, Honolulu, HI 96816, USA
| | - Tia Skaggs
- Laboratory of Molecular Cancer Research, School of Natural Sciences and Mathematics, Chaminade University of Honolulu, Honolulu, HI 96816, USA; (N.G.); (S.B.); (T.S.)
- Undergraduate Program in Biology, School of Natural Sciences and Mathematics, Chaminade University, Honolulu, HI 96816, USA
| | - Michael Weichhaus
- Laboratory of Molecular Cancer Research, School of Natural Sciences and Mathematics, Chaminade University of Honolulu, Honolulu, HI 96816, USA; (N.G.); (S.B.); (T.S.)
| |
Collapse
|
36
|
Sha Y, Zhuang H, Shi J, Ge S, He S, Wang Y, Ma L, Guo H, Cheng H. B3GALT4 modulates tumor progression and autophagy by AKT/mTOR signaling pathway in breast cancer. Discov Oncol 2024; 15:488. [PMID: 39331217 PMCID: PMC11436681 DOI: 10.1007/s12672-024-01371-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Accepted: 09/18/2024] [Indexed: 09/28/2024] Open
Abstract
BACKGROUND β-1,3-Galactosyltransferase-4 (B3GALT4), a member of the β-1,3-galactosyltransferase gene family, is essential to the development of many malignancies. However, its biological function in breast cancer is still unknown. METHOD Publically accessible datasets, as well as quantitative real-time PCR, western blot, and immunohistochemistry on our patient cohort were used to investigate the expression levels of B3GALT4 in breast cancer. The correlation of B3GALT4 expression with clinical histopathological data and mortality in breast cancer patients was investigated. The effects of B3GALT4 in breast cancer in vitro and in vivo were investigated. RNA-seq, western blot, autophagolysosomes, and the fluorescence intensity of LC3 were used to explore the effects of B3GALT4 on autophagy. Western blot and gene set enrichment analysis (GSEA) were used to identify the AKT/mTOR pathway. RESULTS B3GALT4 was significantly overexpressed in breast cancer tissues and was positively correlated with some aspects of clinicopathological status and poor prognosis. B3GALT4 overexpression significantly promoted cell proliferation, migration, and invasion, both in vitro and in vivo. B3GALT4 inhibition suppressed breast cancer cell proliferation, migration, and invasion in vitro. Suppression of B3GALT4 triggered autophagy and hindered the AKT/mTOR signaling pathway. CONCLUSION According to the present research, B3GALT4 blocked autophagy via the AKT/mTOR pathway and accelerated the growth of breast cancer. B3GALT4 may be an effective target for patients with breast cancer.
Collapse
Affiliation(s)
- Yongliang Sha
- Department of General Surgery, Xuzhou Central Hospital, 199 Jiefang South Road, Xuzhou, 221009, Jiangsu, China
| | - Huijie Zhuang
- Department of General Surgery, Xuzhou Central Hospital, 199 Jiefang South Road, Xuzhou, 221009, Jiangsu, China
| | - Jin Shi
- Department of General Surgery, Xuzhou Central Hospital, 199 Jiefang South Road, Xuzhou, 221009, Jiangsu, China
| | - Song Ge
- Department of General Surgery, Xuzhou Central Hospital, 199 Jiefang South Road, Xuzhou, 221009, Jiangsu, China
| | - Shiqing He
- Department of General Surgery, Xuzhou Central Hospital, 199 Jiefang South Road, Xuzhou, 221009, Jiangsu, China
| | - Yiqiu Wang
- Department of General Surgery, Xuzhou Central Hospital, 199 Jiefang South Road, Xuzhou, 221009, Jiangsu, China
| | - Li Ma
- Department of General Surgery, Xuzhou Central Hospital, 199 Jiefang South Road, Xuzhou, 221009, Jiangsu, China
| | - Hao Guo
- Department of General Surgery, Xuzhou Central Hospital, 199 Jiefang South Road, Xuzhou, 221009, Jiangsu, China.
| | - Hui Cheng
- Department of Gynecology and Obstetrics, Xuzhou Central Hospital, 199 Jiefang South Road, Xuzhou, 221009, Jiangsu, China.
| |
Collapse
|
37
|
Sai BM, Dinakar YH, Kumar H, Jain R, Kesharwani S, Kesharwani SS, Mudavath SL, Ramkishan A, Jain V. Therapeutic delivery of siRNA for the management of breast cancer and triple-negative breast cancer. Ther Deliv 2024; 15:871-891. [PMID: 39320858 PMCID: PMC11498026 DOI: 10.1080/20415990.2024.2400044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 08/30/2024] [Indexed: 09/26/2024] Open
Abstract
Breast cancer is the leading cause of cancer-related deaths among women globally. The difficulties with anticancer medications, such as ineffective targeting, larger doses, toxicity to healthy cells and side effects, have prompted attention to alternate approaches to address these difficulties. RNA interference by small interfering RNA (siRNA) is one such tactic. When compared with chemotherapy, siRNA has several advantages, including the ability to quickly modify and suppress the expression of the target gene and display superior efficacy and safety. However, there are known challenges and hurdles that limits their clinical translation. Decomposition by endonucleases, renal clearance, hydrophilicity, negative surface charge, short half-life and off-target effects of naked siRNA are obstacles that hinder the desired biological activity of naked siRNA. Nanoparticulate systems such as polymeric, lipid, lipid-polymeric, metallic, mesoporous silica nanoparticles and several other nanocarriers were used for effective delivery of siRNA and to knock down genes involved in breast cancer and triple-negative breast cancer. The focus of this review is to provide a comprehensive picture of various strategies utilized for delivering siRNA, such as combinatorial delivery, development of modified nanoparticles, smart nanocarriers and nanocarriers that target angiogenesis, cancer stem cells and metastasis of breast cancer.
