1
|
Fang X, Liu B, Kong H, Zeng J, Feng Y, Xiao C, Shao Q, Huang X, Wu Y, Bao A, Li J, Luan S, He K. Two calcium sensor-activated kinases function in root hair growth. PLANT PHYSIOLOGY 2024; 196:1534-1545. [PMID: 38980916 DOI: 10.1093/plphys/kiae365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 05/10/2024] [Accepted: 05/18/2024] [Indexed: 07/11/2024]
Abstract
Plant pollen tubes and root hairs typically polarized tip growth. It is well established that calcium ions (Ca2+) play essential roles in maintaining cell polarity and guiding cell growth orientation. Ca2+ signals are encoded by Ca2+ channels and transporters and are decoded by a variety of Ca2+-binding proteins often called Ca2+ sensors, in which calcineurin B-like protein (CBL) proteins function by interacting with and activating a group of kinases and activate CBL-interacting protein kinases (CIPKs). Some CBL-CIPK complexes, such as CBL2/3-CIPK12/19, act as crucial regulators of pollen tube growth. Whether these calcium decoding components regulate the growth of root hairs, another type of plant cell featuring Ca2+-regulated polarized growth, remains unknown. In this study, we identified CIPK13 and CIPK18 as genes specifically expressed in Arabidopsis (Arabidopsis thaliana) root hairs. The cipk13 cipk18 double mutants showed reduced root hair length and lower growth rates. The calcium oscillations at the root hair tip were attenuated in the cipk13 cipk18 mutants as compared to the wild-type plants. Through yeast 2-hybrid screens, CBL2 and CBL3 were identified as interacting with CIPK13 and CIPK18. cbl2 cbl3 displayed a shortened root hair phenotype similar to cipk13 cipk18. This genetic analysis, together with biochemical assays showing activation of CIPK13/18 by CBL2/3, supported the conclusion that CBL2/3 and CIPK13/18 may work as Ca2+-decoding modules in controlling root hair growth. Thus, the findings that CIPK12/19 and CIPK13/18 function in pollen tube and root hair growth, respectively, illustrate a molecular mechanism in which the same CBLs recruit distinct CIPKs in regulating polarized tip growth in different types of plant cells.
Collapse
Affiliation(s)
- Xianming Fang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Beibei Liu
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Haiyan Kong
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Jingyou Zeng
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Yixin Feng
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Chengbin Xiao
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Qianshuo Shao
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Xuemei Huang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Yujun Wu
- Academy of Plateau Science and Sustainability, Qinghai Normal University, Xining 810016, China
| | - Aike Bao
- Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China
| | - Jia Li
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
- School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| | - Sheng Luan
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
| | - Kai He
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
2
|
Xu F, Chen J, Li Y, Ouyang S, Yu M, Wang Y, Fang X, He K, Yu F. The soil emergence-related transcription factor PIF3 controls root penetration by interacting with the receptor kinase FER. Dev Cell 2024; 59:434-447.e8. [PMID: 38295794 DOI: 10.1016/j.devcel.2024.01.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 09/23/2023] [Accepted: 01/05/2024] [Indexed: 02/29/2024]
Abstract
The cotyledons of etiolated seedlings from terrestrial flowering plants must emerge from the soil surface, while roots must penetrate the soil to ensure plant survival. We show here that the soil emergence-related transcription factor PHYTOCHROME-INTERACTING FACTOR 3 (PIF3) controls root penetration via transducing external signals perceived by the receptor kinase FERONIA (FER) in Arabidopsis thaliana. The loss of FER function in Arabidopsis and soybean (Glycine max) mutants resulted in a severe defect in root penetration into agar medium or hard soil. Single-cell RNA sequencing (scRNA-seq) profiling of Arabidopsis roots identified a distinct cell clustering pattern, especially for root cap cells, and identified PIF3 as a FER-regulated transcription factor. Biochemical, imaging, and genetic experiments confirmed that PIF3 is required for root penetration into soil. Moreover, FER interacted with and stabilized PIF3 to modulate the expression of mechanosensitive ion channel PIEZO and the sloughing of outer root cap cells.
Collapse
Affiliation(s)
- Fan Xu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, and Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan University, Changsha 410082, China
| | - Jia Chen
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, and Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan University, Changsha 410082, China
| | - Yingbin Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, and Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan University, Changsha 410082, China
| | - Shilin Ouyang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, and Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan University, Changsha 410082, China
| | - Mengting Yu
- College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Yirong Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, and Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan University, Changsha 410082, China
| | - Xianming Fang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Kai He
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Feng Yu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, and Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan University, Changsha 410082, China.
