1
|
Han YL, Yin HH, Li C, Du J, He Y, Guan YX. Discovery of New Pentapeptide Inhibitors Against Amyloid-β Aggregation Using Word2Vec and Molecular Simulation. ACS Chem Neurosci 2025; 16:1055-1065. [PMID: 39999409 DOI: 10.1021/acschemneuro.4c00661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2025] Open
Abstract
Alzheimer's disease (AD) is characterized by the aggregation of amyloid-β (Aβ) peptides into toxic oligomers and fibrils. The efficacy of existing peptide inhibitors based on the central hydrophobic core (CHC) sequence of Aβ42 remains limited due to self-aggregation or poor inhibition. This study aimed to identify novel pentapeptide inhibitors with high similarity and low binding energy to the CHC region LVFFA using a new computational screening workflow based on Word2Vec and molecular simulation. The antimicrobial peptides and human brain protein sequences were used for training the Word2Vec model. After tuning the parameters of the Word2Vec model, 1017 pentapeptides with high similarity to LVFFA were identified. Molecular docking was employed to estimate the affinity of the pentapeptides for the target of Aβ14-42 pentamer, and 103 peptides with favorable docking scores were obtained. Finally, five pentapeptides with a low binding energy and high binding stability via molecular dynamics simulation were experimentally validated using thioflavin T assays. Surprisingly, one pentapeptide, i.e., PALIR, exhibited significant inhibition surpassing the positive control LPFFN. This study demonstrates an effective combinatorial strategy to discover new peptide inhibitors. With PALIR representing a promising lead candidate, further optimization of PALIR could aid in the development of improved therapies to prevent amyloid toxicity in AD.
Collapse
Affiliation(s)
- Yin-Lei Han
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
| | - Huan-Huan Yin
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
| | - Chen Li
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
| | - Jiangyue Du
- Department of General Practice, Sir Run Run Shaw Hospital of Zhejiang University, Hangzhou 310020, China
| | - Yi He
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
- Department of Chemical Engineering, University of Washington, Seattle, Washington 98195, United States
| | - Yi-Xin Guan
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
2
|
Shah S, Mansour HM, Lucke-Wold B. Advances in Stem Cell Therapy for Huntington's Disease: A Comprehensive Literature Review. Cells 2025; 14:42. [PMID: 39791743 PMCID: PMC11719515 DOI: 10.3390/cells14010042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 12/09/2024] [Accepted: 12/30/2024] [Indexed: 01/12/2025] Open
Abstract
Huntington's disease (HD) is an inherited neurodegenerative disease characterized by uncontrolled movements, emotional disturbances, and progressive cognitive impairment. It is estimated to affect 4.3 to 10.6 per 100,000 people worldwide, and the mean prevalence rate among all published studies, reviews, and genetic HD registries is 5.7 per 100,000. A key feature of HD is the loss of striatal neurons and cortical atrophy. Although there is no cure at present, the discovery of the gene causing HD has brought us into a new DNA era and therapeutic advances for several neurological disorders. PubMed was systematically searched using three search strings: '"Huntington disease" + "stem cell"', '"Huntington disease" + Mesenchymal stromal cell', and '"Huntington disease" + "induced pluripotent stem cell"'. For each string, the search results were categorized based on cell type, and papers that included a clinical analysis were categorized as well. The data were extracted up to 2024. We did not include other databases in our search to have a comparable and systematic review of the literature on the topic. The collected data were analyzed and used for critical interpretation in the present review. Data are presented chronologically as clinical studies were published. Therapeutic strategies based on stem cells have drawn a lot of interest as possible HD therapies. Recent research indicates that NSCs have been the most often utilized stem cell type for treating HD. NSCs have been generated and extracted from a variety of sources, including HD patients' somatic cells and the brain itself. There is strong evidence supporting the transplantation of stem cells or their derivatives in HD animal models, even if stem-cell-based preclinical and clinical trials are still in their early stages. Current treatment only aims at relieving the symptoms rather than treating the pathogenesis of the disease. Although preclinical trials in HD models have shown promise in improving cognitive and motor functions, stem cell therapy still faces many challenges and disadvantages including immunosuppression and immunorejection as well as ethical, technical, and safety concerns. Further research is required for a definitive conclusion.
Collapse
Affiliation(s)
- Siddharth Shah
- Department of Neurosurgery, University of Florida, Gainesville, FL 32608, USA (B.L.-W.)
| | | | | |
Collapse
|
3
|
Soni AG, Verma A, Joshi R, Shah K, Soni D, Kaur CD, Saraf S, Chauhan NS. Phytoactive drugs used in the treatment of Alzheimer's disease and dementia. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:8633-8649. [PMID: 38940847 DOI: 10.1007/s00210-024-03243-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 06/14/2024] [Indexed: 06/29/2024]
Abstract
The prevalence of Alzheimer's disease and other forms of dementia is increasing worldwide, and finding effective treatments for these conditions is a major public health challenge. Natural bioactive drugs have been identified as a promising source of potential treatments, due to their ability to target multiple pathways and their low toxicity. This paper reviews the current state of research on natural bioactive drugs used in the treatment of Alzheimer's disease and other dementias. The paper summarizes the findings of studies on various natural compounds, including curcumin, resveratrol, caffeine, genistein, quercetin, GinkoBiloba, Withaniasomnifera, Ginseng Brahmi, Giloy, and huperzine, and their effects on cognitive function, neuroinflammation, and amyloid-beta accumulation. In this review, we discuss the mechanism of action involved in the treatment of Alzheimer's disease. The paper also discusses the challenges associated with developing natural bioactive drugs for dementia treatment, including issues related to bioavailability and standardization. Finally, the paper suggests directions for future research in this area, including the need for more rigorous clinical trials and the development of novel delivery systems to improve the efficacy of natural bioactive drugs. Overall, this review highlights the potential of natural bioactive drugs as a promising avenue for the development of safe and effective treatments for Alzheimer's disease and other dementias.