Collapse
Affiliation(s)
- Boya Manasa Sai
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, 570015, India
| | - Yirivinti Hayagreeva Dinakar
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, 570015, India
| | - Hitesh Kumar
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, 570015, India
| | - Rupshee Jain
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, 570015, India
| | - Sharyu Kesharwani
- National Institute of Pharmaceutical Education & Research, Kolkata, West Bengal , 700054, India
| | | | - Shyam lal Mudavath
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India
| | - Ajmeer Ramkishan
- Central Drugs Standard Control Organization, East Zone, Kolkata, 700020, West Bengal, India
| | - Vikas Jain
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, 570015, India
| |
Collapse
|
38
|
Yang X, Fan L, Huang J, Li Y. Plasma Exosome miR-203a-3p is a Potential Liquid Biopsy Marker for Assessing Tumor Progression in Breast Cancer Patients. BREAST CANCER (DOVE MEDICAL PRESS) 2024; 16:631-643. [PMID: 39310782 PMCID: PMC11416789 DOI: 10.2147/bctt.s478328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 09/06/2024] [Indexed: 09/25/2024]
Abstract
Background Timely detection of tumor progression in breast cancer (BC) patients is critical for therapeutic management and prognosis. Plasma exosomal miRNAs are potential liquid biopsy markers for monitoring tumor progression, but their roles in BC remain unclear. Methods In the TCGA database, we first screened for miRNAs significantly associated with BC progression by comparing miRNA expression in para-carcinoma tissues, stage I BC tissues, and stage II-III BC tissues (n = 1026). Cox regression analyses and survival analyses were performed on candidate miRNAs to explore their prognostic value (n = 848). KEGG, GO, and PPI analyses were used to identify enriched pathways associated with cancer. Finally, the potential of candidate miRNAs as liquid biopsy markers was evaluated by sequencing and analyzing plasma exosomal miRNAs from our collection of 45 BC patients (14 in stage I, 31 in stage II-III) and 5 healthy controls, combined with qRT-PCR analysis to assess the correlation of candidate gene expression in plasma exosomes and BC tissues. Results We found that only miR-203a-3p was progressively elevated with BC progression and was associated with poor prognosis in the TCGA dataset. Its potential target genes were enriched in pathways related to tumor progression, and the downregulation of 48 of these genes was associated with poor prognosis. More importantly, plasma exosomal miR-203a-3p was also found to gradually increase with BC progression, and its expression was positively correlated with miR-203a-3p in BC tissues. This result suggests that plasma exosomal miR-203a-3p may reflect the expression of miR-203a-3p in tumor tissues and serve as a potential liquid biopsy marker for monitoring BC progressions. Conclusion We found for the first time that elevated miR-203a-3p was associated with BC progression and poor prognosis. Our findings suggested that plasma exosomal miR-203a-3p could hold potential as a liquid biopsy marker for evaluating BC progression in patients.
Collapse
Affiliation(s)
- Xin Yang
- Peking University Fifth School of Clinical Medicine, Beijing, People’s Republic of China
| | - Lei Fan
- Breast Center, Department of Thyroid-Breast-Hernia Surgery, Department of General Surgery, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, People’s Republic of China
| | - Jicheng Huang
- Breast Center, Department of Thyroid-Breast-Hernia Surgery, Department of General Surgery, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, People’s Republic of China
| | - Yongjun Li
- Peking University Fifth School of Clinical Medicine, Beijing, People’s Republic of China
| |
Collapse
|
39
|
Bhardwaj PV, Abdou Y. Navigating Treatment Pathways in Metastatic Hormone Receptor-Positive, HER2-Negative Breast Cancer: Optimizing Second-Line Endocrine and Targeted Therapies. J Clin Oncol 2024:JCO2401295. [PMID: 39292976 DOI: 10.1200/jco-24-01295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/29/2024] [Accepted: 08/02/2024] [Indexed: 09/20/2024] Open
Abstract
The Oncology Grand Rounds series is designed to place original reports published in the Journal into clinical context. A case presentation is followed by a description of diagnostic and management challenges, a review of the relevant literature, and a summary of the authors' suggested management approaches. The goal of this series is to help readers better understand how to apply the results of key studies, including those published in Journal of Clinical Oncology, to patients seen in their own clinical practice.