| |
Collapse
|
3
|
Chen G, Li Y, Zhang H, Xie H. [Role of Piezo mechanosensitive ion channels in the osteoarticular system]. ZHONGGUO XIU FU CHONG JIAN WAI KE ZA ZHI = ZHONGGUO XIUFU CHONGJIAN WAIKE ZAZHI = CHINESE JOURNAL OF REPARATIVE AND RECONSTRUCTIVE SURGERY 2024; 38:240-248. [PMID: 38385239 PMCID: PMC10882244 DOI: 10.7507/1002-1892.202310092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Objective To summarize the role of Piezo mechanosensitive ion channels in the osteoarticular system, in order to provide reference for subsequent research. Methods Extensive literature review was conducted to summarize the structural characteristics, gating mechanisms, activators and blockers of Piezo ion channels, as well as their roles in the osteoarticular systems. Results The osteoarticular system is the main load-bearing and motor tissue of the body, and its ability to perceive and respond to mechanical stimuli is one of the guarantees for maintaining normal physiological functions of bones and joints. The occurrence and development of many osteoarticular diseases are closely related to abnormal mechanical loads. At present, research shows that Piezo mechanosensitive ion channels differentiate towards osteogenesis by responding to stretching stimuli and regulating cellular Ca 2+ influx signals; and it affects the proliferation and migration of osteoblasts, maintaining bone homeostasis through cellular communication between osteoblasts-osteoclasts. Meanwhile, Piezo1 protein can indirectly participate in regulating the formation and activity of osteoclasts through its host cells, thereby regulating the process of bone remodeling. During mechanical stimulation, the Piezo1 ion channel maintains bone homeostasis by regulating the expressions of Akt and Wnt1 signaling pathways. The sensitivity of Piezo1/2 ion channels to high strain mechanical signals, as well as the increased sensitivity of Piezo1 ion channels to mechanical transduction mediated by Ca 2+ influx and inflammatory signals in chondrocytes, is expected to become a new entry point for targeted prevention and treatment of osteoarthritis. But the specific way mechanical stimuli regulate the physiological/pathological processes of bones and joints still needs to be clarified. Conclusion Piezo mechanosensitive ion channels give the osteoarticular system with important abilities to perceive and respond to mechanical stress, playing a crucial mechanical sensing role in its cellular fate, bone development, and maintenance of bone and cartilage homeostasis.
Collapse
Affiliation(s)
- Guohui Chen
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu Sichuan, 610041, P. R. China
- Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu Sichuan, 610041, P. R. China
| | - Yaxing Li
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu Sichuan, 610041, P. R. China
- Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu Sichuan, 610041, P. R. China
| | - Hui Zhang
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu Sichuan, 610041, P. R. China
- Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu Sichuan, 610041, P. R. China
| | - Huiqi Xie
- Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu Sichuan, 610041, P. R. China
- Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu Sichuan, 610041, P. R. China
| |
Collapse
|
4
|
Tyagi A, Ali S, Park S, Bae H. Deciphering the role of mechanosensitive channels in plant root biology: perception, signaling, and adaptive responses. PLANTA 2023; 258:105. [PMID: 37878056 DOI: 10.1007/s00425-023-04261-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 10/02/2023] [Indexed: 10/26/2023]
Abstract
MAIN CONCLUSION Mechanosensitive channels are integral membrane proteins that rapidly translate extrinsic or intrinsic mechanical tensions into biological responses. They can serve as potential candidates for developing smart-resilient crops with efficient root systems. Mechanosensitive (MS) calcium channels are molecular switches for mechanoperception and signal transduction in all living organisms. Although tremendous progress has been made in understanding mechanoperception and signal transduction in bacteria and animals, this remains largely unknown in plants. However, identification and validation of MS channels such as Mid1-complementing activity channels (MCAs), mechanosensitive-like channels (MSLs), and Piezo channels (PIEZO) has been the most significant discovery in plant mechanobiology, providing novel insights into plant mechanoperception. This review summarizes recent advances in root mechanobiology, focusing on MS channels and their related signaling players, such as calcium ions (Ca2+), reactive oxygen species (ROS), and phytohormones. Despite significant advances in understanding the role of Ca2+ signaling in root biology, little is known about the involvement of MS channel-driven Ca2+ and ROS signaling. Additionally, the hotspots connecting the upstream and downstream signaling of MS channels remain unclear. In light of this, we discuss the present knowledge of MS channels in root biology and their role in root developmental and adaptive traits. We also provide a model highlighting upstream (cell wall sensors) and downstream signaling players, viz., Ca2+, ROS, and hormones, connected with MS channels. Furthermore, we highlighted the importance of emerging signaling molecules, such as nitric oxide (NO), hydrogen sulfide (H2S), and neurotransmitters (NTs), and their association with root mechanoperception. Finally, we conclude with future directions and knowledge gaps that warrant further research to decipher the complexity of root mechanosensing.
Collapse
Affiliation(s)
- Anshika Tyagi
- Department of Biotechnology, Yeungnam University, Gyeongsan Gyeongbuk, 38541, Republic of Korea.
| | - Sajad Ali
- Department of Biotechnology, Yeungnam University, Gyeongsan Gyeongbuk, 38541, Republic of Korea
| | - Suvin Park
- Department of Biotechnology, Yeungnam University, Gyeongsan Gyeongbuk, 38541, Republic of Korea
| | - Hanhong Bae
- Department of Biotechnology, Yeungnam University, Gyeongsan Gyeongbuk, 38541, Republic of Korea.