Collapse
Affiliation(s)
- Anshita Gupta Soni
- Rungta College of Pharmaceutical Sciences and Research, Raipur, Chhattisgarh, India
| | - Astha Verma
- ShriRawatpuraSarkar Institute of Pharmacy, Durg, Chhattisgarh, India
| | - Renjil Joshi
- Rungta College of Pharmaceutical Sciences and Research, Bhilai, Chhattisgarh, India
| | - Kamal Shah
- Institute of Pharmaceutical Research, GLA University, Mathura, 281406, (U.P.), India
| | - Deependra Soni
- Faculty of Pharmacy, MATS University Campus, Aarang, Raipur, Chhattisgarh, India
| | - Chanchal Deep Kaur
- Rungta College of Pharmaceutical Sciences and Research, Raipur, Chhattisgarh, India
| | - Swarnlata Saraf
- University Institute of Pharmacy, Pt. Ravishankar Shukla University, Raipur, Chhattisgarh, India
| | | |
Collapse
|
4
|
Manju, Bharadvaja N. Exploring the Potential Therapeutic Approach Using Ginsenosides for the Management of Neurodegenerative Disorders. Mol Biotechnol 2024; 66:1520-1536. [PMID: 37330923 DOI: 10.1007/s12033-023-00783-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 05/31/2023] [Indexed: 06/20/2023]
Abstract
There is a need for an efficient and long-lasting treatment due to the population's increasing prevalence of neurodegenerative disorders. In an effort to generate fresh ideas and create novel therapeutic medications, scientists have recently started to investigate the biological functions of compounds derived from plants and herbs. Ginseng, famous Chinese herbal medicine, has therapeutic value by virtue of its compounds ginsenosides or panaxosides, which are triterpene saponins and steroid glycosides. Research revealed positive impacts on ameliorating various disease conditions and found it as a possible drug candidate. Several neuroprotection mechanisms followed by this compound are inhibition of cell apoptosis, oxidative stress, inflammatory, and tumor activity. It has been demonstrated that controlling these mechanisms enhances cognitive performance and safeguards the brain against neurodegenerative disorders. The main objective of this review is to give a description of the most recent studies on ginsenoside's possible therapeutic application in the treatment of neurodegenerative diseases. Using organic compounds like ginseng and its various components may create new avenues for innovative treatment approaches development for neurological diseases. However, further research is necessary to confirm the stability and effectiveness of ginsenosides for neurodegenerative disease.
Collapse
Affiliation(s)
- Manju
- Department of Biotechnology, Delhi Technological University, Main Bawana Road, Delhi, 110042, India
| | - Navneeta Bharadvaja
- Department of Biotechnology, Delhi Technological University, Main Bawana Road, Delhi, 110042, India.
| |
Collapse
|
5
|
Bhounsule A, Bhatt LK. Protective effect of resveratrol and tannic acid combination on aluminium chloride induced neurotoxicity in rats. Nutr Neurosci 2024; 27:438-450. [PMID: 37144738 DOI: 10.1080/1028415x.2023.2208908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
OBJECTIVE Alzheimer's disease is a progressive neurodegenerative disease and one of the most common causes of dementia. Despite recent advancements, there exists an unmet need for a suitable therapeutic option. This study aimed to evaluate the protective effects of the combination of resveratrol (20 mg/kg/day p.o.) and tannic acid (50 mg/kg/day p.o.) to reduce aluminium trichloride-induced Alzheimer's disease in rats. METHODS Wistar rats weighing 150-200g were administered with aluminium chloride (100 mg/kg/day p.o.) for 90 days to induce neurodegeneration and Alzheimer's disease. Neurobehavioral changes were assessed using novel object recognition test, elevated plus maze test, and Morris water maze test. Histopathological studies were performed using H&E stain and Congo Red stains to check amyloid deposits. Further oxidative stress was measured in brain tissue. RESULTS Aluminium trichloride treated negative control group showed cognitive impairment in the Morris water maze test, novel object recognition test, and elevated plus maze test. Further, the negative control group showed significant oxidative stress, increase amyloid deposits, and severe histological changes. Treatment with the combination of resveratrol and tannic acid showed significant attenuation in cognitive impairment. The oxidative stress markers and amyloid plaque levels were significantly attenuated with the treatment. CONCLUSION The present study indicates the beneficial effects of resveratrol-tannic acid combination in AlCl3 induced neurotoxicity in rats.
Collapse
Affiliation(s)
- Anisha Bhounsule
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, India
| | - Lokesh Kumar Bhatt
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, India
| |
Collapse
|
6
|
Gomez-Sequeda N, Jimenez-Del-Rio M, Velez-Pardo C. Combination of Tramiprosate, Curcumin, and SP600125 Reduces the Neuropathological Phenotype in Familial Alzheimer Disease PSEN1 I416T Cholinergic-like Neurons. Int J Mol Sci 2024; 25:4925. [PMID: 38732141 PMCID: PMC11084854 DOI: 10.3390/ijms25094925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 04/23/2024] [Accepted: 04/25/2024] [Indexed: 05/13/2024] Open
Abstract
Familial Alzheimer's disease (FAD) is a complex and multifactorial neurodegenerative disorder for which no curative therapies are yet available. Indeed, no single medication or intervention has proven fully effective thus far. Therefore, the combination of multitarget agents has been appealing as a potential therapeutic approach against FAD. Here, we investigated the potential of combining tramiprosate (TM), curcumin (CU), and the JNK inhibitor SP600125 (SP) as a treatment for FAD. The study analyzed the individual and combined effects of these two natural agents and this pharmacological inhibitor on the accumulation of intracellular amyloid beta iAβ; hyperphosphorylated protein TAU at Ser202/Thr205; mitochondrial membrane potential (ΔΨm); generation of reactive oxygen species (ROS); oxidized protein DJ-1; proapoptosis proteins p-c-JUN at Ser63/Ser73, TP53, and cleaved caspase 3 (CC3); and deficiency in acetylcholine (ACh)-induced transient Ca2+ influx response in cholinergic-like neurons (ChLNs) bearing the mutation I416T in presenilin 1 (PSEN1 I416T). We found that single doses of TM (50 μM), CU (10 μM), or SP (1 μM) were efficient at reducing some, but not all, pathological markers in PSEN 1 I416T ChLNs, whereas a combination of TM, CU, and SP at a high (50, 10, 1 μM) concentration was efficient in diminishing the iAβ, p-TAU Ser202/Thr205, DJ-1Cys106-SO3, and CC3 markers by -50%, -75%, -86%, and -100%, respectively, in PSEN1 I417T ChLNs. Although combinations at middle (10, 2, 0.2) and low (5, 1, 0.1) concentrations significantly diminished p-TAU Ser202/Thr205, DJ-1Cys106-SO3, and CC3 by -69% and -38%, -100% and -62%, -100% and -62%, respectively, these combinations did not alter the iAβ compared to untreated mutant ChLNs. Moreover, a combination of reagents at H concentration was able to restore the dysfunctional ACh-induced Ca2+ influx response in PSEN 1 I416T. Our data suggest that the use of multitarget agents in combination with anti-amyloid (TM, CU), antioxidant (e.g., CU), and antiapoptotic (TM, CU, SP) actions might be beneficial for reducing iAβ-induced ChLN damage in FAD.