Collapse
Affiliation(s)
- Prarthna V Bhardwaj
- Division of Hematology-Oncology, University of Massachusetts Chan School of Medicine-Baystate, Springfield, MA
| | - Yara Abdou
- Division of Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC
| |
Collapse
|
40
|
Derkyi-Kwarteng L, Ghartey FN, Aidoo E, Addae E, Imbeah EG, Brown AA, Acquah S. A retrospective analysis suggests PTEN expression is associated with favorable clinicopathological features of breast cancer. Sci Rep 2024; 14:21645. [PMID: 39284903 PMCID: PMC11405844 DOI: 10.1038/s41598-024-69252-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 08/02/2024] [Indexed: 09/22/2024] Open
Abstract
The phosphatase and tensin homolog (PTEN) gene acts as a tumor suppressor by regulating the PI3K/AKT pathway, crucial for cell growth and survival. Mutations or loss of PTEN are common in breast cancer, leading to uncontrolled cell growth. Understanding PTEN's role is vital for targeted therapies. 276 formalin-fixed paraffin-embedded (FFPE) breast cancer tissue blocks from 2012 to 2016 were analyzed for PTEN expression. Immunohistochemistry was performed to identify and assess tumor related clinicopathological characteristics as well as patient demographics. These were statistically matched with PTEN expression. Only 27.5% of the breast cancer tumors were PTEN-positive. PTEN expression correlated significantly with smaller tumor size, lower tumor grade, positive estrogen and progesterone receptor status, and favorable/unfavorable Ki67 status (p < 0.001). No significant association was found with vascular invasion, histologic type, age, HER2 status, staging, or lymph node involvement (p > 0.05). The study confirms PTEN's association with favorable clinicopathological features in breast cancer, supporting its role as a prognostic marker. These findings underscore the importance of PTEN in breast cancer biology and its potential as a therapeutic target. Furthermore these findings confirm the prevalence of advanced stage and aggressive breast cancer tumors in Ghana.
Collapse
Affiliation(s)
- Leonard Derkyi-Kwarteng
- Department of Pathology, School of Medical Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Frank Naku Ghartey
- Department of Chemical Pathology, School of Medical Sciences, University of Cape Coast, Cape Coast, Ghana.
| | - Eric Aidoo
- Department of Anatomy and Cell Biology, School of Medical Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Ernest Addae
- Department of Pathology, School of Medical Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Emmanuel Gustav Imbeah
- Department of Pathology, School of Medical Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Ato Ampomah Brown
- Department of Anatomy and Cell Biology, School of Medical Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Samuel Acquah
- Department of Medical Biochemistry, School of Medical Sciences, University of Cape Coast, Cape Coast, Ghana
| |
Collapse
|
41
|
Duan ZW, Liu Y, Zhang PP, Hu JY, Mo ZX, Liu WQ, Ma X, Zhou XH, Wang XH, Hu XH, Wei SL. Da-Chai-Hu-Tang Formula inhibits the progression and metastasis in HepG2 cells through modulation of the PI3K/AKT/STAT3-induced cell cycle arrest and apoptosis. JOURNAL OF ETHNOPHARMACOLOGY 2024; 331:118293. [PMID: 38705430 DOI: 10.1016/j.jep.2024.118293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/21/2024] [Accepted: 05/02/2024] [Indexed: 05/07/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Da-Chai-Hu-Tang (DCHT), a Chinese traditional herbal compound, has been utilized for the treatment of Hepatic diseases in China for over 1800 years. The DCHT formula contains eight herbals: Bupleurum chinense DC. (chaihu), Scutellaria baicalensis Georgi (huangqin), Paeonia lactiflora Pall. (baishao), Pinellia ternata (Thunb.) Makino (banxia), Rheum officinale Baill. (dahuang), Citrus × aurantium L. (zhishi), Zingiber officinale Roscoe (shengjiang), Ziziphus jujuba Mill. (dazao). Clinical studies have demonstrated the effectiveness of DCHT in hepatocellular carcinoma (HCC) and its ability to enhance the immunity of patients with hepatocellular carcinoma. A total of 20 Chinese articles have been published on the use of DCHT in treating HCC. AIM OF THE STUDY The study aimed to validate the effect of DCHT in HCC cells and to identify related targets (TP53, AKT1, BCL2, STAT3) in treating HCC by DCHT in vitro experiments. MATERIALS AND METHODS Cell proliferation and migration were investigated in vitro. Flow cytometry analysis was used to evaluate the cell cycle and apoptosis. Apoptotic bodies in HepG2 cells were observed using a confocal microscope. Biochemical detection was employed to analyze LDH release, MDA levels, and SOD levels. Bioinformatics analysis was used to predict core targets between DCHT and HCC, as well as potential signaling pathways. The protein levels of metastasis-associated, apoptosis, and PI3K, AKT, p-AKT, and STAT3 were further determined through Western blotting. RESULTS Following treatment with DCHT, the inhibition of viability, migration, and G2/M arrest was observed in HepG2 cells. Flow cytometry analysis and Morphological apoptosis studies provided evidence that DCHT could induce apoptosis in HepG2 cells. Biochemical detection revealed that DCHT could increase LDH release and the level of MDA, and inhibit the viability of the SOD. Bioinformatics analysis identified key targets such as TP53, AKT1, BCL2, STAT3. The PI3K/AKT/STAT3 signaling pathway emerged as a critical pathway in the KEGG enrichment analysis. Western blotting results indicated that DCHT could enhance the expression of E-cadherin, p53, and Bax, while reducing the content of N-cadherin, Bcl-2, PI3K, p-AKT, AKT1, and STAT3. CONCLUSIONS The results proved that DCHT could inhibit the progression and metastasis of HCC by regulating the expression of E-cadherin, N-cadherin, p53, Bax, Bcl-2, PI3K, p-AKT, AKT, and STAT3 through the PI3K/AKT/STAT3 signaling pathway.
