1
|
Whitby A, Dandapani M. Monitoring central nervous system tumour metabolism using cerebrospinal fluid. Front Oncol 2024; 14:1389529. [PMID: 39703845 PMCID: PMC11655469 DOI: 10.3389/fonc.2024.1389529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 11/19/2024] [Indexed: 12/21/2024] Open
Abstract
Central nervous system (CNS) tumours are the most common cancer cause of death in under 40s in the UK, largely because they persist and recur and sometimes metastasise during treatment. Therefore, longitudinal monitoring of patients during and following treatment must be undertaken to understand the course of the disease and alter treatment plans reactively. This monitoring must be specific, sensitive, rapid, low cost, simple, and accepted by the patient. Cerebrospinal fluid (CSF) examination obtained following lumbar puncture, already a routine part of treatment in paediatric cases, could be better utilised with improved biomarkers. In this review, we discuss the potential for metabolites in the CSF to be used as biomarkers of CNS tumour remission, progression, response to drugs, recurrence and metastasis. We confer the clinical benefits and risks of this approach and conclude that there are many potential advantages over other tests and the required instrumentation is already present in UK hospitals. On the other hand, the approach needs more research investment to find more metabolite biomarkers, better understand their relation to the tumour, and validate those biomarkers in a standardised assay in order for the assay to become a clinical reality.
Collapse
Affiliation(s)
| | - Madhumita Dandapani
- Children’s Brain Tumour Research Centre, Biodiscovery Institute, School of Medicine, University of Nottingham, Nottingham, United Kingdom
| |
Collapse
|
2
|
Zhang H, Yu H, Xiang Y, Wang H, Qian Y, Huang X. Enhanced bioremediation of bensulfuron-methyl contaminated soil by Hansschlegelia zhihuaiae S113: Metabolic pathways and bacterial community structure. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136471. [PMID: 39547044 DOI: 10.1016/j.jhazmat.2024.136471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 11/01/2024] [Accepted: 11/08/2024] [Indexed: 11/17/2024]
Abstract
Bensulfuron-methyl (BSM), a widely used herbicide, can persist in soil and damag sensitive crops. Microbial degradation, supplemented with exogenous additives, provides an effective strategy to enhance BSM breakdown. Hansschlegelia zhihuaiae S113 has been shown to efficiently degrade this sulfonylurea herbicide. However, depending solely on a single strain for degradation proves inefficient and unlikely to achieve ideal remediation in practical applications. This study assessed the impact of various carbon sources on the degradation efficiency of S113 in BSM-polluted soil. Among these, glucose was the most effective, achieving a 98.7 % degradation rate after 9 d of inoculation. In addition, seven intermediates were detected during BSM degradation in soil through the cleavage of the phenyl ring ester bond, the pyrimidine rings, and urea bridge peptide bond, among other pathways. 2-amino-4,6-dimethoxy pyrimidine (ADMP), and 2-(aminosulfonylmethyl)-methyl benzoate(MSMB) were the primary intermediates. These metabolites were less toxic to maize, sorghum, and bacteria than the BSM. Community structure analysis indicated that variations in exogenous carbon sources and environmental pollutants significantly improved the ecological functions of soil microbial communities, enhancing pollutant degradation. Addition of carbon sources notably affected soil microbial community structure, modifying metabolic activities and interaction patterns. Specifically, glucose substantially increased the richness and diversity of soil bacterial communities. These findings offer valuable insights for field remediation practices and contributed to the development of more robust soil pollution management strategies.
Collapse
Affiliation(s)
- Hao Zhang
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, PR China; College of Life Science, Nanyang Normal University, Nanyang 473061, PR China
| | - Houyu Yu
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Yun Xiang
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Hancheng Wang
- Guizhou Provincial Academician Workstation of Microbiology and Health, Guizhou Academy of Tobacco Science, Guiyang 550081, PR China
| | - Yingying Qian
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, PR China.
| | - Xing Huang
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, PR China.
| |
Collapse
|
3
|
Chen L, Zhang H, Shang C, Hong Y. The Role and Applied Value of Mitochondria in Glioma-Related Research. CNS Neurosci Ther 2024; 30:e70121. [PMID: 39639571 PMCID: PMC11621238 DOI: 10.1111/cns.70121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 10/06/2024] [Accepted: 10/31/2024] [Indexed: 12/07/2024] Open
Abstract
Mitochondria, known as the "energy factory" of cells, are essential organelles with a double membrane structure and genetic material found in most eukaryotic cells. They play a crucial role in tumorigenesis and development, with alterations in mitochondrial structure and function in tumor cells leading to characteristics such as rapid proliferation, invasion, and drug resistance. Glioma, the most common brain tumor with a high recurrence rate and limited treatment options, has been linked to changes in mitochondrial structure and function. This review focuses on the bioenergetics, dynamics, metastasis, and autophagy of mitochondria in relation to glioma proliferation, as well as the potential use of mitochondria-targeting drugs in glioma treatment.
Collapse
Affiliation(s)
- Liwen Chen
- Department of Neurobiology, School of Life SciencesChina Medical UniversityShenyangLiaoningChina
- Department of Neurosurgery, Shengjing HospitalChina Medical UniversityShenyangLiaoningChina
| | - Hui Zhang
- Department of Urology, Shengjing HospitalChina Medical UniversityShenyangLiaoningChina
| | - Chao Shang
- Department of Neurobiology, School of Life SciencesChina Medical UniversityShenyangLiaoningChina
| | - Yang Hong
- Department of Neurosurgery, Shengjing HospitalChina Medical UniversityShenyangLiaoningChina
| |
Collapse
|
4
|
DePalma TJ, Hisey CL, Hughes K, Fraas D, Tawfik M, Scharenberg J, Wiggins S, Nguyen KT, Hansford DJ, Reátegui E, Skardal A. Tuning a bioengineered hydrogel for studying astrocyte reactivity in glioblastoma. Acta Biomater 2024; 189:155-167. [PMID: 39370091 DOI: 10.1016/j.actbio.2024.09.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 09/18/2024] [Accepted: 09/26/2024] [Indexed: 10/08/2024]
Abstract
Astrocytes play many essential roles in the central nervous system (CNS) and are altered significantly in disease. These reactive astrocytes contribute to neuroinflammation and disease progression in many pathologies, including glioblastoma (GB), an aggressive form of brain cancer. Current in vitro platforms do not allow for accurate modeling of reactive astrocytes. In this study, we sought to engineer a simple bioengineered hydrogel platform that would support the growth of primary human astrocytes and allow for accurate analysis of various reactive states. After validating this platform using morphological analysis and qPCR, we then used the platform to begin investigating how astrocytes respond to GB derived extracellular vesicles (EVs) and soluble factors (SF). These studies reveal that EVs and SFs induce distinct astrocytic states. In future studies, this platform can be used to study how astrocytes transform the tumor microenvironment in GB and other diseases of the CNS. STATEMENT OF SIGNIFICANCE: Recent work has shown that astrocytes help maintain brain homeostasis and may contribute to disease progression in diseases such as glioblastoma (GB), a deadly primary brain cancer. In vitro models allow researchers to study basic mechanisms of astrocyte biology in healthy and diseased conditions, however current in vitro systems do not accurately mimic the native brain microenvironment. In this study, we show that our hydrogel system supports primary human astrocyte culture with an accurate phenotype and allows us to study how astrocytes change in response to a variety of inflammatory signals in GB. This platform could be used further investigate astrocyte behavior and possible therapeutics that target reactive astrocytes in GB and other brain diseases.
Collapse
Affiliation(s)
- Thomas J DePalma
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Colin L Hisey
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH 43210, USA; Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Kennedy Hughes
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - David Fraas
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Marie Tawfik
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Jason Scharenberg
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Sydney Wiggins
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Kim Truc Nguyen
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Derek J Hansford
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH 43210, USA; Department of Materials Science and Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Eduardo Reátegui
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Aleksander Skardal
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH 43210, USA; James Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
5
|
Alcicek S, Pilatus U, Manzhurtsev A, Weber KJ, Ronellenfitsch MW, Steinbach JP, Hattingen E, Wenger KJ. Amino acid metabolism in glioma: in vivo MR-spectroscopic detection of alanine as a potential biomarker of poor survival in glioma patients. J Neurooncol 2024; 170:451-461. [PMID: 39192067 PMCID: PMC11538230 DOI: 10.1007/s11060-024-04803-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 08/10/2024] [Indexed: 08/29/2024]
Abstract
PURPOSE Reprogramming of amino acid metabolism is relevant for initiating and fueling tumor formation and growth. Therefore, there has been growing interest in anticancer therapies targeting amino acid metabolism. While developing personalized therapeutic approaches to glioma, in vivo proton magnetic resonance spectroscopy (MRS) is a valuable tool for non-invasive monitoring of tumor metabolism. Here, we evaluated MRS-detected brain amino acids and myo-inositol as potential diagnostic and prognostic biomarkers in glioma. METHOD We measured alanine, glycine, glutamate, glutamine, and myo-inositol in 38 patients with MRI-suspected glioma using short and long echo-time single-voxel PRESS MRS sequences. The detectability of alanine, glycine, and myo-inositol and the (glutamate + glutamine)/total creatine ratio were evaluated against the patients' IDH mutation status, CNS WHO grade, and overall survival. RESULTS While the detection of alanine and non-detection of myo-inositol significantly correlated with IDH wildtype (p = 0.0008, p = 0.007, respectively) and WHO grade 4 (p = 0.01, p = 0.04, respectively), glycine detection was not significantly associated with either. The ratio of (glutamate + glutamine)/total creatine was significantly higher in WHO grade 4 than in 2 and 3. We found that the overall survival was significantly shorter in glioma patients with alanine detection (p = 0.00002). CONCLUSION Focusing on amino acids in MRS can improve its diagnostic and prognostic value in glioma. Alanine, which is visible at long TE even in the presence of lipids, could be a relevant indicator for overall survival.
Collapse
Affiliation(s)
- Seyma Alcicek
- Goethe University Frankfurt, University Hospital, Institute of Neuroradiology, Schleusenweg 2-16, 60528, Frankfurt/Main, Germany.
- University Cancer Center Frankfurt (UCT), Frankfurt/Main, Germany.
- Frankfurt Cancer Institute (FCI), Frankfurt/Main, Germany.
- German Cancer Research Center (DKFZ) Heidelberg, German Cancer Consortium (DKTK), Partner Site, Frankfurt/Mainz, Germany.
| | - Ulrich Pilatus
- Goethe University Frankfurt, University Hospital, Institute of Neuroradiology, Schleusenweg 2-16, 60528, Frankfurt/Main, Germany
| | - Andrei Manzhurtsev
- Goethe University Frankfurt, University Hospital, Institute of Neuroradiology, Schleusenweg 2-16, 60528, Frankfurt/Main, Germany
| | - Katharina J Weber
- University Cancer Center Frankfurt (UCT), Frankfurt/Main, Germany
- Frankfurt Cancer Institute (FCI), Frankfurt/Main, Germany
- German Cancer Research Center (DKFZ) Heidelberg, German Cancer Consortium (DKTK), Partner Site, Frankfurt/Mainz, Germany
- Goethe University Frankfurt, University Hospital, Institute of Neurology (Edinger-Institute), Frankfurt/Main, Germany
| | - Michael W Ronellenfitsch
- University Cancer Center Frankfurt (UCT), Frankfurt/Main, Germany
- Frankfurt Cancer Institute (FCI), Frankfurt/Main, Germany
- German Cancer Research Center (DKFZ) Heidelberg, German Cancer Consortium (DKTK), Partner Site, Frankfurt/Mainz, Germany
- Goethe University Frankfurt, University Hospital, Dr. Senckenberg Institute of Neurooncology, Frankfurt/Main, Germany
| | - Joachim P Steinbach
- University Cancer Center Frankfurt (UCT), Frankfurt/Main, Germany
- Frankfurt Cancer Institute (FCI), Frankfurt/Main, Germany
- German Cancer Research Center (DKFZ) Heidelberg, German Cancer Consortium (DKTK), Partner Site, Frankfurt/Mainz, Germany
- Goethe University Frankfurt, University Hospital, Dr. Senckenberg Institute of Neurooncology, Frankfurt/Main, Germany
| | - Elke Hattingen
- Goethe University Frankfurt, University Hospital, Institute of Neuroradiology, Schleusenweg 2-16, 60528, Frankfurt/Main, Germany
- University Cancer Center Frankfurt (UCT), Frankfurt/Main, Germany
- Frankfurt Cancer Institute (FCI), Frankfurt/Main, Germany
- German Cancer Research Center (DKFZ) Heidelberg, German Cancer Consortium (DKTK), Partner Site, Frankfurt/Mainz, Germany
| | - Katharina J Wenger
- Goethe University Frankfurt, University Hospital, Institute of Neuroradiology, Schleusenweg 2-16, 60528, Frankfurt/Main, Germany
- University Cancer Center Frankfurt (UCT), Frankfurt/Main, Germany
- Frankfurt Cancer Institute (FCI), Frankfurt/Main, Germany
- German Cancer Research Center (DKFZ) Heidelberg, German Cancer Consortium (DKTK), Partner Site, Frankfurt/Mainz, Germany
| |
Collapse
|
6
|
De Luca C, Virtuoso A, Papa M, Cirillo G, La Rocca G, Corvino S, Barbarisi M, Altieri R. The Three Pillars of Glioblastoma: A Systematic Review and Novel Analysis of Multi-Omics and Clinical Data. Cells 2024; 13:1754. [PMID: 39513861 PMCID: PMC11544881 DOI: 10.3390/cells13211754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 10/11/2024] [Accepted: 10/18/2024] [Indexed: 11/16/2024] Open
Abstract
Glioblastoma is the most fatal and common malignant brain tumor, excluding metastasis and with a median survival of approximately one year. While solid tumors benefit from newly approved drugs, immunotherapy, and prevention, none of these scenarios are opening for glioblastoma. The key to unlocking the peculiar features of glioblastoma is observing its molecular and anatomical features tightly entangled with the host's central nervous system (CNS). In June 2024, we searched the PUBMED electronic database. Data collection and analysis were conducted independently by two reviewers. Results: A total of 215 articles were identified, and 192 were excluded based on inclusion and exclusion criteria. The remaining 23 were used for collecting divergent molecular pathways and anatomical features of glioblastoma. The analysis of the selected papers revealed a multifaced tumor with extreme variability and cellular reprogramming that are observable within the same patient. All the variability of glioblastoma could be clustered into three pillars to dissect the physiology of the tumor: 1. necrotic core; 2. vascular proliferation; 3. CNS infiltration. These three pillars support glioblastoma survival, with a pivotal role of the neurovascular unit, as supported by the most recent paper published by experts in the field.
