1
|
Li ZY, Lin MZ, Wang Y, Cai XR, Wang XD, Huang XQ. Effect of endodontically treated teeth on prosthetically guided orthodontics with clear aligners: a case series. BMC Oral Health 2024; 24:1242. [PMID: 39425114 PMCID: PMC11490176 DOI: 10.1186/s12903-024-05007-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 10/03/2024] [Indexed: 10/21/2024] Open
Abstract
BACKGROUND Prosthetically guided orthodontics (PGO) can correct the malocclusion for better prosthetic rehabilitation in esthetic rehabilitation. Unlike conventional orthodontic treatment, only minor tooth movement is designed in PGO according to the requirement of subsequent restoration. For better appearance during the treatment, PGO is often performed with clear aligners, which have no metal brackets. It has been proven that the PGO with clear aligners can achieve generally satisfactory outcomes. However, its risk has not been fully known due to the paucity of relevant studies. CASE PRESENTATION Three patients who needed esthetic rehabilitation with mild malocclusion were included in this study. After evaluation, a prosthetic solution alone was considered insufficient to provide optimal outcomes. Thus, they were treated using PGO with clear aligners (Invisalign Go, Align Technology, Santa Clara, California, USA) and accomplished prosthetic rehabilitation subsequently. Dental history and X-ray examination revealed that endodontically treated teeth (ETT) existed in all the cases. Intraoral photographs were collected to compare the pre-treatment and post-treatment dentition. After PGO, posterior ETT did not maintain their position as scheduled and lost occlusal contacts, while all the anterior teeth, including anterior ETT, were moved to the designed position. Corresponding prosthetic rehabilitation was used to solve it after consulting with the patients. CONCLUSIONS Occlusal contact loss of posterior ETT is a potential risk in PGO with clear aligners, affecting the orthodontic result.
Collapse
Affiliation(s)
- Zhang-Yu Li
- Department of Prosthodontics, Guanghua School and Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Institute of Stomatological Research, Sun Yat-sen University, No. 56 Lingyuan West Road, Guangzhou, 510080, Guangdong Province, China
- Department of Stomatology, Xingguo People's Hospital, Xingguo Hospital Affiliated to Gannan Medical University, Ganzhou, Jiangxi Province, China
| | - Miao-Zhu Lin
- Department of Prosthodontics, Guanghua School and Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Institute of Stomatological Research, Sun Yat-sen University, No. 56 Lingyuan West Road, Guangzhou, 510080, Guangdong Province, China
| | - Yue Wang
- Department of Prosthodontics, Guanghua School and Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Institute of Stomatological Research, Sun Yat-sen University, No. 56 Lingyuan West Road, Guangzhou, 510080, Guangdong Province, China
| | - Xin-Ru Cai
- Department of Prosthodontics, Guanghua School and Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Institute of Stomatological Research, Sun Yat-sen University, No. 56 Lingyuan West Road, Guangzhou, 510080, Guangdong Province, China
| | - Xiao-Dong Wang
- Department of Prosthodontics, Guanghua School and Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Institute of Stomatological Research, Sun Yat-sen University, No. 56 Lingyuan West Road, Guangzhou, 510080, Guangdong Province, China
| | - Xue-Qing Huang
- Department of Prosthodontics, Guanghua School and Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Institute of Stomatological Research, Sun Yat-sen University, No. 56 Lingyuan West Road, Guangzhou, 510080, Guangdong Province, China.
| |
Collapse
|
2
|
Moga RA, Olteanu CD, Delean AG. The Effect of Larger Orthodontic Forces and Movement Types over a Dental Pulp and Neuro-Vascular Bundle of Lower Premolars in Intact Periodontium-A Numerical Analysis. Dent J (Basel) 2024; 12:328. [PMID: 39452456 PMCID: PMC11505863 DOI: 10.3390/dj12100328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 10/11/2024] [Accepted: 10/12/2024] [Indexed: 10/26/2024] Open
Abstract
BACKGROUND/OBJECTIVES This numerical analysis of stress distribution in the dental pulp and neuro-vascular bundle (NVB) of lower premolars assessed the ischemic and degenerative-resorptive risks generated by 2 and 4 N during orthodontic movements (rotation, translation, tipping, intrusion and extrusion) in intact periodontium. METHODS The numerical analysis was performed on nine intact periodontium 3D models of the second lower premolar of nine patients totaling 90 simulations. RESULTS In intact periodontium, both forces displayed a similar stress distribution for all five orthodontic movements but different amounts of stress (a doubling for 4 N when compared with 2 N), with the highest values displayed in NVB. In intact periodontium, 2 N and 4 N induced stresses lower than the maximum hydrostatic pressure (MHP) with no ischemic risks for healthy intact teeth. The rotation was seen as the most stressful movement, closely followed by intrusion and extrusion. Translation was quantitatively seen as the least stressful when compared with other movements. CONCLUSIONS Larger orthodontic forces of 2 N and 4 N are safe (with any expected ischemic or resorptive risks) for the dental pulp and NVB of healthy intact teeth and in intact periodontium. Nevertheless, rotation and translation movements can induce localized circulatory disturbances in coronal pulp (i.e., vestibular and proximal sides) generating ischemic and resorptive risks on previously treated teeth (i.e., direct and indirect dental pulp capping). The intrusion and extrusion movements, due to the higher NVB-induced deformation when compared with the other three movements, could trigger circulatory disturbances followed by ischemia on previously traumatized teeth (i.e., occlusal trauma).
Collapse
Affiliation(s)
- Radu-Andrei Moga
- Department of Cariology, Endodontics and Oral Pathology, School of Dental Medicine, University of Medicine and Pharmacy Iuliu Hatieganu, Str. Motilor 33, 400001 Cluj-Napoca, Romania;
| | - Cristian Doru Olteanu
- Department of Orthodontics, School of Dental Medicine, University of Medicine and Pharmacy Iuliu Hatieganu, Str. Avram Iancu 31, 400083 Cluj-Napoca, Romania
| | - Ada Gabriela Delean
- Department of Cariology, Endodontics and Oral Pathology, School of Dental Medicine, University of Medicine and Pharmacy Iuliu Hatieganu, Str. Motilor 33, 400001 Cluj-Napoca, Romania;
| |
Collapse
|
3
|
Fan Z, Li S, You L, Lan Y, Zhong Y, Ma Y, Xu J, Xu X. Single-cell sequencing decodes the secrets of the RAP phenomenon of corticotomy. Front Immunol 2024; 15:1397727. [PMID: 39430747 PMCID: PMC11487196 DOI: 10.3389/fimmu.2024.1397727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 09/02/2024] [Indexed: 10/22/2024] Open
Abstract
Introduction Corticotomy-assisted tooth movement is commonly performed in clinics, however, its time-limited efficacy and the fear of surgery among patients significantly limit its clinical application. Hence, researchers have investigated non-invasive methods to accelerate tooth movement. However, the molecular mechanisms underlying corticotomy-assisted tooth movement are not fully understood. Methods Micro-CT and TRAP stain were used to tooth movement and bone resorption. Single-cell RNA sequencing was used to study the transcriptome heterogeneity of macrophages after corticotomy. Transmission electron microscopy and iron ion detection was used to evaluate ferroptosis and iron metabolism. In addition, we carried out immunohistochemistry, quantitative real-time and flow cytometry verify the effect of iron on macrophage polarization. Results Single-cell RNA sequencing of digested alveolar bone identified a significant increase in iron metabolism-related genes post-corticotomy. Macrophages play a central role in this field. Following the dimensionality reduction of macrophages, we revealed a new developmental state via pseudotime analysis post-corticotomy. SCENIC analysis revealed that Atf3 is a key transcription factor influencing this new state. We found that Atf3+ macrophages were closely associated with osteoclasts. Moreover, cell chat revealed an increase in cellular communication between Atf3+ macrophages and other cell types after corticotomy. Discussion These findings suggested that Atf3+ macrophages might play a key role in corticotomy-accelerated tooth movement, thus providing potential targets for drug development.
Collapse
Affiliation(s)
- Zhibo Fan
- Department of Orthodontics, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou, China
- Oral & Maxillofacial Reconstruction and Regeneration of Luzhou Key Laboratory, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou, China
| | - Shenghong Li
- Department of Orthodontics, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou, China
- Oral & Maxillofacial Reconstruction and Regeneration of Luzhou Key Laboratory, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou, China
| | - Liping You
- Department of Orthodontics, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou, China
- Oral & Maxillofacial Reconstruction and Regeneration of Luzhou Key Laboratory, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou, China
| | - Yuxin Lan
- Department of Orthodontics, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou, China
- Oral & Maxillofacial Reconstruction and Regeneration of Luzhou Key Laboratory, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou, China
| | - Yutong Zhong
- Department of Orthodontics, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou, China
- Oral & Maxillofacial Reconstruction and Regeneration of Luzhou Key Laboratory, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou, China
| | - Yuefan Ma
- Department of Orthodontics, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou, China
- Oral & Maxillofacial Reconstruction and Regeneration of Luzhou Key Laboratory, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou, China
| | - Jie Xu
- Department of Orthodontics, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou, China
- Oral & Maxillofacial Reconstruction and Regeneration of Luzhou Key Laboratory, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou, China
| | - Xiaomei Xu
- Department of Orthodontics, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou, China
- Oral & Maxillofacial Reconstruction and Regeneration of Luzhou Key Laboratory, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou, China
| |
Collapse
|
4
|
Korczeniewska OA, Dakshinamoorthy J, Prabhakar V, Lingaiah U. Genetics Affecting the Prognosis of Dental Treatments. Dent Clin North Am 2024; 68:659-692. [PMID: 39244250 DOI: 10.1016/j.cden.2024.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2024]
Abstract
Genetics plays a significant role in determining an individual's susceptibility to dental diseases, the response to dental treatments, and the overall prognosis of dental interventions. Here, the authors explore the various genetic factors affecting the prognosis of dental treatments focusing on dental caries, orthodontic treatment, oral cancer, prosthodontic treatment, periodontal disease, developmental disorders, pharmacogenetics, and genetic predisposition to faster wound healing. Understanding the genetic underpinnings of dental health can help personalize treatment plans, predict outcomes, and improve the overall quality of dental care.
Collapse
Affiliation(s)
- Olga A Korczeniewska
- Department of Diagnostic Sciences, Center for Orofacial Pain and Temporomandibular Disorders, Rutgers School of Dental Medicine, Rutgers, The State University of New Jersey, 110 Bergen Street, Room D-880, Newark, NJ 07101, USA
| | - Janani Dakshinamoorthy
- GeneAura Pvt. Ltd, AP1166, 4th street, Anna Nagar, Thendral Colony, Chennai 600040, India.
| | - Vaishnavi Prabhakar
- Department of Dental Sciences Dr. M.G.R. Educational And Research Institute Periyar E.V.R. High Road, (NH 4 Highway) Maduravoyal, Chennai 600095, India
| | - Upasana Lingaiah
- Upasana Lingaiah, Department of Oral Medicine and Radiology, V S Dental College and Hospital, Room number 1, K R Road, V V Puram, Bengaluru, Karnataka 560004, India
| |
Collapse
|
5
|
Wang J, Huang Y, Chen F, Li W. The age-related effects on orthodontic tooth movement and the surrounding periodontal environment. Front Physiol 2024; 15:1460168. [PMID: 39308977 PMCID: PMC11412856 DOI: 10.3389/fphys.2024.1460168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 08/28/2024] [Indexed: 09/25/2024] Open
Abstract
Orthodontic treatment in adults is often related to longer treatment time as well as higher periodontal risks compared to adolescents. The aim of this review is to explore the influence of age-related chages on orthodontic tooth movement (OTM) from macro and micro perspectives. Adults tend to show slower tooth movement speed compared to adolescence, especially during the early phase. Under orthodontic forces, the biological responses of the periodontal ligament (PDL) and alveolar bone is different between adult and adolescents. The adult PDL shows extended disorganization time, increased cell senescence, less cell signaling and a more inflammatory microenvironment than the adolescent PDL. In addition, the blood vessel surface area is reduced during the late movement phase, and fiber elasticity decreases. At the same time, adult alveolar bone shows a higher density, as well as a reduced osteoblast and osteoclast activation, under orthodontic forces. The local cytokine expression also differs between adults and adolescents. Side-effects, such as excessive root resorption, greater orthodontic pain, and reduced pulpal blood flow, also occur more frequently in adults than in adolescents.
Collapse
Affiliation(s)
- Jiayi Wang
- Department of Orthodontics, Peking University School and Hospital of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing Key Laboratory of Digital Stomatology, NHC Key Laboratory of Digital Stomatology, NMPA Key Laboratory for Dental Materials, Beijing, China
| | - Yiping Huang
- Department of Orthodontics, Peking University School and Hospital of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing Key Laboratory of Digital Stomatology, NHC Key Laboratory of Digital Stomatology, NMPA Key Laboratory for Dental Materials, Beijing, China
| | - Feng Chen
- National Center of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory for Digital Stomatology, Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health, NMPA Key Laboratory for Dental Materials, Beijing, China
- Central laboratory, Peking University School and Hospital of Stomatology, Beijing, China
| | - Weiran Li
- Department of Orthodontics, Peking University School and Hospital of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing Key Laboratory of Digital Stomatology, NHC Key Laboratory of Digital Stomatology, NMPA Key Laboratory for Dental Materials, Beijing, China
| |
Collapse
|
6
|
Fajrianti H, Karimah F, Dewi SK, Ratih DN, Devitaningtyas N, Karina VM, Diba SF. Regenerative Surgical Management of an Endodontic Periodontic Lesion of the Mandibular Molar Combined With External Inflammation Root Resorption. Case Rep Dent 2024; 2024:1048933. [PMID: 39239239 PMCID: PMC11377115 DOI: 10.1155/2024/1048933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 07/17/2024] [Accepted: 08/10/2024] [Indexed: 09/07/2024] Open
Abstract
Endo-perio lesions are lesions involving pulp tissue with periodontal tissue. The bacterial infection of the pulp can spread to the furcation area through the accessory canal, causing damage to the furcation area. Regeneration therapy has good success when performed with flap surgery and is performed in cases of Grades I and II furcation involvement. Demineralized freeze-dried bone allograft (DFDBA) is a regenerating material that has osteoinductive and osteoconductive abilities. It has the advantage of successful treatment of bone defects. Biodentine is an agent used for direct pulp capping, root perforation and furcation repair, and apexification. It can bind and enter the dentinal tubules and create interlocking crystals with dentin. This case report presents the treatment of furcation involvement Grade II originating from endo-perio lesions by using DFDBA and Biodentine as regeneration materials with 6 months of follow-up.