Collapse
Affiliation(s)
- Zi-Wei Duan
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China.
| | - Yong Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China.
| | - Pei-Pei Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China.
| | - Jing-Yan Hu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China.
| | - Zhi-Xin Mo
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 102488, China.
| | - Wen-Qing Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China.
| | - Xin Ma
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 102488, China.
| | - Xiao-Hui Zhou
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 102488, China.
| | - Xiao-Hui Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China; Engineering Research Center of Good Agricultural Practice for Chinese Crude Drugs, Ministry of Education, Beijing, 100102, China.
| | - Xiu-Hua Hu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 102488, China; Engineering Research Center of Good Agricultural Practice for Chinese Crude Drugs, Ministry of Education, Beijing, 100102, China.
| | - Sheng-Li Wei
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China; Engineering Research Center of Good Agricultural Practice for Chinese Crude Drugs, Ministry of Education, Beijing, 100102, China.
| |
Collapse
|
42
|
Xu L, Cao P, Wang J, Zhang P, Hu S, Cheng C, Wang H. IL-22: A key inflammatory mediator as a biomarker and potential therapeutic target for lung cancer. Heliyon 2024; 10:e35901. [PMID: 39263114 PMCID: PMC11387261 DOI: 10.1016/j.heliyon.2024.e35901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 08/05/2024] [Accepted: 08/06/2024] [Indexed: 09/13/2024] Open
Abstract
Lung cancer, one of the most prevalent cancers worldwide, stands as the primary cause of cancer-related deaths. As is well-known, the utmost crucial risk factor contributing to lung cancer is smoking. In recent years, remarkable progress has been made in treating lung cancer, particularly non-small cell lung cancer (NSCLC). Nevertheless, the absence of effective and accurate biomarkers for diagnosing and treating lung cancer remains a pressing issue. Interleukin 22 (IL-22) is a member of the IL-10 cytokine family. It exerts biological functions (including induction of proliferation and anti-apoptotic signaling pathways, enhancement of tissue regeneration and immunity defense) by binding to heterodimeric receptors containing type 1 receptor chain (R1) and type 2 receptor chain (R2). IL-22 has been identified as a pro-cancer factor since dysregulation of the IL-22-IL-22R system has been implicated in the development of different cancers, including lung, breast, gastric, pancreatic, and colon cancers. In this review, we discuss the differential expression, regulatory role, and potential clinical significance of IL-22 in lung cancer, while shedding light on innovative approaches for the future.
Collapse
Affiliation(s)
- Ling Xu
- Department of Interventional Pulmonary Diseases, The Anhui Chest Hospital, Hefei, China
| | - Peng Cao
- Department of Interventional Pulmonary Diseases, The Anhui Chest Hospital, Hefei, China
| | - Jianpeng Wang
- First Clinical Medical College, Anhui Medical University, Hefei, Anhui, China
| | - Peng Zhang
- Department of Interventional Pulmonary Diseases, The Anhui Chest Hospital, Hefei, China
| | - Shuhui Hu
- Department of Interventional Pulmonary Diseases, The Anhui Chest Hospital, Hefei, China
| | - Chao Cheng
- Department of Interventional Pulmonary Diseases, The Anhui Chest Hospital, Hefei, China
| | - Hua Wang
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, China
| |
Collapse
|
43
|
Gu Z, Lin S, Yu J, Jin F, Zhang Q, Xia K, Chen L, Li Y, He B. Advances in dual-targeting inhibitors of HDAC6 for cancer treatment. Eur J Med Chem 2024; 275:116571. [PMID: 38857566 DOI: 10.1016/j.ejmech.2024.116571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/03/2024] [Accepted: 06/03/2024] [Indexed: 06/12/2024]
Abstract
Histone Deacetylase 6 (HDAC6) is an essential regulator of histone acetylation processes, exerting influence on a multitude of cellular functions such as cell motility, endocytosis, autophagy, apoptosis, and protein trafficking through its deacetylation activity. The significant implications of HDAC6 in diseases such as cancer, neurodegenerative disorders, and immune disorders have motivated extensive investigation into the development of specific inhibitors targeting this enzyme for therapeutic purposes. Single targeting drugs carry the risk of inducing drug resistance, thus prompting exploration of dual targeting therapy which offers the potential to impact multiple signaling pathways simultaneously, thereby lowering the likelihood of resistance development. While pharmacological studies have exhibited promise in combined therapy involving HDAC6, challenges related to potential drug interactions exist. In response to these challenges, researchers are investigating HDAC6 hybrid molecules which enable the concomitant targeting of HDAC6 and other key proteins, thus enhancing treatment efficacy while mitigating side effects and reducing the risk of resistance compared to traditional combination therapies. The published design strategies for dual targeting inhibitors of HDAC6 are summarized and discussed in this review. This will provide some valuable insights into more novel HDAC6 dual targeting inhibitors to meet the urgent need for innovative therapies in oncology and other related fields.