Collapse
Affiliation(s)
- Ciro De Luca
- Laboratory of Neuronal Networks Morphology and System Biology, Department of Mental and Physical Health and Preventive Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (A.V.); (M.P.); (G.C.)
| | - Assunta Virtuoso
- Laboratory of Neuronal Networks Morphology and System Biology, Department of Mental and Physical Health and Preventive Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (A.V.); (M.P.); (G.C.)
| | - Michele Papa
- Laboratory of Neuronal Networks Morphology and System Biology, Department of Mental and Physical Health and Preventive Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (A.V.); (M.P.); (G.C.)
- ISBE Italy, SYSBIO Centre of Systems Biology, 20126 Milan, Italy
| | - Giovanni Cirillo
- Laboratory of Neuronal Networks Morphology and System Biology, Department of Mental and Physical Health and Preventive Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (A.V.); (M.P.); (G.C.)
| | - Giuseppe La Rocca
- Department of Neurosurgery, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, Catholic University of Rome School of Medicine, 00153 Rome, Italy;
| | - Sergio Corvino
- Department of Neurosciences and Reproductive and Odontostomatological Sciences, Neurosurgical Clinic, University “Federico II” of Naples, 80131 Naples, Italy;
| | - Manlio Barbarisi
- Multidisciplinary Department of Medical-Surgical and Dental Specialties, University of Campania “Luigi Vanvitelli”, 80131 Naples, Italy (R.A.)
| | - Roberto Altieri
- Multidisciplinary Department of Medical-Surgical and Dental Specialties, University of Campania “Luigi Vanvitelli”, 80131 Naples, Italy (R.A.)
| |
Collapse
|
7
|
Wang S, Mao S, Li X, Yang D, Zhou Y, Yue H, Li B, Li W, Li C, Zhang X. Identification and validation of potential prognostic biomarkers in glioblastoma via the mesenchymal stem cell infiltration level. Front Oncol 2024; 14:1406186. [PMID: 39286023 PMCID: PMC11403407 DOI: 10.3389/fonc.2024.1406186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 08/06/2024] [Indexed: 09/19/2024] Open
Abstract
Aims Mesenchymal stem cells (MSCs) are key components in promoting glioblastoma (GBM) progression. This study aimed to explore new therapeutic targets and related pathogenic mechanisms based on different MSCs infiltration levels in GBM patients. Methods We estimated the relationship between cell infiltration and prognosis of GBM. Subsequently, key risk genes were identified and prognostic models were constructed by LASSO-Cox analysis. The risk genes were validated by five independent external cohorts, single-cell RNA analysis, and immunohistochemistry of human GBM tissues. TIDE analysis predicted responsiveness to immune checkpoint inhibitors in different risk groups. Results The MSCs infiltration level was negatively associated with survival in GBM patients. LOXL1, LOXL4, and GUCA1A are key risk genes that promote GBM progression and may act through complex intercellular communication. Conclusion This research has provided a comprehensive study for exploring the MSCs infiltration environment on GBM progression, which could shed light on novel biomarkers and mechanisms involved in GBM progression.
Collapse
Affiliation(s)
- Shengyu Wang
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Senlin Mao
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xiaofu Li
- Department of Magnetic Resonance Imaging, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Dan Yang
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yinglian Zhou
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Hui Yue
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Bing Li
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Wei Li
- Department of Neurology, Heilongjiang Hospital, Harbin, China
| | - Chengyun Li
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xuemei Zhang
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
8
|
Ghazi B, Harmak Z, Rghioui M, Kone AS, El Ghanmi A, Badou A. Decoding the secret of extracellular vesicles in the immune tumor microenvironment of the glioblastoma: on the border of kingdoms. Front Immunol 2024; 15:1423232. [PMID: 39267734 PMCID: PMC11390556 DOI: 10.3389/fimmu.2024.1423232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 08/06/2024] [Indexed: 09/15/2024] Open
Abstract
Over the last decades, extracellular vesicles (EVs) have become increasingly popular for their roles in various pathologies, including cancer and neurological and immunological disorders. EVs have been considered for a long time as a means for normal cells to get rid of molecules it no longer needs. It is now well established that EVs play their biological roles also following uptake or by the interaction of EV surface proteins with cellular receptors and membranes. In this review, we summarize the current status of EV production and secretion in glioblastoma, the most aggressive type of glioma associated with high mortality. The main purpose is to shed light on the EVs as a universal mediator of interkingdom and intrakingdom communication in the context of tumor microenvironment heterogeneity. We focus on the immunomodulatory EV functions in glioblastoma-immune cross-talk to enhance immune escape and reprogram tumor-infiltrating immune cells. We critically examine the evidence that GBM-, immune cell-, and microbiome-derived EVs impact local tumor microenvironment and host immune responses, and can enter the circulatory system to disseminate and drive premetastatic niche formation in distant organs. Taking into account the current state of the art in intratumoral microbiome studies, we discuss the emerging role of bacterial EV in glioblastoma and its response to current and future therapies including immunotherapies.
Collapse
Affiliation(s)
- Bouchra Ghazi
- Immunopathology-Immunotherapy-Immunomonitoring Laboratory, Faculty of Medicine, Mohammed VI University of Sciences and Health, Casablanca, Morocco
- Mohammed VI International University Hospital, Bouskoura, Morocco
| | - Zakia Harmak
- Immuno-genetics and Human Pathology Laboratory, Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco
| | - Mounir Rghioui
- Immunopathology-Immunotherapy-Immunomonitoring Laboratory, Faculty of Medicine, Mohammed VI University of Sciences and Health, Casablanca, Morocco
- Mohammed VI International University Hospital, Bouskoura, Morocco
| | - Abdou-Samad Kone
- Immuno-genetics and Human Pathology Laboratory, Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco
| | - Adil El Ghanmi
- Immunopathology-Immunotherapy-Immunomonitoring Laboratory, Faculty of Medicine, Mohammed VI University of Sciences and Health, Casablanca, Morocco
- Mohammed VI International University Hospital, Bouskoura, Morocco
| | - Abdallah Badou
- Immuno-genetics and Human Pathology Laboratory, Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco
- Mohammed VI Center for Research and Innovation, Rabat, Morocco
- Mohammed VI University of Sciences and Health (UM6SS), Casablanca, Morocco
| |
Collapse
|
9
|
Mehrab R, Sedighian H, Sotoodehnejadnematalahi F, Halabian R, Imanifooladi AA. Anticancer and bioactivity effect of the AraA-IL13 fusion protein on the glioblastoma cell line. Res Pharm Sci 2024; 19:387-396. [PMID: 39399731 PMCID: PMC11468163 DOI: 10.4103/rps.rps_92_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 12/08/2023] [Accepted: 07/21/2024] [Indexed: 10/15/2024] Open
Abstract
Background and purpose Glioblastoma (GBM) is an aggressive and malignant brain cancer with the highest mortality and low survival rates. To discover a more specific and efficient treatment for GBM, we synthesized and examined the cytotoxic effect of arazyme-interleukin-13 (Ara-IL13) fusion protein on GBM cells. Experimental approach At first, the araA-IL13 chimeric gene in the pET28a (+) vector was designed and synthesized. After transformation into Escherichia coli BL21 (DE3), the chimeric gene was verified by colony polymerase chain reaction. Expression optimization and purification of the AraA-IL13 fusion protein was performed and subsequently evaluated by 10% SDS-PAGE. The protein was purified and concentrated using the Amicon® Ultra- 15 centrifugal filter unit. The presence of AraA-IL13 was investigated by the western blotting technique. The enzyme was evaluated for proteolytic activity after purification on skim milk agar. The cytotoxic effect of the AraA-IL13 fusion protein was evaluated by MTT assay on U251 and T98G cell lines in vitro. Findings/Results The chimeric protein had no proteolytic activity on skim milk agar despite high expression. Furthermore, no cytotoxic effect of this fusion protein (up to 400 μg/mL) was observed on the U251 and T98G cell lines. Conclusion and implications The lack of proteolytic activity and cytotoxic effect of AraA-IL13 may be due to the disruption of the three-dimensional structure of the protein or the large structure of the arazyme coupled with the ligand and the lack of proper folding of the arazyme to make the active site of the enzyme inaccessible.
Collapse
Affiliation(s)
- Rezvan Mehrab
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Hamid Sedighian
- Applied Microbiology Research Center, Biomedicine Technologies Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | | | - Raheleh Halabian
- Applied Microbiology Research Center, Biomedicine Technologies Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Abbas Ali Imanifooladi
- Applied Microbiology Research Center, Biomedicine Technologies Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
10
|
Li X, Gou W, Zhang X. Neuroinflammation in Glioblastoma: Progress and Perspectives. Brain Sci 2024; 14:687. [PMID: 39061427 PMCID: PMC11274945 DOI: 10.3390/brainsci14070687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/25/2024] [Accepted: 07/07/2024] [Indexed: 07/28/2024] Open
Abstract
Glioblastoma is the most common and malignant primary brain tumor, with high morbidity and mortality. Despite an aggressive, multimodal treatment regimen, including surgical resection followed by chemotherapy and radiotherapy, the prognosis of glioblastoma patients remains poor. One formidable challenge to advancing glioblastoma therapy is the complexity of the tumor microenvironment. The tumor microenvironment of glioblastoma is a highly dynamic and heterogeneous system that consists of not only cancerous cells but also various resident or infiltrating inflammatory cells. These inflammatory cells not only provide a unique tumor environment for glioblastoma cells to develop and grow but also play important roles in regulating tumor aggressiveness and treatment resistance. Targeting the tumor microenvironment, especially neuroinflammation, has increasingly been recognized as a novel therapeutic approach in glioblastoma. In this review, we discuss the components of the tumor microenvironment in glioblastoma, focusing on neuroinflammation. We discuss the interactions between different tumor microenvironment components as well as their functions in regulating glioblastoma pathogenesis and progression. We will also discuss the anti-tumor microenvironment interventions that can be employed as potential therapeutic targets.