Collapse
Affiliation(s)
- Henytaria Fajrianti
- Department of Conservative Dentistry Faculty of Dentistry Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Fauziah Karimah
- Department of Conservative Dentistry Faculty of Dentistry Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Safitri Kusuma Dewi
- Department of Conservative Dentistry Faculty of Dentistry Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Diatri Nari Ratih
- Department of Conservative Dentistry Faculty of Dentistry Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Nungky Devitaningtyas
- Department of Periodontics Faculty of Dentistry Brawijaya University, Malang, Indonesia
| | - Vincensia Maria Karina
- Department of Periodontics Faculty of Dentistry Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Silviana Farrah Diba
- Department of Dentomaxillofacial Radiology Faculty of Dentistry Universitas Gadjah Mada, Yogyakarta, Indonesia
| |
Collapse
|
7
|
Ubuzima P, Nshimiyimana E, Mukeshimana C, Mazimpaka P, Mugabo E, Mbyayingabo D, Mohamed AS, Habumugisha J. Exploring biological mechanisms in orthodontic tooth movement: Bridging the gap between basic research experiments and clinical applications - A comprehensive review. Ann Anat 2024; 255:152286. [PMID: 38810763 DOI: 10.1016/j.aanat.2024.152286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/21/2024] [Accepted: 05/21/2024] [Indexed: 05/31/2024]
Abstract
OBJECTIVES The molecular mechanisms behind orthodontic tooth movements (OTM) were investigated by clarifying the role of chemical messengers released by cells. METHODS Using the Cochrane library, Google scholar, and PubMed databases, a literature search was conducted, and studies published from 1984 to 2024 were considered. RESULTS Both bone growth and remodeling may occur when a tooth is subjected to mechanical stress. These chemicals have a significant effect on the stimulation and regulation of osteoblasts, osteoclasts, and osteocytes during alveolar bone remodeling. This regulation can take place in pathological conditions, such as periodontal diseases, or during OTM alone. This comprehensive review outlines key molecular mechanisms underlying OTM and explores various clinical assumptions associated with specific molecules and their functional domains during this process. Furthermore, clinical applications of certain molecules such as relaxin, prostaglandin E (PGE), and interleukin-1β (IL-1β) in accelerating OTM have been reported. Our findings underscore the existing gap between OTM clinical applications and basic research investigations. CONCLUSION A comprehensive understanding of orthodontic treatment is enriched by insights into biological systems. We reported the activation of osteoblasts, osteoclast precursor cells, osteoclasts, and osteocytes in response to mechanical stress, leading to targeted cellular and molecular interventions and facilitating rapid and regulated alveolar bone remodeling during tooth movement. Despite the shortcomings of clinical studies in accelerating OTM, this review highlights the crucial role of biological agents in this process and advocates for prioritizing high-quality human studies in future research to gain further insights from clinical trials.
Collapse
Affiliation(s)
- Pascal Ubuzima
- Department of Orthodontics, Affliated Hospital of Stomatology, Anhui Medical University Hefei, 69 Meishan Road, Hefei, Anhui, China; School of Dentistry, College of Medicine and Health Sciences, University of Rwanda, Rwanda
| | - Eugene Nshimiyimana
- Department of Orthodontics, Affliated Hospital of Stomatology, Anhui Medical University Hefei, 69 Meishan Road, Hefei, Anhui, China
| | - Christelle Mukeshimana
- Department of Orthodontics, Affliated Hospital of Stomatology, Anhui Medical University Hefei, 69 Meishan Road, Hefei, Anhui, China
| | - Patrick Mazimpaka
- School of Dentistry, College of Medicine and Health Sciences, University of Rwanda, Rwanda
| | - Eric Mugabo
- Department of Orthodontics, Xiangya Stomatological Hospital & Xiangya School of Stomatology, Central South University, 72 Xiangya Road, Changsha, Hunan 410000, China
| | - Dieudonne Mbyayingabo
- Department of Orthodontics, Stomatological Hospital of Xi'an Jiaotong University, 98 XiWu Road, Xi'an, Shaanxi 710004, China
| | | | - Janvier Habumugisha
- Department of Orthodontics, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1, Shikata-cho, Kitaku, Okayama 700-8525, Japan; Department of Biochemistry and Molecular Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan.
| |
Collapse
|
8
|
Liu F, Wang X, He Y, Han R, Wang T, Guo Y. Jaw osteoporosis: Challenges to oral health and emerging perspectives of treatment. Biomed Pharmacother 2024; 177:116995. [PMID: 38917761 DOI: 10.1016/j.biopha.2024.116995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/13/2024] [Accepted: 06/15/2024] [Indexed: 06/27/2024] Open
Abstract
Osteoporosis is a prevalent bone metabolic disease that poses a significant challenge to global human health. Jaw osteoporosis, characterized by microstructural damage of the jaw resulting from various factors, is one of the common manifestations of this condition. Recent studies have demonstrated that jaw osteoporosis has multifaceted effects on oral health and can negatively impact conditions such as periodontitis, oral implantation, orthodontic treatment, and wound healing. However, there are still some limitations in the conventional treatment of osteoporosis. For instance, while bisphosphonates can enhance bone quality, they may also lead to osteonecrosis of the jaw, which poses a potential safety hazard in oral diagnosis and treatment. In recent years, considerable attention has been focused on improving the pathological condition of jaw osteoporosis. Treatment strategies such as gut microbial regulation, extracellular vesicles, molecular targeted therapy, herbal medicine, mechanical stimulation are expected to enhance efficacy and minimize adverse reactions. Therefore, understanding these effects and exploring novel treatments for jaw osteoporosis may provide new insights for oral health maintenance and disease treatment. This article reviews the impact of jaw osteoporosis on oral health and describes the limitations associated with current methods. It also discusses emerging perspectives on treatment, offering a comprehensive overview of the challenges and future directions in managing jaw osteoporosis.
Collapse
Affiliation(s)
- Fushuang Liu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xuan Wang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yikai He
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Ruiying Han
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Tianyi Wang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yongwen Guo
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China.
| |
Collapse
|
9
|
Zhang Y, Yan J, Zhang Y, Liu H, Han B, Li W. Age-related alveolar bone maladaptation in adult orthodontics: finding new ways out. Int J Oral Sci 2024; 16:52. [PMID: 39085217 PMCID: PMC11291511 DOI: 10.1038/s41368-024-00319-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 06/16/2024] [Accepted: 06/18/2024] [Indexed: 08/02/2024] Open
Abstract
Compared with teenage patients, adult patients generally show a slower rate of tooth movement and more pronounced alveolar bone loss during orthodontic treatment, indicating the maladaptation of alveolar bone homeostasis under orthodontic force. However, this phenomenon is not well-elucidated to date, leading to increased treatment difficulties and unsatisfactory treatment outcomes in adult orthodontics. Aiming to provide a comprehensive knowledge and further inspire insightful understanding towards this issue, this review summarizes the current evidence and underlying mechanisms. The age-related abatements in mechanosensing and mechanotransduction in adult cells and periodontal tissue may contribute to retarded and unbalanced bone metabolism, thus hindering alveolar bone reconstruction during orthodontic treatment. To this end, periodontal surgery, physical and chemical cues are being developed to reactivate or rejuvenate the aging periodontium and restore the dynamic equilibrium of orthodontic-mediated alveolar bone metabolism. We anticipate that this review will present a general overview of the role that aging plays in orthodontic alveolar bone metabolism and shed new light on the prospective ways out of the impasse.
Collapse
Affiliation(s)
- Yunfan Zhang
- Department of Orthodontics, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, Beijing, China
| | - Jiale Yan
- Department of Orthodontics, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, Beijing, China
| | - Yuning Zhang
- Department of Orthodontics, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, Beijing, China
| | - Hao Liu
- Department of Orthodontics, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, Beijing, China
| | - Bing Han
- Department of Orthodontics, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, Beijing, China.
| | - Weiran Li
- Department of Orthodontics, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, Beijing, China
| |
Collapse
|
10
|
Pastille E, Konermann A. Exploring the role of innate lymphoid cells in the periodontium: insights into immunological dynamics during orthodontic tooth movement. Front Immunol 2024; 15:1428059. [PMID: 39021572 PMCID: PMC11251940 DOI: 10.3389/fimmu.2024.1428059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 06/18/2024] [Indexed: 07/20/2024] Open
Abstract
Background The periodontal ligament (PDL) experiences considerable mechanical stresses between teeth and bone, vital for tissue adaptation, especially in orthodontic tooth movement (OTM). While recent research emphasizes the role of innate lymphoid cells (ILCs) in regulating sterile inflammation, their involvement in periodontal tissues during OTM remains largely unexplored. Methods In this study, PDL tissues from orthodontic patients (n = 8) were examined using flow cytometry to detect ILC subtypes. Transwell co-culture systems were used to expose PDL cells to mechanical strain, followed by measuring migration and ratios of sorted ILC subtypes. Statistical analyses were conducted using paired Student's t-test, Kruskal-Wallis test, Dunn's post-test and one-way/two-way ANOVA with Tukey's post-test (p≤ 0.05; **, p≤ 0.01; ***, p≤ 0.001). Results Our findings demonstrate a significant increase in CD127+ CD161+ ILC frequencies in PDL tissues during OTM, indicating ILC involvement in sterile inflammation induced by orthodontic forces. Co-culture assays show directed migration of ILC subsets towards PDL cells and substantial proliferation and expansion of ILCs. Conclusions This study is the first to comprehensively investigate the role of ILCs in sterile inflammation during OTM, revealing their presence and distribution within PDL tissues' innate immune response in vivo, and exploring their migratory and proliferative behavior in vitro. The results suggest a crosstalk between ILCs and PDL cells, potentially influencing the inflammatory response and tissue remodeling processes associated with OTM.
Collapse
Affiliation(s)
- Eva Pastille
- Institute of Medical Microbiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Anna Konermann
- Department of Orthodontics, University Hospital Bonn, Bonn, Germany
| |
Collapse
|
11
|
Talpos Niculescu S, Avramut R, Hajaj T, Nikolajevic-Stoican N, Maracineanu R, Perdiou A, Talpos Niculescu R, Pricop M, Ghircau-Radu R, Luca MM, Popa M. Evaluating the Therapeutic Properties of Natural Products in Orthodontic and Surgical Treatment of Dentofacial Deformities: A Systematic Review of Clinical Trials. Nutrients 2024; 16:1941. [PMID: 38931295 PMCID: PMC11206340 DOI: 10.3390/nu16121941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/13/2024] [Accepted: 06/18/2024] [Indexed: 06/28/2024] Open
Abstract
The use of natural products as alternatives to traditional pharmacological treatments in orthodontics is gaining interest due to their anti-inflammatory, antibacterial, and antioxidant properties. This systematic review synthesizes evidence from clinical trials to evaluate the efficacy of natural products in reducing inflammation and bacterial presence in orthodontic and orthognathic treatment settings. The database search was conducted across PubMed, Scopus, and Embase up to January 2024. The review focused on randomized controlled trials only. The selected studies centered on the anti-inflammatory, antibacterial, and antioxidant effects of natural products, adhering to the Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) guidelines for data extraction. Nine studies, totaling 358 participants, were included. Significant findings demonstrated a reduction in gingival inflammation by over 40% with the use of Aloe vera compared to chlorhexidine. Another study noted a decrease in bleeding on probing by 13.6 points in the treatment group over placebo. Additionally, honey showed a rapid modulation of plaque pH and significantly reduced bacterial counts of Streptococcus mutans. Furthermore, the use of resveratrol emulgel was linked to substantial improvements in gingival health, with a reduction in the gingival index and probing pocket depth. The results indicate that natural products can significantly enhance orthodontic treatment outcomes by reducing inflammation and bacterial levels. These products offer effective alternatives to traditional treatments and show potential for integration into routine orthodontic care protocols. Further research is encouraged to standardize application methods and dosages to maximize clinical benefits and patient satisfaction.
Collapse
Affiliation(s)
- Serban Talpos Niculescu
- Discipline of Oral and Maxillo-Facial Surgery, Faculty of Dental Medicine, “Victor Babes” University of Medicine and Pharmacy Timisoara, 300041 Timisoara, Romania;
| | - Robert Avramut
- Doctoral School, “Victor Babes” University of Medicine and Pharmacy Timisoara, 300041 Timisoara, Romania; (R.A.); (N.N.-S.); (R.M.); (A.P.); (M.P.)
| | - Tareq Hajaj
- Discipline of Prostheses Technology and Dental Materials, Faculty of Dental Medicine, “Victor Babes” University of Medicine and Pharmacy Timisoara, 300041 Timisoara, Romania;
| | - Nicoleta Nikolajevic-Stoican
- Doctoral School, “Victor Babes” University of Medicine and Pharmacy Timisoara, 300041 Timisoara, Romania; (R.A.); (N.N.-S.); (R.M.); (A.P.); (M.P.)
| | - Raluca Maracineanu
- Doctoral School, “Victor Babes” University of Medicine and Pharmacy Timisoara, 300041 Timisoara, Romania; (R.A.); (N.N.-S.); (R.M.); (A.P.); (M.P.)
| | - Antonis Perdiou
- Doctoral School, “Victor Babes” University of Medicine and Pharmacy Timisoara, 300041 Timisoara, Romania; (R.A.); (N.N.-S.); (R.M.); (A.P.); (M.P.)
| | - Roxana Talpos Niculescu
- Discipline of Odontotherapy-Endodontics, Faculty of Dental Medicine, “Victor Babes” University of Medicine and Pharmacy Timisoara, 300041 Timisoara, Romania;
| | - Marius Pricop
- Doctoral School, “Victor Babes” University of Medicine and Pharmacy Timisoara, 300041 Timisoara, Romania; (R.A.); (N.N.-S.); (R.M.); (A.P.); (M.P.)
| | | | - Magda Mihaela Luca
- Pediatric Dentistry Research Center (Pedo-Research), Department of Pediatric Dentistry, Faculty of Dental Medicine, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square 2, 300041 Timisoara, Romania;
| | - Malina Popa
- Pediatric Dentistry Research Center (Pedo-Research), Department of Pediatric Dentistry, Faculty of Dental Medicine, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square 2, 300041 Timisoara, Romania;
| |
Collapse
|
12
|
Wang H, Li T, Jiang Y, Chen S, Wu Z, Zeng X, Yang K, Duan P, Zou S. Long non-coding RNA LncTUG1 regulates favourable compression force-induced cementocytes mineralization via PU.1/TLR4/SphK1 signalling. Cell Prolif 2024; 57:e13604. [PMID: 38318762 PMCID: PMC11150144 DOI: 10.1111/cpr.13604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 12/18/2023] [Accepted: 01/09/2024] [Indexed: 02/07/2024] Open
Abstract
Orthodontic tooth movement (OTM) is a highly coordinated biomechanical response to orthodontic forces with active remodelling of alveolar bone but minor root resorption. Such antiresorptive properties of root relate to cementocyte mineralization, the mechanisms of which remain largely unknown. This study used the microarray analysis to explore long non-coding ribonucleic acids involved in stress-induced cementocyte mineralization. Gain- and loss-of-function experiments, including Alkaline phosphatase (ALP) activity and Alizarin Red S staining, quantitative real-time polymerase chain reaction (qRT-PCR), Western blot, and immunofluorescence analyses of mineralization-associated factors, were conducted to verify long non-coding ribonucleic acids taurine-upregulated gene 1 (LncTUG1) regulation in stress-induced cementocyte mineralization, via targeting the Toll-like receptor 4 (TLR4)/SphK1 axis. The luciferase reporter assays, chromatin immunoprecipitation assays, RNA pull-down, RNA immunoprecipitation, and co-localization assays were performed to elucidate the interactions between LncTUG1, PU.1, and TLR4. Our findings indicated that LncTUG1 overexpression attenuated stress-induced cementocyte mineralization, while blocking the TLR4/SphK1 axis reversed the inhibitory effect of LncTUG1 on stress-induced cementocyte mineralization. The in vivo findings also confirmed the involvement of TLR4/SphK1 signalling in cementocyte mineralization during OTM. Mechanistically, LncTUG1 bound with PU.1 subsequently enhanced TLR4 promotor activity and thus transcriptionally elevated the expression of TLR4. In conclusion, our data revealed a critical role of LncTUG1 in regulating stress-induced cementocyte mineralization via PU.1/TLR4/SphK1 signalling, which might provide further insights for developing novel therapeutic strategies that could protect roots from resorption during OTM.
