1
|
Qiao L, Du X, Wang H, Wang Z, Gao S, Zhao CQ. Research Progress on the Strategies for Crossing the Blood-Brain Barrier. Mol Pharm 2024; 21:4786-4803. [PMID: 39231367 DOI: 10.1021/acs.molpharmaceut.4c00447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2024]
Abstract
Recently, the incidence of brain diseases, such as central nervous system degenerative diseases, brain tumors, and cerebrovascular diseases, has increased. However, the blood-brain barrier (BBB) limits the effective delivery of drugs to brain disease areas. Therefore, the mainstream direction of new drug development for these diseases is to engineer drugs that can better cross the BBB to exert their effects in the brain. This paper reviews the research progress and application of the main trans-BBB drug delivery strategies (receptor/transporter-mediated BBB crossing, focused ultrasound to open the BBB, adenosine agonist reversible opening of the BBB, aromatic resuscitation, transnasal administration, cell-mediated trans-BBB crossing, and viral vector system-mediated brain drug delivery). Meanwhile, the potential applications, advantages, and disadvantages of these strategies for crossing the BBB are analyzed. Finally, the future development prospects of strategies for crossing the BBB are also discussed. These strategies have potential value for treating brain diseases.
Collapse
Affiliation(s)
- Li Qiao
- Experimental Centre, Shandong University of Traditional Chinese Medicine, Jinan 250355, P. R. China
| | - Xiuwei Du
- Experimental Centre, Shandong University of Traditional Chinese Medicine, Jinan 250355, P. R. China
| | - Hua Wang
- College of Intelligence and Information Engineering, Shandong University of Traditional Chinese Medicine, Jinan 250355, P. R. China
| | - Zhiyi Wang
- Experimental Centre, Shandong University of Traditional Chinese Medicine, Jinan 250355, P. R. China
| | - Shijie Gao
- Experimental Centre, Shandong University of Traditional Chinese Medicine, Jinan 250355, P. R. China
| | - Chun-Qin Zhao
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, P. R. China
| |
Collapse
|
2
|
Novak M, Vajrychova M, Koutsilieri S, Sismanoglou DC, Kobrlova T, Prchal L, Svobodova B, Korabecny J, Zarybnicky T, Raisova-Stuchlikova L, Skalova L, Lauschke VM, Kučera R, Soukup O. Tacrine First-Phase Biotransformation and Associated Hepatotoxicity: A Possible Way to Avoid Quinone Methide Formation. ACS Chem Biol 2023; 18:1993-2002. [PMID: 37622522 DOI: 10.1021/acschembio.3c00219] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/26/2023]
Abstract
Tacrine was withdrawn from clinical use as a drug against Alzheimer's disease in 2013, mainly due to drug-induced liver injury. The culprit of tacrine-associated hepatotoxicity is believed to be the 7-OH-tacrine metabolite, a possible precursor of quinone methide (Qmeth), which binds to intracellular -SH proteins. In our study, several different animal and human models (liver microsomes, primary hepatocytes, and liver slices) were used to investigate the biotransformation and hepatotoxicity of tacrine and its 7-substituted analogues (7-methoxy-, 7-phenoxy-, and 7-OH-tacrine). Our goal was to find the most appropriate in vitro model for studying tacrine hepatotoxicity and, through rational structure modifications, to develop derivatives of tacrine that are less prone to Qmeth formation. Our results show that none of animal models tested accurately mimic human tacrine biotransformation; however, the murine model seems to be more suitable than the rat model. Tacrine metabolism was overall most accurately mimicked in three-dimensional (3D) spheroid cultures of primary human hepatocytes (PHHs). In this system, tacrine and 7-methoxytacrine were hydroxylated to 7-OH-tacrine, whereas 7-phenoxytacrine formed, as expected, only trace amounts. Surprisingly, however, our study showed that 7-OH-tacrine was the least hepatotoxic (7-OH-tacrine < tacrine < 7-methoxytacrine < 7-phenoxytacrine) even after doses had been adjusted to achieve the same intracellular concentrations. The formation of Qmeth-cysteine and Qmeth-glutathione adducts after human liver microsome incubation was confirmed by all of the studied tacrine derivatives, but these findings were not confirmed after incubation with 3D PHH spheroids. Therefore, the presented data call into question the suggested previously hypothesized mechanism of toxicity, and the results open new avenues for chemical modifications to improve the safety of novel tacrine derivatives.