Collapse
Affiliation(s)
| | | | - Xiaoqin Zhang
- Department of Pathology, School of Medicine, South China University of Technology, Guangzhou 510006, China
| |
Collapse
|
11
|
Liang B, Ding X, Yang S, Feng E. Endothelial cell ferroptosis influences IDH wild-type glioblastoma growth in recurrent glioblastoma multiforme patients. Braz J Med Biol Res 2024; 57:e13961. [PMID: 38985083 PMCID: PMC11249198 DOI: 10.1590/1414-431x2024e13961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 05/22/2024] [Indexed: 07/11/2024] Open
Abstract
Glioblastomas are known for their poor clinical prognosis, with recurrent tumors often exhibiting greater invasiveness and faster growth rates compared to primary tumors. To understand the intratumoral changes driving this phenomenon, we employed single-cell sequencing to analyze the differences between two pairs of primary and recurrent glioblastomas. Our findings revealed an upregulation of ferroptosis in endothelial cells within recurrent tumors, identified by the significant overexpression of the NOX4 gene. Further analysis indicated that knocking down NOX4 in endothelial cells reduced the activity of the ferroptosis pathway. Utilizing conditioned media from endothelial cells with lower ferroptosis activity, we observed a decrease in the growth rate of glioblastoma cells. These results highlighted the complex role of ferroptosis within tumors and suggested that targeting ferroptosis in the treatment of glioblastomas requires careful consideration of its effects on endothelial cells, as it may otherwise produce counterproductive outcomes.
Collapse
Affiliation(s)
- Bo Liang
- Department of Neurosurgery, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Xinghuan Ding
- Department of Neurosurgery, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Siyuan Yang
- Laboratory of Infectious Diseases Center, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Enshan Feng
- Department of Neurosurgery, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
12
|
Wang Z, Fang Z, Gui Y, Xi B, Xie Z. Elevated HSPB1 Expression Is Associated with a Poor Prognosis in Glioblastoma Multiforme Patients. J Neurol Surg A Cent Eur Neurosurg 2024. [PMID: 38959943 DOI: 10.1055/s-0043-1777761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
BACKGROUND Glioblastoma multiforme (GBM) is a highly aggressive form of brain cancer. This study investigated the clinical predictive value of heat shock protein β1 (HSPB1) in patients with GBM. METHODS A correlation was established between HSPB1 expression and GBM progression using data from The Cancer Genome Atlas (TCGA) dataset, Chinese Glioma Genome Atlas dataset, Gene Expression Omnibus dataset, and Human Protein Atlas database. A survival analysis was conducted and an HSPB1-based nomogram was constructed to evaluate the prognostic value of HSPB1 in patients with GBM. RESULTS Based on TCGA data mining, we discovered that HSPB1 was significantly elevated in patients with GBM and may reflect their response to immunotherapy. In survival analysis, it appeared to have a predictive role in the prognosis of patients with GBM. Five signaling pathways were significantly enriched in the high HSPB1 expression phenotype according to the gene set enrichment analysis. In addition, a significant association was found between HSPB1 expression and immune checkpoints, tumor immune infiltration, tumor immune microenvironment, and immune cell markers in glioma. Overall, our results suggest that HSPB1 may regulate the function of immune cells, serve as a new immunotherapy target, and predict the response to immunotherapy in patients with GBM. CONCLUSION HSPB1 appears to serve as a potential predictor of the clinical prognosis and response to immunotherapy in patients with GBM. It may be possible to identify patients who are likely to benefit from immunotherapy by assessing the expression level of HSPB1.
Collapse
Affiliation(s)
- Zhihua Wang
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Zhaohua Fang
- Department of Neurosurgery, Chongren County People's Hospital, Fuzhou, Jiangxi, China
| | - Yongping Gui
- Department of Neurosurgery, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, China
- Department of Neurosurgery, Xiangya Hospital Jiangxi Hospital, Central South University, Nanchang, Jiangxi, China
| | - Bin Xi
- Department of Neurosurgery, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, China
- Department of Neurosurgery, Xiangya Hospital Jiangxi Hospital, Central South University, Nanchang, Jiangxi, China
| | - Zhiping Xie
- Department of Neurosurgery, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, China
- Department of Neurosurgery, Xiangya Hospital Jiangxi Hospital, Central South University, Nanchang, Jiangxi, China
| |
Collapse
|
13
|
Alberghina C, Torrisi F, D'Aprile S, Longhitano L, Giallongo S, Scandura G, Mannino G, Mele S, Sabini MG, Cammarata FP, Russo G, Abdelhameed AS, Zappalà A, Lo Furno D, Giuffrida R, Li Volti G, Tibullo D, Vicario N, Parenti R. Microglia and glioblastoma heterocellular interplay sustains tumour growth and proliferation as an off-target effect of radiotherapy. Cell Prolif 2024; 57:e13606. [PMID: 38454614 DOI: 10.1111/cpr.13606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 11/07/2023] [Accepted: 01/25/2024] [Indexed: 03/09/2024] Open
Abstract
Glioblastoma (GBM), a WHO grade IV glioma, is a malignant primary brain tumour for which combination of surgery, chemotherapy and radiotherapy is the first-line approach despite adverse effects. Tumour microenvironment (TME) is characterized by an interplay of cells and soluble factors holding a critical role in neoplastic development. Significant pathophysiological changes have been found in GBM TME, such as glia activation and oxidative stress. Microglia play a crucial role in favouring GBM growth, representing target cells of immune escape mechanisms. Our study aims at analysing radiation-induced effects in modulating intercellular communication and identifying the basis of protective mechanisms in radiation-naïve GBM cells. Tumour cells were treated with conditioned media (CM) derived from 0, 2 or 15 Gy irradiated GBM cells or 0, 2 or 15 Gy irradiated human microglia. We demonstrated that irradiated microglia promote an increase of GBM cell lines proliferation through paracrine signalling. On the contrary, irradiated GBM-derived CM affect viability, triggering cell death mechanisms. In addition, we investigated whether these processes involve mitochondrial mass, fitness and oxidative phosphorylation and how GBM cells respond at these induced alterations. Our study suggests that off-target radiotherapy modulates microglia to support GBM proliferation and induce metabolic modifications.
Collapse
Affiliation(s)
- Cristiana Alberghina
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Filippo Torrisi
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Simona D'Aprile
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Lucia Longhitano
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Sebastiano Giallongo
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Grazia Scandura
- Department of Medical, Surgical Sciences and Advanced Technologies "G.F. Ingrassia", University of Catania, Catania, Italy
| | - Giuliana Mannino
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Stefania Mele
- Medical Physics Unit, Cannizzaro Hospital, Catania, Italy
- Laboratori Nazionali del Sud, INFN-LNS, National Institute for Nuclear Physics, Catania, Italy
| | - Maria Gabriella Sabini
- Medical Physics Unit, Cannizzaro Hospital, Catania, Italy
- Laboratori Nazionali del Sud, INFN-LNS, National Institute for Nuclear Physics, Catania, Italy
| | - Francesco P Cammarata
- Laboratori Nazionali del Sud, INFN-LNS, National Institute for Nuclear Physics, Catania, Italy
- Institute of Molecular Bioimaging and Physiology, National Research Council, IBFM-CNR, Cefalù, Italy
| | - Giorgio Russo
- Laboratori Nazionali del Sud, INFN-LNS, National Institute for Nuclear Physics, Catania, Italy
- Institute of Molecular Bioimaging and Physiology, National Research Council, IBFM-CNR, Cefalù, Italy
| | - Ali S Abdelhameed
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Agata Zappalà
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Debora Lo Furno
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Rosario Giuffrida
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Giovanni Li Volti
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Daniele Tibullo
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Nunzio Vicario
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Rosalba Parenti
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| |
Collapse
|
14
|
Tan L, Zhou J, Nie Z, Li D, Wang B. EPHB2 as a key mediator of glioma progression: Insights from microenvironmental receptor ligand-related prognostic gene signature. Genomics 2024; 116:110799. [PMID: 38286348 DOI: 10.1016/j.ygeno.2024.110799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 01/05/2024] [Accepted: 01/22/2024] [Indexed: 01/31/2024]
Abstract
Malignant gliomas, characterized by pronounced heterogeneity, a complex microenvironment, and a propensity for relapse and drug resistaniguree, pose significant challenges in oncology. This study aimed to investigate the prognostic value of Ligand and Receptor related genes (LRRGs) within the glioma microenvironment. An intersection of 71 ligand-related genes (LRGs) and 2628 receptor-related genes (RRGs) yielded a total of 69 LRRGs. Utilizing the least absolute shrinkage and selection operator (LASSO) regression analysis, a prognostic RiskScore model comprising 28 LRRGs was constructed. The model demonstrated robust prognostic value, further validated in the TCGA-GBMLGG dataset. Subsequent analyses included differential gene expression, Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), gene set enrichment (GSEA), and gene set variation (GSVA) within RiskScore groups. Additionally, evaluations of PPI, mRNA-RBP, mRNA-TF, and mRNA-drug interaction networks were conducted. Four hub genes were identified through differential expression analysis of the 28 LRRGs across various GSE datasets. A multivariate Cox prognostic model was constructed for nomogram analysis, gene mutation analysis, and related expression distribution. This study underscores the role of LRRGs in intercellular communication within the glioma microenvironment and identifies four hub genes crucial for prognostic assessment in clinical glioma patients. These findings offer a potential evaluation framework for glioma patients, enhancing our understanding of the disease and informing future therapeutic strategies.
Collapse
Affiliation(s)
- Liming Tan
- The Second Affiliated Hospital, Department of Neurosurgery, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Jingyuan Zhou
- The Second Affiliated Hospital, Department of Neurosurgery, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Zhenyu Nie
- The Second Affiliated Hospital, Department of Neurosurgery, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Ding Li
- The Second Affiliated Hospital, Department of Neurosurgery, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Bing Wang
- The Second Affiliated Hospital, Department of Neurosurgery, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China.
| |
Collapse
|
15
|
Virtuoso A, D’Amico G, Scalia F, De Luca C, Papa M, Maugeri G, D’Agata V, Caruso Bavisotto C, D’Amico AG. The Interplay between Glioblastoma Cells and Tumor Microenvironment: New Perspectives for Early Diagnosis and Targeted Cancer Therapy. Brain Sci 2024; 14:331. [PMID: 38671983 PMCID: PMC11048111 DOI: 10.3390/brainsci14040331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 03/26/2024] [Accepted: 03/28/2024] [Indexed: 04/28/2024] Open
Abstract
Glioblastoma multiforme (GBM) stands out as the most tremendous brain tumor, constituting 60% of primary brain cancers, accompanied by dismal survival rates. Despite advancements in research, therapeutic options remain limited to chemotherapy and surgery. GBM molecular heterogeneity, the intricate interaction with the tumor microenvironment (TME), and non-selective treatments contribute to the neoplastic relapse. Diagnostic challenges arise from GBM advanced-stage detection, necessitating the exploration of novel biomarkers for early diagnosis. Using data from the literature and a bioinformatic tool, the current manuscript delineates the molecular interplay between human GBM, astrocytes, and myeloid cells, underscoring selected protein pathways belonging to astroglia and myeloid lineage, which can be considered for targeted therapies. Moreover, the pivotal role of extracellular vesicles (EVs) in orchestrating a favorable microenvironment for cancer progression is highlighted, suggesting their utility in identifying biomarkers for GBM early diagnosis.
Collapse
Affiliation(s)
- Assunta Virtuoso
- Laboratory of Neuronal Networks Morphology and System Biology, Department of Mental and Physical Health and Preventive Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (A.V.); (C.D.L.); (M.P.)
| | - Giuseppa D’Amico
- Department of Biomedicine, Neurosciences and Advanced Diagnostic (BiND), Human Anatomy Section, University of Palermo, 90127 Palermo, Italy; (G.D.); (F.S.)
| | - Federica Scalia
- Department of Biomedicine, Neurosciences and Advanced Diagnostic (BiND), Human Anatomy Section, University of Palermo, 90127 Palermo, Italy; (G.D.); (F.S.)
| | - Ciro De Luca
- Laboratory of Neuronal Networks Morphology and System Biology, Department of Mental and Physical Health and Preventive Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (A.V.); (C.D.L.); (M.P.)
| | - Michele Papa
- Laboratory of Neuronal Networks Morphology and System Biology, Department of Mental and Physical Health and Preventive Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (A.V.); (C.D.L.); (M.P.)
| | - Grazia Maugeri
- Department of Biomedical and Biotechnological Sciences, Section of Anatomy, Histology and Movement Sciences, University of Catania, 95100 Catania, Italy; (G.M.); (V.D.)
| | - Velia D’Agata
- Department of Biomedical and Biotechnological Sciences, Section of Anatomy, Histology and Movement Sciences, University of Catania, 95100 Catania, Italy; (G.M.); (V.D.)
| | - Celeste Caruso Bavisotto
- Department of Biomedicine, Neurosciences and Advanced Diagnostic (BiND), Human Anatomy Section, University of Palermo, 90127 Palermo, Italy; (G.D.); (F.S.)