Collapse
Affiliation(s)
| | | | - Carlos Velez-Pardo
- Neuroscience Research Group, Faculty of Medicine, Institute of Medical Research, University of Antioquia, University Research Headquarters, Calle 62#52-59, Building 1, Laboratory 411/412, Medellin 050010, Colombia; (N.G.-S.); (M.J.-D.-R.)
| |
Collapse
|
7
|
Tavili E, Aziziyan F, Khajeh K. Inhibitors of amyloid fibril formation. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2024; 206:291-340. [PMID: 38811084 DOI: 10.1016/bs.pmbts.2024.03.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
Many diseases are caused by misfolded and denatured proteins, leading to neurodegenerative diseases. In recent decades researchers have developed a variety of compounds, including polymeric inhibitors and natural compounds, antibodies, and chaperones, to inhibit protein aggregation, decrease the toxic effects of amyloid fibrils, and facilitate refolding proteins. The causes and mechanisms of amyloid formation are still unclear, and there are no effective treatments for Amyloid diseases. This section describes research and achievements in the field of inhibiting amyloid accumulation and also discusses the importance of various strategies in facilitating the removal of aggregates species (refolding) in the treatment of neurological diseases such as chemical methods like as, small molecules, metal chelators, polymeric inhibitors, and nanomaterials, as well as the use of biomolecules (peptide and, protein, nucleic acid, and saccharide) as amyloid inhibitors, are also highlighted.
Collapse
Affiliation(s)
- Elaheh Tavili
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Fatemeh Aziziyan
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Khosro Khajeh
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
8
|
Huang M, Sui R, Zhang L, Zhu Y, Yuan X, Jiang H, Mao X. Rosavin thwarts amyloid-β-induced macromolecular damages and neurotoxicity, exhibiting anti-Alzheimer's disease activity in Wister rat model. Inflammopharmacology 2024; 32:1461-1474. [PMID: 37758932 DOI: 10.1007/s10787-023-01320-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 08/04/2023] [Indexed: 09/29/2023]
Abstract
Lately, interest surrounding the utilization of plant-derived compounds as a viable beneficial approach for treating Alzheimer's disease (AD) has significantly increased. This study aimed to assess the defensive properties of rosavin against Alzheimer's disease induced by amyloid-β, utilizing experimental models. We found that rosavin exhibited anti-aggregation and disaggregation properties, suggesting its potential to prevent the gathering of Aβ-aggregates. In vitro experiments revealed that rosavin effectively mitigated the neurotoxicity induced by Aβ in Neuro-2a cells, showcasing its protective potential. Rosavin significantly improved the Aβ-induced cognitive deficits in Wistar rats, particularly in spatial memory. Which the pathophysiology of AD includes oxidative damage, which negatively impacts biological macromolecules. Triggers the apoptotic process, causing macromolecular destruction. Interestingly, rosavin attenuated Aβ-induced macromolecular damages, thereby preserving neuronal integrity. Furthermore, the activation of antioxidative defense enzymes by rosavin inhibited oxidative damage. The positive outcomes associated with rosavin were primarily attributed to its capacity to enhance acetylcholine-mediated effects. Finally, rosavin has the potential to alleviate Aβ-induced neurotoxicity and macromolecular damages, ultimately resulting in enhanced memorial and reasoning function in Wistar rats, offering promising prospects for the treatment of AD.
Collapse
Affiliation(s)
- Meiyi Huang
- Department of Neurology, The First Affiliated Hospital of Jinzhou Medical University, No 2, Section 5, Renmin Street, Jinzhou, 121099, China
| | - Rubo Sui
- Department of Neurology, The First Affiliated Hospital of Jinzhou Medical University, No 2, Section 5, Renmin Street, Jinzhou, 121099, China.
| | - Lei Zhang
- School of Nursing, Jinzhou Medical University, Jinzhou, 121099, China
| | - Yue Zhu
- Department of Neurology, The First Affiliated Hospital of Jinzhou Medical University, No 2, Section 5, Renmin Street, Jinzhou, 121099, China
| | - Xueling Yuan
- Department of Neurology, The First Affiliated Hospital of Jinzhou Medical University, No 2, Section 5, Renmin Street, Jinzhou, 121099, China
| | - Hongxin Jiang
- Department of Radiology, Gucheng County Hospital, Gucheng, 253809, China
| | - Xin Mao
- Department of Neurology, The First Affiliated Hospital of Jinzhou Medical University, No 2, Section 5, Renmin Street, Jinzhou, 121099, China.