| |
Collapse
|
5
|
Mudrilov MA, Ladeynova MM, Kuznetsova DV, Vodeneev VA. Ion Channels in Electrical Signaling in Higher Plants. BIOCHEMISTRY. BIOKHIMIIA 2023; 88:1467-1487. [PMID: 38105018 DOI: 10.1134/s000629792310005x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 09/16/2023] [Accepted: 09/18/2023] [Indexed: 12/19/2023]
Abstract
Electrical signals (ESs) appearing in plants under the action of various external factors play an important role in adaptation to changing environmental conditions. Generation of ES in higher plant cells is associated with activation of Ca2+, K+, and anion fluxes, as well as with changes in the activity of plasma membrane H+-ATPase. In the present review, molecular nature of the ion channels contributing to ESs transmission in higher plants is analyzed based on comparison of the data from molecular-genetic and electrophysiological studies. Based on such characteristics of ion channels as selectivity, activation mechanism, and intracellular and tissue localization, those ion channels that meet the requirements for potential participation in ES generation were selected from a wide variety of ion channels in higher plants. Analysis of the data of experimental studies performed on mutants with suppressed or enhanced expression of a certain channel gene revealed those channels whose activation contributes to ESs formation. The channels responsible for Ca2+ flux during generation of ESs include channels of the GLR family, for K+ flux - GORK, for anions - MSL. Consideration of the prospects of further studies suggests the need to combine electrophysiological and genetic approaches along with analysis of ion concentrations in intact plants within a single study.
Collapse
Affiliation(s)
- Maxim A Mudrilov
- Department of Biophysics, Lobachevsky National Research State University of Nizhny Novgorod, Nizhny Novgorod, 603950, Russia
| | - Maria M Ladeynova
- Department of Biophysics, Lobachevsky National Research State University of Nizhny Novgorod, Nizhny Novgorod, 603950, Russia
| | - Darya V Kuznetsova
- Department of Biophysics, Lobachevsky National Research State University of Nizhny Novgorod, Nizhny Novgorod, 603950, Russia
| | - Vladimir A Vodeneev
- Department of Biophysics, Lobachevsky National Research State University of Nizhny Novgorod, Nizhny Novgorod, 603950, Russia.
| |
Collapse
|
6
|
Darwish E, Ghosh R, Bentzer J, Tsardakas Renhuldt N, Proux-Wera E, Kamal N, Spannagl M, Hause B, Sirijovski N, Van Aken O. The dynamics of touch-responsive gene expression in cereals. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 116:282-302. [PMID: 37159480 DOI: 10.1111/tpj.16269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 04/24/2023] [Accepted: 04/29/2023] [Indexed: 05/11/2023]
Abstract
Wind, rain, herbivores, obstacles, neighbouring plants, etc. provide important mechanical cues to steer plant growth and survival. Mechanostimulation to stimulate yield and stress resistance of crops is of significant research interest, yet a molecular understanding of transcriptional responses to touch is largely absent in cereals. To address this, we performed whole-genome transcriptomics following mechanostimulation of wheat, barley, and the recent genome-sequenced oat. The largest transcriptome changes occurred ±25 min after touching, with most of the genes being upregulated. While most genes returned to basal expression level by 1-2 h in oat, many genes retained high expression even 4 h post-treatment in barley and wheat. Functional categories such as transcription factors, kinases, phytohormones, and Ca2+ regulation were affected. In addition, cell wall-related genes involved in (hemi)cellulose, lignin, suberin, and callose biosynthesis were touch-responsive, providing molecular insight into mechanically induced changes in cell wall composition. Furthermore, several cereal-specific transcriptomic footprints were identified that were not observed in Arabidopsis. In oat and barley, we found evidence for systemic spreading of touch-induced signalling. Finally, we provide evidence that both the jasmonic acid-dependent and the jasmonic acid-independent pathways underlie touch-signalling in cereals, providing a detailed framework and marker genes for further study of (a)biotic stress responses in cereals.
Collapse
Affiliation(s)
- Essam Darwish
- Department of Biology, Lund University, Sölvegatan 35, 223 62, Lund, Sweden
- Plant Physiology Section, Agricultural Botany Department, Faculty of Agriculture, Cairo University, Cairo, Egypt
| | - Ritesh Ghosh
- Department of Biology, Lund University, Sölvegatan 35, 223 62, Lund, Sweden
- Department of Bioengineering, Imperial College London, London, SW7 2AZ, UK
| | - Johan Bentzer
- ScanOats Industrial Research Centre, Department of Chemistry, Division of Pure and Applied Biochemistry, Lund University, Lund, Sweden
| | - Nikos Tsardakas Renhuldt
- ScanOats Industrial Research Centre, Department of Chemistry, Division of Pure and Applied Biochemistry, Lund University, Lund, Sweden
| | - Estelle Proux-Wera
- Department of Biochemistry and Biophysics, National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Stockholm University, Box 1031, SE-17121, Solna, Sweden
| | - Nadia Kamal
- PGSB - Plant Genome and Systems Biology, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstädter Landstr. 1, 85764, Neuherberg, Germany
| | - Manuel Spannagl
- PGSB - Plant Genome and Systems Biology, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstädter Landstr. 1, 85764, Neuherberg, Germany
| | - Bettina Hause
- Leibniz Institute of Plant Biochemistry, Weinberg 3, D06120, Halle, Germany
| | - Nick Sirijovski
- ScanOats Industrial Research Centre, Department of Chemistry, Division of Pure and Applied Biochemistry, Lund University, Lund, Sweden
| | - Olivier Van Aken
- Department of Biology, Lund University, Sölvegatan 35, 223 62, Lund, Sweden
| |
Collapse
|
7
|
Demey ML, Mishra RC, Van Der Straeten D. Sound perception in plants: from ecological significance to molecular understanding. TRENDS IN PLANT SCIENCE 2023; 28:825-840. [PMID: 37002001 DOI: 10.1016/j.tplants.2023.03.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 02/14/2023] [Accepted: 03/07/2023] [Indexed: 06/17/2023]
Abstract
In addition to positive effects on plant growth and resilience, sound alerts plants of potential danger and aids in defense. Sound guides plants towards essential resources, like water, through phonotropic root growth. Sound also facilitates mutualistic interactions such as buzz pollination. Molecularly, sound induces Ca2+ signatures, K+ fluxes, and an increase in reactive oxygen species (ROS) levels in a mechanosensitive ion channel-dependent fashion. We review the two major open questions in the field of plant acoustics: (i) what is the ecological relevance of sound in plant life, and (ii) how is sound sensed and transduced to evoke a morphophysiological response? We highlight the clear need to combine the ecological and molecular perspectives for a more holistic approach to better understand plant behavior.