Collapse
Affiliation(s)
- Han Wang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of StomatologySichuan UniversityChengduChina
| | - Tiancheng Li
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of StomatologySichuan UniversityChengduChina
- Department of Orthodontics, Shanghai Ninth People's HospitalShanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of StomatologyShanghaiChina
| | - Yukun Jiang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of StomatologySichuan UniversityChengduChina
| | - Shuo Chen
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of StomatologySichuan UniversityChengduChina
| | - Zuping Wu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of StomatologySichuan UniversityChengduChina
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang ProvinceCancer Center of Zhejiang UniversityHangzhouChina
| | - Xinyi Zeng
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of StomatologySichuan UniversityChengduChina
| | - Kuan Yang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of StomatologySichuan UniversityChengduChina
| | - Peipei Duan
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of StomatologySichuan UniversityChengduChina
| | - Shujuan Zou
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of StomatologySichuan UniversityChengduChina
| |
Collapse
|
13
|
Li S, Guan X, Yu W, Zhao Z, Sun Y, Bai Y. Effect of human periodontal ligament stem cell-derived exosomes on cementoblast activity. Oral Dis 2024; 30:2511-2522. [PMID: 37448205 DOI: 10.1111/odi.14671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 06/19/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023]
Abstract
OBJECTIVES Exosomes derived from stem cells are a potential cell-free tool for tissue regeneration with therapeutic potential. However, its application in cementum repair is unclear. This study aimed to investigate the effect of human periodontal ligament stem cell-derived exosomes on the biological activity of cementoblasts, the main effector cells in cementum synthesis. MATERIALS AND METHODS OCCM-30 cementoblasts were cultured with various human periodontal ligament stem cell-derived exosome concentrations. OCCM-30 cells proliferation, migration, and cementogenic mineralization were examined, along with the gene and protein expression of factors associated with cementoblastic mineralization. RESULTS Exosomal promoted the migration, proliferation, and mineralization of OCCM-30 cells. The exosome-treated group significantly increased the expression of cementogenic-related genes and proteins. Furthermore, the expression of p-PI3K and p-AKT was enhanced by exosome administration. Treatment with a PI3K/AKT inhibitor markedly attenuated the gene and protein expression of cementoblastic factors, and this effect was partially reversed by exosome administration. CONCLUSIONS Human periodontal ligament stem cell-derived exosomes can promote the activity of cementoblasts via the PI3K/AKT signaling pathway, providing a scientific basis for promoting the repair process in orthodontically induced inflammatory root resorption.
Collapse
Affiliation(s)
- Shengnan Li
- Department of Orthodontics, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China
| | - Xiuchen Guan
- Department of Orthodontics, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China
| | - Wenting Yu
- Department of Orthodontics, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China
| | - Zeqing Zhao
- Department of Orthodontics, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China
| | - Yaxi Sun
- Department of Orthodontics, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China
| | - Yuxing Bai
- Department of Orthodontics, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China
| |
Collapse
|
14
|
Luchian I, Surlari Z, Goriuc A, Ioanid N, Zetu I, Butnaru O, Scutariu MM, Tatarciuc M, Budala DG. The Influence of Orthodontic Treatment on Periodontal Health between Challenge and Synergy: A Narrative Review. Dent J (Basel) 2024; 12:112. [PMID: 38668024 PMCID: PMC11049074 DOI: 10.3390/dj12040112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 02/27/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
By correctly repositioning teeth, orthodontic therapy improves both the function and appearance of an occlusion. The relationship between teeth and the tissues that surround and support them significantly influences these alterations. With ever more adults seeking orthodontic care, orthodontists are increasingly seeing patients with periodontal issues. Concerns about the patient's appearance, such as uneven gingival margins or functional issues caused by inflammatory periodontal diseases, should be accounted for when designing orthodontic treatment plans. Furthermore, orthodontics may increase the chances of saving and recovering a degraded dentition in cases of severe periodontitis. Today, general dentists, dontists, and orthodontists play integrative roles that enable them to achieve the best possible results for their patients. This review will improve the results of interdisciplinary treatments and increase cooperation between dental specialists by drawing attention to the essential connection between orthodontics and periodontics in regular clinical practice.
Collapse
Affiliation(s)
- Ionut Luchian
- Department of Periodontology, Faculty of Dental Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universității Street, 700115 Iasi, Romania;
| | - Zenovia Surlari
- Department of Prosthodontics, Faculty of Dental Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universității Street, 700115 Iasi, Romania; (Z.S.); (D.-G.B.)
| | - Ancuta Goriuc
- Department of Biochemistry, Faculty of Dental Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universității Street, 700115 Iasi, Romania
| | - Nicoleta Ioanid
- Department of Prosthodontics, Faculty of Dental Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universității Street, 700115 Iasi, Romania; (Z.S.); (D.-G.B.)
| | - Irina Zetu
- Department of Orthodontics, Faculty of Dental Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universității Street, 700115 Iasi, Romania; (I.Z.); (O.B.)
| | - Oana Butnaru
- Department of Orthodontics, Faculty of Dental Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universității Street, 700115 Iasi, Romania; (I.Z.); (O.B.)
| | - Monica-Mihaela Scutariu
- Department of Oro-Dental Diagnosis, Faculty of Dental Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universității Street, 700115 Iasi, Romania;
| | - Monica Tatarciuc
- Department of Dental Technology, Faculty of Dental Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universității Street, 700115 Iasi, Romania;
| | - Dana-Gabriela Budala
- Department of Prosthodontics, Faculty of Dental Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universității Street, 700115 Iasi, Romania; (Z.S.); (D.-G.B.)
| |
Collapse
|
15
|
Li X, Men X, Ji L, Chen X, He S, Zhang P, Chen S. NLRP3-mediated periodontal ligament cell pyroptosis promotes root resorption. J Clin Periodontol 2024; 51:474-486. [PMID: 38164052 DOI: 10.1111/jcpe.13914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 10/27/2023] [Accepted: 11/21/2023] [Indexed: 01/03/2024]
Abstract
AIM To investigate the mechanisms by which periodontal ligament cells (PDLCs) convert biomechanical stimulation into inflammatory microenvironment inducing root resorption (RR). MATERIALS AND METHODS RNA sequencing was employed to explore mechanisms in force-inflammatory signal transduction. Then resorption volume, odontoclastic activity, PDLC pyroptotic ratio and NOD-like receptor protein 3 (NLRP3)-mediated pyroptosis pathway activation were analysed under force and pyroptosis inhibition. Further osteoclast formation, macrophage number and transwell polarization demonstrated the effects of PDLC pyroptosis on osteoclastogenesis and M1 polarization. RESULTS RNA sequencing revealed that NLRP3-mediated PDLC pyroptosis induced by Toll-like receptor 4 (TLR4)/nuclear factor kappa B (NFκB)/NLRP3 pathway may be involved in mechano-inflammatory signal transduction. PDLC pyroptosis under force and the expression of NLRP3-mediated pyroptosis pathway in force-enhanced PDLCs were significantly increased, both in vivo and in vitro. MCC950 administration was sufficient to reduce PDLC pyroptosis and alleviate RR, odontoclast formation and M1 polarization in vivo. Further in vitro exploration showed that MCC950 treatment reduced PDLC force-promoted pyroptosis and blocked NLRP3-mediated pyroptosis pathway. Moreover, by treating THP-1 with force-pretreated PDLCs or supernatants, NLRP3-mediated PDLC pyroptotic released products induced osteoclast formation and M1 polarization. CONCLUSIONS NLRP3-mediated PDLC pyroptosis promotes RR. PDLCs transmit excessive force into inflammation signals through TLR4/NFκB/NLRP3 pathway, inducing PDLC pyroptosis, which directly promotes odontoclast formation and subsequent RR or promotes M1 polarization to indirectly trigger odontoclastogenesis and RR.
Collapse
Affiliation(s)
- Xinyi Li
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Xinrui Men
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Ling Ji
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Xinyi Chen
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Shushu He
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Ping Zhang
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Song Chen
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
16
|
Ishizuka K, Kato C, Fujita A, Misawa-Omori E, Ono T. Factors influencing root resorption in retained mandibular second deciduous molars with congenital absence of second premolars: a cross-sectional study. Prog Orthod 2024; 25:14. [PMID: 38556605 PMCID: PMC10982280 DOI: 10.1186/s40510-024-00512-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 01/30/2024] [Indexed: 04/02/2024] Open
Abstract
BACKGROUND There are currently no studies that quantitatively compare the relationship of root resorption to the patient's systemic history or craniofacial and intraoral morphology, especially in relation to possible host factors. Thus, this study aimed to clarify the factors associated with root resorption in retained mandibular second deciduous molars with the congenital absence of second premolars and predict the prognosis of retained mandibular second deciduous molars. METHODS A cohort of 5547 patients who visited the orthodontic clinic at Tokyo Medical and Dental University Dental Hospital between 2013 and 2022 was screened. Lateral cephalometric radiographs, panoramic radiographs, upper and lower dental models, and orthodontic treatment questionnaires were used as reference materials to apply the inclusion and exclusion criteria. Ultimately, 111 patients were included in the analyses. The patients were divided into two groups based on the root resorption levels of the retained mandibular second deciduous molars. Those with less root resorption were classified under the good condition (GC) group, whereas those with more root resorption were classified under the poor condition (PC) group. Demographic, clinical, and cephalometric parameters were compared between the groups. A multivariate logistic regression model was used to predict the probability of root resorption. RESULTS The prevalence of congenitally missing mandibular second premolars with persistent mandibular second deciduous molars was 2.0%. In a total of 111 patients, eighty-three teeth (53.2%) were classified into the GC group, whereas 73 teeth (46.8%) were classified into the PC group. The Frankfort-mandibular plane angle (FMA) [odds ratio (OR): 0.87], Frankfort-mandibular incisor angle (FMIA) (OR: 0.93), overbite (OR: 1.38), adjacent interdental space (OR: 1.46), distance from occlusal plane (OR: 0.80), and caries treatment (OR: 7.05) were significantly associated with the root resorption of the retained mandibular second deciduous molars. CONCLUSIONS Our findings suggest that skeletal morphology, oral morphological patterns, and history contribute to root resorption in retained mandibular second deciduous teeth with congenital absence of subsequent permanent teeth.
Collapse
Affiliation(s)
- Keita Ishizuka
- Department of Orthodontic Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Chiho Kato
- Department of Orthodontic Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima Bunkyo-ku, Tokyo, 113-8510, Japan.
| | - Akiyo Fujita
- Department of Orthodontic Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Eri Misawa-Omori
- Department of Orthodontic Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Takashi Ono
- Department of Orthodontic Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima Bunkyo-ku, Tokyo, 113-8510, Japan
| |
Collapse
|
17
|
Welte-Jzyk C, Plümer V, Schumann S, Pautz A, Erbe C. Effect of the antirheumatic medication methotrexate (MTX) on biomechanical compressed human periodontal ligament fibroblasts (hPDLFs). BMC Oral Health 2024; 24:329. [PMID: 38475789 DOI: 10.1186/s12903-024-04092-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 03/02/2024] [Indexed: 03/14/2024] Open
Abstract
BACKGROUND The aim of this study was to investigate the in vitro effect of the antirheumatic drug methotrexate (MTX) on biomechanically compressed human periodontal ligament fibroblasts (hPDLFs), focusing on the expression of interleukin 6 (IL-6), as its upregulation is relevant to orthodontic tooth movement. METHODS Human PDLFs were subjected to pressure and simultaneously treated with MTX. Cell proliferation, viability and morphology were studied, as was the gene and protein expression of IL-6. RESULTS Compared with that in untreated fibroblasts, IL-6 mRNA expression in mechanically compressed ligament fibroblasts was increased (two to sixfold; ****p < 0.0001). Under compression, hPDLFs exhibited a significantly more expanded shape with an increase of cell extensions. MTX with and without pressure did not affect IL-6 mRNA expression or the morphology of hPDLFs. CONCLUSION MTX has no effect on IL-6 expression in compressed ligament fibroblasts.
Collapse
Affiliation(s)
- Claudia Welte-Jzyk
- Department of Orthodontics, University Medical Center of the Johannes Gutenberg-University, 55131, Mainz, Germany.
| | - Vera Plümer
- Department of Orthodontics, University Medical Center of the Johannes Gutenberg-University, 55131, Mainz, Germany
| | - Sven Schumann
- Institute of Anatomy, University Medical Center of the Johannes Gutenberg-University Mainz, 55128, Mainz, Germany
| | - Andrea Pautz
- Department of Pharmacology, University Medical Center of the Johannes Gutenberg University, 55131, Mainz, Germany
| | - Christina Erbe
- Department of Orthodontics, University Medical Center of the Johannes Gutenberg-University, 55131, Mainz, Germany
| |
Collapse
|
18
|
Chen Q, Liu Q, Wang W. Application effect of behavioral cognition combined with psychological intervention on orthodontic patients: A prospective, randomized, controlled trial. Medicine (Baltimore) 2024; 103:e37131. [PMID: 38306509 PMCID: PMC10843585 DOI: 10.1097/md.0000000000037131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 01/10/2024] [Indexed: 02/04/2024] Open
Abstract
To explore the application effect of behavioral cognition combined with psychological intervention in orthodontic patients, so as to provide new ideas for clinical nursing of orthodontic patients. The 70 patients with orthodontic treatment were divided into 2 groups: the control group and the nursing group. Control group received routine clinical intervention, was treated with the normal clinical intervention, while nursing group was treated with behavior cognition and psychology intervention. The orthodontic effects of the 2 groups were evaluated, and the mental state, health behavior, gum swelling and pain were compared between the 2 groups before and after care. The cure rate of orthodontic treatment in the nursing group was significantly higher than that in the control group (P < .05). At 12 months after intervention, the nursing group scored lower than the control group on the Hamilton Anxiety Scale and the Hamilton Depression Scale (P < .05), and the score of Health Promotion Lifestyle Profile-II was higher than that in the control group (P < .05). After intervention, the degree of gum swelling and pain in 2 group were notably relieved, and the alleviation degree of nursing group was better than that of control group (P < .05). Compared with normal clinical intervention, the behavioral cognition combined with psychological intervention have obvious improvement in mental state and health behavior of orthodontic patients, and can reduce the symptoms of gum swelling and pain, promote the recovery of gum, showing high clinical application value in improving the gingival health of patients.
Collapse
Affiliation(s)
- Qing Chen
- Department of Stomatology, The Affiliated Hospital of Jinggangshan University, Ji'an Clinical Medical Research Center of Oral Diseases, Ji'an, Jiangxi, China
| | - Qingwen Liu
- Department of Stomatology, The Affiliated Hospital of Jinggangshan University, Ji'an Clinical Medical Research Center of Oral Diseases, Ji'an, Jiangxi, China
| | - Wei Wang
- Department of Stomatology, The Affiliated Hospital of Jinggangshan University, Ji'an Clinical Medical Research Center of Oral Diseases, Ji'an, Jiangxi, China
| |
Collapse
|
19
|
Al-Jewair T, Michelogiannakis D, Khoo E, Prevost R. Potential Impact of Long COVID-19 on Orthodontic Treatment. Eur J Dent 2024; 18:387-391. [PMID: 37336480 PMCID: PMC10959594 DOI: 10.1055/s-0043-1768467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2023] Open
Abstract
Pooled estimates indicate about 226 million individuals are currently experiencing or have experienced persistent symptoms from COVID-19. Long COVID-19 (LC) has been associated with a prolonged inflammatory and stress responses in affected individuals. Due to common pathways, LC could impact the biological mechanisms of orthodontic tooth movement, orthodontically-induced inflammatory root resorption and periodontal tissue response of patients undergoing orthodontic treatment. The authors of the present report discussed potential biological mechanisms through which LC may influence orthodontic treatment highlighting the need for further research in this area.