| |
Collapse
|
9
|
Han YL, Yin HH, Xiao C, Bernards MT, He Y, Guan YX. Understanding the Molecular Mechanisms of Polyphenol Inhibition of Amyloid β Aggregation. ACS Chem Neurosci 2023; 14:4051-4061. [PMID: 37890131 DOI: 10.1021/acschemneuro.3c00586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2023] Open
Abstract
Alzheimer's disease (AD) is highly associated with self-aggregation of amyloid β (Aβ) proteins into fibrils. Inhibition of Aβ aggregation by polyphenols is one of the major therapeutic strategies for AD. Among them, four polyphenols (brazilin, resveratrol, hematoxylin, and rosmarinic acid) have been reported to be effective at inhibiting Aβ aggregation, but the inhibition mechanisms are still unclear. In this work, these four polyphenols were selected to explore their interactions with the Aβ17-42 pentamer by molecular dynamics simulation. All four polyphenols can bind to the pentamer tightly but prefer different binding sites. Conversion of the β-sheet to the random coil, fewer interchain hydrogen bonds, and weaker salt bridges were observed after binding. Interestingly, different Aβ17-42 pentamer destabilizing mechanisms for resveratrol and hematoxylin were found. Resveratrol inserts into the hydrophobic core of the pentamer by forming hydrogen bonds with Asp23 and Lys28, while hematoxylin prefers to bind beside chain A of the pentamer, which leads to β-sheet offset and dissociation of the β1 sheet of chain E. This work reveals the interactions between the Aβ17-42 pentamer and four polyphenols and discusses the relationship between inhibitor structures and their inhibition mechanisms, which also provides useful guidance for screening effective Aβ aggregation inhibitors and drug design against AD.
Collapse
Affiliation(s)
- Yin-Lei Han
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
| | - Huan-Huan Yin
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
| | - Chao Xiao
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
| | - Matthew T Bernards
- Department of Chemical and Biological Engineering, University of Idaho, Moscow 83844, Idaho, United States
| | - Yi He
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
- Department of Chemical Engineering, University of Washington, Seattle 98195, Washington, United States
| | - Yi-Xin Guan
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
10
|
Jeong JH, Hong GL, Jeong YG, Lee NS, Kim DK, Park JY, Park M, Kim HM, Kim YE, Yoo YC, Han SY. Mixed Medicinal Mushroom Mycelia Attenuates Alzheimer's Disease Pathologies In Vitro and In Vivo. Curr Issues Mol Biol 2023; 45:6775-6789. [PMID: 37623247 PMCID: PMC10453438 DOI: 10.3390/cimb45080428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/10/2023] [Accepted: 08/13/2023] [Indexed: 08/26/2023] Open
Abstract
Alzheimer's disease (AD) is characterized by memory impairment and existence of amyloid-β (Aβ) plaques and neuroinflammation. Due to the pivotal role of oxidative damage in AD, natural antioxidative agents, such as polyphenol-rich fungi, have garnered scientific scrutiny. Here, the aqueous extract of mixed medicinal mushroom mycelia (MMMM)-Phellinus linteus, Ganoderma lucidum, and Inonotus obliquus-cultivated on a barley medium was assessed for its anti-AD effects. Neuron-like PC12 cells, which were subjected to Zn2+, an Aβ aggregator, were employed as an in vitro AD model. The cells pretreated with or without MMMM were assayed for Aβ immunofluorescence, cell viability, reactive oxygen species (ROS), apoptosis, and antioxidant enzyme activity. Then, 5XFAD mice were administered with 30 mg/kg/day MMMM for 8 weeks and underwent memory function tests and histologic analyses. In vitro results demonstrated that the cells pretreated with MMMM exhibited attenuation in Aβ immunofluorescence, ROS accumulation, and apoptosis, and incrementation in cell viability and antioxidant enzyme activity. In vivo results revealed that 5XFAD mice administered with MMMM showed attenuation in memory impairment and histologic deterioration such as Aβ plaque accumulation and neuroinflammation. MMMM might mitigate AD-associated memory impairment and cerebral pathologies, including Aβ plaque accumulation and neuroinflammation, by impeding Aβ-induced neurotoxicity.
Collapse
Affiliation(s)
- Ji Heun Jeong
- Armed Forces Medical Research Institute (AFMRI), Daejeon 34059, Republic of Korea;
| | - Geum-Lan Hong
- Department of Anatomy, College of Medicine, Konyang University, Daejeon 35365, Republic of Korea; (G.-L.H.); (Y.G.J.); (N.S.L.); (D.K.K.)
| | - Young Gil Jeong
- Department of Anatomy, College of Medicine, Konyang University, Daejeon 35365, Republic of Korea; (G.-L.H.); (Y.G.J.); (N.S.L.); (D.K.K.)
| | - Nam Seob Lee
- Department of Anatomy, College of Medicine, Konyang University, Daejeon 35365, Republic of Korea; (G.-L.H.); (Y.G.J.); (N.S.L.); (D.K.K.)
| | - Do Kyung Kim
- Department of Anatomy, College of Medicine, Konyang University, Daejeon 35365, Republic of Korea; (G.-L.H.); (Y.G.J.); (N.S.L.); (D.K.K.)
| | - Jong Yea Park
- Giunchan Co., Ltd., Cheonan 31035, Republic of Korea; (J.Y.P.); (M.P.); (H.M.K.); (Y.E.K.)
| | - Mina Park
- Giunchan Co., Ltd., Cheonan 31035, Republic of Korea; (J.Y.P.); (M.P.); (H.M.K.); (Y.E.K.)
| | - Hyun Min Kim
- Giunchan Co., Ltd., Cheonan 31035, Republic of Korea; (J.Y.P.); (M.P.); (H.M.K.); (Y.E.K.)