Collapse
Affiliation(s)
- Zhicheng Gu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmacy, Guizhou Medical University, Guiyang, 550004, China
| | - Shuxian Lin
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmacy, Guizhou Medical University, Guiyang, 550004, China; Department of Pharmacy, Guizhou Provincial People's Hospital, Guiyang, 550002, China
| | - Junhui Yu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmacy, Guizhou Medical University, Guiyang, 550004, China
| | - Fei Jin
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmacy, Guizhou Medical University, Guiyang, 550004, China
| | - Qingqing Zhang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmacy, Guizhou Medical University, Guiyang, 550004, China
| | - Keli Xia
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmacy, Guizhou Medical University, Guiyang, 550004, China
| | - Lei Chen
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmacy, Guizhou Medical University, Guiyang, 550004, China
| | - Yan Li
- School of Basic Medical Science, Guizhou Medical University, Guiyang, Guizhou, 550004, China
| | - Bin He
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmacy, Guizhou Medical University, Guiyang, 550004, China.
| |
Collapse
|
44
|
Binmujlli MA. Exploring Radioiodinated Anastrozole and Epirubicin as AKT1-Targeted Radiopharmaceuticals in Breast Cancer: In Silico Analysis and Potential Therapeutic Effect with Functional Nuclear Imagining Implications. Molecules 2024; 29:4203. [PMID: 39275052 PMCID: PMC11397058 DOI: 10.3390/molecules29174203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 08/29/2024] [Accepted: 09/03/2024] [Indexed: 09/16/2024] Open
Abstract
This study evaluates radio-iodinated anastrozole ([125I]anastrozole) and epirubicin ([125I]epirubicin) for AKT1-targeted breast cancer therapy, utilizing radiopharmaceutical therapy (RPT) for personalized treatment. Through molecular docking and dynamics simulations (200 ns), it investigates these compounds' binding affinities and mechanisms to the AKT1 enzyme, compared to the co-crystallized ligand, a known AKT1 inhibitor. Molecular docking results show that [125I]epirubicin has the highest ΔGbind (-11.84 kcal/mol), indicating a superior binding affinity compared to [125I] anastrozole (-10.68 kcal/mol) and the co-crystallized ligand (-9.53 kcal/mol). Molecular dynamics (MD) simulations confirmed a stable interaction with the AKT1 enzyme, with [125I]anastrozole and [125I]epirubicin reaching stability after approximately 68 ns with an average RMSD of around 2.2 Å, while the co-crystallized ligand stabilized at approximately 2.69 Å after 87 ns. RMSF analysis showed no significant shifts in residues or segments, with consistent patterns and differences of less than 2 Å, maintaining enzyme stability. The [125I]epirubicin complex maintained an average of four H-bonds, indicating strong and stable interactions, while [125I]anastrozole consistently formed three H-bonds. The average Rg values for both complexes were ~16.8 ± 0.1 Å, indicating no significant changes in the enzyme's compactness, thus preserving structural integrity. These analyses reveal stable binding and minimal structural perturbations, suggesting the high potential for AKT1 inhibition. MM-PBSA calculations confirm the potential of these radio-iodinated compounds as AKT1 inhibitors, with [125I]epirubicin exhibiting the most favorable binding energy (-23.57 ± 0.14 kcal/mol) compared to [125I]anastrozole (-20.03 ± 0.15 kcal/mol) and the co-crystallized ligand (-16.38 ± 0.14 kcal/mol), highlighting the significant role of electrostatic interactions in stabilizing the complex. The computational analysis shows [125I]anastrozole and [125I]epirubicin may play promising roles as AKT1 inhibitors, especially [125I]epirubicin for its high binding affinity and dynamic receptor interactions. These findings, supported by molecular docking scores and MM-PBSA binding energies, advocate for their potential superior inhibitory capability against the AKT1 enzyme. Nevertheless, it is crucial to validate these computational predictions through in vitro and in vivo studies to thoroughly evaluate the therapeutic potential and viability of these compounds for AKT1-targeted breast cancer treatment.
Collapse
Affiliation(s)
- Mazen Abdulrahman Binmujlli
- Department of Internal Medicine, College of Medicine, Imam Mohammad Ibn Saud Islamic University (IMSIU), P.O. Box 90950, Riyadh 11623, Saudi Arabia
| |
Collapse
|
45
|
Ashayeri Ahmadabad H, Mohammadi Panah S, Ghasemnejad-Berenji H, Ghojavand S, Ghasemnejad-Berenji M, Khezri MR. Metformin and the PI3K/AKT signaling pathway: implications for cancer, cardiovascular, and central nervous system diseases. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024:10.1007/s00210-024-03358-3. [PMID: 39225830 DOI: 10.1007/s00210-024-03358-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 08/02/2024] [Indexed: 09/04/2024]
Abstract
Recent findings have brought our understanding of diseases at the molecular level, highlighting upstream intracellular pathways as potential therapeutic targets. The PI3K/AKT pathway, a key regulator of cellular responses to environmental changes, is frequently altered in various diseases, making it a promising target for intervention. Metformin is the most known anti-diabetic agent that is known due to its effects on cancer, inflammatory-related diseases, oxidative stress, and other human diseases. It is clearly understood that metformin modulates the activity of the PI3K/AKT pathway leading to a wide variety of outcomes. This interaction has been well-studied in various diseases. Therefore, this review aims to examine PI3K/AKT-modulating properties of metformin in cancer, cardiovascular, and central nervous system diseases. Our findings indicate that metformin is effective in treating cancer and CNS diseases, and plays a role in both the prevention and treatment of cardiovascular diseases. These insights support the potential of metformin in comprehensive strategies for disease management.
Collapse
Affiliation(s)
| | | | - Hojat Ghasemnejad-Berenji
- Reproductive Health Research Center, Clinical Research Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Shabnam Ghojavand
- Faculty of Pharmacy, Islamic Azad University of Tehran, Tehran, Iran
| | - Morteza Ghasemnejad-Berenji
- Department of Pharmacology and Toxicology, School of Pharmacy, Urmia University of Medical Sciences, Urmia, Iran.