Collapse
Affiliation(s)
- Thikriat Al-Jewair
- Department of Orthodontics, School of Dental Medicine, University at Buffalo, Buffalo, New York, United States
| | - Dimitrios Michelogiannakis
- Department of Orthodontics and Dentofacial Orthopedics, Eastman Institute for Oral Health, University of Rochester, New York, United States
| | - Edmund Khoo
- Department of Orthodontics and Dentofacial Orthopedics, Eastman Institute for Oral Health, University of Rochester, New York, United States
- Department of Orthodontics and Oral Facial Genetics, Indiana University School of Dentistry, United States
- Department of General Dentistry, Eastman Institute for Oral Health, University of Rochester, New York, United States
| | - Ryan Prevost
- Department of Orthodontics, School of Dental Medicine, University at Buffalo, Buffalo, New York, United States
| |
Collapse
|
20
|
Deng J, Zhuang ZM, Xu X, Han B, Song GY, Xu TM. Mechanical force increases tooth movement and promotes remodeling of alveolar bone defects augmented with bovine bone mineral. Prog Orthod 2024; 25:2. [PMID: 38185724 PMCID: PMC10772054 DOI: 10.1186/s40510-023-00501-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 11/09/2023] [Indexed: 01/09/2024] Open
Abstract
BACKGROUND Orthodontic tooth movement (OTM) in a region containing alveolar bone defects with insufficient height and width is hard to achieve. Bovine bone mineral (Bio-Oss) is available to restore the alveolar defect; however, whether the region augmented with a bovine bone mineral graft (BG) is feasible for OTM, and the mechanisms by which macrophages remodel the BG material, is uncertain under the mechanical force induced by OTM. MATERIAL AND METHODS Rats were divided into three groups: OTM (O), OTM + BG material (O + B), and Control (C). First molars were extracted to create bone defects in the O and O + B groups with bovine bone mineral grafting in the latter. Second molars received OTM towards the bone defects in both groups. After 28 days, maxillae were analyzed using microfocus-computed tomography (μCT) and scanning-electron-microscopy (SEM); and macrophages (M1/M2) were stained using immunofluorescence. THP-1 cell-induced macrophages were cultured under mechanical force (F), BG material (B), or both (F + B). Phagocytosis-related signaling molecules (cAMP/PKA/RAC1) were analyzed, and conditioned media was analyzed for MMP-9 and cytokines (IL-1β, IL-4). RESULTS Our study demonstrated that alveolar defects grafted with BG materials are feasible for OTM, with significantly increased OTM distance, bone volume, and trabecular thickness in this region. SEM observation revealed that the grafts served as a scaffold for cells to migrate and remodel the BG materials in the defect during OTM. Moreover, the population of M2 macrophages increased markedly both in vivo and in cell culture, with enhanced phagocytosis via the cAMP/PKA/RAC1 pathway in response to mechanical force in combination with BG particles. By contrast, M1 macrophage populations were decreased under the same circumstances. In addition, M2 macrophage polarization was also indicated by elevated IL-4 levels, reduced IL-1β levels, and less active MMP-9 in cell culture. CONCLUSION This study explored the mechanisms of mechanical force-induced alveolar bone remodeling with bovine bone mineral grafts during OTM. The results might provide molecular insights into the related clinical problems of whether we can move teeth into the grafted materials; and how these materials become biologically remodeled and degraded under mechanical force.
Collapse
Affiliation(s)
- Jie Deng
- Department of Orthodontics, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory for Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health, 22 Zhongguancun South Avenue, Haidian District, Beijing, 100081, People's Republic of China
- Department of Orthodontics, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Nanjing University, No. 30 Zhongyang Road, Nanjing, 210008, People's Republic of China
| | - Zi-Meng Zhuang
- Department of Orthodontics, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory for Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health, 22 Zhongguancun South Avenue, Haidian District, Beijing, 100081, People's Republic of China
| | - Xiao Xu
- Department of Periodontology, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory for Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health, 22 Zhongguancun South Avenue, Haidian District, Beijing, 100081, People's Republic of China
| | - Bing Han
- Department of Orthodontics, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory for Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health, 22 Zhongguancun South Avenue, Haidian District, Beijing, 100081, People's Republic of China.
| | - Guang-Ying Song
- Department of Orthodontics, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory for Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health, 22 Zhongguancun South Avenue, Haidian District, Beijing, 100081, People's Republic of China.
| | - Tian-Min Xu
- Department of Orthodontics, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory for Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health, 22 Zhongguancun South Avenue, Haidian District, Beijing, 100081, People's Republic of China.
| |
Collapse
|
21
|
张 丹, 杨 春, 胥 鹏, 唐 娜, 肖 顺, 张 疆. [Experimental study of subcutaneous adipose-derived stem cells inhibiting orthodontic root resorption]. ZHONGGUO XIU FU CHONG JIAN WAI KE ZA ZHI = ZHONGGUO XIUFU CHONGJIAN WAIKE ZAZHI = CHINESE JOURNAL OF REPARATIVE AND RECONSTRUCTIVE SURGERY 2023; 37:1533-1540. [PMID: 38130198 PMCID: PMC10739662 DOI: 10.7507/1002-1892.202309030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/17/2023] [Indexed: 12/23/2023]
Abstract
Objective To investigate the effect of human subcutaneous adipose-derived stem cells (hADSCs) local transplantation on orthodontically induced root resorption (OIRR) and provide theoretical and experimental basis for the clinical application of hADSCs to inhibit OIRR. Methods Forty 8-week-old male Sprague Dawley rats were randomly divided into experimental group and control group, with 20 rats in each group, to establish the first molar mesial orthodontic tooth movement (OTM) model of rat right maxillary. The rats in the experimental group were injected with 25 μL of cell suspension containing 2.5×10 5 hADSCs on the 1st, 4th, 8th, and 12th day of modeling, while the rats in the control group were injected with 25 μL of PBS. The rat maxillary models were obtained before and after 7 and 14 days of force application, and 10 rats in each group were killed and sampled after 7 and 14 days of force application. The OTM distance was measured by stereomicroscope, the root morphology of the pressure side was observed by scanning electron microscope and the root resorption area ratio was measured. The root resorption and periodontal tissue remodeling of the pressure side were observed by HE staining and the root resorption index was calculated. The number of cementoclast and osteoclast in the periodontal tissue on the pressure side was counted by tartrate resistant acid phosphatase staining. Results The TOM distance of both groups increased with the extension of the force application time, and there was no significant difference ( P<0.05). There was no significant difference in OTM distance between the experimental group and the control group after 7 and 14 days of force application ( P>0.05). Scanning electron microscope observation showed that small and shallow scattered resorption lacunae were observed on the root surface of the experimental group and the control group after 7 days of force application, and there was no significant difference in the root resorption area ratio between the two groups ( P>0.05); after 14 days of application, the root resorption lacunae deepened and became larger in both groups, and the root resorption area ratio in the experimental group was significantly lower than that in the control group ( P<0.05). The range and depth of root absorption in the experimental group were smaller and shallower than those in the control group, and the root absorption index in the experimental group was significantly lower than that in the control group after 14 days of force application ( P<0.05). The number of cementoclast in the experimental group was significantly lower than that in the control group after 7 and 14 days of force application ( P<0.05); the number of osteoclasts in the experimental group was significantly lower than that in the control group after 14 days of force application ( P<0.05). Conclusion Local transplantation of hADSCs may reduce the area and depth of root resorption by reducing the number of cementoclasts and osteoclasts during OTM in rats, thereby inhibiting orthodontic-derived root resorption.
Collapse
Affiliation(s)
- 丹 张
- 遵义医科大学附属口腔医院正畸科一组(贵州遵义 563000)First Department of Orthodontics, Stomatology Hospital Affiliated to Zunyi Medical University, Zunyi Guizhou, 563000, P. R. China
| | - 春先 杨
- 遵义医科大学附属口腔医院正畸科一组(贵州遵义 563000)First Department of Orthodontics, Stomatology Hospital Affiliated to Zunyi Medical University, Zunyi Guizhou, 563000, P. R. China
| | - 鹏 胥
- 遵义医科大学附属口腔医院正畸科一组(贵州遵义 563000)First Department of Orthodontics, Stomatology Hospital Affiliated to Zunyi Medical University, Zunyi Guizhou, 563000, P. R. China
| | - 娜娜 唐
- 遵义医科大学附属口腔医院正畸科一组(贵州遵义 563000)First Department of Orthodontics, Stomatology Hospital Affiliated to Zunyi Medical University, Zunyi Guizhou, 563000, P. R. China
| | - 顺娥 肖
- 遵义医科大学附属口腔医院正畸科一组(贵州遵义 563000)First Department of Orthodontics, Stomatology Hospital Affiliated to Zunyi Medical University, Zunyi Guizhou, 563000, P. R. China
| | - 疆弢 张
- 遵义医科大学附属口腔医院正畸科一组(贵州遵义 563000)First Department of Orthodontics, Stomatology Hospital Affiliated to Zunyi Medical University, Zunyi Guizhou, 563000, P. R. China
| |
Collapse
|
22
|
Lin S, Marvidou AM, Novak R, Moreinos D, Abbott PV, Rotstein I. Pathogenesis of non-infection related inflammatory root resorption in permanent teeth: A narrative review. Int Endod J 2023; 56:1432-1445. [PMID: 37712904 DOI: 10.1111/iej.13976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 08/28/2023] [Accepted: 08/29/2023] [Indexed: 09/16/2023]
Abstract
BACKGROUND The mechanism of action of root resorption in a permanent tooth can be classified as infection-related (e.g., microbial infection) or non-infection-related (e.g., sterile damage). Infection induced root resorption occurs due to bacterial invasion. Non-infection-related root resorption stimulates the immune system through a different mechanism. OBJECTIVES The aim of this narrative review is to describe the pathophysiologic process of non-infection-related inflammatory processes involved in root resorption of permanent teeth. METHODS A literature search on root resorption was conducted using Scopus (PubMed and Medline) and Google Scholar databases to highlight the pathophysiology of bone and root resorption in non-infection-related situations. The search included key words covering the relevant category. It included in vitro and in vivo studies, systematic reviews, case series, reviews, and textbooks in English. Conference proceedings, lectures and letters to the editor were excluded. RESULTS Three types of root resorption are related to the non-infection mechanism of action, which includes surface resorption due to either trauma or excessive orthodontic forces, external replacement resorption and external cervical resorption. The triggers are usually damage associated molecular patterns and hypoxia conditions. During this phase macrophages and clastic cells act to eliminate the damaged tissue and bone, eventually enabling root resorption and bone repair as part of wound healing. DISCUSSION The resorption of the root occurs during the inflammatory phase of wound healing. In this phase, damaged tissues are recognized by macrophages and neutrophiles that secrete interlaukines such as TNF-α, IL-1, IL-6, IL-8. Together with the hypoxia condition that accelarates the secretion of growth factors, the repair of the damaged perioduntiom, including damaged bone, is initiated. If the precementum and cementoblast are injured, root resorption can occur. CONCLUSIONS Wound healing exhibits different patterns of action that involves immune stimulation in a bio-physiological activity, that occurs in the proper sequence, with overlapping phases. Two pathologic conditions, DAMPs and hypoxia, can activate the immune cells including clastic cells, eliminating damaged tissue and bone. Under certain conditions, root resorption occurs as a side effect.
Collapse
Affiliation(s)
- Shaul Lin
- The Israeli National Center for Trauma & Emergency Medicine Research, Gertner Institute, Tel Hashomer, Israel
- Department of Endodontics, Rambam Health Care Campus, Haifa, Israel
- The Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Athina M Marvidou
- Department of Endodontology, National and Kapodistrian University of Athens, Athens, Greece
| | - Rostislav Novak
- The Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
- Orthopedic Department, Orthopedic Oncology Unit, Rambam Health Care Campus, Haifa, Israel
| | - Daniel Moreinos
- Endodontic Department, Galilee Medical Center, Nahariya, Israel
| | - Paul Vincent Abbott
- UWA Dental School, The University of Western Australia, Western Australia, Nedlands, Australia
| | - Ilan Rotstein
- University of Southern California, California, Los Angeles, USA
| |
Collapse
|
23
|
Liu Q, Guo T, Dang W, Song Z, Wen Y, Luo H, Wang A. Correlation between salivary cytokine profiles and white spot lesions in adolescent patients receiving clear aligner orthodontic treatment. BMC Oral Health 2023; 23:857. [PMID: 37957648 PMCID: PMC10641999 DOI: 10.1186/s12903-023-03561-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 10/20/2023] [Indexed: 11/15/2023] Open
Abstract
BACKGROUND To explore the relationship between changes in salivary cytokine levels and the occurrence of white spot lesions in adolescents receiving clear aligner orthodontic treatment and investigate the predictive value of various factors for lesion occurrence. METHODS We retrospectively analyzed sixthy eight adolescent in the permanent dentition period, who received clear aligner orthodontics in our hospital were randomly divided into two groups according to the occurrence or aggravation of white spot lesions after treatment. The general condition of the oral cavity was analyzed, saliva was collected, and inflammation-related cytokines with varying transcription levels between groups were screened by transcriptome analysis. The expression levels of inflammatory cytokines in the saliva of the patients in the two groups were measured, and the risk factors for white spot lesions were screened by correlation analysis and binary logistic regression analysis. The value of the independent and combined application of risk factors for predicting the occurrence of white spot lesions in adolescent patients after invisible orthodontic treatment was analyzed by receiver operating characteristic (ROC) curve analysis. RESULTS Transcriptome and GO and KEGG pathway analyses showed that there were differences in the transcription levels of inflammatory cytokines such as CXCL1, CXCL2, CXCL8, CCL3, CCL4, IL-1β and IL-2 between groups. The levels of CXCL8, CCL3, CCL4, IL-1β and IL-2 in the saliva of patients with white spot lesions were significantly higher in patients after invisible orthodontic treatment (P < 0.05). Correlation analysis and binary logistic regression analysis showed that elevated levels of CXCL8, IL-1β and IL-2 were independent risk factors for the occurrence of white spot lesions (P < 0.05). CXCL8 had the highest independent predictive value for the occurrence of white spot lesions (AUC = 0.773, P < 0.05), and the combination of IL-1β and IL-2 was also of high value in predicting the occurrence of white spot lesions. CONCLUSION After invisible orthodontic treatment, the oral microenvironment, including inflammatory cytokine levels, in adolescent patients changes; in particular, the levels of inflammatory cytokines such as CXCLs and ILs change. CXCL8 expression is significantly associated with the occurrence of white spot lesions and is an important potential target for the prevention and treatment of white spot lesions in the future.