| | - Ya El Kim
- Giunchan Co., Ltd., Cheonan 31035, Republic of Korea; (J.Y.P.); (M.P.); (H.M.K.); (Y.E.K.)
| | - Yung Choon Yoo
- Department of Microbiology, College of Medicine, Konyang University, Daejeon 35365, Republic of Korea;
| | - Seung Yun Han
- Department of Anatomy, College of Medicine, Konyang University, Daejeon 35365, Republic of Korea; (G.-L.H.); (Y.G.J.); (N.S.L.); (D.K.K.)
| |
Collapse
|
11
|
Xiang L, Wang Y, Liu S, Liu B, Jin X, Cao X. Targeting Protein Aggregates with Natural Products: An Optional Strategy for Neurodegenerative Diseases. Int J Mol Sci 2023; 24:11275. [PMID: 37511037 PMCID: PMC10379780 DOI: 10.3390/ijms241411275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/06/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023] Open
Abstract
Protein aggregation is one of the hallmarks of aging and aging-related diseases, especially for the neurodegenerative diseases (NDs) such as Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), Amyotrophic lateral sclerosis (ALS), and others. In these diseases, many pathogenic proteins, such as amyloid-β, tau, α-Syn, Htt, and FUS, form aggregates that disrupt the normal physiological function of cells and lead to associated neuronal lesions. Protein aggregates in NDs are widely recognized as one of the important targets for the treatment of these diseases. Natural products, with their diverse biological activities and rich medical history, represent a great treasure trove for the development of therapeutic strategies to combat disease. A number of in vitro and in vivo studies have shown that natural products, by virtue of their complex molecular scaffolds that specifically bind to pathogenic proteins and their aggregates, can inhibit the formation of aggregates, disrupt the structure of aggregates and destabilize them, thereby alleviating conditions associated with NDs. Here, we systematically reviewed studies using natural products to improve disease-related symptoms by reducing or inhibiting the formation of five pathogenic protein aggregates associated with NDs. This information should provide valuable insights into new directions and ideas for the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Lingzhi Xiang
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou 311300, China
| | - Yanan Wang
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou 311300, China
| | - Shenkui Liu
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou 311300, China
| | - Beidong Liu
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou 311300, China
- Department of Chemistry and Molecular Biology, University of Gothenburg, 41390 Gothenburg, Sweden
| | - Xuejiao Jin
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou 311300, China
| | - Xiuling Cao
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou 311300, China
| |
Collapse
|
12
|
Hosen ME, Rahman MS, Faruqe MO, Khalekuzzaman M, Islam MA, Acharjee UK, Zaman R. Molecular docking and dynamics simulation approach of Camellia sinensis leaf extract derived compounds as potential cholinesterase inhibitors. In Silico Pharmacol 2023; 11:14. [PMID: 37255739 PMCID: PMC10225450 DOI: 10.1007/s40203-023-00151-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 05/13/2023] [Indexed: 06/01/2023] Open
Abstract
The tea plant (Camellia sinensis) belongs to the family Theaceae and contains many phytochemicals that are effective against various diseases, including neurodegenerative disorders. In this study, we aimed to characterize the phytochemicals present in the methanolic and n-hexane leaf extracts of C. sinensis using GC-MS, FTIR, and UV-visible analysis. We detected a total of 19 compounds of different chemical classes. We also performed molecular docking studies using the GC-MS detected phytochemicals, targeting acetylcholinesterase (AChE, PBD ID: 4BDT) and butyrylcholinesterase (BChE, PDB ID: 6QAB), which are responsible for the breakdown of the neurotransmitter acetylcholine (ACh). This breakdown leads to dementia and cognitive decline in Alzheimer's patients. The compounds Ergosta-7,22-dien-3-ol, (3.beta.,5.alpha.,22E)- and Benzene, 1,3-bis(1,1-dimethylethyl) showed better binding affinity against AChE, while dl-.alpha.-Tocopherol and Ergosta-7,22-dien-3-ol, (3.beta.,5.alpha.,22E)- showed better binding affinity against BChE. We determined the stability and rigidity of these best docked complexes through molecular dynamics simulation for a period of 100 ns. All complexes showed stability in terms of SASA, Rg, and hydrogen bonds, but some variations were found in the RMSD values. Our ADMET analysis revealed that all lead compounds are non-toxic. Therefore, these compounds could be potential inhibitors of AChE and BChE. Graphical abstract
Collapse
Affiliation(s)
- Md. Eram Hosen
- Professor Joarder DNA and Chromosome Research Laboratory, Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi, 6205 Bangladesh
| | - Md. Sojiur Rahman
- Professor Joarder DNA and Chromosome Research Laboratory, Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi, 6205 Bangladesh
| | - Md Omar Faruqe
- Department of Computer Science and Engineering, University of Rajshahi, Rajshahi, 6205 Bangladesh
| | - Md. Khalekuzzaman
- Professor Joarder DNA and Chromosome Research Laboratory, Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi, 6205 Bangladesh
| | - Md. Asadul Islam
- Professor Joarder DNA and Chromosome Research Laboratory, Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi, 6205 Bangladesh
| | - Uzzal Kumar Acharjee
- Professor Joarder DNA and Chromosome Research Laboratory, Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi, 6205 Bangladesh
| | - Rashed Zaman
- Professor Joarder DNA and Chromosome Research Laboratory, Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi, 6205 Bangladesh
| |
Collapse
|
13
|
Lai MC, Liu WY, Liou SS, Liu IM. Hispidin in the Medicinal Fungus Protects Dopaminergic Neurons from JNK Activation-Regulated Mitochondrial-Dependent Apoptosis in an MPP +-Induced In Vitro Model of Parkinson's Disease. Nutrients 2023; 15:nu15030549. [PMID: 36771255 PMCID: PMC9920671 DOI: 10.3390/nu15030549] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 01/24/2023] Open
Abstract
Degenerative diseases of the brain include Parkinson's disease (PD), which is associated with moveable signs and is still incurable. Hispidin belongs to polyphenol and originates primarily from the medicinal fungi Inonotus and Phellinus, with distinct biological effects. In the study, MES23.5 cells were induced by 1-methyl-4-phenylpyridinium (MPP+) to build a cell model of PD in order to detect the protective effect of hispdin and to specify the underlying mechanism. Pretreatment of MES23.5 cells with 1 h of hispdin at appropriate concentrations, followed by incubation of 24 h with 2 μmol/L MPP+ to induce cell damage. MPP+ resulted in reactive oxygen species production that diminished cell viability and dopamine content. Mitochondrial dysfunction in MS23.5 cells exposed to MPP+ was observed, indicated by inhibition of activity in the mitochondrial respiratory chain complex I, the collapse of potential in mitochondrial transmembrane, and the liberation of mitochondrial cytochrome c. Enabling C-Jun N-terminal kinase (JNK), reducing Bcl-2/Bax, and enhancing caspase-9/caspase-3/PARP cleavage were also seen by MPP+ induction associated with increased DNA fragmentation. All of the events mentioned above associated with MPP+-mediated mitochondrial-dependent caspases cascades were attenuated under cells pretreatment with hispidin (20 µmol/L); similar results were obtained during cell pretreatment with pan-JNK inhibitor JNK-IN-8 (1 µmol/L) or JNK3 inhibitor SR3576 (25 µmol/L). The findings show that hispidin has neuroprotection against MPP+-induced mitochondrial dysfunction and cellular apoptosis and suggest that hispidin can be seen as an assist in preventing PD.