Collapse
|
8
|
Oelmüller R, Tseng YH, Gandhi A. Signals and Their Perception for Remodelling, Adjustment and Repair of the Plant Cell Wall. Int J Mol Sci 2023; 24:ijms24087417. [PMID: 37108585 PMCID: PMC10139151 DOI: 10.3390/ijms24087417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/04/2023] [Accepted: 04/08/2023] [Indexed: 04/29/2023] Open
Abstract
The integrity of the cell wall is important for plant cells. Mechanical or chemical distortions, tension, pH changes in the apoplast, disturbance of the ion homeostasis, leakage of cell compounds into the apoplastic space or breakdown of cell wall polysaccharides activate cellular responses which often occur via plasma membrane-localized receptors. Breakdown products of the cell wall polysaccharides function as damage-associated molecular patterns and derive from cellulose (cello-oligomers), hemicelluloses (mainly xyloglucans and mixed-linkage glucans as well as glucuronoarabinoglucans in Poaceae) and pectins (oligogalacturonides). In addition, several types of channels participate in mechanosensing and convert physical into chemical signals. To establish a proper response, the cell has to integrate information about apoplastic alterations and disturbance of its wall with cell-internal programs which require modifications in the wall architecture due to growth, differentiation or cell division. We summarize recent progress in pattern recognition receptors for plant-derived oligosaccharides, with a focus on malectin domain-containing receptor kinases and their crosstalk with other perception systems and intracellular signaling events.
Collapse
Affiliation(s)
- Ralf Oelmüller
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Department of Plant Physiology, Friedrich-Schiller-University, 07743 Jena, Germany
| | - Yu-Heng Tseng
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Department of Plant Physiology, Friedrich-Schiller-University, 07743 Jena, Germany
| | - Akanksha Gandhi
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Department of Plant Physiology, Friedrich-Schiller-University, 07743 Jena, Germany
| |
Collapse
|
9
|
Kaur A, Madhu, Sharma A, Singh K, Upadhyay SK. Exploration of Piezo Channels in Bread Wheat (Triticum aestivum L.). AGRICULTURE 2023; 13:783. [DOI: 10.3390/agriculture13040783] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
Abstract
Piezo channels belong to an important class of cell membrane-bound, Ca2+-permeable, mechanosensitive channels consisting of a pore and multiple transmembrane helices. In plants, the functional aspects of Piezo channels have been less studied than other mechanosensitive channels. However, a few studies that have been carried out indicate the involvement of Piezo channels in stress response and developmental processes. In our analysis, we identified a total of three Piezo genes in the Triticum aestivum genome. The phylogenetic analysis revealed the monocot and dicot-specific clustering of Piezo proteins. The gene and protein structure analysis indicated their conserved architecture. The promoter region of each of the three Piezo genes contained light-, growth-and development-, hormone-, and stress-responsive cis-regulatory elements. Moreover, the differential expression of Piezo genes in tissue developmental stages and under abiotic and biotic stress conditions indicated their probable role in plant growth and development and various stresses. The quantitative real-time polymerase chain reaction (qRT-PCR) analysis suggested that TaPiezo1-D might be involved in Ca2+ homeostasis. In addition, protein–protein interaction indicated their precise role in glucose, hormone and stress responses. The miRNA interaction analysis further suggested their participation in signaling cascades and biological processes. The present study will extend our understanding about Piezo channels in Ca2+ mediated signaling in plants under various stresses and provide a path for the functional validation of TaPiezo genes in future research.
Collapse
Affiliation(s)
- Amandeep Kaur
- Department of Botany, Panjab University, Chandigarh 160014, India
| | - Madhu
- Department of Botany, Panjab University, Chandigarh 160014, India
| | - Alok Sharma
- Department of Botany, Panjab University, Chandigarh 160014, India
| | - Kashmir Singh
- Department of Biotechnology, Panjab University, Chandigarh 160014, India
| | | |
Collapse
|
10
|
The Course of Mechanical Stress: Types, Perception, and Plant Response. BIOLOGY 2023; 12:biology12020217. [PMID: 36829495 PMCID: PMC9953051 DOI: 10.3390/biology12020217] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/23/2023] [Accepted: 01/25/2023] [Indexed: 01/31/2023]
Abstract
Mechanical stimuli, together with the corresponding plant perception mechanisms and the finely tuned thigmomorphogenetic response, has been of scientific and practical interest since the mid-17th century. As an emerging field, there are many challenges in the research of mechanical stress. Indeed, studies on different plant species (annual/perennial) and plant organs (stem/root) using different approaches (field, wet lab, and in silico/computational) have delivered insufficient findings that frequently impede the practical application of the acquired knowledge. Accordingly, the current work distils existing mechanical stress knowledge by bringing in side-by-side the research conducted on both stem and roots. First, the various types of mechanical stress encountered by plants are defined. Second, plant perception mechanisms are outlined. Finally, the different strategies employed by the plant stem and roots to counteract the perceived mechanical stresses are summarized, depicting the corresponding morphological, phytohormonal, and molecular characteristics. The comprehensive literature on both perennial (woody) and annual plants was reviewed, considering the potential benefits and drawbacks of the two plant types, which allowed us to highlight current gaps in knowledge as areas of interest for future research.