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90139 Palermo, Italy
| | - Agata Grazia D’Amico
- Department of Drug and Health Sciences, University of Catania, 95125 Catania, Italy;
| |
Collapse
|
16
|
Salas-Gallardo GA, Lorea-Hernández JJ, Robles-Gómez ÁA, Del Campo CCM, Peña-Ortega F. Morphological differentiation of peritumoral brain zone microglia. PLoS One 2024; 19:e0297576. [PMID: 38451958 PMCID: PMC10919594 DOI: 10.1371/journal.pone.0297576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 01/08/2024] [Indexed: 03/09/2024] Open
Abstract
The Peritumoral Brain Zone (PBZ) contributes to Glioblastoma (GBM) relapse months after the resection of the original tumor, which is influenced by a variety of pathological factors. Among those, microglia are recognized as one of the main regulators of GBM progression and probably relapse. Although microglial morphology has been analyzed inside GBM and its immediate surroundings, it has not been objectively characterized throughout the PBZ. Thus, we aimed to perform a thorough characterization of microglial morphology in the PBZ and its likely differentiation not just from the tumor-associated microglia but from control tissue microglia. For this purpose, Sprague Dawley rats were intrastriatally implanted with C6 cells to induce a GBM formation. Gadolinium-based magnetic resonance imaging (MRI) was performed to locate the tumor and to define the PBZ (2 mm beyond the tumor border), thus delimitating the different regions of interest (ROIs: core tumoral zone and immediate interface; contralateral striatum as control). Brain slices were obtained and immunolabeled with the microglia marker Iba-1. Sixteen morphological parameters were measured for each cell, significative differences were found in all parameters when comparing the four ROIs. To determine if PBZ microglia could be morphologically differentiated from microglia in other ROIs, hierarchical clustering analysis was performed, revealing that microglia can be separated into four morphologically differentiated clusters, each of them mostly integrated by cells sampled in each ROI. Furthermore, a classifier based on linear discriminant analysis, including only three morphological parameters, categorized microglial cells across the studied ROIs and showed a gradual transition between them. The robustness of this classification was assessed through principal component analysis with the remaining 13 morphological parameters, corroborating the obtained results. Thus, in this study we provided objective and quantitative evidence that PBZ microglia represent a differentiable microglial morphotype that could contribute to the recurrence of GBM in this area.
Collapse
Affiliation(s)
- G. Anahí Salas-Gallardo
- Laboratorio de Células Neurales Troncales, CIACYT-Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, San Luis Potosí, México
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, México
| | - Jonathan-Julio Lorea-Hernández
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, México
| | - Ángel Abdiel Robles-Gómez
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, México
| | - Claudia Castillo-Martin Del Campo
- Laboratorio de Células Neurales Troncales, CIACYT-Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, San Luis Potosí, México
| | - Fernando Peña-Ortega
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, México
| |
Collapse
|
17
|
Lima IS, Soares ÉN, Nonaka CKV, Souza BSDF, dos Santos BL, Costa SL. Flavonoid Rutin Presented Anti-Glioblastoma Activity Related to the Modulation of Onco miRNA-125b Expression and STAT3 Signaling and Impact on Microglia Inflammatory Profile. Brain Sci 2024; 14:90. [PMID: 38248305 PMCID: PMC10814059 DOI: 10.3390/brainsci14010090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/09/2024] [Accepted: 01/13/2024] [Indexed: 01/23/2024] Open
Abstract
Glioblastoma (GBM) is the most aggressive and treatment-resistant brain tumor. In the GBM microenvironment, interaction with microglia is associated with the dysregulation of cytokines, chemokines, and miRNAs, contributing to angiogenesis, proliferation, anti-apoptosis, and chemoresistance. The flavonoid rutin can inhibit glioma cell growth associated with microglial activation and production of pro-inflammatory mediators by mechanisms that are still poorly understood. The present study investigated the effect of rutin on viability, regulation of miRNA-125b, and the STAT3 expression in GBM cells, as well as the effects on the modulation of the inflammatory profile and STAT3 expression in microglia during indirect interaction with GBM cells. Human GL15-GBM cells and human C20 microglia were treated or not with rutin for 24 h. Rutin (30-50 μM) significantly reduced the viability of GL15 cells; however, it did not affect the viability of microglia. Rutin (30 μM) significantly reduced the expression of miRNA-125b in the cells and secretome and STAT3 expression. Microglia submitted to the conditioned medium from GBM cells treated with rutin showed reactive morphology associated with reduced expression of IL-6, TNF, and STAT3. These results reiterate the anti-glioma effects of the flavonoid, which may also modulate microglia towards a more responsive anti-tumor phenotype, constituting a promising molecule for adjuvant therapy to GBM.
Collapse
Affiliation(s)
- Irlã Santos Lima
- Laboratory of Neurochemistry and Cellular Biology, Institute of Health Sciences, Federal University of Bahia, Salvador 40231-300, Brazil; (I.S.L.); (É.N.S.)
| | - Érica Novaes Soares
- Laboratory of Neurochemistry and Cellular Biology, Institute of Health Sciences, Federal University of Bahia, Salvador 40231-300, Brazil; (I.S.L.); (É.N.S.)
| | - Carolina Kymie Vasques Nonaka
- Center of Biotechnology and Cell Therapy, São Rafael Hospital, D’Or Institute for Research and Teaching (IDOR), Salvador 41253-190, Brazil; (C.K.V.N.); (B.S.d.F.S.)
| | - Bruno Solano de Freitas Souza
- Center of Biotechnology and Cell Therapy, São Rafael Hospital, D’Or Institute for Research and Teaching (IDOR), Salvador 41253-190, Brazil; (C.K.V.N.); (B.S.d.F.S.)
| | - Balbino Lino dos Santos
- Laboratory of Neurochemistry and Cellular Biology, Institute of Health Sciences, Federal University of Bahia, Salvador 40231-300, Brazil; (I.S.L.); (É.N.S.)
- College of Nursing, Federal University of Vale do São Francisco, Petrolina 56304-917, Brazil
| | - Silvia Lima Costa
- Laboratory of Neurochemistry and Cellular Biology, Institute of Health Sciences, Federal University of Bahia, Salvador 40231-300, Brazil; (I.S.L.); (É.N.S.)
- National Institute of Translation Neuroscience (INNT), Rio de Janeiro 21941-902, Brazil
| |
Collapse
|
18
|
Nóbrega AHL, Pimentel RS, Prado AP, Garcia J, Frozza RL, Bernardi A. Neuroinflammation in Glioblastoma: The Role of the Microenvironment in Tumour Progression. Curr Cancer Drug Targets 2024; 24:579-594. [PMID: 38310461 DOI: 10.2174/0115680096265849231031101449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/25/2023] [Accepted: 09/08/2023] [Indexed: 02/05/2024]
Abstract
Glioblastoma (GBM) stands as the most aggressive and lethal among the main types of primary brain tumors. It exhibits malignant growth, infiltrating the brain tissue, and displaying resistance toward treatment. GBM is a complex disease characterized by high degrees of heterogeneity. During tumour growth, microglia and astrocytes, among other cells, infiltrate the tumour microenvironment and contribute extensively to gliomagenesis. Tumour-associated macrophages (TAMs), either of peripheral origin or representing brain-intrinsic microglia, are the most numerous nonneoplastic populations in the tumour microenvironment in GBM. The complex heterogeneous nature of GBM cells is facilitated by the local inflammatory tumour microenvironment, which mostly induces tumour aggressiveness and drug resistance. The immunosuppressive tumour microenvironment of GBM provides multiple pathways for tumour immune evasion, contributing to tumour progression. Additionally, TAMs and astrocytes can contribute to tumour progression through the release of cytokines and activation of signalling pathways. In this review, we summarize the role of the microenvironment in GBM progression, focusing on neuroinflammation. These recent advancements in research of the microenvironment hold the potential to offer a promising approach to the treatment of GBM in the coming times.
Collapse
Affiliation(s)
| | - Rafael Sampaio Pimentel
- Laboratory of Inflammation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro/RJ, Brazil
| | - Ana Paula Prado
- Laboratory of Inflammation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro/RJ, Brazil
| | - Jenifer Garcia
- Laboratory of Inflammation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro/RJ, Brazil
| | - Rudimar Luiz Frozza
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro/RJ, Brazil
| | - Andressa Bernardi
- Laboratory of Inflammation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro/RJ, Brazil
| |
Collapse
|
19
|
Dudley-Fraser J, Rittinger K. It's a TRIM-endous view from the top: the varied roles of TRIpartite Motif proteins in brain development and disease. Front Mol Neurosci 2023; 16:1287257. [PMID: 38115822 PMCID: PMC10728303 DOI: 10.3389/fnmol.2023.1287257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 11/13/2023] [Indexed: 12/21/2023] Open
Abstract
The tripartite motif (TRIM) protein family members have been implicated in a multitude of physiologies and pathologies in different tissues. With diverse functions in cellular processes including regulation of signaling pathways, protein degradation, and transcriptional control, the impact of TRIM dysregulation can be multifaceted and complex. Here, we focus on the cellular and molecular roles of TRIMs identified in the brain in the context of a selection of pathologies including cancer and neurodegeneration. By examining each disease in parallel with described roles in brain development, we aim to highlight fundamental common mechanisms employed by TRIM proteins and identify opportunities for therapeutic intervention.
Collapse
Affiliation(s)
- Jane Dudley-Fraser
- Molecular Structure of Cell Signalling Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Katrin Rittinger
- Molecular Structure of Cell Signalling Laboratory, The Francis Crick Institute, London, United Kingdom
| |
Collapse
|
20
|
Wang W, Tugaoen JD, Fadda P, Toland AE, Ma Q, Elder JB, Giglio P, Otero JJ. Glioblastoma pseudoprogression and true progression reveal spatially variable transcriptional differences. Acta Neuropathol Commun 2023; 11:192. [PMID: 38049893 PMCID: PMC10694987 DOI: 10.1186/s40478-023-01587-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 05/20/2023] [Indexed: 12/06/2023] Open
Abstract
Post-resection radiologic monitoring to identify areas of new or progressive enhancement concerning for cancer recurrence is critical during patients with glioblastoma follow-up. However, treatment-related pseudoprogression presents with similar imaging features but requires different clinical management. While pathologic diagnosis is the gold standard to differentiate true progression and pseudoprogression, the lack of objective clinical standards and admixed histologic presentation creates the needs to (1) validate the accuracy of current approaches and (2) characterize differences between these entities to objectively differentiate true disease. We demonstrated using an online RNAseq repository of recurrent glioblastoma samples that cancer-immune cell activity levels correlate with heterogenous clinical outcomes in patients. Furthermore, nCounter RNA expression analysis of 48 clinical samples taken from second neurosurgical resection supports that pseudoprogression gene expression pathways are dominated with immune activation, whereas progression is predominated with cell cycle activity. Automated image processing and spatial expression analysis however highlight a failure to apply these broad expressional differences in a subset of cases with clinically challenging admixed histology. Encouragingly, applying unsupervised clustering approaches over our segmented histologic images provides novel understanding of morphologically derived differences between progression and pseudoprogression. Spatially derived data further highlighted polarization of myeloid populations that may underscore the tumorgenicity of novel lesions. These findings not only help provide further clarity of potential targets for pathologists to better assist stratification of progression and pseudoprogression, but also highlight the evolution of tumor-immune microenvironment changes which promote tumor recurrence.
Collapse
Affiliation(s)
- Wesley Wang
- Department of Pathology, The Ohio State University Wexner Medical Center, The Ohio State University College of Medicine, 4166 Graves Hall, 333 W 10th Avenue, Columbus, OH, 43210, USA
| | - Jonah Domingo Tugaoen
- Department of Pathology, The Ohio State University Wexner Medical Center, The Ohio State University College of Medicine, 4166 Graves Hall, 333 W 10th Avenue, Columbus, OH, 43210, USA
| | - Paolo Fadda
- Genomics Shared Resource-Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Amanda Ewart Toland
- Genomics Shared Resource-Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, OH, USA
| | - Qin Ma
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH, USA
| | - J Brad Elder
- Department of Neurosurgery, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Pierre Giglio
- Department of Neuro-Oncology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - José Javier Otero
- Department of Pathology, The Ohio State University Wexner Medical Center, The Ohio State University College of Medicine, 4166 Graves Hall, 333 W 10th Avenue, Columbus, OH, 43210, USA.
| |
Collapse
|
21
|
Garcia JH, Akins EA, Jain S, Wolf KJ, Zhang J, Choudhary N, Lad M, Shukla P, Rios J, Seo K, Gill SA, Carson WH, Carette LR, Zheng AC, Raleigh DR, Kumar S, Aghi MK. Multiomic screening of invasive GBM cells reveals targetable transsulfuration pathway alterations. J Clin Invest 2023; 134:e170397. [PMID: 37971886 PMCID: PMC10849762 DOI: 10.1172/jci170397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 11/14/2023] [Indexed: 11/19/2023] Open
Abstract
While the poor prognosis of glioblastoma arises from the invasion of a subset of tumor cells, little is known of the metabolic alterations within these cells that fuel invasion. We integrated spatially addressable hydrogel biomaterial platforms, patient site-directed biopsies, and multiomics analyses to define metabolic drivers of invasive glioblastoma cells. Metabolomics and lipidomics revealed elevations in the redox buffers cystathionine, hexosylceramides, and glucosyl ceramides in the invasive front of both hydrogel-cultured tumors and patient site-directed biopsies, with immunofluorescence indicating elevated reactive oxygen species (ROS) markers in invasive cells. Transcriptomics confirmed upregulation of ROS-producing and response genes at the invasive front in both hydrogel models and patient tumors. Among oncologic ROS, H2O2 specifically promoted glioblastoma invasion in 3D hydrogel spheroid cultures. A CRISPR metabolic gene screen revealed cystathionine γ-lyase (CTH), which converts cystathionine to the nonessential amino acid cysteine in the transsulfuration pathway, to be essential for glioblastoma invasion. Correspondingly, supplementing CTH knockdown cells with exogenous cysteine rescued invasion. Pharmacologic CTH inhibition suppressed glioblastoma invasion, while CTH knockdown slowed glioblastoma invasion in vivo. Our studies highlight the importance of ROS metabolism in invasive glioblastoma cells and support further exploration of the transsulfuration pathway as a mechanistic and therapeutic target.