Collapse
Affiliation(s)
- Mei-Chou Lai
- Department of Pharmacy and Master Program, Collage of Pharmacy and Health Care, Tajen University, Pingtung County 90741, Taiwan
| | - Wayne-Young Liu
- Department of Urology, Jen-Ai Hospital, Taichung 41265, Taiwan
- Center for Basic Medical Science, Collage of Health Science, Central Taiwan University of Science and Technology, Taichung City 406053, Taiwan
| | - Shorong-Shii Liou
- Department of Pharmacy and Master Program, Collage of Pharmacy and Health Care, Tajen University, Pingtung County 90741, Taiwan
| | - I-Min Liu
- Department of Pharmacy and Master Program, Collage of Pharmacy and Health Care, Tajen University, Pingtung County 90741, Taiwan
- Correspondence: ; Tel.: +886-8-7624002
| |
Collapse
|
14
|
Koly HK, Sutradhar K, Rahman MS. Acetylcholinesterase inhibition of Alzheimer's disease: identification of potential phytochemicals and designing more effective derivatives to manage disease condition. J Biomol Struct Dyn 2023; 41:12532-12544. [PMID: 36651199 DOI: 10.1080/07391102.2023.2166992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 01/05/2023] [Indexed: 01/19/2023]
Abstract
Alzheimer's disease (AD) is a brain disease characterized by gradual memory loss and cognitive impairments. Acetylcholinesterase (AChE) inhibitors-such as donepezil, memantine, and tacrine-are FDA-approved medications for AD treatment. Due to the lack of their efficacy and higher side effects, many researchers have been searching for effective and safer alternatives. In this study, experimentally proved phytochemicals against brain diseases were screened based on their binding energies to the target site of AChE, pharmacokinetic properties, and drug-likeness. Although some phytochemicals showed higher binding affinities than the control drug (donepezil), they did not show permeability across the blood-brain barrier (BBB). However, berberine, anthocyanin, and diterpene alkaloid can cross the BBB and showed good binding affinities of -10.3, -10.1, and -10.2 kcal/mol, respectively. MD simulation and PCA of the simulation data of the protein and protein-ligand complexes proved that the complexes are stable in the biological environment. A total of 16 derivatives of berberine and 3 derivatives of anthocyanin also showed higher binding energies compared to the binding affinity (-11.5 kcal/mol) of the donepezil. The derivatives were designed by substituting -F, -CF3, -CN, and -NH2, and provided higher docking scores due to increasing of nonbonding interactions. MM/GBSA calculations show that the binding free energies of the best predicted derivatives of diterpene alkaloid, anthocyanin, and berberine (DA22, AC11, and BB40) are -100.4 ± 8.4, -79.3 ± 8.7, and -78.3 ± 10.7 kcal/mol, respectively, with the protein. Overall, this study was successful in finding new, highly effective, and possibly safer inhibitors of AChE.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Hazera Khatun Koly
- Department of Chemistry and Biochemistry, South Dakota State University, Brookings, SD, USA
| | - Kakan Sutradhar
- Department of Chemistry and Biochemistry, South Dakota State University, Brookings, SD, USA
| | - Md Sajjadur Rahman
- Department of Chemistry and Biochemistry, South Dakota State University, Brookings, SD, USA
| |
Collapse
|
15
|
Kang D, Baek Y, Lee JS. Mechanisms of RNA and Protein Quality Control and Their Roles in Cellular Senescence and Age-Related Diseases. Cells 2022; 11:cells11244062. [PMID: 36552825 PMCID: PMC9777292 DOI: 10.3390/cells11244062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/04/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Cellular senescence, a hallmark of aging, is defined as irreversible cell cycle arrest in response to various stimuli. It plays both beneficial and detrimental roles in cellular homeostasis and diseases. Quality control (QC) is important for the proper maintenance of cellular homeostasis. The QC machineries regulate the integrity of RNA and protein by repairing or degrading them, and are dysregulated during cellular senescence. QC dysfunction also contributes to multiple age-related diseases, including cancers and neurodegenerative, muscle, and cardiovascular diseases. In this review, we describe the characters of cellular senescence, discuss the major mechanisms of RNA and protein QC in cellular senescence and aging, and comprehensively describe the involvement of these QC machineries in age-related diseases. There are many open questions regarding RNA and protein QC in cellular senescence and aging. We believe that a better understanding of these topics could propel the development of new strategies for addressing age-related diseases.