Collapse
|
11
|
Radin I, Richardson RA, Haswell ES. Moss PIEZO homologs have a conserved structure, are ubiquitously expressed, and do not affect general vacuole function. PLANT SIGNALING & BEHAVIOR 2022; 17:2015893. [PMID: 34951344 PMCID: PMC8920221 DOI: 10.1080/15592324.2021.2015893] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 12/04/2021] [Accepted: 12/04/2021] [Indexed: 06/14/2023]
Abstract
The PIEZO protein family was first described in animals where these mechanosensitive calcium channels perform numerous essential functions, including the perception of light touch, shear, and compressive forces. PIEZO homologs are present in most eukaryotic lineages and recently we reported that two PIEZO homologs from moss Physcomitrium patens localize to the vacuolar membrane and modulate its morphology in tip-growing caulonemal cells. Here we show that predicted structures of both PpPIEZO1 and PpPIEZO2 are very similar to that of mouse Piezo2. Furthermore, we show that both moss PIEZO genes are ubiquitously expressed in moss vegetative tissues and that they are not required for normal vacuolar pH or intracellular osmotic potential. These results suggest that moss PIEZO proteins are widely expressed mechanosensory calcium channels that serve a signaling rather than maintenance role in vacuoles.
Collapse
Affiliation(s)
- Ivan Radin
- Department of Biology, MSC 1137‐154‐314, Washington University, St. Louis, MO USA
- NSF Center for Engineering Mechanobiology
| | - Ryan A. Richardson
- Department of Biology, MSC 1137‐154‐314, Washington University, St. Louis, MO USA
- NSF Center for Engineering Mechanobiology
| | - Elizabeth S. Haswell
- Department of Biology, MSC 1137‐154‐314, Washington University, St. Louis, MO USA
- NSF Center for Engineering Mechanobiology
| |
Collapse
|
12
|
Guichard M, Thomine S, Frachisse JM. Mechanotransduction in the spotlight of mechano-sensitive channels. CURRENT OPINION IN PLANT BIOLOGY 2022; 68:102252. [PMID: 35772372 DOI: 10.1016/j.pbi.2022.102252] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 05/06/2022] [Accepted: 05/26/2022] [Indexed: 06/15/2023]
Abstract
The study of mechanosensitive channels (MS) in living organisms has progressed considerably over the past two decades. The understanding of their roles in mechanosensation and mechanotransduction was consecrated by the awarding of the Nobel Prize in 2021 to A. Patapoutian for his discoveries on the role of MS channels in mechanoperception in humans. In this review, we first summarize the fundamental properties of MS channels and their mode of operation. Then in a second step, we provide an update on the knowledge on the families of MS channels identified in plants and the roles and functions that have been attributed to them.
Collapse
Affiliation(s)
- Marjorie Guichard
- Institute of Cell and Interaction Biology, Heinrich-Heine-University Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Sébastien Thomine
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Jean-Marie Frachisse
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France.
| |
Collapse
|
13
|
Matthus E, Wilkins KA, Mohammad-Sidik A, Ning Y, Davies JM. Spatial origin of the extracellular ATP-induced cytosolic calcium signature in Arabidopsis thaliana roots: wave formation and variation with phosphate nutrition. PLANT BIOLOGY (STUTTGART, GERMANY) 2022; 24:863-873. [PMID: 35395136 DOI: 10.1111/plb.13427] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 03/30/2022] [Indexed: 06/14/2023]
Abstract
Extracellular ATP (eATP) increases cytosolic free calcium ([Ca2+ ]cyt ) as a specific second messenger 'signature' through the plasma membrane DORN1/P2K1 receptor. Previous studies revealed a biphasic signature in Arabidopsis thaliana roots that is altered by inorganic phosphate (Pi) deprivation. The relationship between the two phases of the signature and possible wave formation have been tested as a function of Pi nutrition. The bioluminescent aequorin and intensiometric GCaMP3 reporters were used to resolve the spatial origin of the eATP [Ca2+ ]cyt signature in Arabidopsis root tips. Application of eATP only to the root apex allowed [Ca2+ ]cyt wave resolution without the confounding effects of eATP delivery by superfusion. The first apical millimetre of the root generates the first [Ca2+ ]cyt increase by eATP, regardless of nutritional status. The second increase occurs sub-apically in the root hair zone, has some autonomy and is significantly reduced in Pi-starved roots. A significant component of the Pi-replete signature does not require DORN1/P2K1, but Pi-starved roots appear to have an absolute requirement for that receptor. Application of eATP specifically to the root apex provides evidence for cell-to-cell propagation of a [Ca2+ ]cyt wave that diminishes sub-apically. The apex maintains a robust [Ca2+ ]cyt increase (even under Pi starvation) that is the basis of a propagative wave, with implications for the ability of the root's eATP signalling systems to signal systemically. Partial autonomy of the sub-apical region may be relevant to the perception of eATP from microbes. eATP-induced [Ca2+ ]cyt increase may not have always have an obligate requirement for DORN1/P2K1.