Collapse
Affiliation(s)
- Qian Liu
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Clinical Research Center for Oral Diseases, Department of Orthodontics, School of Stomatology, Air Force Medical University, Xi'an, China
| | - Tao Guo
- Department of Orthodontics, TaiKang Shanghai Bybo Dental Hospital, Shanghai, China
| | - Wei Dang
- Shaanxi Provincial Key Laboratory of Craniomaxillofacial Precision Medicine Research, Department of Prosthodontics, Stomatological Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Zhixin Song
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Clinical Research Center for Oral Diseases, Department of Orthodontics, School of Stomatology, Air Force Medical University, Xi'an, China
| | - Yi Wen
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Clinical Research Center for Oral Diseases, Department of Orthodontics, School of Stomatology, Air Force Medical University, Xi'an, China
| | - Houzhuo Luo
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Clinical Research Center for Oral Diseases, Department of Orthodontics, School of Stomatology, Air Force Medical University, Xi'an, China.
| | - Axian Wang
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Clinical Research Center for Oral Diseases, Department of Orthodontics, School of Stomatology, Air Force Medical University, Xi'an, China.
| |
Collapse
|
24
|
Wang H, Li T, Jiang Y, Chen S, Zou S, Bonewald LF, Duan P. Force-Loaded Cementocytes Regulate Osteoclastogenesis via S1P/S1PR1/Rac1 Axis. J Dent Res 2023; 102:1376-1386. [PMID: 37735908 DOI: 10.1177/00220345231195765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/23/2023] Open
Abstract
Orthodontically induced inflammatory root resorption (OIIRR) is the major iatrogenic complication of orthodontic treatment, seriously endangering tooth longevity and impairing masticatory function. Osteoclasts are thought to be the primary effector cells that initiate the pathological process of OIIRR; however, the cellular and molecular mechanisms responsible for OIIRR remain unclear. Our previous studies revealed that cementocytes, the major mechanically responsive cells in cementum, respond to compressive stress to activate and influence osteoclasts locally. For this study, we hypothesized that the sphingosine-1-phosphate (S1P) signaling pathway, a key mechanotransduction pathway in cementocytes, may regulate osteoclasts under the different magnitudes of either physiologic compressive stress that causes tooth movement or pathologic stress that causes OIIRR. Here, we show a biphasic effect of higher compression force stimulating the synthesis and secretion of S1P, whereas lower compression force reduced signaling in IDG-CM6 cementocytes. Using conditioned media from force-loaded cementocytes, we verified the cell-to-cell communication between cementocytes and osteoclasts and show that selective knockdown of S1PR1 and Rac1 plays a role in cementocyte-driven osteoclastogenesis via the S1P/S1PR1/Rac1 axis. Most importantly, the use of inhibitors of this axis reduced or prevented the pathological process of OIIRR. The intercellular communication mechanisms between cementocytes and osteoclasts may serve as a promising therapeutic target for OIIRR.
Collapse
Affiliation(s)
- H Wang
- State Key Laboratory of Oral Diseases and National Center for Stomatology and National Clinical Research Center for Oral Diseases;Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - T Li
- State Key Laboratory of Oral Diseases and National Center for Stomatology and National Clinical Research Center for Oral Diseases;Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
- Department of Orthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology; Shanghai Research Institute of Stomatology
| | - Y Jiang
- State Key Laboratory of Oral Diseases and National Center for Stomatology and National Clinical Research Center for Oral Diseases;Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - S Chen
- State Key Laboratory of Oral Diseases and National Center for Stomatology and National Clinical Research Center for Oral Diseases;Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - S Zou
- State Key Laboratory of Oral Diseases and National Center for Stomatology and National Clinical Research Center for Oral Diseases;Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - L F Bonewald
- Departments of Anatomy, Cell Biology & Physiology and Orthopaedic Surgery, Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN, USA
| | - P Duan
- State Key Laboratory of Oral Diseases and National Center for Stomatology and National Clinical Research Center for Oral Diseases;Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
25
|
Nakai Y, Praneetpong N, Ono W, Ono N. Mechanisms of Osteoclastogenesis in Orthodontic Tooth Movement and Orthodontically Induced Tooth Root Resorption. J Bone Metab 2023; 30:297-310. [PMID: 38073263 PMCID: PMC10721376 DOI: 10.11005/jbm.2023.30.4.297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/30/2023] [Accepted: 10/04/2023] [Indexed: 12/17/2023] Open
Abstract
Orthodontic tooth movement (OTM) is achieved by the simultaneous activation of bone resorption by osteoclasts and bone formation by osteoblasts. When orthodontic forces are applied, osteoclast-mediated bone resorption occurs in the alveolar bone on the compression side, creating space for tooth movement. Therefore, controlling osteoclastogenesis is the fundamental tenet of orthodontic treatment. Orthodontic forces are sensed by osteoblast lineage cells such as periodontal ligament (PDL) cells and osteocytes. Of several cytokines produced by these cells, the most important cytokine promoting osteoclastogenesis is the receptor activator of nuclear factor-κB ligand (RANKL), which is mainly supplied by osteoblasts. Additionally, osteocytes embedded within the bone matrix, T lymphocytes in inflammatory conditions, and PDL cells produce RANKL. Besides RANKL, inflammatory cytokines, such as interleukin-1, tumor necrosis factor-α, and prostaglandin E2 promote osteoclastogenesis under OTM. On the downside, excessive osteoclastogenesis activation triggers orthodontically-induced external root resorption (ERR) through pro-osteoclastic inflammatory cytokines. Therefore, understanding the mechanisms of osteoclastogenesis during OTM is essential in reducing the adverse effects of orthodontic treatment. Here, we review the current concepts of the mechanisms underlying osteoclastogenesis in OTM and orthodontically induced ERR.
Collapse
Affiliation(s)
- Yuta Nakai
- University of Texas Health Science Center at Houston School of Dentistry, Houston, TX, USA
| | - Natnicha Praneetpong
- University of Texas Health Science Center at Houston School of Dentistry, Houston, TX, USA
| | - Wanida Ono
- University of Texas Health Science Center at Houston School of Dentistry, Houston, TX, USA
| | - Noriaki Ono
- University of Texas Health Science Center at Houston School of Dentistry, Houston, TX, USA
| |
Collapse
|
26
|
Yang Y, Liu Q, Lu X, Ma J, Mei D, Chen Q, Zhao T, Chen J. Sanhuang decoction inhibits autophagy of periodontal ligament fibroblasts during orthodontic tooth movement by activating PI3K-Akt-mTOR pathway. Biomed Pharmacother 2023; 166:115391. [PMID: 37677964 DOI: 10.1016/j.biopha.2023.115391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 08/08/2023] [Accepted: 08/26/2023] [Indexed: 09/09/2023] Open
Abstract
BACKGROUND Orthodontic tooth movement (OTM) is a typical treatment that corrects malaligned teeth by applying mechanical forces. However, mechanical overload often leads to damage of PDL fibroblasts. Sanhuang decoction (SHD) is commonly used to inhibit inflammation and oxidative stress. However, the mechanism of SHD for OTM treatment is still unclear. Therefore, this study attempts to explore the underlying mechanism through relevant experiments. METHODS In the present paper, we established a OTM rat model and further explored the effects of SHD on the PDL of OTM rats. The OTM model and effects of SHD were determined by micro-CT, and the PDL pathological changes, PDL width and capillaries in PDL were observed by H&E staining. Subsequently, the ROS levels in PDL was determined using flow cytometry analysis with DCFH-DA staining, MDA contents and antioxidative enzymes activities were also measured using commercial kits. Furthermore, the autophagy of PDL fibroblasts and proteins in the PI3K/Akt/mTOR pathway were detected using immunoluminescence, qPCR and western blotting assays. RESULTS The results showed SHD treatment can alleviate the decrease of PDL cells and capillaries induced by OTM, and improve the MDA and ROS levels in PDL, as well as enhance the activities of SOD and GSH-Px. Further experiments indicated SHD decreased the autophagy levels of PDL fibroblasts via promoting the phosphorylation levels of mTOR, PI3K and Akt proteins. CONCLUSION SHD inhibited autophagy of periodontal ligament fibroblasts during orthodontic tooth movement by inhibiting oxidative stress via activating PI3K-Akt-mTOR pathway. Our present findings suggested SHD treatment would be useful for management of the possible disorders occurs in orthodontic tooth movement therapy.
Collapse
Affiliation(s)
- Yiqiang Yang
- Department of Orthodontics, Stomatological Hospital, General Hospital of Ningxia Medical University, Yinchuan 750004, PR China
| | - Qi Liu
- Department of Prosthodontics, Yinchuan Stomatological Hospital, Yinchuan 750004, PR China
| | - Xun Lu
- Department of Orthodontics, Stomatological Hospital, General Hospital of Ningxia Medical University, Yinchuan 750004, PR China
| | - Jing Ma
- Department of Orthodontics, Stomatological Hospital, General Hospital of Ningxia Medical University, Yinchuan 750004, PR China
| | - Donglan Mei
- Department of Orthodontics, Stomatological Hospital, General Hospital of Ningxia Medical University, Yinchuan 750004, PR China
| | - Qi Chen
- Department of Orthodontics, Stomatological Hospital, General Hospital of Ningxia Medical University, Yinchuan 750004, PR China
| | - Tian Zhao
- Department of Orthodontics, Stomatological Hospital, General Hospital of Ningxia Medical University, Yinchuan 750004, PR China
| | - Jia Chen
- Department of Orthodontics, Stomatological Hospital, General Hospital of Ningxia Medical University, Yinchuan 750004, PR China.
| |
Collapse
|
27
|
Wu Y, Jing Z, Deng D, Yan J, Liu M, Li L, Zuo Y, Wu W, Hu Q, Xie Y. Dkk-1-TNF-α crosstalk regulates MC3T3E1 pre-osteoblast proliferation and differentiation under mechanical stress through the ERK signaling pathway. Mol Cell Biochem 2023; 478:2191-2206. [PMID: 36640256 DOI: 10.1007/s11010-022-04645-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 12/15/2022] [Indexed: 01/15/2023]
Abstract
The study aims to explore the role of the ERK signaling pathway in the crosstalk between Dkk-1 and TNF-α in MC3T3E1 pre-osteoblasts under cyclic tensile/compressive stress. A forced four-point bending system was used to apply cyclic uniaxial tensile/compressive strain (2000 μ, 0.5 Hz) to MC3T3E1 cells. Dkk-1 and TNF-α expression were upregulated in MC3T3E1 cells under compressive strain. Cell proliferation, the cell cycle, osteogenesis-related gene (Wnt5a, Runx2, Osterix) expression, β-catenin expression, and the p-ERK/ERK ratio were significantly enhanced, whereas apoptosis, the RANKL/OPG ratio, and TNF-α expression were significantly attenuated, by Dkk-1 silencing. Dkk-1 expression increased and the effects of Dkk-1 silencing were reversed when exogenous TNF-α was added. Mechanically, TNF-α crosstalked with Dkk-1 through ERK signaling in MC3T3E1 cells. ERK signaling blockade impaired Dkk-1-induced TNF-α expression and TNF-α-mediated Dkk-1 expression. Dkk-1 and TNF-α crosstalked, partially through ERK signaling, in MC3T3E1 cells under compressive/tensile strain, synergistically modulating various biological behaviors of the cells. These findings not only provide mechanical insight into the cellular events and molecular regulation of orthodontic tooth movement (OTM), but also aid the development of novel strategies to accelerate OTM.
Collapse
Affiliation(s)
- Yeke Wu
- Department of Stomatology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China
| | - Zheng Jing
- College of Stomatology, Chongqing Medical University, Chongqing, People's Republic of China
| | - Disi Deng
- Department of Gynaecology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China
| | - Jin Yan
- Department of Gynaecology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China
| | - Min Liu
- Department of Gynaecology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China
| | - Li Li
- Department of Radiology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China
| | - Yuling Zuo
- Department of Stomatology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China
| | - Wenbin Wu
- Department of Geriatrics, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China
| | - Qiongying Hu
- Department of Laboratory Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, #39 Shierqiao Rd, Chengdu, 610072, People's Republic of China.
| | - Yunfei Xie
- Department of Nuclear Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, People's Republic of China.
| |
Collapse
|
28
|
Gao ZR, Zhou YH, Zhao YQ, Zhao J, Ye Q, Zhang SH, Feng Y, Tan L, Liu Q, Chen Y, Ouyang ZY, Hu J, Dusenge MA, Feng YZ, Guo Y. Kangfuxin Accelerates Extraction Socket Healing by Promoting Angiogenesis Via Upregulation of CCL2 in Stem Cells. J Bone Miner Res 2023; 38:1208-1221. [PMID: 37221128 DOI: 10.1002/jbmr.4860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 05/10/2023] [Accepted: 05/18/2023] [Indexed: 05/25/2023]
Abstract
Kangfuxin (KFX) shows potential in wound healing, but its role in socket healing is unclear. This research finds increased bone mass, mineralization, and collagen deposition in KFX-treated mice. Mouse bone marrow mesenchymal stem cells, human periodontal ligament stem cells (hPDLSCs), and human dental pulp stem cells (hDPSCs) are treated with KFX under osteogenic induction. RNA-sequencing reveals upregulated chemokine-related genes, with a threefold increase in chemokine (C-C motif) ligand 2 (Ccl2). The conditioned medium (CM) of hPDLSCs and hDPSCs treated with KFX promotes endothelial cell migration and angiogenesis. Ccl2 knockdown abolishes CM-induced endothelial cell migration and angiogenesis, which can be reversed by recombinant CCL2 treatment. KFX-treated mice showed increased vasculature. In conclusion, KFX increases the expression of CCL2 in stem cells, promoting bone formation and mineralization in the extraction socket by inducing endothelial cell angiogenesis. © 2023 American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Zheng-Rong Gao
- Department of Stomatology, the Second Xiangya Hospital, Central South University, Changsha, China
| | - Ying-Hui Zhou
- Department of Stomatology, the Second Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Ya-Qiong Zhao
- Department of Stomatology, the Second Xiangya Hospital, Central South University, Changsha, China
| | - Jie Zhao
- Department of Stomatology, the Second Xiangya Hospital, Central South University, Changsha, China
| | - Qin Ye
- Department of Stomatology, the Second Xiangya Hospital, Central South University, Changsha, China
| | - Shao-Hui Zhang
- Department of Stomatology, the Second Xiangya Hospital, Central South University, Changsha, China
| | - Yao Feng
- Department of Stomatology, the Second Xiangya Hospital, Central South University, Changsha, China
| | - Li Tan
- Department of Stomatology, the Second Xiangya Hospital, Central South University, Changsha, China
| | - Qiong Liu
- Department of Stomatology, the Second Xiangya Hospital, Central South University, Changsha, China
| | - Yun Chen
- Department of Stomatology, the Second Xiangya Hospital, Central South University, Changsha, China
| | - Ze-Yue Ouyang
- Department of Stomatology, the Second Xiangya Hospital, Central South University, Changsha, China
| | - Jing Hu
- Department of Stomatology, the Second Xiangya Hospital, Central South University, Changsha, China
| | - Marie Aimee Dusenge
- Department of Stomatology, the Second Xiangya Hospital, Central South University, Changsha, China
| | - Yun-Zhi Feng
- Department of Stomatology, the Second Xiangya Hospital, Central South University, Changsha, China
| | - Yue Guo
- Department of Stomatology, the Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
29
|
Subramanian M, Selvaraj KK, Jagannathan R, Rajendran S, Rajendran D, Madapusi BT. Potential Uses of Adhatoda Vasica in Orthodontics. JOURNAL OF PHARMACY AND BIOALLIED SCIENCES 2023; 15:S40-S45. [PMID: 37654366 PMCID: PMC10466604 DOI: 10.4103/jpbs.jpbs_74_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/06/2023] [Accepted: 02/08/2023] [Indexed: 09/02/2023] Open
Abstract
Plaque control, pain control, and modulation of inflammatory mediators to accelerate or stabilize tooth movements are hot issues in orthodontics. The recent advent of phytochemicals as biological mediators has opened new vistas in the aforementioned areas of orthodontics. Adhatoda vasica has caught the attention of investigators due to multiple properties related to orthodontics. This study addresses the potential areas of use of A. vasica in orthodontics, which provide ideas for further investigations. A. vasica possesses antibacterial activity, antifungal activity, anti-oxidant effect, anti-inflammatory activity, analgesic effect, osteogenic, and osteoclastic activities. A. vasica has huge potential in orthodontics, whereas all these vistas need careful and methodical testing before use in clinical orthodontics. In the future, investigators can focus on these aspects of the use of A. vasica to develop products.