Collapse
Affiliation(s)
- Martin Novak
- Department of Pharmaceutical Chemistry and Pharmaceutical Analysis, Faculty of Pharmacy in Hradec Kralove, Charles University, Heyrovskeho 1203, 50005 Hradec Kralove, Czech Republic
- Biomedical Research Centre, University Hospital Hradec Kralove, Sokolska 581, 50005 Hradec Kralove, Czech Republic
| | - Marie Vajrychova
- Biomedical Research Centre, University Hospital Hradec Kralove, Sokolska 581, 50005 Hradec Kralove, Czech Republic
| | - Stefania Koutsilieri
- Department of Physiology and Pharmacology, Karolinska Institutet, 17177 Stockholm, Sweden
| | | | - Tereza Kobrlova
- Biomedical Research Centre, University Hospital Hradec Kralove, Sokolska 581, 50005 Hradec Kralove, Czech Republic
| | - Lukas Prchal
- Biomedical Research Centre, University Hospital Hradec Kralove, Sokolska 581, 50005 Hradec Kralove, Czech Republic
| | - Barbora Svobodova
- Biomedical Research Centre, University Hospital Hradec Kralove, Sokolska 581, 50005 Hradec Kralove, Czech Republic
| | - Jan Korabecny
- Biomedical Research Centre, University Hospital Hradec Kralove, Sokolska 581, 50005 Hradec Kralove, Czech Republic
| | - Tomas Zarybnicky
- Department of Biochemical Sciences, Faculty of Pharmacy in Hradec Kralove, Charles University, Heyrovskeho 1203, 50005 Hradec Kralove, Czech Republic
| | - Lucie Raisova-Stuchlikova
- Department of Biochemical Sciences, Faculty of Pharmacy in Hradec Kralove, Charles University, Heyrovskeho 1203, 50005 Hradec Kralove, Czech Republic
| | - Lenka Skalova
- Department of Biochemical Sciences, Faculty of Pharmacy in Hradec Kralove, Charles University, Heyrovskeho 1203, 50005 Hradec Kralove, Czech Republic
| | - Volker M Lauschke
- Department of Physiology and Pharmacology, Karolinska Institutet, 17177 Stockholm, Sweden
- Dr Margarete Fischer-Bosch Institute of Clinical Pharmacology, 70376 Stuttgart, Germany
- University of Tübingen, 72074 Tübingen, Germany
| | - Radim Kučera
- Department of Pharmaceutical Chemistry and Pharmaceutical Analysis, Faculty of Pharmacy in Hradec Kralove, Charles University, Heyrovskeho 1203, 50005 Hradec Kralove, Czech Republic
| | - Ondrej Soukup
- Biomedical Research Centre, University Hospital Hradec Kralove, Sokolska 581, 50005 Hradec Kralove, Czech Republic
| |
Collapse
|
3
|
Galzitskaya OV. Creation of New Antimicrobial Peptides. Int J Mol Sci 2023; 24:ijms24119451. [PMID: 37298402 DOI: 10.3390/ijms24119451] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 05/18/2023] [Indexed: 06/12/2023] Open
Abstract
Antimicrobial peptides (AMPs) are natural compounds that exhibit potent antimicrobial activity against various microorganisms, including bacteria, fungi, and viruses [...].
Collapse
Affiliation(s)
- Oxana V Galzitskaya
- Institute of Protein Research, Russian Academy of Sciences, 142290 Pushchino, Russia
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, 142290 Pushchino, Russia
| |
Collapse
|
4
|
Silva S, Kurrikoff K, Langel Ü, Almeida AJ, Vale N. A Second Life for MAP, a Model Amphipathic Peptide. Int J Mol Sci 2022; 23:8322. [PMID: 35955457 PMCID: PMC9368858 DOI: 10.3390/ijms23158322] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 07/25/2022] [Accepted: 07/26/2022] [Indexed: 12/26/2022] Open
Abstract
Cell-penetrating peptides (CPP) have been shown to be efficient in the transport of cargoes into the cells, namely siRNA and DNA, proteins and peptides, and in some cases, small therapeutics. These peptides have emerged as a solution to increase drug concentrations in different tissues and various cell types, therefore having a relevant therapeutic relevance which led to clinical trials. One of them, MAP, is a model amphipathic peptide with an α-helical conformation and both hydrophilic and hydrophobic residues in opposite sides of the helix. It is composed of a mixture of alanines, leucines, and lysines (KLALKLALKALKAALKLA). The CPP MAP has the ability to translocate oligonucleotides, peptides and small proteins. However, taking advantage of its unique properties, in recent years innovative concepts were developed, such as in silico studies of modelling with receptors, coupling and repurposing drugs in the central nervous system and oncology, or involving the construction of dual-drug delivery systems using nanoparticles. In addition to designs of MAP-linked vehicles and strategies to achieve highly effective yet less toxic chemotherapy, this review will be focused on unique molecular structure and how it determines its cellular activity, and also intends to address the most recent and frankly motivating issues for the future.