- Research Center for Experimental and Applied Pharmaceutical Sciences, Urmia University of Medical Sciences, Urmia, Iran.
| | - Mohammad Rafi Khezri
- Reproductive Health Research Center, Clinical Research Institute, Urmia University of Medical Sciences, Urmia, Iran.
| |
Collapse
|
46
|
Lee ZY, Lee WH, Lim JS, Ali AAA, Loo JSE, Wibowo A, Mohammat MF, Foo JB. Golgi apparatus targeted therapy in cancer: Are we there yet? Life Sci 2024; 352:122868. [PMID: 38936604 DOI: 10.1016/j.lfs.2024.122868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 06/14/2024] [Accepted: 06/20/2024] [Indexed: 06/29/2024]
Abstract
Membrane trafficking within the Golgi apparatus plays a pivotal role in the intracellular transportation of lipids and proteins. Dysregulation of this process can give rise to various pathological manifestations, including cancer. Exploiting Golgi defects, cancer cells capitalise on aberrant membrane trafficking to facilitate signal transduction, proliferation, invasion, immune modulation, angiogenesis, and metastasis. Despite the identification of several molecular signalling pathways associated with Golgi abnormalities, there remains a lack of approved drugs specifically targeting cancer cells through the manipulation of the Golgi apparatus. In the initial section of this comprehensive review, the focus is directed towards delineating the abnormal Golgi genes and proteins implicated in carcinogenesis. Subsequently, a thorough examination is conducted on the impact of these variations on Golgi function, encompassing aspects such as vesicular trafficking, glycosylation, autophagy, oxidative mechanisms, and pH alterations. Lastly, the review provides a current update on promising Golgi apparatus-targeted inhibitors undergoing preclinical and/or clinical trials, offering insights into their potential as therapeutic interventions. Significantly more effort is required to advance these potential inhibitors to benefit patients in clinical settings.
Collapse
Affiliation(s)
- Zheng Yang Lee
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor's University, 47500 Subang Jaya, Selangor, Malaysia
| | - Wen Hwei Lee
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor's University, 47500 Subang Jaya, Selangor, Malaysia
| | - Jing Sheng Lim
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor's University, 47500 Subang Jaya, Selangor, Malaysia
| | - Afiqah Ali Ajmel Ali
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor's University, 47500 Subang Jaya, Selangor, Malaysia
| | - Jason Siau Ee Loo
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor's University, 47500 Subang Jaya, Selangor, Malaysia; Digital Health and Medical Advancements Impact Lab, Taylor's University, Subang Jaya 47500, Selangor, Malaysia
| | - Agustono Wibowo
- Faculty of Applied Science, Universiti Teknologi MARA (UiTM) Pahang, Jengka Campus, 26400 Bandar Tun Abdul Razak Jengka, Pahang, Malaysia
| | - Mohd Fazli Mohammat
- Organic Synthesis Laboratory, Institute of Science, Universiti Teknologi MARA (UiTM), 40450 Shah Alam, Selangor, Malaysia
| | - Jhi Biau Foo
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor's University, 47500 Subang Jaya, Selangor, Malaysia; Digital Health and Medical Advancements Impact Lab, Taylor's University, Subang Jaya 47500, Selangor, Malaysia
| |
Collapse
|
47
|
Pourbarkhordar V, Rahmani S, Roohbakhsh A, Hayes AW, Karimi G. Melatonin effect on breast and ovarian cancers by targeting the PI3K/Akt/mTOR pathway. IUBMB Life 2024. [PMID: 39212097 DOI: 10.1002/iub.2900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 05/29/2024] [Indexed: 09/04/2024]
Abstract
Melatonin, the hormone of the pineal gland, possesses a range of physiological functions, and recently, its anticancer effect has become more apparent. A more thorough understanding of molecular alterations in the components of several signaling pathways as new targets for cancer therapy is needed because of current innate restrictions such as drug toxicity, side effects, and acquired or de novo resistance. The PI3K/Akt/mTOR pathway is overactivated in many solid tumors, such as breast and ovarian cancers. This pathway in normal cells is essential for growth, proliferation, and survival. However, it is an undesirable characteristic in malignant cells. We have reviewed multiple studies about the effect of melatonin on breast and ovarian cancer, focusing on the PI3K/Akt/mTOR pathway. Melatonin exerts its inhibitory effects via several mechanisms. A: Downregulation of downstream or upstream components of the signaling pathway such as phosphatase and tensin homolog (PTEN), phosphatidylinositol (3,4,5)-trisphosphate kinase (PI3K), p-PI3K, Akt, p-Akt, mammalian target of rapamycin (mTOR), and mTOR complex1 (mTORC1). B: Apoptosis induction by decreasing MDM2 expression, a downstream target of Akt, and mTOR, which leads to Bad activation in addition to Bcl-XL and p53 inhibition. C: Induction of autophagy in cancer cells via activating ULK1 after mTOR inhibition, resulting in Beclin-1 phosphorylation. Beclin-1 with AMBRA1 and VPS34 promotes PI3K complex I activity and autophagy in cancer cells. The PI3K/Akt/mTOR pathway overlaps with other intracellular signaling pathways and components such as AMP-activated protein kinase (AMPK), Wnt/β-catenin, mitogen-activated protein kinase (MAPK), and other similar pathways. Cancer therapy can benefit from understanding how these pathways interact and how melatonin affects these pathways.