Collapse
Affiliation(s)
- E Matthus
- Department of Plant Sciences, University of Cambridge, Cambridge, UK
- Leibniz Centre for Agricultural Landscape Research (ZALF), Müncheberg, Germany
| | - K A Wilkins
- Department of Plant Sciences, University of Cambridge, Cambridge, UK
| | - A Mohammad-Sidik
- Department of Plant Sciences, University of Cambridge, Cambridge, UK
| | - Y Ning
- Department of Plant Sciences, University of Cambridge, Cambridge, UK
| | - J M Davies
- Department of Plant Sciences, University of Cambridge, Cambridge, UK
| |
Collapse
|
14
|
Han M, Yang H, Yu G, Jiang P, You S, Zhang L, Lin H, Liu J, Shu Y. Application of Non-invasive Micro-test Technology (NMT) in environmental fields: A comprehensive review. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 240:113706. [PMID: 35659702 DOI: 10.1016/j.ecoenv.2022.113706] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 05/22/2022] [Accepted: 05/24/2022] [Indexed: 06/15/2023]
Abstract
Non-invasive Micro-test Technology (NMT) is a selective microelectrode technique which can detect the flux rates and three-dimensional motion directions of ions or molecules into and out of living organisms in situ without damaging the sample. It has the advantages of maintaining sample integrity, high temporal and spatial resolution, and being able to measure multiple sites simultaneously. In this paper we provide a comprehensive review on the development of NMT in recent years. Its principles, characteristics, and the differences with other microelectrode techniques are introduced. We discuss the applications of NMT in the field of phytoremediation, plant resistance, water quality monitoring, and toxicity mechanisms of heavy metals on organisms. Furthermore, the challenges and future prospects of NMT in the environmental field are presented.
Collapse
Affiliation(s)
- Mengxuan Han
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, China
| | - Huan Yang
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, China
| | - Guo Yu
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, China.
| | - Pingping Jiang
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, China
| | - Shaohong You
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, China; Technical Innovation Center of Mine Geological Environmental Restoration Engineering in Southern Karst Area, MNR, Guilin, China.
| | - Lei Zhang
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Canada
| | - Hua Lin
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, China
| | - Jie Liu
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, China; Technical Innovation Center of Mine Geological Environmental Restoration Engineering in Southern Karst Area, MNR, Guilin, China
| | - Yi Shu
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, China
| |
Collapse
|
15
|
Kleist TJ, Wudick MM. Shaping up: Recent advances in the study of plant calcium channels. Curr Opin Cell Biol 2022; 76:102080. [DOI: 10.1016/j.ceb.2022.102080] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 03/02/2022] [Accepted: 03/13/2022] [Indexed: 12/20/2022]
|
16
|
Darwish E, Ghosh R, Ontiveros-Cisneros A, Tran HC, Petersson M, De Milde L, Broda M, Goossens A, Van Moerkercke A, Khan K, Van Aken O. Touch signaling and thigmomorphogenesis are regulated by complementary CAMTA3- and JA-dependent pathways. SCIENCE ADVANCES 2022; 8:eabm2091. [PMID: 35594358 PMCID: PMC9122320 DOI: 10.1126/sciadv.abm2091] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Plants respond to mechanical stimuli to direct their growth and counteract environmental threats. Mechanical stimulation triggers rapid gene expression changes and affects plant appearance (thigmomorphogenesis) and flowering. Previous studies reported the importance of jasmonic acid (JA) in touch signaling. Here, we used reverse genetics to further characterize the molecular mechanisms underlying touch signaling. We show that Piezo mechanosensitive ion channels have no major role in touch-induced gene expression and thigmomorphogenesis. In contrast, the receptor-like kinase Feronia acts as a strong negative regulator of the JA-dependent branch of touch signaling. Last, we show that calmodulin-binding transcriptional activators CAMTA1/2/3 are key regulators of JA-independent touch signaling. CAMTA1/2/3 cooperate to directly bind the promoters and activate gene expression of JA-independent touch marker genes like TCH2 and TCH4. In agreement, camta3 mutants show a near complete loss of thigmomorphogenesis and touch-induced delay of flowering. In conclusion, we have now identified key regulators of two independent touch-signaling pathways.
Collapse
Affiliation(s)
- Essam Darwish
- Department of Biology, Lund University, Lund, Sweden
- Plant Physiology Section, Agricultural Botany Department, Faculty of Agriculture, Cairo University, Egypt
| | - Ritesh Ghosh
- Department of Biology, Lund University, Lund, Sweden
| | | | | | | | - Liesbeth De Milde
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Gent, Belgium
- VIB Center for Plant Systems Biology, Gent, Belgium
| | - Martyna Broda
- ARC Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, University of Western Australia, Perth, Australia
| | - Alain Goossens
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Gent, Belgium
- VIB Center for Plant Systems Biology, Gent, Belgium
| | | | - Kasim Khan
- Department of Biology, Lund University, Lund, Sweden
| | - Olivier Van Aken
- Department of Biology, Lund University, Lund, Sweden
- Corresponding author.