Collapse
Affiliation(s)
- Murukesan Subramanian
- Department of Orthodontics, Sree Balaji Dental College and Hospital, Chennai, Tamil Nadu, India
| | - Kishore Kumar Selvaraj
- Department of Orthodontics, Sree Balaji Dental College and Hospital, Chennai, Tamil Nadu, India
| | - Raghunathan Jagannathan
- Department of Periodontology, Tagore Dental College and Hospital, Chennai, Tamil Nadu, India
| | | | - Deepika Rajendran
- Consultant Endodontist, Craniofacial Clinic (P) Ltd, Chennai, Tamil Nadu, India
| | | |
Collapse
|
30
|
Lösch L, Stemmler A, Fischer A, Steinmetz J, Schuldt L, Hennig CL, Symmank J, Jacobs C. GDF15 Promotes the Osteogenic Cell Fate of Periodontal Ligament Fibroblasts, thus Affecting Their Mechanobiological Response. Int J Mol Sci 2023; 24:10011. [PMID: 37373159 DOI: 10.3390/ijms241210011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/05/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
Periodontal ligament fibroblasts (PdLFs) exert important functions in oral tissue and bone remodeling following mechanical forces, which are specifically applied during orthodontic tooth movement (OTM). Located between the teeth and the alveolar bone, mechanical stress activates the mechanomodulatory functions of PdLFs including regulating local inflammation and activating further bone-remodeling cells. Previous studies suggested growth differentiation factor 15 (GDF15) as an important pro-inflammatory regulator during the PdLF mechanoresponse. GDF15 exerts its effects through both intracrine signaling and receptor binding, possibly even in an autocrine manner. The extent to which PdLFs are susceptible to extracellular GDF15 has not yet been investigated. Thus, our study aims to examine the influence of GDF15 exposure on the cellular properties of PdLFs and their mechanoresponse, which seems particularly relevant regarding disease- and aging-associated elevated GDF15 serum levels. Therefore, in addition to investigating potential GDF15 receptors, we analyzed its impact on the proliferation, survival, senescence, and differentiation of human PdLFs, demonstrating a pro-osteogenic effect upon long-term stimulation. Furthermore, we observed altered force-related inflammation and impaired osteoclast differentiation. Overall, our data suggest a major impact of extracellular GDF15 on PdLF differentiation and their mechanoresponse.
Collapse
Affiliation(s)
- Lukas Lösch
- Department of Orthodontics, University Hospital Jena, Leutragraben 3, 07743 Jena, Germany
| | - Albert Stemmler
- Department of Orthodontics, University Hospital Jena, Leutragraben 3, 07743 Jena, Germany
| | - Adrian Fischer
- Department of Orthodontics, University Hospital Jena, Leutragraben 3, 07743 Jena, Germany
| | - Julia Steinmetz
- Department of Orthodontics, University Hospital Jena, Leutragraben 3, 07743 Jena, Germany
| | - Lisa Schuldt
- Department of Orthodontics, University Hospital Jena, Leutragraben 3, 07743 Jena, Germany
| | | | - Judit Symmank
- Department of Orthodontics, University Hospital Jena, Leutragraben 3, 07743 Jena, Germany
| | - Collin Jacobs
- Department of Orthodontics, University Hospital Jena, Leutragraben 3, 07743 Jena, Germany
| |
Collapse
|
31
|
Adly MS, Adly AS, Younes R, El Helou M, Panayotov I, Cuisinier F, Carayon D, Estephan E. Prevention and repair of orthodontically induced root resorption using ultrasound: a scoping review. Expert Rev Med Devices 2023. [PMID: 37294872 DOI: 10.1080/17434440.2023.2223965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 06/06/2023] [Indexed: 06/11/2023]
Abstract
INTRODUCTION This review summarizes the available recent literature on different mechanisms and parameters of pulsed ultrasound (US) that have been used during orthodontic treatments to prevent and repair root resorption. AREAS COVERED A literature search was conducted between January (2002) and September (2022) in the following databases: PubMed, Google-Scholar, Embase and The-Cochrane-Library. After exclusions, a total of 19 papers were included in the present review. The most used US parameters with positive outcomes were frequency of 1.5 MHz, pulse repetition frequency of 1000 Hz, output intensity of 30 mW/cm2, duration of application of 20 mins and total number sessions were 14 with a repetition interval of 1day. The suggested mechanisms induced by US were alteration of cementoblasts, osteoblasts, osteoclasts, alkaline-phosphatase (ALP), runt-related-gene-2 (Runx2), osteoprotegerin (OPG), type-I-collagen (Col-I), C-telopeptide-type-I-collagen (CTX-I), hepatocyte-growth-factor (HGF), bone morphogenetic protein-2 (BMP-2), cyclooxygenase-2 (Cox-2), calcium (Ca2+), receptor activator of nuclear factor-kappa-B ligand (RANKL), and receptor activator of nuclear factor-kappa-B (RANK). EXPERT OPINION Understanding mechanisms and deciding which parameters of US that can be used during orthodontic treatment to prevent and repair root resorption is a great challenge. This work summarizes all the available data that can aid this process and suggest that US is an effective noninvasive method not only in prevention and repairing of orthodontic induced root resorption but also in accelerating teeth movement.
Collapse
Affiliation(s)
| | | | - Richard Younes
- Institute for Neurosciences of Montpellier (INM), Univ Montpellier, Inserm, Montpellier, France
- Neuroscience Research Center, Faculty of Medical Sciences, Lebanese University, Beirut, Lebanon
| | - Marwan El Helou
- LBN, Univ Montpellier, Montpellier, France
- CHU Clermont-Ferrand, Service d'Odontologie, Clermont-Ferrand, France
| | - Ivan Panayotov
- LBN, Univ Montpellier, Montpellier, France
- CSERD, CHU Montpellier, Montpellier, France
- UFR Odontologie, Univ. Montpellier, Montpellier, France
| | - Frederic Cuisinier
- LBN, Univ Montpellier, Montpellier, France
- CSERD, CHU Montpellier, Montpellier, France
- UFR Odontologie, Univ. Montpellier, Montpellier, France
| | - Delphine Carayon
- LBN, Univ Montpellier, Montpellier, France
- CSERD, CHU Montpellier, Montpellier, France
- UFR Odontologie, Univ. Montpellier, Montpellier, France
| | - Elias Estephan
- LBN, Univ Montpellier, Montpellier, France
- Neuroscience Research Center, Faculty of Medical Sciences, Lebanese University, Beirut, Lebanon
| |
Collapse
|
32
|
Boyde A, Mills D, Abba AM, Ezquiaga MC. Fleas and lesions in armadillo osteoderms. J Anat 2023; 242:1029-1036. [PMID: 36862639 PMCID: PMC10184550 DOI: 10.1111/joa.13842] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 01/19/2023] [Accepted: 01/20/2023] [Indexed: 03/03/2023] Open
Abstract
Armadillos are bitten by several species of flea. Females of the genus Tunga penetrate the epidermis and when in place are fertilised by males, after which the abdomen swells enormously to form a 'neosome'. Within the penetrans group, T. perforans, makes lesions that perforate the osteoderms within the integument to form ~3 mm diameter cavities occupied by a discoid neosome. We examined these lesions in carapace material from animals which had died in the wild to see whether we could recruit evidence as to how they may be generated, either by the insect or by the host. We studied one species without such lesions, the nine-banded armadillo Dasypus novemcinctus, and two species with, the greater hairy armadillo Chaetophractus villosus and the southern three-banded armadillo Tolypeutes matacus, both showing the characteristic 'flea bite' holes in the external surfaces of the osteoderms. Samples were studied by three-dimensional backscattered electron mode scanning electron microscopy and X-ray microtomography. Both methods showed resorption pit complexes in the external surfaces of the osteoderms characteristic of those made by osteoclasts in active bone resorption. Lesions involved both the syndesmoses (sutures) between adjacent bones and the central regions of the osteoderms. Many lesions showed extensive repair by infilling with new bone. We conclude that the T. perforans neosome creates a local host response which causes bone resorption, creating the space in which it can grow.
Collapse
Affiliation(s)
- Alan Boyde
- Dental Physical Sciences, Barts' and The London School of Medicine and DentistryQueen Mary University of LondonLondonUK
| | - David Mills
- Dental Physical Sciences, Barts' and The London School of Medicine and DentistryQueen Mary University of LondonLondonUK
| | - Agustin Manuel Abba
- Centro de Estudios Parasitológicos y de Vectores (CEPAVE) UNLP‐CONICETLa PlataArgentina
| | | |
Collapse
|
33
|
Chandorikar H, Bhad WA. Impact of micro-osteoperforations on root resorption and alveolar bone in en-masse retraction in young adults: A CBCT randomized controlled clinical trial. Int Orthod 2023; 21:100714. [PMID: 36502787 DOI: 10.1016/j.ortho.2022.100714] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 10/03/2022] [Accepted: 10/09/2022] [Indexed: 12/13/2022]
Abstract
BACKGROUND Micro-osteoperforations (MOPs) as a surgical technique is increasingly being used as a method to enhance orthodontic tooth movement. However, its iatrogenic effects on root and alveolar bone morphology have been less studied. OBJECTIVE This parallel-groups single-centered trial aimed to assess the impact of micro-osteoperforations (MOPs) on orthodontically induced inflammatory root resorption (OIIRR) and alveolar bone during en-masse retraction stage of maxillary and mandibular anterior teeth. METHODS Fifty-two patients (mean age 21.35±2.2 years) with Class I bi-dentoalveolar protrusion, requiring all 1st premolar extractions and miniscrews for anchorage, were randomly distributed into two groups (n=26 each): MOP group treated using single application of MOP's and control group treated with routine sliding mechanics, for en-masse retraction. The primary outcomes were assessed using CBCT-based measurements. RESULTS Anterior teeth in MOP group showed increased mean OIIRR than control group, though the difference was statistically non-significant [maxillary anteriors, MOP group - OIIRR=0.78±0.29mm and control group OIIRR=0.73±0.36mm; mandibular anteriors, MOP group - OIIRR=0.733±0.20mm and control group OIIRR=0.70±0.24mm]. Levander and Malmgren's Index for objective scoring of OIIRR revealed only mild resorption with most teeth in both the groups (47% and 51%, respectively). Lateral incisors showed highest OIIRR followed by central incisors and canines in both groups. Lingual side bone thickness and height decreased significantly, however, the differences between the two groups were non-significant (P>0.05). CONCLUSION Within the settings of the current RCT, en-masse retraction when combined with single application of micro-osteoperforations did not pose an increased risk of root resorption or alveolar bone changes compared to routine sliding mechanics.
Collapse
Affiliation(s)
| | - Wasundhara A Bhad
- Government Dental College and Hospital, Department of Orthodontics, Nagpur, India
| |
Collapse
|
34
|
Meng Y, Zhao D, Yang X, Li Y, Liu B, Zhang Z, Cui S, Wei F. Near-Infrared Ratiometric Hemicyanine-Based pH Fluorescence Probe with Bone Targetability for Monitoring Bone Resorption. Anal Chem 2023; 95:3736-3745. [PMID: 36746762 DOI: 10.1021/acs.analchem.2c04786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Accurate detection of bone resorption is extremely important in the orthodontic treatment process as it can provide a basis for clinical treatment strategies. Recently, pH-responsive fluorescence probes have received tremendous attention in bone resorption monitoring owing to their high sensitivity, good specificity, and in situ and real-time detection capabilities, but there are still some shortcomings like the increase in the risk of osteonecrosis of the jaw by use of bisphosphonate as the bone-targeting moiety and the insufficient monitoring accuracy due to susceptibility to interference. Herein, we designed and synthesized a near-infrared ratiometric hemicyanine-based pH fluorescence probe (Hcy-Asp6) with fluorescence-imaging and pH-determining capabilities, and bone targetability for more reliably and safely monitoring the bone resorption in orthodontic treatment. In vitro optical performance tests of Hcy-Asp6 revealed that the probe had high sensitivity, excellent photostability, reversibility, and strong resistance to interference, and the probe suggested excellent bone-binding ability and biocompatibility in the bone-targeting evaluation and the cytotoxicity test. Furthermore, in vitro and in vivo bone resorption monitoring assays demonstrated that this probe can detect bone resorption by fluorescence imaging and quantitative monitoring of pH associated with the bone resorption. Thus, the results indicated that this probe possessing bone targetability and accurate bone resorption-monitoring capability has an extraordinarily great clinical potential to be employed for real-time monitoring of bone resorption in orthodontic treatment and could also serve as a reference in bone resorption monitoring for other bone resorption-related diseases.
Collapse
Affiliation(s)
- Yiling Meng
- Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, No.44-1 Wenhua Road West, Jinan 250012, Shandong, China.,The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, China
| | - Delu Zhao
- Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, No.44-1 Wenhua Road West, Jinan 250012, Shandong, China
| | - Xingye Yang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (MOE), School of Pharmacy, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, China
| | - Yixuan Li
- Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, No.44-1 Wenhua Road West, Jinan 250012, Shandong, China
| | - Bohui Liu
- Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, No.44-1 Wenhua Road West, Jinan 250012, Shandong, China
| | - Zijie Zhang
- Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, No.44-1 Wenhua Road West, Jinan 250012, Shandong, China
| | - Shuyue Cui
- Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, No.44-1 Wenhua Road West, Jinan 250012, Shandong, China
| | - Fulan Wei
- Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, No.44-1 Wenhua Road West, Jinan 250012, Shandong, China
| |
Collapse
|
35
|
Meng B, Yang B, Qu Y, Liu Y, Wu D, Fu C, He Y, Chen X, Liu C, Kou X, Cao Y. Dual Role of Interleukin-20 in Different Stages of Osteoclast Differentiation and Its Osteoimmune Regulation during Alveolar Bone Remodeling. Int J Mol Sci 2023; 24:ijms24043810. [PMID: 36835229 PMCID: PMC9961846 DOI: 10.3390/ijms24043810] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/06/2023] [Accepted: 02/09/2023] [Indexed: 02/17/2023] Open
Abstract
Osteoimmunology mediators are critical to balance osteoblastogenesis and osteoclastogenesis to maintain bone homeostasis. A lot of the osteoimmunology mediators are regulated by interleukin-20 (IL-20). However, little is known about the role of IL-20 in bone remodeling. Here, we showed that IL-20 expression was correlated with osteoclast (OC) activity in remodeled alveolar bone during orthodontic tooth movement (OTM). Ovariectomize (OVX) in rats promoted OC activity and enhanced IL-20 expression, while blocking OC inhibited IL-20 expression in osteoclasts. In vitro, IL-20 treatment promoted survival, inhibited apoptosis of the preosteoclast at the early stages of osteoclast differentiation, and boosted the formation of osteoclasts and their bone resorption function at the late stages. More importantly, anti-IL-20 antibody treatment blocked IL-20-induced osteoclastogenesis and the subsequent bone resorption function. Mechanistically, we showed that IL-20 synergistically acts with RANKL to activate the NF-κB signaling pathway to promote the expression of c-Fos and NFATc1 to promote osteoclastogenesis. Moreover, we found that local injection of IL-20 or anti-IL-20 antibody enhanced osteoclast activity and accelerated OTM in rats, while blocking IL-20 reversed this phenomenon. This study revealed a previously unknown role of IL-20 in regulating alveolar bone remodeling and implies the application of IL-20 to accelerated OTM.