Collapse
Affiliation(s)
- Vahid Pourbarkhordar
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sohrab Rahmani
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Roohbakhsh
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Pharmaceutical Research Center, Institute of Pharmaceutical Technology, Mashhad University of Medical Sciences, Mashhad, Iran
| | - A Wallace Hayes
- Center for Environmental Occupational Risk Analysis and Management, College of Public Health, University of South Florida, Tampa, Florida, USA
| | - Gholamreza Karimi
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Pharmaceutical Research Center, Institute of Pharmaceutical Technology, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
48
|
Thakur N, Singh P, Bagri A, Srivastava S, Dwivedi V, Singh A, Jaiswal SK, Dholpuria S. Therapy resistance in prostate cancer: mechanism, signaling and reversal strategies. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2024; 5:1110-1134. [PMID: 39351434 PMCID: PMC11438573 DOI: 10.37349/etat.2024.00266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 08/09/2024] [Indexed: 10/04/2024] Open
Abstract
Prostate cancer (PC) depicts a major health challenge all over the globe due to its complexities in the treatment and diverse clinical trajectories. Even in the advances in the modern treatment strategies, the spectrum of resistance to the therapies continues to be a significant challenge. This review comprehensively examines the underlying mechanisms of the therapy resistance occurred in PC, focusing on both the tumor microenvironment and the signaling pathways implicated in the resistance. Tumor microenvironment comprises of stromal and epithelial cells, which influences tumor growth, response to therapy and progression. Mechanisms such as microenvironmental epithelial-mesenchymal transition (EMT), anoikis suppression and stimulation of angiogenesis results in therapy resistance. Moreover, dysregulation of signaling pathways including androgen receptor (AR), mammalian target of rapamycin/phosphoinositide 3 kinase/AKT (mTOR/PI3K/AKT), DNA damage repair and Janus kinase/signal transducers and activators of transcription (JAK/STAT) pathways drive therapy resistance by promoting tumor survival and proliferation. Understanding these molecular pathways is important for developing targeted therapeutic interventions which overcomes resistance. In conclusion, a complete grasp of mechanisms and pathways underlying medication resistance in PC is important for the development of individualized treatment plans and enhancements of clinical outcomes. By studying and understanding the complex mechanisms of signaling pathways and microenvironmental factors contributing to therapy resistance, this study focuses and aims to guide the development of innovative therapeutic approaches to effectively overcome the PC progression and improve the survival rate of patients.
Collapse
Affiliation(s)
- Neha Thakur
- Department of Biotechnology, Graphic Era Deemed to be University, Dehradun, Uttarakhand 248002, India
| | - Pallavi Singh
- Department of Biotechnology, Graphic Era Deemed to be University, Dehradun, Uttarakhand 248002, India
| | - Aditi Bagri
- Department of Biotechnology, Graphic Era Deemed to be University, Dehradun, Uttarakhand 248002, India
| | - Saumya Srivastava
- Department of Biotechnology, Graphic Era Deemed to be University, Dehradun, Uttarakhand 248002, India
| | - Vinay Dwivedi
- Amity Institute of Biotechnology, Amity University, Gwalior, Madhya Pradesh 474005, India
| | - Asha Singh
- Amity Institute of Biotechnology, Amity University, Gwalior, Madhya Pradesh 474005, India
| | - Sunil Kumar Jaiswal
- School of Biological and Life Sciences, Galgotias University, Greater Noida, Uttar Pradesh 203201, India
| | - Sunny Dholpuria
- Department of Life Sciences, J. C. Bose University of Science and Technology, YMCA Faridabad, Faridabad, Haryana 121006, India
| |
Collapse
|
49
|
Chang S, Ren D, Zhang L, Liu S, Yang W, Cheng H, Zhang X, Hong E, Geng D, Wang Y, Chen C, Zhang J, Shi T, Guo Y, Ni X, Wang H, Jin Y. Therapeutic SHPRH-146aa encoded by circ-SHPRH dynamically upregulates P21 to inhibit CDKs in neuroblastoma. Cancer Lett 2024; 598:217120. [PMID: 39002691 DOI: 10.1016/j.canlet.2024.217120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 07/03/2024] [Accepted: 07/10/2024] [Indexed: 07/15/2024]
Abstract
Recent research has underscored the significance of circular RNAs (circRNAs) in various cancers, including neuroblastoma (NB). Specifically, circ-SHPRH, a unique circRNA, has been revealed to inhibit tumor growth by sequestering miRNAs or producing the SHPRH-146aa protein. To explore circ-SHPRH's involvement in NB and its potential application in gene therapy, this study examined circ-SHPRH expression in 94 NB tissues and cell lines (SK-N-BE(2), SH-SY5Y) using real-time PCR and fluorescence in situ hybridization (FISH). Functional assays encompassing both overexpression and knockdown experiments in NB cell lines, as well as in vivo investigations, were conducted. RNA-seq analysis revealed a correlation between circ-SHPRH and the pathway of P21 (CDKN1A), a pivotal cell cycle regulator. Validation through PCR and other techniques confirmed that circ-SHPRH upregulated P21 expression. Furthermore, the regulatory role of circ-SHPRH in the P21-CDK pathway was corroborated through SHPRH-146aa expression analysis. Notably, adenovirus-mediated circ-SHPRH overexpression effectively curbed NB tumor growth in NSG mice, while combining circ-SHPRH with everolimus exhibited potential for NB treatment. This study elucidates the remarkable significance of circ-SHPRH in NB and its prospective utility in gene therapy, thereby paving the way for innovative therapeutic approaches.