Collapse
Affiliation(s)
- Donghee Kang
- Research Center for Controlling Intercellular Communication (RCIC), College of Medicine, Inha University, Incheon 22212, Republic of Korea
- Department of Molecular Medicine, College of Medicine, Inha University, Incheon 22212, Republic of Korea
| | - Yurim Baek
- Research Center for Controlling Intercellular Communication (RCIC), College of Medicine, Inha University, Incheon 22212, Republic of Korea
- Department of Molecular Medicine, College of Medicine, Inha University, Incheon 22212, Republic of Korea
- Program in Biomedical Science & Engineering, Inha University, Incheon 22212, Republic of Korea
| | - Jae-Seon Lee
- Research Center for Controlling Intercellular Communication (RCIC), College of Medicine, Inha University, Incheon 22212, Republic of Korea
- Department of Molecular Medicine, College of Medicine, Inha University, Incheon 22212, Republic of Korea
- Program in Biomedical Science & Engineering, Inha University, Incheon 22212, Republic of Korea
- Correspondence: ; Tel.: +82-32-860-9832; Fax: +82-32-885-8302
| |
Collapse
|
16
|
Ghasemi-Tarie R, Kiasalari Z, Fakour M, Khorasani M, Keshtkar S, Baluchnejadmojarad T, Roghani M. Nobiletin prevents amyloid β 1-40-induced cognitive impairment via inhibition of neuroinflammation and oxidative/nitrosative stress. Metab Brain Dis 2022; 37:1337-1349. [PMID: 35294678 DOI: 10.1007/s11011-022-00949-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Accepted: 03/01/2022] [Indexed: 01/17/2023]
Abstract
Alzheimer's disease (AD) is presented as an age-related neurodegenerative disease with multiple cognitive deficits and amyloid β (Aβ) accumulation is the most important involved factor in its development. Nobiletin is a bioflavonoid isolated from citrus fruits peels with anti-inflammatory and anti-oxidative activity as well as anti-dementia property that has shown potency to ameliorate intracellular and extracellular Ab. The aim of the present study was to assess protective effect of nobiletin against Aβ1-40-induced cognitive impairment as a consistent model of AD. After bilateral intrahippocampal (CA1 subfield) injection of Aβ1-40, rats were treated with nobiletin (10 mg/kg/day; p.o.) from stereotaxic surgery day (day 0) till day + 7. Cognition function was evaluated in a battery of behavioral tasks at week 3 with final assessment of hippocampal oxidative stress and inflammation besides Nissl staining and 3-nitrotyrosine (3-NT) immunohistochemistry. Analysis of behavioral data showed notable and significant improvement of alternation in Y maze test, discrimination ratio in novel object recognition task, and step through latency in passive avoidance test in nobiletin-treated Aβ group. Additionally, nobiletin treatment was associated with lower hippocampal levels of MDA and ROS and partial reversal of SOD activity and also improvement of Nrf2 with no significant effect on GSH and catalase. Furthermore, nobiletin attenuated hippocampal neuroinflammation in Aβ group as shown by lower tissue levels of TLR4, NF-kB, and TNFa. Histochemical findings showed that nobiletin prevents CA1 neuronal loss in Nissl staining in addition to its alleviation of 3-nitrotyrosine (3-NT) immunoreactivity as a marker of nitrosative stress. Collectively, these findings indicated neuroprotective and anti-dementia potential of nobiletin that is partly attributed to its anti-oxidative, anti-nitrosative, and anti-inflammatory property associated with proper modulation of TLR4/NF-kB/Nrf2 pathways.
Collapse
Affiliation(s)
| | - Zahra Kiasalari
- Neurophysiology Research Center, Department of Physiology, Shahed University, Tehran, Iran
| | - Marzieh Fakour
- Department of Physiology, School of Medicine, Shahed University, Tehran, Iran.
| | - Maryam Khorasani
- Department of Physiology, School of Medicine, Shahed University, Tehran, Iran
| | - Sedigheh Keshtkar
- Department of Physiology, School of Medicine, Shahed University, Tehran, Iran
| | | | - Mehrdad Roghani
- Neurophysiology Research Center, Department of Physiology, Shahed University, Tehran, Iran.
| |
Collapse
|
17
|
Takahashi D, Matsunaga E, Yamashita T, Caaveiro JM, Abe Y, Ueda T. Compound screening identified gossypetin and isoquercitrin as novel inhibitors for amyloid fibril formations of Vλ6 proteins associated with AL amyloidosis. Biochem Biophys Res Commun 2022; 596:22-28. [DOI: 10.1016/j.bbrc.2022.01.066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 01/18/2022] [Indexed: 11/02/2022]
|
18
|
Soto-Mercado V, Mendivil-Perez M, Velez-Pardo C, Jimenez-Del-Rio M. (-)-Epigallocatechin-3-Gallate Diminishes Intra-and Extracellular Amyloid-Induced Cytotoxic Effects on Cholinergic-like Neurons from Familial Alzheimer's Disease PSEN1 E280A. Biomolecules 2021; 11:biom11121845. [PMID: 34944489 PMCID: PMC8699501 DOI: 10.3390/biom11121845] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 11/26/2021] [Accepted: 11/26/2021] [Indexed: 12/26/2022] Open
Abstract
Alzheimer’s disease (AD) is a complex neurodegenerative disease characterized by functional disruption, death of cholinergic neurons (ChNs) because of intracellular and extracellular Aβ aggregates, and hyperphosphorylation of protein TAU (p-TAU). To date, there are no efficient therapies against AD. Therefore, new therapies for its treatment are in need. The goal of this investigation was to evaluate the effect of the polyphenol epigallocatechin-3-gallate (EGCG) on cholinergic-like neurons (ChLNs) bearing the mutation E280A in PRESENILIN 1 (PSEN1 E280A). To this aim, wild-type (WT) and PSEN1 E280A ChLNs were exposed to EGCG (5–50 μM) for 4 days. Untreated or treated neurons were assessed for biochemical and functional analysis. We found that EGCG (50 μM) significantly inhibited the aggregation of (i)sAPPβf, blocked p-TAU, increased ∆Ψm, decreased oxidation of DJ-1 at residue Cys106-SH, and inhibited the activation of transcription factor c-JUN and P53, PUMA, and CASPASE-3 in mutant ChLNs compared to WT. Although EGCG did not reduce (e)Aβ42, the polyphenol reversed Ca2+ influx dysregulation as a response to acetylcholine (ACh) stimuli in PSEN1 E280A ChLNs, inhibited the activation of transcription factor NF-κB, and reduced the secretion of pro-inflammatory IL-6 in wild-type astrocyte-like cells (ALCs) when exposed to mutant ChLNs culture supernatant. Taken together, our findings suggest that the EGCG might be a promising therapeutic approach for the treatment of FAD.