Collapse
Affiliation(s)
- Sara Silva
- OncoPharma Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal;
- Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, University of Lisbon, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal;
| | - Kaido Kurrikoff
- Institute of Technology, University of Tartu, Nooruse 1, 50411 Tartu, Estonia; (K.K.); (Ü.L.)
| | - Ülo Langel
- Institute of Technology, University of Tartu, Nooruse 1, 50411 Tartu, Estonia; (K.K.); (Ü.L.)
- Department of Biochemistry and Biophysics, Stockholm University, 10691 Stockholm, Sweden
| | - António J. Almeida
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, University of Lisbon, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal;
| | - Nuno Vale
- OncoPharma Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal;
- Department of Community Medicine, Information and Health Decision Sciences (MEDCIDS), Faculty of Medicine, University of Porto, Rua Doutor Plácido da Costa, s/n, 4200-450 Porto, Portugal
- CINTESIS@RISE, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
| |
Collapse
|
5
|
New Peptide Functionalized Nanostructured Lipid Carriers with CNS Drugs and Evaluation Anti-proliferative Activity. Int J Mol Sci 2022; 23:ijms23137109. [PMID: 35806112 PMCID: PMC9266917 DOI: 10.3390/ijms23137109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/20/2022] [Accepted: 06/24/2022] [Indexed: 12/31/2022] Open
Abstract
Nanoparticulate systems have been widely investigated as delivery vectors for efficient drug delivery in different diseases. Nanostructured lipid carriers (NLC) are composed of both solid and liquid lipids (glyceryl dibehenate and diethylene glycol monoethyl ether) and have demonstrated enhanced biological compatibility and increased drug loading capability. Furthermore, the use of peptides, in particular cell-penetrating peptides, to functionalize nanoparticles and enhance cell membrane permeation was explored in this paper. In this paper, we described the synthesis of a new conjugated of tranylcypromine with MAP. In addition, taking into consideration our previous results, this study developed different NLCs loaded with three central nervous system (CNS) drugs (tacrine (TAC), rasagiline (RAS), and tranylcypromine (TCP)) functionalized with model amphipathic peptide (MAP) and evaluated their activity against cancer cells. Particle size analysis demonstrated NLC presented less than 200 nm and a polydispersity index less than 0.3. Moreover, in vitro results showed that conjugation of MAP with drugs led to a higher decrease in cell viability of a neuroblastoma cell line and Caco-2 cell line, more than MAP alone. Furthermore, NLC encapsulation contributed to higher cellular delivery and enhanced toxic activity at lower concentrations when compared with free or co-administration drug-MAP conjugate.
Collapse
|
6
|
Xu H, Miyajima M, Nakajima M, Ogino I, Kawamura K, Akiba C, Kamohara C, Sakamoto K, Karagiozov K, Nakamura E, Tada N, Arai H, Kondo A. Ptpn20 deletion in H-Tx rats enhances phosphorylation of the NKCC1 cotransporter in the choroid plexus: an evidence of genetic risk for hydrocephalus in an experimental study. Fluids Barriers CNS 2022; 19:39. [PMID: 35658898 PMCID: PMC9164390 DOI: 10.1186/s12987-022-00341-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 05/16/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Congenital hydrocephalus occurs with some inheritable characteristics, but the mechanisms of its development remain poorly understood. Animal models provide the opportunity to identify potential genetic causes in this condition. The Hydrocephalus-Texas (H-Tx) rat strain is one of the most studied animal models for investigating the causative genetic alterations and analyzing downstream pathogenetic mechanisms of congenital hydrocephalus. METHODS Comparative genomic hybridization (CGH) array on non-hydrocephalic and hydrocephalic H-Tx rats was used to identify causative genes of hydrocephalus. Targeted gene knockout mice were generated by CRISPR/Cas9 to study the role of this gene in hydrocephalus. RESULTS CGH array revealed a copy number loss in chromosome 16p16 region in hydrocephalic H-Tx rats at 18 days gestation, encompassing the protein tyrosine phosphatase non-receptor type 20 (Ptpn20), a non-receptor tyrosine phosphatase, without change in most non-hydrocephalic H-Tx rats. Ptpn20-knockout (Ptpn20-/-) mice were generated and found to develop ventriculomegaly at 8 weeks. Furthermore, high expression of phosphorylated Na-K-Cl cotransporter 1 (pNKCC1) was identified in the choroid plexus (CP) epithelium of mice lacking Ptpn20 from 8 weeks until 72 weeks. CONCLUSIONS This study determined the chromosomal location of the hydrocephalus-associated Ptpn20 gene in hydrocephalic H-Tx rats. The high level of pNKCC1 mediated by Ptpn20 deletion in CP epithelium may cause overproduction of cerebrospinal fluid and contribute to the formation of hydrocephalus in Ptpn20-/- mice. Ptpn20 may be a potential therapeutic target in the treatment of hydrocephalus.