Collapse
Affiliation(s)
- Bowen Meng
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
- South China Center of Craniofacial Stem Cell Research, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
| | - Benyi Yang
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
- South China Center of Craniofacial Stem Cell Research, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
| | - Yan Qu
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
- South China Center of Craniofacial Stem Cell Research, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
| | - Yuanbo Liu
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
- South China Center of Craniofacial Stem Cell Research, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
| | - Dongle Wu
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
- South China Center of Craniofacial Stem Cell Research, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
| | - Chaoran Fu
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
- South China Center of Craniofacial Stem Cell Research, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
| | - Yifan He
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
- South China Center of Craniofacial Stem Cell Research, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
| | - Xi Chen
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
- South China Center of Craniofacial Stem Cell Research, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
| | - Chufeng Liu
- Department of Orthodontics, Stomatological Hospital, Southern Medical University, Guangzhou 510260, China
| | - Xiaoxing Kou
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
- South China Center of Craniofacial Stem Cell Research, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
- Correspondence: (X.K.); (Y.C.)
| | - Yang Cao
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
- South China Center of Craniofacial Stem Cell Research, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
- Correspondence: (X.K.); (Y.C.)
| |
Collapse
|
36
|
Wang Y, Zhang H, Wu S, Wan W, Kang X, Gao B, Shi H, Zhao S, Niu L, Zou R. Substrate Stiffness Regulates the Proliferation and Apoptosis of Periodontal Ligament Cells through Integrin-Linked Kinase ILK. ACS Biomater Sci Eng 2023; 9:662-670. [PMID: 36732940 DOI: 10.1021/acsbiomaterials.2c00925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The hallmark of orthodontic tooth movement (OTM) is time-consuming during clinical treatments. The acceleration of OTM through modulating proliferation and apoptosis of periodontal ligament cells (PDLCs) possesses the potential application in clinical treatments. Here, we established an in vitro model with a graded increase in substrate stiffness to investigate the underlying mechanism of proliferation and apoptosis of PDLCs. The role of the integrin-linked kinase (ILK) in response to substrate stiffness was investigated by the depletion model of PDLCs. We found that the proliferation and apoptosis of PDLCs show a stiffness-dependent property with stiffer substrates favoring increased bias at the transcript level. Depleting integrin-linked kinase diluted the correlation between PDLCs behaviors and substrate stiffness. Our results suggest that ILK plays a significant role in modulating PDLC proliferation and apoptosis and can serve as a potential target for accelerating OTM.
Collapse
Affiliation(s)
- Yijie Wang
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an 710004, China.,Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xi'an Jiaotong University, Xi'an 710004, China.,College of Stomatology, Xi'an Jiaotong University, Xi'an 710004, China
| | - Hui Zhang
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an 710004, China.,Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xi'an Jiaotong University, Xi'an 710004, China.,College of Stomatology, Xi'an Jiaotong University, Xi'an 710004, China.,Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, China
| | - Shiyang Wu
- College of Stomatology, Xi'an Jiaotong University, Xi'an 710004, China
| | - Wanting Wan
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an 710004, China.,Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xi'an Jiaotong University, Xi'an 710004, China.,College of Stomatology, Xi'an Jiaotong University, Xi'an 710004, China
| | - Xueping Kang
- College of Stomatology, Xi'an Jiaotong University, Xi'an 710004, China
| | - Bei Gao
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an 710004, China.,Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xi'an Jiaotong University, Xi'an 710004, China.,College of Stomatology, Xi'an Jiaotong University, Xi'an 710004, China
| | - Haoyu Shi
- Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
| | - Shuyang Zhao
- Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
| | - Lin Niu
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an 710004, China.,Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xi'an Jiaotong University, Xi'an 710004, China.,College of Stomatology, Xi'an Jiaotong University, Xi'an 710004, China
| | - Rui Zou
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an 710004, China.,Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xi'an Jiaotong University, Xi'an 710004, China.,College of Stomatology, Xi'an Jiaotong University, Xi'an 710004, China
| |
Collapse
|
37
|
Wang Y, Groeger S, Yong J, Ruf S. Orthodontic Compression Enhances Macrophage M2 Polarization via Histone H3 Hyperacetylation. Int J Mol Sci 2023; 24:ijms24043117. [PMID: 36834533 PMCID: PMC9958841 DOI: 10.3390/ijms24043117] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/27/2023] [Accepted: 01/31/2023] [Indexed: 02/08/2023] Open
Abstract
Orthodontic tooth movement is a complex periodontal remodeling process triggered by compression that involves sterile inflammation and immune responses. Macrophages are mechanically sensitive immune cells, but their role in orthodontic tooth movement is unclear. Here, we hypothesize that orthodontic force can activate macrophages, and their activation may be associated with orthodontic root resorption. After force-loading and/or adiponectin application, the migration function of macrophages was tested via scratch assay, and Nos2, Il1b, Arg1, Il10, ApoE, and Saa3 expression levels were detected using qRT-PCR. Furthermore, H3 histone acetylation was measured using an acetylation detection kit. The specific inhibitor of H3 histone, I-BET762, was deployed to observe its effect on macrophages. In addition, cementoblasts were treated with macrophage-conditioned medium or compression force, and OPG production and cellular migration were measured. We further detected Piezo1 expression in cementoblasts via qRT-PCR and Western-blot, and its effect on the force-induced impairment of cementoblastic functions was also analyzed. Compressive force significantly inhibited macrophage migration. Nos2 was up-regulated 6 h after force-loading. Il1b, Arg1, Il10, Saa3, and ApoE increased after 24 h. Meanwhile, higher H3 histone acetylation was detected in the macrophages subjected to compression, and I-BET762 dampened the expression of M2 polarization markers (Arg1 and Il10). Lastly, even though the activated macrophage-conditioned medium showed no effect on cementoblasts, compressive force directly impaired cementoblastic function by enhancing mechanoreceptor Piezo1. Compressive force activates macrophages; specifically, it causes M2 polarization via H3 histone acetylation in the late stage. Compression-induced orthodontic root resorption is macrophage-independent, but it involves the activation of mechanoreceptor Piezo1.
Collapse
Affiliation(s)
- Yao Wang
- Department of Orthodontics, Faculty of Medicine, Justus Liebig University Giessen, 35392 Giessen, Germany
| | - Sabine Groeger
- Department of Orthodontics, Faculty of Medicine, Justus Liebig University Giessen, 35392 Giessen, Germany
- Department of Periodontology, Faculty of Medicine, Justus Liebig University Giessen, 35392 Giessen, Germany
- Correspondence:
| | - Jiawen Yong
- Department of Orthodontics, Faculty of Medicine, Justus Liebig University Giessen, 35392 Giessen, Germany
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310003, China
| | - Sabine Ruf
- Department of Orthodontics, Faculty of Medicine, Justus Liebig University Giessen, 35392 Giessen, Germany
| |
Collapse
|
38
|
Moga RA, Olteanu CD, Botez M, Buru SM. Assessment of the Maximum Amount of Orthodontic Force for PDL in Intact and Reduced Periodontium (Part I). INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:ijerph20031889. [PMID: 36767254 PMCID: PMC9914466 DOI: 10.3390/ijerph20031889] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 01/13/2023] [Accepted: 01/17/2023] [Indexed: 06/01/2023]
Abstract
This study examines 0.6 N and 1.2 N as the maximum orthodontic force for periodontal ligament (PDL) at multiple levels of periodontal breakdown, and the relationships with the ischemic, necrotic, and resorptive risks. Additionally, this study evaluates if Tresca failure criteria is more adequate for the PDL study. Eighty-one 3D models (from nine patients; nine models/patients) with the 2nd lower premolar and different degrees of bone loss (0-8 mm) where subjected to intrusion, extrusion, rotation, translation, and tipping movements. Tresca shear stress was assessed individually for each movement and bone loss level. Rotation and translation produced the highest PDL stresses, while intrusion and extrusion determined the lowest. Apical and middle third PDL stresses were lower than the cervical stress. In intact periodontium, the amount of shear stress produced by the two investigated forces was lower than the 16 KPa of the maximum physiological hydrostatic pressure (MHP). In reduced periodontium (1-8 mm tissue loss), the apical amount of PDL shear stress was lower than MHP for both applied forces, while cervically for rotation, translation and tipping movements exceeded 16 KPa. Additionally, 1.2 N could be used in intact periodontium (i.e., without risks) and for the reduced periodontium only in the apical and middle third of PDL up to 8 mm of bone loss. However, for avoiding any resorptive risks, in the cervical third of PDL, the rotation, translation, and tipping movements require less than 0.2-0.4 N of force after 4 mm of loss. Tresca seems to be more adequate for the study of PDL than other criteria.
Collapse
Affiliation(s)
- Radu Andrei Moga
- Department of Cariology, Endodontics and Oral Pathology, School of Dental Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Str. Motilor 33, 400001 Cluj-Napoca, Romania
| | - Cristian Doru Olteanu
- Department of Orthodontics, School of Dental Medicine, University of Medicine and Pharmacy Iuliu Hatieganu, Cluj-Napoca, Str. Avram Iancu 31, 400083 Cluj-Napoca, Romania
| | - Mircea Botez
- Department of Structural Mechanics, School of Civil Engineering, Technical University of Cluj-Napoca, Str. Memorandumului 28, 400114 Cluj-Napoca, Romania
| | - Stefan Marius Buru
- Department of Structural Mechanics, School of Civil Engineering, Technical University of Cluj-Napoca, Str. Memorandumului 28, 400114 Cluj-Napoca, Romania
| |
Collapse
|
39
|
Moga RA, Olteanu CD, Botez M, Buru SM. Assessment of the Maximum Amount of Orthodontic Force for Dental Pulp and Apical Neuro-Vascular Bundle in Intact and Reduced Periodontium on Bicuspids (Part II). INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:1179. [PMID: 36673936 PMCID: PMC9859427 DOI: 10.3390/ijerph20021179] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 01/04/2023] [Accepted: 01/07/2023] [Indexed: 06/01/2023]
Abstract
This study examines 0.6 N-4.8 N as the maximum orthodontic force to be applied to dental pulp and apical NVB on intact and 1-8 mm reduced periodontal-ligament (PDL), in connection with movement and ischemic, necrotic and resorptive risk. In addition, it examines whether the Tresca finite-element-analysis (FEA) criterion is more adequate for the examination of dental pulp and its apical NVB. Eighty-one (nine patients, with nine models for each patient) anatomically correct models of the periodontium, with the second lower-premolar reconstructed with its apical NVB and dental pulp were assembled, based on X-ray CBCT (cone-beam-computed-tomography) examinations and subjected to 0.6 N, 1.2 N, 2.4 N and 4.8 N of intrusion, extrusion, translation, rotation, and tipping. The Tresca failure criterion was applied, and the shear stress was assessed. Forces of 0.6 N, 1.2 N, and 2.4 N had negligible effects on apical NVB and dental pulp up to 8 mm of periodontal breakdown. A force of 4.8 N was safely applied to apical NVB on the intact periodontium only. Rotation and tipping seemed to be the most invasive movements for the apical NVB. For the dental pulp, only the translation and rotation movements seemed to display a particular risk of ischemia, necrosis, and internal orthodontic-resorption for both coronal (0-8 mm of loss) and radicular pulp (4-8 mm of loss), despite the amount of stress being lower than the MHP. The Tresca failure criterion seems more suitable than other criteria for apical NVB and dental pulp.
Collapse
Affiliation(s)
- Radu Andrei Moga
- Department of Cariology, Endodontics and Oral Pathology, School of Dental Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Str. Motilor 33, 400001 Cluj-Napoca, Romania
| | - Cristian Doru Olteanu
- Department of Orthodontics, School of Dental Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Str. Avram Iancu 31, 400083 Cluj-Napoca, Romania
| | - Mircea Botez
- Department of Structural Mechanics, School of Civil Engineering, Technical University of Cluj-Napoca, Str. Memorandumului 28, 400114 Cluj-Napoca, Romania
| | - Stefan Marius Buru
- Department of Structural Mechanics, School of Civil Engineering, Technical University of Cluj-Napoca, Str. Memorandumului 28, 400114 Cluj-Napoca, Romania
| |
Collapse
|
40
|
Al-Saqi RK, Athanasiou AE, Makrygiannakis MA, Kaklamanos EG. Are asthma and allergy associated with increased root resorption following orthodontic treatment? A meta-analysis. PLoS One 2023; 18:e0285309. [PMID: 37141232 PMCID: PMC10159203 DOI: 10.1371/journal.pone.0285309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 04/19/2023] [Indexed: 05/05/2023] Open
Abstract
OBJECTIVE The aim of this study is to systematically investigate the available evidence from human studies regarding the association of asthma and/or allergy with EARR. MATERIALS AND METHODS Unrestricted searches in 6 databases and manual searching were performed up to May 2022. We looked for data on EARR after orthodontic treatment in patients with/without asthma or allergy. Relevant data were extracted, and the risk of bias was assessed. An exploratory synthesis was carried out using the random effects model, and the overall quality of the evidence was assessed with the Grades of Recommendation, Assessment, Development, and Evaluation. RESULTS From the initially retrieved records, nine studies met the inclusion criteria (three cohort and six case-control). Overall, increased EARR was observed in the individuals with allergies in their medical history (Standardised Mean Difference [SMD]: 0.42, 95% Confidence Interval [CI]: 0.19 to 0.64). No difference in EARR development was observed among individuals with or without a medical history of asthma (SMD: 0.20, 95% CI: -0.06 to 0.46). The quality of available evidence, excluding studies at high risk, was rated as moderate for the exposure to allergy, and low for the exposure to asthma. CONCLUSION Increased EARR was noted in individuals with allergies compared to the control group, while no difference was observed for individuals with asthma. Until more data become available, good practice would suggest that it is important to identify patients with asthma or allergy and consider the possible implications.
Collapse
Affiliation(s)
- Reem Kais Al-Saqi
- Hamdan Bin Mohammed College of Dental Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| | - Athanasios E Athanasiou
- Hamdan Bin Mohammed College of Dental Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
- Department of Dentistry, European University Cyprus, Nicosia, Cyprus
| | - Miltiadis A Makrygiannakis
- Department of Orthodontics, School of Dentistry, National and Kapodistrian University of Athens, Athens, Greece
| | - Eleftherios G Kaklamanos
- Hamdan Bin Mohammed College of Dental Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
- Department of Dentistry, European University Cyprus, Nicosia, Cyprus
- School of Dentistry, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
41
|
Markowitz K, Mukherjee PM. OVER THE COUNTER ANALGESICS ARE EFFECTIVE IN TREATING ORTHODONTIC PAIN. J Evid Based Dent Pract 2022; 22:101773. [PMID: 36494116 DOI: 10.1016/j.jebdp.2022.101773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
ARTICLE TITLE AND BIBLIOGRAPHIC INFORMATION The efficacy of analgesics in controlling orthodontic pain: a systematic review and meta- analysis. Cheng C, Xie T, Wang J. BMC Oral Health 2020; 20:259. SOURCE OF FUNDING The systematic review was funded by grants from the National Natural Science Foundation of China (No. 81771114 and No. 81970967). The authors have no actual or potential conflicts of interest. TYPE OF STUDY/DESIGN Systematic review with meta-analysis of data.
Collapse
|
42
|
Moga RA, Buru SM, Olteanu CD. Assessment of the Best FEA Failure Criteria (Part II): Investigation of the Biomechanical Behavior of Dental Pulp and Apical-Neuro-Vascular Bundle in Intact and Reduced Periodontium. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph192315635. [PMID: 36497708 PMCID: PMC9738171 DOI: 10.3390/ijerph192315635] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/18/2022] [Accepted: 11/22/2022] [Indexed: 06/01/2023]
Abstract
The aim of this study was to biomechanically assess the behavior of apical neuro-vascular bundles (NVB) and dental pulp employing Tresca, Von Mises, Pressure, S1 and S3 failure criterions in a gradual periodontal breakdown under orthodontic movements. Additionally, it was to assess the accuracy of failure criteria, correlation with the maximum hydrostatic pressure (MHP), and the amount of force safe for reduced periodontium. Based on cone-beam computed tomography, 81 3D models of the second lower premolar were subjected to 0.5 N of intrusion, extrusion, rotation, tipping, and translation. A Finite Elements Analysis (FEA) was performed. In intact and reduced periodontium apical NVB, stress (predominant in all criteria) was significantly higher than dental pulp stress, but lower than MHP. VM and Tresca displayed identical results, with added pulpal stress in translation and rotation. S1, S3 and Pressure showed stress in the apical NVB area. 0.5 N seems safe up to 8 mm periodontal breakdown. A clear difference between failure criteria for dental pulp and apical NVB cannot be proved based only on the correlation quantitative results-MHP. Tresca and VM (adequate for ductile materials) showed equivalent results with the lowest amounts of stress. The employed failure criteria must be selected based on the type of material to be analyzed.