Collapse
Affiliation(s)
- Joseph H. Garcia
- Department of Neurosurgery, UCSF, San Francisco, California, USA
| | - Erin A. Akins
- Department of Bioengineering, UC Berkeley, Berkeley, California, USA
- Graduate Program in Bioengineering, UC Berkeley–UCSF, San Francisco, California, USA
| | - Saket Jain
- Department of Neurosurgery, UCSF, San Francisco, California, USA
| | - Kayla J. Wolf
- Department of Bioengineering, UC Berkeley, Berkeley, California, USA
| | - Jason Zhang
- Department of Bioengineering, UC Berkeley, Berkeley, California, USA
| | - Nikita Choudhary
- Department of Neurosurgery, UCSF, San Francisco, California, USA
| | - Meeki Lad
- Department of Neurosurgery, UCSF, San Francisco, California, USA
| | - Poojan Shukla
- Department of Neurosurgery, UCSF, San Francisco, California, USA
| | - Jennifer Rios
- Department of Neurosurgery, UCSF, San Francisco, California, USA
| | - Kyounghee Seo
- Department of Neurosurgery, UCSF, San Francisco, California, USA
| | - Sabraj A. Gill
- Department of Neurosurgery, UCSF, San Francisco, California, USA
| | | | - Luis R. Carette
- Department of Neurosurgery, UCSF, San Francisco, California, USA
| | - Allison C. Zheng
- Department of Neurosurgery, UCSF, San Francisco, California, USA
| | - David R. Raleigh
- Department of Neurosurgery, UCSF, San Francisco, California, USA
| | - Sanjay Kumar
- Department of Bioengineering, UC Berkeley, Berkeley, California, USA
- Graduate Program in Bioengineering, UC Berkeley–UCSF, San Francisco, California, USA
- Department of Chemical and Biomolecular Engineering, UC Berkeley, Berkeley, California, USA
- Department of Bioengineering and Therapeutic Sciences, UCSF, San Francisco, California, USA
- California Institute for Quantitative Biosciences at UC Berkeley (QB3-Berkeley), Berkeley, California, USA
| | - Manish K. Aghi
- Department of Neurosurgery, UCSF, San Francisco, California, USA
| |
Collapse
|
22
|
Agrawal K, Asthana S, Kumar D. Role of Oxidative Stress in Metabolic Reprogramming of Brain Cancer. Cancers (Basel) 2023; 15:4920. [PMID: 37894287 PMCID: PMC10605619 DOI: 10.3390/cancers15204920] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 09/29/2023] [Accepted: 10/04/2023] [Indexed: 10/29/2023] Open
Abstract
Brain cancer is known as one of the deadliest cancers globally. One of the causative factors is the imbalance between oxidative and antioxidant activities in the body, which is referred to as oxidative stress (OS). As part of regular metabolism, oxygen is reduced by electrons, resulting in the creation of numerous reactive oxygen species (ROS). Inflammation is intricately associated with the generation of OS, leading to the increased production and accumulation of reactive oxygen and nitrogen species (RONS). Glioma stands out as one of the most common malignant tumors affecting the central nervous system (CNS), characterized by changes in the redox balance. Brain cancer cells exhibit inherent resistance to most conventional treatments, primarily due to the distinctive tumor microenvironment. Oxidative stress (OS) plays a crucial role in the development of various brain-related malignancies, such as glioblastoma multiforme (GBM) and medulloblastoma, where OS significantly disrupts the normal homeostasis of the brain. In this review, we provide in-depth descriptions of prospective targets and therapeutics, along with an assessment of OS and its impact on brain cancer metabolism. We also discuss targeted therapies.
Collapse
Affiliation(s)
- Kirti Agrawal
- School of Health Sciences and Technology (SoHST), UPES, Dehradun 248007, India
| | - Shailendra Asthana
- Translational Health Science and Technology Institute (THSTI), Faridabad 121001, India
| | - Dhruv Kumar
- School of Health Sciences and Technology (SoHST), UPES, Dehradun 248007, India
| |
Collapse
|
23
|
Ge X, Xu X, Cai Q, Xiong H, Chen X, Hong Y, Gao X, Yao Y, Bachoo R, Qin Z. pan-ECM: live brain extracellular matrix imaging with protein-reactive dye. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.29.534827. [PMID: 37034592 PMCID: PMC10081250 DOI: 10.1101/2023.03.29.534827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
The brain extracellular matrix (ECM), consisting of proteins and glycosaminoglycans, is a critical scaffold in the development, homeostasis, and disorders of the central nervous system (CNS) and undergoes remodeling in response to environmental cues. Live imaging of brain ECM structure represents a native view of the brain ECM but, until now, remains challenging due to the lack of a robust fluorescent labeling approach. Here, we developed a pan-ECM method for labeling the entire (Greek: pan) brain ECM network by screening and delivering a protein-reactive dye into the brain. pan-ECM enables imaging of ECM compartments in live brain tissue, including the interstitial matrix, basement membrane (BM), and perineuronal nets (PNNs), and even the ECM in glioblastoma and stroke mouse brains. This approach provides access to the structure and dynamics of the ECM and enhances our understanding of the complexities of the brain ECM and its contribution to brain health and disease.
Collapse
|
24
|
Garcia JH, Akins EA, Jain S, Wolf KJ, Zhang J, Choudhary N, Lad M, Shukla P, Gill S, Carson W, Carette L, Zheng A, Kumar S, Aghi MK. Multi-omic screening of invasive GBM cells in engineered biomaterials and patient biopsies reveals targetable transsulfuration pathway alterations. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.23.529575. [PMID: 36865128 PMCID: PMC9980149 DOI: 10.1101/2023.02.23.529575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
While the poor prognosis of glioblastoma arises from the invasion of a subset of tumor cells, little is known of the metabolic alterations within these cells that fuel invasion. We integrated spatially addressable hydrogel biomaterial platforms, patient site-directed biopsies, and multi-omics analyses to define metabolic drivers of invasive glioblastoma cells. Metabolomics and lipidomics revealed elevations in the redox buffers cystathionine, hexosylceramides, and glucosyl ceramides in the invasive front of both hydrogel-cultured tumors and patient site-directed biopsies, with immunofluorescence indicating elevated reactive oxygen species (ROS) markers in invasive cells. Transcriptomics confirmed upregulation of ROS-producing and response genes at the invasive front in both hydrogel models and patient tumors. Amongst oncologic ROS, hydrogen peroxide specifically promoted glioblastoma invasion in 3D hydrogel spheroid cultures. A CRISPR metabolic gene screen revealed cystathionine gamma lyase (CTH), which converts cystathionine to the non-essential amino acid cysteine in the transsulfuration pathway, to be essential for glioblastoma invasion. Correspondingly, supplementing CTH knockdown cells with exogenous cysteine rescued invasion. Pharmacologic CTH inhibition suppressed glioblastoma invasion, while CTH knockdown slowed glioblastoma invasion in vivo. Our studies highlight the importance of ROS metabolism in invasive glioblastoma cells and support further exploration of the transsulfuration pathway as a mechanistic and therapeutic target.
Collapse
Affiliation(s)
- Joseph H Garcia
- Department of Neurosurgery; University of California San Francisco (UCSF)
| | - Erin A Akins
- Department of Bioengineering; Stanley Hall; University of California, Berkeley (UC Berkeley), Berkeley, CA 94720
- UC Berkeley-UCSF Graduate Program in Bioengineering; Berkeley, CA 94720
| | - Saket Jain
- Department of Neurosurgery; University of California San Francisco (UCSF)
| | - Kayla J Wolf
- Department of Bioengineering; Stanley Hall; University of California, Berkeley (UC Berkeley), Berkeley, CA 94720
| | - Jason Zhang
- Department of Bioengineering; Stanley Hall; University of California, Berkeley (UC Berkeley), Berkeley, CA 94720
| | - Nikita Choudhary
- Department of Neurosurgery; University of California San Francisco (UCSF)
| | - Meeki Lad
- Department of Neurosurgery; University of California San Francisco (UCSF)
| | - Poojan Shukla
- Department of Neurosurgery; University of California San Francisco (UCSF)
| | - Sabraj Gill
- Department of Neurosurgery; University of California San Francisco (UCSF)
| | - Will Carson
- Department of Neurosurgery; University of California San Francisco (UCSF)
| | - Luis Carette
- Department of Neurosurgery; University of California San Francisco (UCSF)
| | - Allison Zheng
- Department of Neurosurgery; University of California San Francisco (UCSF)
| | - Sanjay Kumar
- Department of Bioengineering; Stanley Hall; University of California, Berkeley (UC Berkeley), Berkeley, CA 94720
- Department of Chemical and Biomolecular Engineering; UC Berkeley
- Department of Bioengineering and Therapeutic Sciences; UCSF
- The California Institute for Quantitative Biosciences at UC Berkeley (QB3-Berkeley)
- UC Berkeley-UCSF Graduate Program in Bioengineering; Berkeley, CA 94720
| | - Manish K Aghi
- Department of Neurosurgery; University of California San Francisco (UCSF)
| |
Collapse
|
25
|
The "Superoncogene" Myc at the Crossroad between Metabolism and Gene Expression in Glioblastoma Multiforme. Int J Mol Sci 2023; 24:ijms24044217. [PMID: 36835628 PMCID: PMC9966483 DOI: 10.3390/ijms24044217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/10/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
The concept of the Myc (c-myc, n-myc, l-myc) oncogene as a canonical, DNA-bound transcription factor has consistently changed over the past few years. Indeed, Myc controls gene expression programs at multiple levels: directly binding chromatin and recruiting transcriptional coregulators; modulating the activity of RNA polymerases (RNAPs); and drawing chromatin topology. Therefore, it is evident that Myc deregulation in cancer is a dramatic event. Glioblastoma multiforme (GBM) is the most lethal, still incurable, brain cancer in adults, and it is characterized in most cases by Myc deregulation. Metabolic rewiring typically occurs in cancer cells, and GBM undergoes profound metabolic changes to supply increased energy demand. In nontransformed cells, Myc tightly controls metabolic pathways to maintain cellular homeostasis. Consistently, in Myc-overexpressing cancer cells, including GBM cells, these highly controlled metabolic routes are affected by enhanced Myc activity and show substantial alterations. On the other hand, deregulated cancer metabolism impacts Myc expression and function, placing Myc at the intersection between metabolic pathway activation and gene expression. In this review paper, we summarize the available information on GBM metabolism with a specific focus on the control of the Myc oncogene that, in turn, rules the activation of metabolic signals, ensuring GBM growth.