| |
Collapse
|
17
|
|
18
|
Cui Y, Bian J, Guan Y, Xu F, Han X, Deng X, Liu X. Genome-Wide Analysis and Expression Profiles of Ethylene Signal Genes and Apetala2/Ethylene-Responsive Factors in Peanut ( Arachis hypogaea L.). FRONTIERS IN PLANT SCIENCE 2022; 13:828482. [PMID: 35371146 PMCID: PMC8968948 DOI: 10.3389/fpls.2022.828482] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 02/14/2022] [Indexed: 05/05/2023]
Abstract
Peanut is an important oil and economic crop widely cultivated in the world. It has special characteristics such as blooming on the ground but bearing fruits underground. During the peg penetrating into the ground, it is subjected to mechanical stress from the soil at the same time. It has been proved that mechanical stress affects plant growth and development by regulating the ethylene signaling-related genes. In this study, we identified some genes related to ethylene signal of peanut, including 10 ethylene sensors, two constitutive triple responses (CTRs), four ethylene insensitive 2 (EIN2s), four ethylene insensitive 3 (EIN3s), six EIN3-binding F-box proteins (EBFs), and 188 Apetala2/ethylene-responsive factors (AP2/ERFs). One hundred and eighty-eight AP2/ERFs were further divided into four subfamilies, 123 ERFs, 56 AP2s, 6 Related to ABI3/VP1 (RAVs), and three Soloists, of them one hundred and seventy AP2/ERF gene pairs were clustered into segmental duplication events in genome of Arachis hypogaea. A total of 134, 138, 97, and 150 AhAP2/ERF genes formed 210, 195, 166, and 525 orthologous gene pairs with Arachis duranensis, Arachis ipaensis, Arabidopsis thaliana, and Glycine max, respectively. Our transcriptome results showed that two EIN3s (Arahy.J729H0 and Arahy.S7XF8N) and one EBFs (Arahy.G4JMEM) were highly expressed when mechanical stress increased. Among the 188 AhAP2/ERF genes, there were 31 genes with the fragments per kilobase of exon model per million mapped fragments (FPKM) ≥ 100 at least one of the 15 samples of Tifrunner. Among them, three AhAP2/ERFs (Arahy.15RATX, Arahy.FAI7YU, and Arahy.452FBF) were specifically expressed in seeds and five AhAP2/ERFs (Arahy.HGAZ7D, Arahy.ZW7540, Arahy.4XS3FZ, Arahy.QGFJ76, and Arahy.AS0C7C) were highly expressed in the tissues, which responded mechanical stress, suggesting that they might sense mechanical stress. Mechanical stress simulation experiment showed that three AhAP2/ERFs (Arahy.QGFJ76, Arahy.AS0C7C, and Arahy.HGAZ7D) were sensitive to mechanical stress changes and they all had the conservative repressor motif (DLNXXP) in the C-terminus, indicated that they might transmit mechanical stress signals through transcriptional inhibition. This study reveals the regulatory landscape of ethylene signal-related genes in peanut, providing valuable information for the mining of target genes for further study.
Collapse
Affiliation(s)
- Yuanyuan Cui
- Institute of Advanced Agricultural Science, Peking University, Weifang, China
- School of Advanced Agricultural Sciences, Peking University, Beijing, China
| | - Jianxin Bian
- Institute of Advanced Agricultural Science, Peking University, Weifang, China
| | - Yu Guan
- Institute of Advanced Agricultural Science, Peking University, Weifang, China
| | - Fangtao Xu
- Institute of Advanced Agricultural Science, Peking University, Weifang, China
| | - Xue Han
- Institute of Advanced Agricultural Science, Peking University, Weifang, China
- School of Advanced Agricultural Sciences, Peking University, Beijing, China
| | - Xingwang Deng
- Institute of Advanced Agricultural Science, Peking University, Weifang, China
- School of Advanced Agricultural Sciences, Peking University, Beijing, China
- *Correspondence: Xingwang Deng,
| | - Xiaoqin Liu
- Institute of Advanced Agricultural Science, Peking University, Weifang, China
- Xiaoqin Liu,
| |
Collapse
|
19
|
Hartmann FP, Tinturier E, Julien JL, Leblanc-Fournier N. Between Stress and Response: Function and Localization of Mechanosensitive Ca 2+ Channels in Herbaceous and Perennial Plants. Int J Mol Sci 2021; 22:11043. [PMID: 34681698 PMCID: PMC8538497 DOI: 10.3390/ijms222011043] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/05/2021] [Accepted: 10/07/2021] [Indexed: 01/26/2023] Open
Abstract
Over the past three decades, how plants sense and respond to mechanical stress has become a flourishing field of research. The pivotal role of mechanosensing in organogenesis and acclimation was demonstrated in various plants, and links are emerging between gene regulatory networks and physical forces exerted on tissues. However, how plant cells convert physical signals into chemical signals remains unclear. Numerous studies have focused on the role played by mechanosensitive (MS) calcium ion channels MCA, Piezo and OSCA. To complement these data, we combined data mining and visualization approaches to compare the tissue-specific expression of these genes, taking advantage of recent single-cell RNA-sequencing data obtained in the root apex and the stem of Arabidopsis and the Populus stem. These analyses raise questions about the relationships between the localization of MS channels and the localization of stress and responses. Such tissue-specific expression studies could help to elucidate the functions of MS channels. Finally, we stress the need for a better understanding of such mechanisms in trees, which are facing mechanical challenges of much higher magnitudes and over much longer time scales than herbaceous plants, and we mention practical applications of plant responsiveness to mechanical stress in agriculture and forestry.