Collapse
|
19
|
Ding J, Huang J, Yin D, Liu T, Ren Z, Hu S, Ye Y, Le C, Zhao N, Zhou H, Li Z, Qi X, Huang J. Trilobatin Alleviates Cognitive Deficits and Pathologies in an Alzheimer's Disease Mouse Model. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:3298400. [PMID: 34777683 PMCID: PMC8589506 DOI: 10.1155/2021/3298400] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 10/26/2021] [Indexed: 12/13/2022]
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disease nowadays that causes memory impairments. It is characterized by extracellular aggregates of amyloid-beta (Aβ), intracellular aggregates of hyperphosphorylated Tau (p-Tau), and other pathological features. Trilobatin (TLB), a natural flavonoid compound isolated from Lithocarpuspolystachyus Rehd., has emerged as a neuroprotective agent. However, the effects and mechanisms of TLB on Alzheimer's disease (AD) remain unclear. In this research, different doses of TLB were orally introduced to 3×FAD AD model mice. The pathology, memory performance, and Toll-like receptor 4- (TLR4-) dependent inflammatory pathway protein level were assessed. Here, we show that TLB oral treatment protected 3×FAD AD model mice against the Aβ burden, neuroinflammation, Tau hyperphosphorylation, synaptic degeneration, hippocampal neuronal loss, and memory impairment. The TLR4, a pattern recognition immune receptor, has been implicated in neurodegenerative disease-related neuroinflammation. We found that TLB suppressed glial activation by inhibiting the TLR4-MYD88-NFκB pathway, which leads to the inflammatory factor TNF-α, IL-1β, and IL-6 reduction. Our study shows that TLR4 might be a key target of TLB in AD treatment and suggests a multifaceted target of TLB in halting AD. Taken together, our findings suggest a potential therapeutic effect of TLB in AD treatment.
Collapse
Affiliation(s)
- Jiuyang Ding
- School of Forensic Medicine, Guizhou Medical University, Guiyang 550004, China
| | - Jian Huang
- School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
| | - Dan Yin
- Laboratory of Electron Microscopy, School of Basic Medicine, Guizhou Medical University, Guiyang 550004, China
| | - Ting Liu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Key Laboratory of Pharmaceutics of Guizhou Province, Guizhou Medical University, Guiyang 550004, China
| | - Zheng Ren
- School of Forensic Medicine, Guizhou Medical University, Guiyang 550004, China
| | - Shanshan Hu
- Good Clinical Practice Center, Affiliated Hospital of Zunyi Medical University, Zunyi 563003, China
| | - Yuanliang Ye
- Department of Neurosurgery, Liuzhou People's Hospital, Liuzhou, China
| | - Cuiyun Le
- School of Forensic Medicine, Guizhou Medical University, Guiyang 550004, China
| | - Na Zhao
- School of Forensic Medicine, Guizhou Medical University, Guiyang 550004, China
| | - Hongmei Zhou
- School of Forensic Medicine, Guizhou Medical University, Guiyang 550004, China
| | - Zhu Li
- School of Forensic Medicine, Guizhou Medical University, Guiyang 550004, China
| | - Xiaolan Qi
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, Guizhou Medical University, Guiyang 550004, China
| | - Jiang Huang
- School of Forensic Medicine, Guizhou Medical University, Guiyang 550004, China
| |
Collapse
|
20
|
Chen X, Drew J, Berney W, Lei W. Neuroprotective Natural Products for Alzheimer's Disease. Cells 2021; 10:1309. [PMID: 34070275 PMCID: PMC8225186 DOI: 10.3390/cells10061309] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/17/2021] [Accepted: 05/22/2021] [Indexed: 12/22/2022] Open
Abstract
Alzheimer's disease (AD) is the number one neurovegetative disease, but its treatment options are relatively few and ineffective. In efforts to discover new strategies for AD therapy, natural products have aroused interest in the research community and in the pharmaceutical industry for their neuroprotective activity, targeting different pathological mechanisms associated with AD. A wide variety of natural products from different origins have been evaluated preclinically and clinically for their neuroprotective mechanisms in preventing and attenuating the multifactorial pathologies of AD. This review mainly focuses on the possible neuroprotective mechanisms from natural products that may be beneficial in AD treatment and the natural product mixtures or extracts from different sources that have demonstrated neuroprotective activity in preclinical and/or clinical studies. It is believed that natural product mixtures or extracts containing multiple bioactive compounds that can work additively or synergistically to exhibit multiple neuroprotective mechanisms might be an effective approach in AD drug discovery.
Collapse
Affiliation(s)
- Xin Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Campbell University, Buies Creek, NC 27506, USA
| | - Joshua Drew
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Campbell University, Buies Creek, NC 27506, USA
| | - Wren Berney
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Campbell University, Buies Creek, NC 27506, USA
| | - Wei Lei
- Department of Pharmaceutical and Administrative Sciences, School of Pharmacy, Presbyterian College, Clinton, SC 29325, USA
| |
Collapse
|