Collapse
|
26
|
Laviv Y, Sapirstein E, Kanner AA, Berkowitz S, Fichman S, Benouaich-Amiel A, Yust-Katz S, Kasper EE, Siegal T. Significant Systemic Insulin Resistance is Associated With Unique Glioblastoma Multiforme Phenotype. CLINICAL PATHOLOGY (THOUSAND OAKS, VENTURA COUNTY, CALIF.) 2023; 16:2632010X231207725. [PMID: 37920781 PMCID: PMC10619354 DOI: 10.1177/2632010x231207725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 09/28/2023] [Indexed: 11/04/2023]
Abstract
Background Some glioblastoma multiforme (GBM) are characterized by the presence of gemistocytes (GCs), a unique phenotype of reactive astrocytes. Certain GCs can be identified as neoplastic cells but these cells were also found to be associated with diabetes in non-neoplastic lesions of the central nervous system. Our aim was to find a correlation between insulin - resistance metabolic features and the presence of GCs in patients with newly diagnosed GBM. Methods Medical records from histologically confirmed GBM patients were retrospectively extracted for different systemic metabolic variables. A statistic-based comparison was made between GBM, diabetic patients with and without GC. Patients with poorly controlled diabetes (ie, hemoglobin A1C ⩾ 8.0) were also compared between the 2 groups. Results A total of 220 newly diagnosed GBM patients were included in our study. 58 (26.3%) patients had a history of diabetes mellitus type 2 (DM2) at the time of admission. The rate of poorly-controlled DM2 was nearly as twice in the GC-GBM group than in the non-GC GBM group (18.75% vs 9.5%; P = .130). In the DM2 cohort, the subgroup of GC-GBM was significantly associated with demographic and metabolic features related to insulin resistance such as male gender predominance (89% vs 50%, P = .073) and morbid obesity (weight ⩾85 kg: OR 6.16; P = .0019 and mean BMI: 34.1 ± 11.42 vs 28.7 ± 5.44; P = .034 for group with and without GCs, respectively). In the poorly-controlled DM2 group, none of the GC-GBM patients were using insulin prior to diagnosis, compared to 61.1% in the non-GC GBM patients (OR = 0.04, P = .045). Conclusion Systemic metabolic factors related to marked insulin resistance (DM2, morbid obesity, male gender) are associated with a unique histologic phenotype of GBM, characterized by the presence of GCs. This feature is prominent in poorly-controlled DM2 GBM patients who are not using synthetic insulin. This novel finding may add to the growing data on the relevance of glucose metabolism in astrocytes and in astrocytes associated with high-grade gliomas. In GBM patients, a correlation between patients' metabolic status, tumor's histologic phenotype, tumor's molecular changes, use of anti-diabetic drugs and the respective impact of these factor on survival warrants further investigation.
Collapse
Affiliation(s)
- Yosef Laviv
- Neurosurgery Department, Beilinson Hospital, Rabin Medical Center, Petah Tikva, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Eilat Sapirstein
- Neurosurgery Department, Beilinson Hospital, Rabin Medical Center, Petah Tikva, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Andrew A Kanner
- Neurosurgery Department, Beilinson Hospital, Rabin Medical Center, Petah Tikva, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Shani Berkowitz
- Neurosurgery Department, Beilinson Hospital, Rabin Medical Center, Petah Tikva, Israel
| | - Suzana Fichman
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Pathology Department, Beilinson Hospital, Rabin Medical Center, Petah Tikva, Israel
| | - Alexandra Benouaich-Amiel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Neuro-Oncology Unit, Davidoff Cancer Center, Beilinson Hospital, Rabin Medical Center, Petah Tikva, Israel
| | - Shlomit Yust-Katz
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Neuro-Oncology Unit, Davidoff Cancer Center, Beilinson Hospital, Rabin Medical Center, Petah Tikva, Israel
| | - Ekkehard E Kasper
- Neurosurgery Department, St. Elizabeth’s Medical Center, Boston University, Boston, MA, USA
| | - Tali Siegal
- Neuro-Oncology Unit, Davidoff Cancer Center, Beilinson Hospital, Rabin Medical Center, Petah Tikva, Israel
- Hebrew University, Jerusalem, Israel
| |
Collapse
|
27
|
Guo T, Bao A, Xie Y, Qiu J, Piao H. Single-Cell Sequencing Analysis Identified ASTN2 as a Migration Biomarker in Adult Glioblastoma. Brain Sci 2022; 12:1472. [PMID: 36358398 PMCID: PMC9688571 DOI: 10.3390/brainsci12111472] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 10/26/2022] [Accepted: 10/27/2022] [Indexed: 07/30/2023] Open
Abstract
Glioblastoma is the most common and aggressive primary central nervous system malignant tumors. With the development of targeted sequencing and proteomic profiling technology, some new tumor types have been established and a series of novel molecular markers have also been identified. The 2021 updated World Health Organization classification of central nervous system tumors first mentioned the classification of adult glioma and pediatric glioma based on the molecular diagnosis. Thus, we used single-cell RNA sequencing analysis to explore the diversity and similarities in the occurrence and development of adult and pediatric types. ASTN2, which primarily encodes astrotactin, has been reported to be dysregulated in various neurodevelopmental disorders. Although some studies have demonstrated that ASTN2 plays an important role in glial-guided neuronal migration, there are no studies about its impact on glioblastoma cell migration. Subsequent single-cell RNA sequencing revealed ASTN2 to be a hub gene of a cell cluster which had a poor effect on clinical prognosis. Eventually, a western blot assay and a wound-healing assay first confirmed that ASTN2 expression in glioblastoma cell lines is higher than that in normal human astrocytes and affects the migration ability of glioblastoma cells, making it a potential therapeutic target.
Collapse
Affiliation(s)
- Tangjun Guo
- Graduate School, Dalian Medical University, Dalian 116000, China
- Department of Neurosurgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou 221000, China
| | - Aijun Bao
- Department of Neurosurgery, Affiliated Hefei Hospital of Anhui Medical University, The Second People’s Hospital of Hefei, Hefei 230000, China
| | - Yandong Xie
- Graduate School, Nanjing Medical University, Nanjing 210029, China
| | - Jianting Qiu
- Department of Neurology, The People’s Hospital of Liaoning Province, Shenyang 110042, China
| | - Haozhe Piao
- Department of Neurosurgery, Liaoning Cancer Hospital & Institute, Shenyang 110042, China
| |
Collapse
|
28
|
Tumor Microenvironment and Immune Escape in the Time Course of Glioblastoma. Mol Neurobiol 2022; 59:6857-6873. [PMID: 36048342 PMCID: PMC9525332 DOI: 10.1007/s12035-022-02996-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 08/07/2022] [Indexed: 12/02/2022]
Abstract
Glioblastoma multiforme (GBM) is the most aggressive primary brain tumor with a malignant prognosis. GBM is characterized by high cellular heterogeneity and its progression relies on the interaction with the central nervous system, which ensures the immune-escape and tumor promotion. This interplay induces metabolic, (epi)-genetic and molecular rewiring in both domains. In the present study, we aim to characterize the time-related changes in the GBM landscape, using a syngeneic mouse model of primary GBM. GL261 glioma cells were injected in the right striatum of immuno-competent C57Bl/6 mice and animals were sacrificed after 7, 14, and 21 days (7D, 14D, 21D). The tumor development was assessed through 3D tomographic imaging and brains were processed for immunohistochemistry, immunofluorescence, and western blotting. A human transcriptomic database was inquired to support the translational value of the experimental data. Our results showed the dynamic of the tumor progression, being established as a bulk at 14D and surrounded by a dense scar of reactive astrocytes. The GBM growth was paralleled by the impairment in the microglial/macrophagic recruitment and antigen-presenting functions, while the invasive phase was characterized by changes in the extracellular matrix, as shown by the analysis of tenascin C and metalloproteinase-9. The present study emphasizes the role of the molecular changes in the microenvironment during the GBM progression, fostering the development of novel multi-targeted, time-dependent therapies in an experimental model similar to the human disease.
Collapse
|
29
|
Kishk A, Pacheco MP, Heurtaux T, Sinkkonen L, Pang J, Fritah S, Niclou SP, Sauter T. Review of Current Human Genome-Scale Metabolic Models for Brain Cancer and Neurodegenerative Diseases. Cells 2022; 11:2486. [PMID: 36010563 PMCID: PMC9406599 DOI: 10.3390/cells11162486] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 07/28/2022] [Accepted: 08/08/2022] [Indexed: 11/16/2022] Open
Abstract
Brain disorders represent 32% of the global disease burden, with 169 million Europeans affected. Constraint-based metabolic modelling and other approaches have been applied to predict new treatments for these and other diseases. Many recent studies focused on enhancing, among others, drug predictions by generating generic metabolic models of brain cells and on the contextualisation of the genome-scale metabolic models with expression data. Experimental flux rates were primarily used to constrain or validate the model inputs. Bi-cellular models were reconstructed to study the interaction between different cell types. This review highlights the evolution of genome-scale models for neurodegenerative diseases and glioma. We discuss the advantages and drawbacks of each approach and propose improvements, such as building bi-cellular models, tailoring the biomass formulations for glioma and refinement of the cerebrospinal fluid composition.
Collapse
Affiliation(s)
- Ali Kishk
- Department of Life Sciences and Medicine, University of Luxembourg, L-4367 Belvaux, Luxembourg
| | - Maria Pires Pacheco
- Department of Life Sciences and Medicine, University of Luxembourg, L-4367 Belvaux, Luxembourg
| | - Tony Heurtaux
- Department of Life Sciences and Medicine, University of Luxembourg, L-4367 Belvaux, Luxembourg
- Luxembourg Center of Neuropathology, L-3555 Dudelange, Luxembourg
| | - Lasse Sinkkonen
- Department of Life Sciences and Medicine, University of Luxembourg, L-4367 Belvaux, Luxembourg
| | - Jun Pang
- Department of Computer Science, University of Luxembourg, L-4364 Esch-sur-Alzette, Luxembourg
| | - Sabrina Fritah
- NORLUX Neuro-Oncology Laboratory, Luxembourg Institute of Health, Department of Cancer Research, L-1526 Luxembourg, Luxembourg
| | - Simone P. Niclou
- NORLUX Neuro-Oncology Laboratory, Luxembourg Institute of Health, Department of Cancer Research, L-1526 Luxembourg, Luxembourg
| | - Thomas Sauter
- Department of Life Sciences and Medicine, University of Luxembourg, L-4367 Belvaux, Luxembourg
| |
Collapse
|
30
|
Montella L, Del Gaudio N, Bove G, Cuomo M, Buonaiuto M, Costabile D, Visconti R, Facchini G, Altucci L, Chiariotti L, Della Monica R. Looking Beyond the Glioblastoma Mask: Is Genomics the Right Path? Front Oncol 2022; 12:926967. [PMID: 35875139 PMCID: PMC9306486 DOI: 10.3389/fonc.2022.926967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 06/09/2022] [Indexed: 11/15/2022] Open
Abstract
Glioblastomas are the most frequent and malignant brain tumor hallmarked by an invariably poor prognosis. They have been classically differentiated into primary isocitrate dehydrogenase 1 or 2 (IDH1 -2) wild-type (wt) glioblastoma (GBM) and secondary IDH mutant GBM, with IDH wt GBMs being commonly associated with older age and poor prognosis. Recently, genetic analyses have been integrated with epigenetic investigations, strongly implementing typing and subtyping of brain tumors, including GBMs, and leading to the new WHO 2021 classification. GBM genomic and epigenomic profile influences evolution, resistance, and therapeutic responses. However, differently from other tumors, there is a wide gap between the refined GBM profiling and the limited therapeutic opportunities. In addition, the different oncogenes and tumor suppressor genes involved in glial cell transformation, the heterogeneous nature of cancer, and the restricted access of drugs due to the blood–brain barrier have limited clinical advancements. This review will summarize the more relevant genetic alterations found in GBMs and highlight their potential role as potential therapeutic targets.