Collapse
Affiliation(s)
- Hanbing Xu
- Department of Neurosurgery, Juntendo University Graduate School of Medicine, Hongo Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Masakazu Miyajima
- Department of Neurosurgery, Juntendo Tokyo Koto Geriatric Medical Center, 3-3-20 Shinsuna, Koto-ku, Tokyo, 136-0075, Japan.
| | - Madoka Nakajima
- Department of Neurosurgery, Juntendo University Graduate School of Medicine, Hongo Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Ikuko Ogino
- Department of Neurosurgery, Juntendo University Graduate School of Medicine, Hongo Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Kaito Kawamura
- Department of Neurosurgery, Juntendo University Graduate School of Medicine, Hongo Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Chihiro Akiba
- Department of Neurosurgery, Juntendo Tokyo Koto Geriatric Medical Center, 3-3-20 Shinsuna, Koto-ku, Tokyo, 136-0075, Japan
| | - Chihiro Kamohara
- Department of Neurosurgery, Juntendo University Graduate School of Medicine, Hongo Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Koichiro Sakamoto
- Department of Neurosurgery, Juntendo University Graduate School of Medicine, Hongo Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Kostadin Karagiozov
- Department of Neurosurgery, Juntendo University Graduate School of Medicine, Hongo Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Eri Nakamura
- Department of Genetic Analysis Model Laboratory, Juntendo University Graduate School of Medicine, Hongo Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Nobuhiro Tada
- Department of Genetic Analysis Model Laboratory, Juntendo University Graduate School of Medicine, Hongo Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Hajime Arai
- Department of Neurosurgery, Juntendo University Graduate School of Medicine, Hongo Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Akihide Kondo
- Department of Neurosurgery, Juntendo University Graduate School of Medicine, Hongo Bunkyo-ku, Tokyo, 113-8421, Japan
| |
Collapse
|
7
|
Development of Neuropeptide Y and Cell-Penetrating Peptide MAP Adsorbed onto Lipid Nanoparticle Surface. Molecules 2022; 27:molecules27092734. [PMID: 35566093 PMCID: PMC9101637 DOI: 10.3390/molecules27092734] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/20/2022] [Accepted: 04/22/2022] [Indexed: 12/12/2022] Open
Abstract
Functionalization of nanoparticles surfaces have been widely used to improve diagnostic and therapeutic biological outcome. Several methods can be applied to modify nanoparticle surface; however, in this article we focus toward a simple and less time-consuming method. We applied an adsorption method on already formulated nanostructured lipid carriers (NLC) to functionalize these nanoparticles with three distinct peptides sequences. We selected a cell-penetrating peptide (CPP), a lysine modified model amphipathic peptide (Lys(N3)-MAP), CPP/drug complex, and the neuropeptide Y. The aim of this work is to evaluate the effect of several parameters such as peptide concentration, different types of NLC, different types of peptides, and incubation medium on the physicochemical proprieties of NLC and determine if adsorption occurs. The preliminary results from zeta potential analysis indicate some evidence that this method was successful in adsorbing three types of peptides onto NLC. Several non-covalent interactions appear to be involved in peptide adsorption with the possibility of three adsorption peptide hypothesis that may occur with NLC in solution. Moreover, and for the first time, in silico docking analysis demonstrated strong interaction between CPP MAP and NPY Y1 receptor with high score values when compared to standard antagonist and NPY.
Collapse
|
8
|
High Drug Resistance in Feline Mammary Carcinoma Cell Line (FMCm) and Comparison with Human Breast Cancer Cell Line (MCF-7). Animals (Basel) 2021; 11:ani11082321. [PMID: 34438778 PMCID: PMC8388478 DOI: 10.3390/ani11082321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 07/30/2021] [Accepted: 08/04/2021] [Indexed: 11/16/2022] Open
Abstract
Drug repurposing and drug combination are important therapeutic approaches in cancer therapy. Drug repurposing aims to give new indications to drugs, rather than the original indication, whereas drug combination presupposes that the effect that is obtained should be more beneficial than the effect obtained by the individual drugs. Previously, drug repurposing and the combination of different drugs was evaluated in our research group against human breast cancer cells (MCF-7 cells). Our results demonstrated that the response obtained through the combination of drugs, when compared with the single drugs, led to more synergic responses. Therefore, using potential drugs for repurposing, combined with a reference drug in breast cancer (5-Fluorouracil), was the major aim of this project, but for the first time using the feline mammary carcinoma cell line, FMCm. Surprisingly, the feline neoplastic cells demonstrated considerable resistance to the drugs tested in isolation, and the combination was not effective, which contrasted with the obtained MCF-7 cells' response.
Collapse
|