Collapse
Affiliation(s)
- Félix P. Hartmann
- Université Clermont Auvergne, INRAE, PIAF, 63000 Clermont-Ferrand, France; (E.T.); (J.-L.J.)
| | | | | | | |
Collapse
|
20
|
Abstract
Calcium (Ca2+) is a unique mineral that serves as both a nutrient and a signal in all eukaryotes. To maintain Ca2+ homeostasis for both nutrition and signaling purposes, the toolkit for Ca2+ transport has expanded across kingdoms of eukaryotes to encode specific Ca2+ signals referred to as Ca2+ signatures. In parallel, a large array of Ca2+-binding proteins has evolved as specific sensors to decode Ca2+ signatures. By comparing these coding and decoding mechanisms in fungi, animals, and plants, both unified and divergent themes have emerged, and the underlying complexity will challenge researchers for years to come. Considering the scale and breadth of the subject, instead of a literature survey, in this review we focus on a conceptual framework that aims to introduce to readers to the principles and mechanisms of Ca2+ signaling. We finish with several examples of Ca2+-signaling pathways, including polarized cell growth, immunity and symbiosis, and systemic signaling, to piece together specific coding and decoding mechanisms in plants versus animals. Expected final online publication date for the Annual Review of Cell and Developmental Biology, Volume 37 is October 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Sheng Luan
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720, USA;
| | - Chao Wang
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720, USA;
| |
Collapse
|
21
|
Radin I, Richardson RA, Coomey JH, Weiner ER, Bascom CS, Li T, Bezanilla M, Haswell ES. Plant PIEZO homologs modulate vacuole morphology during tip growth. Science 2021; 373:586-590. [PMID: 34326243 DOI: 10.1126/science.abe6310] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 02/24/2021] [Accepted: 06/16/2021] [Indexed: 12/11/2022]
Abstract
In animals, PIEZOs are plasma membrane-localized cation channels involved in diverse mechanosensory processes. We investigated PIEZO function in tip-growing cells in the moss Physcomitrium patens and the flowering plant Arabidopsis thaliana PpPIEZO1 and PpPIEZO2 redundantly contribute to the normal growth, size, and cytoplasmic calcium oscillations of caulonemal cells. Both PpPIEZO1 and PpPIEZO2 localized to vacuolar membranes. Loss-of-function, gain-of-function, and overexpression mutants revealed that moss PIEZO homologs promote increased complexity of vacuolar membranes through tubulation, internalization, and/or fission. Arabidopsis PIEZO1 also localized to the tonoplast and is required for vacuole tubulation in the tips of pollen tubes. We propose that in plant cells the tonoplast has more freedom of movement than the plasma membrane, making it a more effective location for mechanosensory proteins.
Collapse
Affiliation(s)
- Ivan Radin
- Department of Biology and NSF Center for Engineering Mechanobiology, Washington University in St. Louis, St. Louis, MO, USA
| | - Ryan A Richardson
- Department of Biology and NSF Center for Engineering Mechanobiology, Washington University in St. Louis, St. Louis, MO, USA
| | - Joshua H Coomey
- Department of Biology and NSF Center for Engineering Mechanobiology, Washington University in St. Louis, St. Louis, MO, USA
| | - Ethan R Weiner
- Department of Biology and NSF Center for Engineering Mechanobiology, Washington University in St. Louis, St. Louis, MO, USA
| | | | - Ting Li
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | | | - Elizabeth S Haswell
- Department of Biology and NSF Center for Engineering Mechanobiology, Washington University in St. Louis, St. Louis, MO, USA.
| |
Collapse
|
22
|
Heng H, Guoqiang H, Jin S, Fengli Z, Dabing Z. Bioinformatics analysis for Piezo in rice. REPRODUCTION AND BREEDING 2021. [DOI: 10.1016/j.repbre.2021.07.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
23
|
Fang X, Zhang Y, Cheng B, Luan S, He K. Evidence for the involvement of AtPiezo in mechanical responses. PLANT SIGNALING & BEHAVIOR 2021; 16:1889252. [PMID: 33591222 PMCID: PMC8078507 DOI: 10.1080/15592324.2021.1889252] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 02/08/2021] [Accepted: 02/08/2021] [Indexed: 05/12/2023]
Abstract
The plant-environment interactions are finely tuned by plant endogenous signals and environmental cues. Mechanical forces serve as important exogenous stimuli regulating plant growth and development and shaping plant structures. Studies have shown that mechanosensitive ion channels play essential roles in the responses to mechanical signals in plants. The biological functions of animal Piezos, a group of mechanosensitive ion channels, have been extensively studied and revealed to be required for normal physiological processes. However, little is known about the functions of the homologous genes of animal Piezo genes in plants. We have recently pinpointed that AtPiezo plays an important role in the root cap in response to mechanical forces in Arabidopsis thaliana. Here, we further show that AtPiezo responds to mechanical stimuli at the transcriptional level. The results provide additional evidence for the involvement of Piezo in mechanical responses in plants.
Collapse
Affiliation(s)
- Xianming Fang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Yang Zhang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Bo Cheng
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Sheng Luan
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, USA
| | - Kai He
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
| |
Collapse
|