Collapse
Affiliation(s)
- Saishuo Chang
- Department of Surgery, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
| | - Dong Ren
- Beijing Key Laboratory for Pediatric Diseases of Otolaryngology, Head and Neck Surgery, MOE Key Laboratory of Major Diseases in Children, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
| | - Li Zhang
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Shan Liu
- Department of Surgery, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
| | - Wei Yang
- Department of Surgery, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
| | - Haiyan Cheng
- Department of Surgery, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
| | - Xuexi Zhang
- Department of Otolaryngology, Head and Neck Surgery, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
| | - Enyu Hong
- Beijing Key Laboratory for Pediatric Diseases of Otolaryngology, Head and Neck Surgery, MOE Key Laboratory of Major Diseases in Children, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
| | - Di Geng
- Biobank for Clinical Data and Samples in Pediatrics, Beijing Children's Hospital, National Center for Children's Health, Beijing Pediatric Research Institute, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
| | - Yadi Wang
- Biobank for Clinical Data and Samples in Pediatrics, Beijing Children's Hospital, National Center for Children's Health, Beijing Pediatric Research Institute, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
| | - Chenghao Chen
- Department of Thoracic Surgery, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
| | - Jie Zhang
- Department of Otolaryngology, Head and Neck Surgery, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
| | - Tieliu Shi
- Center for Bioinformatics and Computational Biology and the Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Yongli Guo
- Department of Surgery, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
| | - Xin Ni
- Beijing Key Laboratory for Pediatric Diseases of Otolaryngology, Head and Neck Surgery, MOE Key Laboratory of Major Diseases in Children, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China; Department of Otolaryngology, Head and Neck Surgery, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China.
| | - Huanmin Wang
- Department of Surgery, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China.
| | - Yaqiong Jin
- Beijing Key Laboratory for Pediatric Diseases of Otolaryngology, Head and Neck Surgery, MOE Key Laboratory of Major Diseases in Children, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China.
| |
Collapse
|
50
|
Zheng Y, Yang Y, Zhu W, Liu R, Liu A, Zhang R, Lei W, Huang S, Liu Y, Hu Q. GSK3B inhibition reduced cervical cancer cell proliferation and migration by modulating the PI3K/Akt signaling pathway and epithelial-to-mesenchymal transition. Braz J Med Biol Res 2024; 57:e13796. [PMID: 39166606 PMCID: PMC11338547 DOI: 10.1590/1414-431x2024e13796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 07/10/2024] [Indexed: 08/23/2024] Open
Abstract
Previous studies show that glycogen synthase kinase 3β (GSK3B) plays an important role in tumorigenesis. However, its role in cervical cancer is unclear. The present study silenced GSK3B with siRNAs and/or chemical inhibitors to determine its role in HeLa cervical cancer cell proliferation and migration as well as in xenograft tumor growth. Cell Counting Kit (CCK)-8 and 5-ethynyl-2'-deoxyuridine (EdU) assays were used to determine cell survival and proliferation. Scratch and Transwell® assays were used to evaluate cell migration. Xenograft tumors were used to evaluate the effect of GSK3B on tumor growth. Transcriptomic sequencing was used to clarify the mechanisms underlying the foregoing processes. Public databases and clinical specimens showed that GSK3B was upregulated in cervical cancer tissues and correlated with poor prognosis. In vitro experiments indicated that GSK3B inhibition reduced cell viability, proliferation, and migration. In vivo experiments demonstrated that GSK3B inhibition slowed xenograft tumor growth. Transcriptomic sequencing revealed that GSK3B inhibition modulated the phosphatidylinositol 3-carboxykinase (PI3K)/protein kinase B (Akt) and extracellular matrix (ECM)-receptor interaction signaling pathways. GSK3B inhibition decreased the protein levels of phosphorylated PI3K and Akt and the levels of mesenchymal markers but increased those of epithelial markers. An activator of the PI3K/Akt signaling pathway counteracted the suppressive effects of GSK3B inhibition on HeLa cell viability and proliferation and on PI3K/Akt signaling. Our data suggested that GSK3B regulated cervical cancer cell proliferation and migration by modulating the PI3K/Akt signaling pathway and epithelial-to-mesenchymal transition (EMT).
Collapse
Affiliation(s)
- Yanhong Zheng
- The Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Qingyuan, Guangdong, China
| | - Yang Yang
- The Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Qingyuan, Guangdong, China
| | - Weiyan Zhu
- The Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Qingyuan, Guangdong, China
| | - Ruhao Liu
- The Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Qingyuan, Guangdong, China
| | - Aodong Liu
- The Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Qingyuan, Guangdong, China
| | - Runfeng Zhang
- The Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Qingyuan, Guangdong, China
| | - Weixing Lei
- Luoyuan Center for Disease Control and Prevention, Fuzhou, China
| | - Shifeng Huang
- The Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Qingyuan, Guangdong, China
| | - Yongzhu Liu
- The Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Qingyuan, Guangdong, China
| | - Qinglan Hu
- The Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Qingyuan, Guangdong, China
| |
Collapse
|