Collapse
Affiliation(s)
- Radu Andrei Moga
- Department of Cariology, Endodontics and Oral Pathology, School of Dental Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Str. Motilor 33, 400001 Cluj-Napoca, Romania
| | - Stefan Marius Buru
- Department of Structural Mechanics, School of Civil Engineering, Technical University of Cluj-Napoca, Str. Memorandumului 28, 400114 Cluj-Napoca, Romania
| | - Cristian Doru Olteanu
- Department of Orthodontics, School of Dental Medicine, University of Medicine and Pharmacy Iuliu Hatieganu Cluj-Napoca, Str. Avram Iancu 31, 400083 Cluj-Napoca, Romania
| |
Collapse
|
43
|
Qin W, Gao J, Ma S, Wang Y, Li DM, Jiang WK, Chen F, Tay F, Niu LN. Multiple Cervical Root Resorption Involving 22 Teeth: A Case with Potential Genetic Predisposition. J Endod 2022; 48:1526-1532. [DOI: 10.1016/j.joen.2022.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/25/2022] [Accepted: 10/11/2022] [Indexed: 11/06/2022]
|
44
|
Neural regulation of alveolar bone remodeling and periodontal ligament metabolism during orthodontic tooth movement in response to therapeutic loading. J World Fed Orthod 2022; 11:139-145. [DOI: 10.1016/j.ejwf.2022.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 08/25/2022] [Indexed: 11/24/2022]
|
45
|
Yong J, Gröger S, von Bremen J, Meyle J, Ruf S. PD-L1, a Potential Immunomodulator Linking Immunology and Orthodontically Induced Inflammatory Root Resorption (OIIRR): Friend or Foe? Int J Mol Sci 2022; 23:ijms231911405. [PMID: 36232704 PMCID: PMC9570182 DOI: 10.3390/ijms231911405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/19/2022] [Accepted: 09/23/2022] [Indexed: 11/16/2022] Open
Abstract
Orthodontically induced inflammatory root resorption (OIIRR) is considered an undesired and inevitable complication induced by orthodontic forces. This inflammatory mechanism is regulated by immune cells that precede orthodontic tooth movement (OTM) and can influence the severity of OIIRR. The process of OIIRR is based on an immune response. On some occasions, the immune system attacks the dentition by inflammatory processes during orthodontic treatment. Studies on the involvement of the PD-1/PD-L1 immune checkpoint have demonstrated its role in evading immune responses, aiming to identify possible novel therapeutic approaches for periodontitis. In the field of orthodontics, the important question arises of whether PD-L1 has a role in the development of OIIRR to amplify the amount of resorption. We hypothesize that blocking of the PD-L1 immune checkpoint could be a suitable procedure to reduce the process of OIIRR during orthodontic tooth movement. This review attempts to shed light on the regulation of immune mechanisms and inflammatory responses that could influence the pathogenesis of OIIRR and to acquire knowledge about the role of PD-L1 in the immunomodulation involved in OIIRR. Possible clinical outcomes will be discussed in relation to PD-L1 expression and immunologic changes throughout the resorption process.
Collapse
Affiliation(s)
- Jiawen Yong
- Department of Orthodontics, Faculty of Medicine, Justus Liebig University Giessen, 35392 Giessen, Germany
- Department of Periodontology, Faculty of Medicine, Justus Liebig University Giessen, 35392 Giessen, Germany
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310003, China
- Correspondence: or ; Tel.: +49-641-99-46131
| | - Sabine Gröger
- Department of Orthodontics, Faculty of Medicine, Justus Liebig University Giessen, 35392 Giessen, Germany
| | - Julia von Bremen
- Department of Orthodontics, Faculty of Medicine, Justus Liebig University Giessen, 35392 Giessen, Germany
| | - Joerg Meyle
- Department of Periodontology, Faculty of Medicine, Justus Liebig University Giessen, 35392 Giessen, Germany
| | - Sabine Ruf
- Department of Orthodontics, Faculty of Medicine, Justus Liebig University Giessen, 35392 Giessen, Germany
| |
Collapse
|
46
|
Melendres OU, Cattaneo PM, Roscoe MG, Gialain IO, Dominguez GC, Ballester RY, Meira JBC. Intrusion of overerupted periodontally compromised posterior teeth using orthodontic mini‐implants: a mechanobiological finite element study. Orthod Craniofac Res 2022; 26:239-247. [PMID: 36073609 DOI: 10.1111/ocr.12606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 05/20/2022] [Accepted: 08/05/2022] [Indexed: 11/30/2022]
Abstract
INTRODUCTION The intrusion of posterior teeth had been considered challenging up to the development of orthodontic mini implants. In periodontally compromised teeth, the challenge is even greater, because of the root resorption risk due to periodontal ligament over-compression. Still, the precise strategy to determine the force reduction level remains uncertain. OBJECTIVE The objective of the study was to determine, by a finite element analysis (FEA), the force reduction needed to avoid root resorption and maintain the efficiency of orthodontic mechanics of periodontally compromised teeth similar to the sound one. METHODS An anatomical model was constructed representing a premolar inserted into a maxillary bone. Based on the initial model (R0), three bone height loss conditions were simulated (R2 = 2 mm, R4 = 4 mm, and R6 = 6 mm). Two intrusive movements were simulated: pure intrusion (bilateral mini implant) and uncontrolled-tipping intrusion (buccal mini implant). The hydrostatic stress at the periodontal ligament was used to evaluate the risk of root resorption due to over-compression. RESULTS For bilateral mini implant intrusion, the force had to be decreased by 16%, 32% and 48% for R2, R4 and R6, respectively. For buccal mini implant intrusion, the required reductions were higher (20%, 36% and 56%). A linear relationship between the intrusive force reduction and the alveolar bone height loss was observed in both intrusion mechanics. CONCLUSIONS According to the FE results, 8% or 9.3% of force reduction for each millimetre of bone height loss is suggested for intrusion with bilateral or buccal mini implant, respectively. The buccal mini implant anchorage must be associated with a supplemental strategy to avoid buccal crown tipping.
Collapse
Affiliation(s)
- Omar Ugarte Melendres
- School of Dentistry, Department of Biomaterials and Oral Biology University of São Paulo São Paulo Brazil
| | - Paolo Maria Cattaneo
- Melbourne Dental School ‐ Faculty of Medicine Dentistry and Health Sciences ‐ University of Melbourne Victoria Australia
| | - Marina Guimarães Roscoe
- School of Dentistry, Department of Biomaterials and Oral Biology University of São Paulo São Paulo Brazil
| | - Ivan Onone Gialain
- School of Dentistry, Department of Biomaterials and Oral Biology University of São Paulo São Paulo Brazil
| | - Gladys Cristina Dominguez
- School of Dentistry, Department of Orthodontics and Pediatric Dentistry University of São Paulo São Paulo Brazil
| | - Rafael Yague Ballester
- School of Dentistry, Department of Biomaterials and Oral Biology University of São Paulo São Paulo Brazil
| | - Josete Barbosa Cruz Meira
- School of Dentistry, Department of Biomaterials and Oral Biology University of São Paulo São Paulo Brazil
| |
Collapse
|
47
|
Schuldt L, von Brandenstein K, Jacobs C, Symmank J. Oleic acid-related anti-inflammatory effects in force-stressed PdL fibroblasts are mediated by H3 lysine acetylation associated with altered IL10 expression. Epigenetics 2022; 17:1892-1904. [PMID: 35763686 DOI: 10.1080/15592294.2022.2090654] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
The initiation of a spatially and temporally limited inflammation is essential for tissue and bone remodelling by the periodontal ligament (PdL) located between teeth and alveolar bone. Nutritional components may cause alterations in the inflammatory response of PdL fibroblasts to mechanical stress such as those occurring during orthodontic tooth movement (OTM). Recently, we reported an attenuated pro-inflammatory response of human PdL fibroblasts (HPdLFs) to compressive forces when stimulated with oleic acid (OA), a monounsaturated fatty acid particularly prominent in the Mediterranean diet. Fatty acids could serve as alternative source of acetyl-CoA, thereby affecting epigenetic histone marks, such as histone 3 lysine acetylation (H3Kac) in a lipid metabolism-dependent manner. In this study, we aimed to investigate the extent to which OA exerts its anti-inflammatory effect in compressed HPdLFs via changes in H3Kac. Six-hour compressed HPdLFs showed increased H3Kac when cultured with OA. Inhibition of histone deacetylases resulted in a comparable IL10-increase as observed in compressed OA-cultures. In contrast, inhibition of histone acetyltransferases, particularly p300/CBP, in compressed HPdLFs exposed to OA normalized the inflammatory response to control levels. OA-dependent increased association of H3Kac to IL10 promoter regions in compressed HPdLFs further strengthened the assumption that OA exhibits its anti-inflammatory properties via modulation of this epigenetic mark. In conclusion, our study strongly suggests that nutritional components can directly affect PdL cells via changes in their epigenetic code. Since epigenetic inhibitors are already widely used clinically, they may hold promise for novel approaches for personalized orthodontic treatment that incorporates nutritional and metabolism-related changes.
Collapse
Affiliation(s)
- Lisa Schuldt
- Department of Orthodontics, University Hospital Jena, Jena, Germany
| | | | - Collin Jacobs
- Department of Orthodontics, University Hospital Jena, Jena, Germany
| | - Judit Symmank
- Department of Orthodontics, University Hospital Jena, Jena, Germany
| |
Collapse
|
48
|
Pain Perception during Orthodontic Treatment with Fixed Appliances. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12136389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The present study aimed to determine the intensity of pain perception in patients undergoing fixed orthodontic treatment. We analyzed the severity of pain concerning four routine procedures: the placement of separating elastics, ring cementations, arch activations, and elastic tractions. Our study consisted of a sample of 100 patients between 12 and 35 years old during the initial months of orthodontic treatment with fixed appliances. The patients completed a questionnaire meant to assess their pain sensation perception. The study sample was divided according to age and sex. By determining the intensity of pain felt during the four orthodontic procedures, we found that the most painful one was the ring cementation in all four age groups. The therapeutic-arch-activation procedure ranked second, with a higher mean value (2.66) in the 18–24 age group; the least painful was considered the elastic traction procedure, with a higher value (1.33) in the group over 30 years old. The most painful period was during the first 3–4 days after procedures. Most patients showed moderate pain after following the studied orthodontic interventions and required analgesic medication, the most frequently used being Nurofen, ketonal or paracetamol. The level of pain felt was significantly higher in men than in women. Patients suffer differently from the intensity of perceived pain as they grow older.
Collapse
|
49
|
Luo H, Fang S, Liu Q, Dang W, Wang Y. Comparison of interleukin expression in gingival crevicular fluid between patients with invisible orthodontics treat-ment and fixed orthodontics treatment. HUA XI KOU QIANG YI XUE ZA ZHI = HUAXI KOUQIANG YIXUE ZAZHI = WEST CHINA JOURNAL OF STOMATOLOGY 2022; 40:293-296. [PMID: 38597009 PMCID: PMC9207797 DOI: 10.7518/hxkq.2022.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/10/2021] [Indexed: 04/11/2024]
Abstract
OBJECTIVES To compare the expression levels of interleukin (IL)-1β, IL-6, IL-8, IL-10, IL-16, and IL-18 in gingival crevicular fluid between patients with invisible orthodontics treatment and fixed orthodontics treatment. METHODS A total of 67 patients with invisible orthodontic treatment were selected as the observation group, and 40 patients with fixed orthodontic treatment were selected as the control group. The expression levels of IL-1β, IL-6, IL-8, IL-10, IL-16, and IL-18 in gingival crevicular fluid before, 24 h, and 12 months after orthodontic treatment were detected. RESULTS No significant difference in basic characteristics and interleukin expression levels in gingival crevicular fluid was observed between the two groups before orthodontic treatment (P>0.05). After 24 h of orthodontic treatment, the expression levels of IL-1β, IL-6, IL-8, IL-10, and IL-18 in gingival crevicular fluid increased in both groups; however, no significant difference was observed between the two groups (P>0.05). After 12 months of orthodontic treatment, the expression levels of IL-1β, IL-6, IL-8, IL-10, and IL-18 in gingival crevicular fluid in the observation group were significantly lower than those in the control group (P<0.05), and no significant difference in the expression level of IL-16 was observed between the two groups (P>0.05). CONCLUSIONS Compared with patients with fixed orthodontics treatment, those with invisible orthodontics treatment had weaker oral inflammatory response, which was conducive to the recovery of the oral microenvironment.
Collapse
Affiliation(s)
- Houzhuo Luo
- Dept. of Orthodontics, School of Stomatology, The Air Force Medical University, Xi'an 710032, China
| | - Shishu Fang
- Dept. of Orthodontics, School of Stomatology, The Air Force Medical University, Xi'an 710032, China
| | - Qian Liu
- Dept. of Orthodontics, School of Stomatology, The Air Force Medical University, Xi'an 710032, China
| | - Wei Dang
- Dept. of Prosthodontics, College of Stomatology, Xi'an Jiaotong University, Xi'an 710004, China
| | - Yanli Wang
- Dept. of Stomatology, Xi'an Central Hospital, Xi'an 710004, China
| |
Collapse
|
50
|
Almășan O, Duncea I, Kui A, Buduru S. Influence of Human Papillomavirus on Alveolar Bone and Orthodontic Treatment: Systematic Review and Case Report. Healthcare (Basel) 2022; 10:624. [PMID: 35455802 PMCID: PMC9028962 DOI: 10.3390/healthcare10040624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/16/2022] [Accepted: 03/24/2022] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND As the human papillomavirus (HPV) infections are detected in healthy oral mucosa as well as in oral lesions, dental practitioners have an important role in detecting any possible lesions that might be caused by this virus. Therefore, the aim of this study was to investigate the outcomes of orthodontic treatments and HPV infections and to report a rare case of ongoing orthodontic treatment superposed on an HPV infection. METHODS An electronic English literature research of the articles published between the years 2011-2021 was conducted between December 2021-February 2022, accessing PubMed, Web of Science, Embase, Scopus, and Google Scholar. The terms "HPV", "orthodontics", "orthodontic treatment", "tooth movement", "tooth mobility", and "malocclusion" were searched. The following inclusion criteria were pursued: articles published in English language; studies reporting HPV infection in subjects with past or ongoing orthodontic treatment; and case reports of subjects with HPV and orthodontic treatment. Exclusion criteria were: articles in languages other than English, studies related to malignancies other than HPV and orthodontic treatment; and studies reporting patients with HPV and no orthodontic treatment. RESULTS Following the systematic review, which includes six papers, a case of orthodontic treatment superposed on a HPV infection is presented. CONCLUSION Incumbent, postponed HPV infection on an ongoing orthodontic treatment might affect treatment outcome and patient compliance.
Collapse
Affiliation(s)
| | - Ioana Duncea
- Prosthetic Dentistry and Dental Materials Department, Iuliu Hatieganu University of Medicine and Pharmacy, 32 Clinicilor Street, 400006 Cluj-Napoca, Romania; (O.A.); (A.K.); (S.B.)
| | | | | |
Collapse
|