Collapse
Affiliation(s)
- Liliana Montella
- Oncology Operative Unit, "Santa Maria delle Grazie" Hospital, ASL Napoli 2 NORD-, Pozzuoli, Italy
| | - Nunzio Del Gaudio
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Napoli, Italy
| | - Guglielmo Bove
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Napoli, Italy
| | - Mariella Cuomo
- CEINGE Biotecnologie Avanzate scarl, Napoli, Italy.,Department of Molecular Medicine and Medical Biotechnologies, University of Naples "Federico II", Napoli, Italy
| | - Michela Buonaiuto
- CEINGE Biotecnologie Avanzate scarl, Napoli, Italy.,Department of Molecular Medicine and Medical Biotechnologies, University of Naples "Federico II", Napoli, Italy
| | - Davide Costabile
- CEINGE Biotecnologie Avanzate scarl, Napoli, Italy.,SEMM-European School of Molecular Medicine, Milano, Italy
| | - Roberta Visconti
- CEINGE Biotecnologie Avanzate scarl, Napoli, Italy.,Institute of Experimental Endocrinology and Oncology, Consiglio Nazionale delle Ricerche, Napoli, Italy
| | - Gaetano Facchini
- Oncology Operative Unit, "Santa Maria delle Grazie" Hospital, ASL Napoli 2 NORD-, Pozzuoli, Italy
| | - Lucia Altucci
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Napoli, Italy.,BIOGEM, Ariano Irpino, Italy
| | - Lorenzo Chiariotti
- CEINGE Biotecnologie Avanzate scarl, Napoli, Italy.,Department of Molecular Medicine and Medical Biotechnologies, University of Naples "Federico II", Napoli, Italy
| | - Rosa Della Monica
- CEINGE Biotecnologie Avanzate scarl, Napoli, Italy.,Department of Molecular Medicine and Medical Biotechnologies, University of Naples "Federico II", Napoli, Italy
| |
Collapse
|
31
|
Lin YJ, Wu CYJ, Wu JY, Lim M. The Role of Myeloid Cells in GBM Immunosuppression. Front Immunol 2022; 13:887781. [PMID: 35711434 PMCID: PMC9192945 DOI: 10.3389/fimmu.2022.887781] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 04/25/2022] [Indexed: 12/12/2022] Open
Abstract
Gliomas are intrinsic brain tumors that originate from glial cells. Glioblastoma (GBM) is the most aggressive glioma type and resistant to immunotherapy, mainly due to its unique immune environment. Dimensional data analysis reveals that the intra-tumoral heterogeneity of immune cell populations in the glioma microenvironment is largely made up of cells of myeloid lineage. Conventional therapies of combined surgery, chemotherapy and radiotherapy have achieved limited improvements in the prognosis of glioma patients, as myeloid cells are prominent mediators of immune and therapeutic responses—like immunotherapy resistance—in glioma. Myeloid cells are frequently seen in the tumor microenvironment (TME), and they are polarized to promote tumorigenesis and immunosuppression. Reprogramming myeloid cells has emerged as revolutionary, new types of immunotherapies for glioma treatment. Here we detail the current advances in classifying epigenetic, metabolic, and phenotypic characteristics and functions of different populations of myeloid cells in glioma TME, including myeloid-derived suppressor cells (MDSCs), glioma-associated microglia/macrophages (GAMs), glioma-associated neutrophils (GANs), and glioma-associated dendritic cells (GADCs), as well as the mechanisms underlying promotion of tumorigenesis. The final goal of this review will be to provide new insights into novel therapeutic approaches for specific targeting of myeloid cells to improve the efficacy of current treatments in glioma patients.
Collapse
Affiliation(s)
- Ya-Jui Lin
- Department of Neurosurgery, Chang Gung Medical Foundation, Linkou Medical Center, Taoyuan, Taiwan.,Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, United States
| | - Caren Yu-Ju Wu
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, United States.,Department of Neurosurgery, Chang Gung Medical Foundation, Keelung Chang Gung Memorial Hospital, Keelung, Taiwan
| | - Janet Yuling Wu
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, United States
| | - Michael Lim
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, United States
| |
Collapse
|
32
|
Markouli M, Strepkos D, Papavassiliou KA, Papavassiliou AG, Piperi C. Crosstalk of Epigenetic and Metabolic Signaling Underpinning Glioblastoma Pathogenesis. Cancers (Basel) 2022; 14:cancers14112655. [PMID: 35681635 PMCID: PMC9179868 DOI: 10.3390/cancers14112655] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/14/2022] [Accepted: 05/24/2022] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Epigenetic mechanisms can modulate key genes involved in the cellular metabolism of glioblastomas and participate in their pathogenesis by increasing their heterogeneity, plasticity, and malignancy. Although most epigenetic modifications can primarily promote the activity of metabolic pathways, they may also exert an inhibitory role. The detection of key metabolic alterations in gliomas regulated by epigenetic mechanisms will enable drug development and effective molecular targeting, improvement of therapeutic schemes, and patients’ management. Abstract Metabolic alterations in neoplastic cells have recently gained increasing attention as a main topic of research, playing a crucial regulatory role in the development and progression of tumors. The interplay between epigenetic modifications and metabolic pathways in glioblastoma cells has emerged as a key pathogenic area with great potential for targeted therapy. Epigenetic mechanisms have been demonstrated to affect main metabolic pathways, such as glycolysis, pentose phosphate pathway, gluconeogenesis, oxidative phosphorylation, TCA cycle, lipid, and glutamine metabolism by modifying key regulatory genes. Although epigenetic modifications can primarily promote the activity of metabolic pathways, they may also exert an inhibitory role. In this way, they participate in a complex network of interactions that regulate the metabolic behavior of malignant cells, increasing their heterogeneity and plasticity. Herein, we discuss the main epigenetic mechanisms that regulate the metabolic pathways in glioblastoma cells and highlight their targeting potential against tumor progression.
Collapse
|
33
|
De Luca C, Virtuoso A, Papa M, Certo F, Barbagallo GMV, Altieri R. Regional Development of Glioblastoma: The Anatomical Conundrum of Cancer Biology and Its Surgical Implication. Cells 2022; 11:cells11081349. [PMID: 35456027 PMCID: PMC9025763 DOI: 10.3390/cells11081349] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/02/2022] [Accepted: 04/12/2022] [Indexed: 12/24/2022] Open
Abstract
Glioblastoma (GBM) are among the most common malignant central nervous system (CNS) cancers, they are relatively rare. This evidence suggests that the CNS microenvironment is naturally equipped to control proliferative cells, although, rarely, failure of this system can lead to cancer development. Moreover, the adult CNS is innately non-permissive to glioma cell invasion. Thus, glioma etiology remains largely unknown. In this review, we analyze the anatomical and biological basis of gliomagenesis considering neural stem cells, the spatiotemporal diversity of astrocytes, microglia, neurons and glutamate transporters, extracellular matrix and the peritumoral environment. The precise understanding of subpopulations constituting GBM, particularly astrocytes, is not limited to glioma stem cells (GSC) and could help in the understanding of tumor pathophysiology. The anatomical fingerprint is essential for non-invasive assessment of patients’ prognosis and correct surgical/radiotherapy planning.
Collapse
Affiliation(s)
- Ciro De Luca
- Laboratory of Neuronal Network Morphology and Systems Biology, Department of Mental and Physical Health and Preventive Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (C.D.L.); (A.V.)
| | - Assunta Virtuoso
- Laboratory of Neuronal Network Morphology and Systems Biology, Department of Mental and Physical Health and Preventive Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (C.D.L.); (A.V.)
| | - Michele Papa
- Laboratory of Neuronal Network Morphology and Systems Biology, Department of Mental and Physical Health and Preventive Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (C.D.L.); (A.V.)
- SYSBIO Centre of Systems Biology ISBE-IT, 20126 Milano, Italy
- Correspondence: (M.P.); (R.A.)
| | - Francesco Certo
- Department of Neurological Surgery, Policlinico “G. Rodolico-S. Marco” University Hospital, 95121 Catania, Italy; (F.C.); (G.M.V.B.)
- Interdisciplinary Research Center on Brain Tumors Diagnosis and Treatment, University of Catania, 95123 Catania, Italy
| | - Giuseppe Maria Vincenzo Barbagallo
- Department of Neurological Surgery, Policlinico “G. Rodolico-S. Marco” University Hospital, 95121 Catania, Italy; (F.C.); (G.M.V.B.)
- Interdisciplinary Research Center on Brain Tumors Diagnosis and Treatment, University of Catania, 95123 Catania, Italy
| | - Roberto Altieri
- Department of Neurological Surgery, Policlinico “G. Rodolico-S. Marco” University Hospital, 95121 Catania, Italy; (F.C.); (G.M.V.B.)
- Interdisciplinary Research Center on Brain Tumors Diagnosis and Treatment, University of Catania, 95123 Catania, Italy
- Correspondence: (M.P.); (R.A.)
| |
Collapse
|
34
|
Advances in Cancer Metabolism and Tumour Microenvironment. Int J Mol Sci 2022; 23:ijms23084071. [PMID: 35456889 PMCID: PMC9031583 DOI: 10.3390/ijms23084071] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 03/29/2022] [Indexed: 11/17/2022] Open
|
35
|
De Luca C, Virtuoso A, Korai SA, Cirillo R, Gargano F, Papa M, Cirillo G. Altered Spinal Homeostasis and Maladaptive Plasticity in GFAP Null Mice Following Peripheral Nerve Injury. Cells 2022; 11:cells11071224. [PMID: 35406788 PMCID: PMC8997460 DOI: 10.3390/cells11071224] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/25/2022] [Accepted: 03/31/2022] [Indexed: 12/14/2022] Open
Abstract
The maladaptive response of the central nervous system (CNS) following nerve injury is primarily linked to the activation of glial cells (reactive gliosis) that produce an inflammatory reaction and a wide cellular morpho-structural and functional/metabolic remodeling. Glial acidic fibrillary protein (GFAP), a major protein constituent of astrocyte intermediate filaments (IFs), is the hallmark of the reactive astrocytes, has pleiotropic functions and is significantly upregulated in the spinal cord after nerve injury. Here, we investigated the specific role of GFAP in glial reaction and maladaptive spinal cord plasticity following sciatic nerve spared nerve injury (SNI) in GFAP KO and wild-type (WT) animals. We evaluated the neuropathic behavior (thermal hyperalgesia, allodynia) and the expression of glial (vimentin, Iba1) and glutamate/GABA system markers (GLAST, GLT1, EAAC1, vGLUT, vGAT, GAD) in lumbar spinal cord sections of KO/WT animals. SNI induced neuropathic behavior in both GFAP KO and WT mice, paralleled by intense microglial reaction (Iba1 expression more pronounced in KO mice), reactive astrocytosis (vimentin increase) and expression remodeling of glial/neuronal glutamate/GABA transporters. In conclusion, it is conceivable that the lack of GFAP could be detrimental to the CNS as it lacks a critical sensor for neuroinflammation and morpho-functional–metabolic rewiring after nerve injury. Understanding the maladaptive morpho-functional changes of glial cells could represent the first step for a new glial-based targeted approach for mechanisms of disease in the CNS.
Collapse
Affiliation(s)
- Ciro De Luca
- Neural Network Morphology & Systems Biology Lab, Division of Human Anatomy, Department of Mental and Physical Health and Preventive Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (C.D.L.); (A.V.); (S.A.K.); (R.C.); (M.P.)
| | - Assunta Virtuoso
- Neural Network Morphology & Systems Biology Lab, Division of Human Anatomy, Department of Mental and Physical Health and Preventive Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (C.D.L.); (A.V.); (S.A.K.); (R.C.); (M.P.)
| | - Sohaib Ali Korai
- Neural Network Morphology & Systems Biology Lab, Division of Human Anatomy, Department of Mental and Physical Health and Preventive Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (C.D.L.); (A.V.); (S.A.K.); (R.C.); (M.P.)
| | - Raffaella Cirillo
- Neural Network Morphology & Systems Biology Lab, Division of Human Anatomy, Department of Mental and Physical Health and Preventive Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (C.D.L.); (A.V.); (S.A.K.); (R.C.); (M.P.)
| | - Francesca Gargano
- Unit of Anesthesia, Intensive Care and Pain Management, Department of Medicine, Campus Bio-Medico University of Rome, 00128 Rome, Italy;
| | - Michele Papa
- Neural Network Morphology & Systems Biology Lab, Division of Human Anatomy, Department of Mental and Physical Health and Preventive Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (C.D.L.); (A.V.); (S.A.K.); (R.C.); (M.P.)
- SYSBIO Centre of Systems Biology ISBE.ITALY, University of Milano-Bicocca, 20126 Milano, Italy
| | - Giovanni Cirillo
- Neural Network Morphology & Systems Biology Lab, Division of Human Anatomy, Department of Mental and Physical Health and Preventive Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (C.D.L.); (A.V.); (S.A.K.); (R.C.); (M.P.)
- Correspondence: ; Tel.: +39-081-5666008
| |
Collapse
|
36
|
The Hallmarks of Glioblastoma: Heterogeneity, Intercellular Crosstalk and Molecular Signature of Invasiveness and Progression. Biomedicines 2022; 10:biomedicines10040806. [PMID: 35453557 PMCID: PMC9031586 DOI: 10.3390/biomedicines10040806] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 03/26/2022] [Accepted: 03/29/2022] [Indexed: 02/07/2023] Open
Abstract
In 2021 the World Health Organization published the fifth and latest version of the Central Nervous System tumors classification, which incorporates and summarizes a long list of updates from the Consortium to Inform Molecular and Practical Approaches to CNS Tumor Taxonomy work. Among the adult-type diffuse gliomas, glioblastoma represents most primary brain tumors in the neuro-oncology practice of adults. Despite massive efforts in the field of neuro-oncology diagnostics to ensure a proper taxonomy, the identification of glioblastoma-tumor subtypes is not accompanied by personalized therapies, and no improvements in terms of overall survival have been achieved so far, confirming the existence of open and unresolved issues. The aim of this review is to illustrate and elucidate the state of art regarding the foremost biological and molecular mechanisms that guide the beginning and the progression of this cancer, showing the salient features of tumor hallmarks in glioblastoma. Pathophysiology processes are discussed on molecular and cellular levels, highlighting the critical overlaps that are involved into the creation of a complex tumor microenvironment. The description of glioblastoma hallmarks shows how tumoral processes can be linked together, finding their involvement within distinct areas that are engaged for cancer-malignancy establishment and maintenance. The evidence presented provides the promising view that glioblastoma represents interconnected hallmarks that may led to a better understanding of tumor pathophysiology, therefore driving the development of new therapeutic strategies and approaches.
Collapse
|
37
|
Glioblastoma Microenvironment and Cellular Interactions. Cancers (Basel) 2022; 14:cancers14041092. [PMID: 35205842 PMCID: PMC8870579 DOI: 10.3390/cancers14041092] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 01/31/2022] [Accepted: 02/16/2022] [Indexed: 12/11/2022] Open
Abstract
Simple Summary This paper summarizes the crosstalk between tumor/non-tumor cells and other elements of the glioblastoma (GB) microenvironment. In tumor pathology, glial cells result in the highest number of cancers, and GB is considered the most lethal tumor of the central nervous system (CNS). The tumor microenvironment (TME) is a complex peritumoral hallo composed of tumor cells and several non-tumor cells (e.g., nervous cells, stem cells, fibroblasts, vascular and immune cells), which might be a key factor for the ineffective treatment since the microenvironment modulates the biologic status of the tumor with the increase in its evasion capacity. A deeper understanding of cell–cell interactions in the TME and with the tumor cells could be the basis for a more efficient therapy. Abstract The central nervous system (CNS) represents a complex network of different cells, such as neurons, glial cells, and blood vessels. In tumor pathology, glial cells result in the highest number of cancers, and glioblastoma (GB) is considered the most lethal tumor in this region. The development of GB leads to the infiltration of healthy tissue through the interaction between all the elements of the brain network. This results in a GB microenvironment, a complex peritumoral hallo composed of tumor cells and several non-tumor cells (e.g., nervous cells, stem cells, fibroblasts, vascular and immune cells), which might be the principal factor for the ineffective treatment due to the fact that the microenvironment modulates the biologic status of the tumor with the increase in its evasion capacity. Crosstalk between glioma cells and the brain microenvironment finally inhibits the beneficial action of molecular pathways, favoring the development and invasion of the tumor and its increasing resistance to treatment. A deeper understanding of cell–cell interactions in the tumor microenvironment (TME) and with the tumor cells could be the basis for a more efficient therapy.
Collapse
|
38
|
Mishra K, Péter M, Nardiello AM, Keller G, Llado V, Fernandez-Garcia P, Kahlert UD, Barasch D, Saada A, Török Z, Balogh G, Escriba PV, Piotto S, Kakhlon O. Multifaceted Analyses of Isolated Mitochondria Establish the Anticancer Drug 2-Hydroxyoleic Acid as an Inhibitor of Substrate Oxidation and an Activator of Complex IV-Dependent State 3 Respiration. Cells 2022; 11:cells11030578. [PMID: 35159387 PMCID: PMC8834245 DOI: 10.3390/cells11030578] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/01/2022] [Accepted: 02/05/2022] [Indexed: 02/04/2023] Open
Abstract
The synthetic fatty acid 2-hydroxyoleic acid (2OHOA) has been extensively investigated as a cancer therapy mainly based on its regulation of membrane lipid composition and structure, activating various cell fate pathways. We discovered, additionally, that 2OHOA can uncouple oxidative phosphorylation, but this has never been demonstrated mechanistically. Here, we explored the effect of 2OHOA on mitochondria isolated by ultracentrifugation from U118MG glioblastoma cells. Mitochondria were analyzed by shotgun lipidomics, molecular dynamic simulations, spectrophotometric assays for determining respiratory complex activity, mass spectrometry for assessing beta oxidation and Seahorse technology for bioenergetic profiling. We showed that the main impact of 2OHOA on mitochondrial lipids is their hydroxylation, demonstrated by simulations to decrease co-enzyme Q diffusion in the liquid disordered membranes embedding respiratory complexes. This decreased co-enzyme Q diffusion can explain the inhibition of disjointly measured complexes I–III activity. However, it doesn’t explain how 2OHOA increases complex IV and state 3 respiration in intact mitochondria. This increased respiration probably allows mitochondrial oxidative phosphorylation to maintain ATP production against the 2OHOA-mediated inhibition of glycolytic ATP production. This work correlates 2OHOA function with its modulation of mitochondrial lipid composition, reflecting both 2OHOA anticancer activity and adaptation to it by enhancement of state 3 respiration.
Collapse
Affiliation(s)
- Kumudesh Mishra
- Department of Neurology, Hadassah-Hebrew University Medical Center, Ein Kerem, Jerusalem 9112102, Israel;
- Faculty of Medicine, Hebrew University of Jerusalem, Ein Kerem, Jerusalem 9112102, Israel; (G.K.); (D.B.); (A.S.)
| | - Mária Péter
- Lipodom Ltd., Dorottya Utca 35-37, 6726 Szeged, Hungary; (M.P.); (Z.T.); (G.B.)
- Biological Research Centre, Institute of Biochemistry, 6726 Szeged, Hungary
| | - Anna Maria Nardiello
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, SA, Italy;
- Bionam Center for Biomaterials, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, SA, Italy
| | - Guy Keller
- Faculty of Medicine, Hebrew University of Jerusalem, Ein Kerem, Jerusalem 9112102, Israel; (G.K.); (D.B.); (A.S.)
- Department of Genetics, Hadassah-Hebrew University Medical Center, Ein Kerem, Jerusalem 9112102, Israel
| | - Victoria Llado
- Laminar Pharmaceuticals, Ctra. de Valldemossa Km. 7, 4 Parc BIT Ed. Naorte Bolque A-1°-3, 07121 Palma de Mallorca, Spain; (V.L.); (P.F.-G.)
| | - Paula Fernandez-Garcia
- Laminar Pharmaceuticals, Ctra. de Valldemossa Km. 7, 4 Parc BIT Ed. Naorte Bolque A-1°-3, 07121 Palma de Mallorca, Spain; (V.L.); (P.F.-G.)
| | - Ulf D. Kahlert
- Molecular and Experimental Surgery, Clinic for General, Visceral, Vascular, and Transplant Surgery, Medical Faculty, University Hospital Magdeburg, 39120 Magdeburg, Germany;
| | - Dinorah Barasch
- Faculty of Medicine, Hebrew University of Jerusalem, Ein Kerem, Jerusalem 9112102, Israel; (G.K.); (D.B.); (A.S.)
- Mass Spectrometry Unit, Institute for Drug Research, School of Pharmacy, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Ann Saada
- Faculty of Medicine, Hebrew University of Jerusalem, Ein Kerem, Jerusalem 9112102, Israel; (G.K.); (D.B.); (A.S.)
- Department of Genetics, Hadassah-Hebrew University Medical Center, Ein Kerem, Jerusalem 9112102, Israel
| | - Zsolt Török
- Lipodom Ltd., Dorottya Utca 35-37, 6726 Szeged, Hungary; (M.P.); (Z.T.); (G.B.)
- Biological Research Centre, Institute of Biochemistry, 6726 Szeged, Hungary
| | - Gábor Balogh
- Lipodom Ltd., Dorottya Utca 35-37, 6726 Szeged, Hungary; (M.P.); (Z.T.); (G.B.)
- Biological Research Centre, Institute of Biochemistry, 6726 Szeged, Hungary
| | - Pablo V. Escriba
- Laminar Pharmaceuticals, Ctra. de Valldemossa Km. 7, 4 Parc BIT Ed. Naorte Bolque A-1°-3, 07121 Palma de Mallorca, Spain; (V.L.); (P.F.-G.)
- Department of Biology, University of the Balearic Islands, 07122 Palma de Mallorca, Spain
- Correspondence: (P.V.E.); (S.P.); (O.K.)
| | - Stefano Piotto
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, SA, Italy;
- Bionam Center for Biomaterials, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, SA, Italy
- Correspondence: (P.V.E.); (S.P.); (O.K.)
| | - Or Kakhlon
- Department of Neurology, Hadassah-Hebrew University Medical Center, Ein Kerem, Jerusalem 9112102, Israel;
- Faculty of Medicine, Hebrew University of Jerusalem, Ein Kerem, Jerusalem 9112102, Israel; (G.K.); (D.B.); (A.S.)
- Correspondence: (P.V.E.); (S.P.); (O.K.)
| |
Collapse
|
39
|
Gravina GL, Colapietro A, Mancini A, Rossetti A, Martellucci S, Ventura L, Di Franco M, Marampon F, Mattei V, Biordi LA, Otterlei M, Festuccia C. ATX-101, a Peptide Targeting PCNA, Has Antitumor Efficacy Alone or in Combination with Radiotherapy in Murine Models of Human Glioblastoma. Cancers (Basel) 2022; 14:289. [PMID: 35053455 PMCID: PMC8773508 DOI: 10.3390/cancers14020289] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 12/31/2021] [Accepted: 01/03/2022] [Indexed: 02/01/2023] Open
Abstract
Cell proliferation requires the orchestrated actions of a myriad of proteins regulating DNA replication, DNA repair and damage tolerance, and cell cycle. Proliferating cell nuclear antigen (PCNA) is a master regulator which interacts with multiple proteins functioning in these processes, and this makes PCNA an attractive target in anticancer therapies. Here, we show that a cell-penetrating peptide containing the AlkB homolog 2 PCNA-interacting motif (APIM), ATX-101, has antitumor activity in a panel of human glioblastoma multiforme (GBM) cell lines and patient-derived glioma-initiating cells (GICs). Their sensitivity to ATX-101 was not related to cellular levels of PCNA, or p53, PTEN, or MGMT status. However, ATX-101 reduced Akt/mTOR and DNA-PKcs signaling, and a correlation between high Akt activation and sensitivity for ATX-101 was found. ATX-101 increased the levels of γH2AX, DNA fragmentation, and apoptosis when combined with radiotherapy (RT). In line with the in vitro results, ATX-101 strongly reduced tumor growth in two subcutaneous xenografts and two orthotopic GBM models, both as a single agent and in combination with RT. The ability of ATX-101 to sensitize cells to RT is promising for further development of this compound for use in GBM.
Collapse
Affiliation(s)
- Giovanni Luca Gravina
- Department of Biotechnological and Applied Clinical Sciences, Division of Radiation Oncology, University of L’Aquila, 67100 L’Aquila, Italy;
| | - Alessandro Colapietro
- Department of Biotechnological and Applied Clinical Sciences, Laboratory of Radiobiology, University of L’Aquila, 67100 L’Aquila, Italy; (A.C.); (A.M.); (A.R.)
| | - Andrea Mancini
- Department of Biotechnological and Applied Clinical Sciences, Laboratory of Radiobiology, University of L’Aquila, 67100 L’Aquila, Italy; (A.C.); (A.M.); (A.R.)
| | - Alessandra Rossetti
- Department of Biotechnological and Applied Clinical Sciences, Laboratory of Radiobiology, University of L’Aquila, 67100 L’Aquila, Italy; (A.C.); (A.M.); (A.R.)
| | - Stefano Martellucci
- Department of Biotechnological and Applied Clinical Sciences, Laboratory of Cellular Pathology, University of L’Aquila, 67100 L’Aquila, Italy;
- Biomedicine and Advanced Technologies Rieti Center, Sabina Universitas, 02100 Rieti, Italy;
| | - Luca Ventura
- Division of Pathology, San Salvatore Hospital, 67100 L’Aquila, Italy; (L.V.); (M.D.F.)
| | - Martina Di Franco
- Division of Pathology, San Salvatore Hospital, 67100 L’Aquila, Italy; (L.V.); (M.D.F.)
| | - Francesco Marampon
- Department of Radiological, Oncological and Pathological Sciences, Sapienza University of Rome, 00100 Rome, Italy;
| | - Vincenzo Mattei
- Biomedicine and Advanced Technologies Rieti Center, Sabina Universitas, 02100 Rieti, Italy;
| | - Leda Assunta Biordi
- Department of Biotechnological and Applied Clinical Sciences, Laboratory of Medical Oncology, University of L’Aquila, 67100 L’Aquila, Italy;
| | - Marit Otterlei
- APIM Therapeutics A/S, N-7100 Rissa, Norway
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), N-7006 Trondheim, Norway
| | - Claudio Festuccia
- Department of Biotechnological and Applied Clinical Sciences, Laboratory of Radiobiology, University of L’Aquila, 67100 L’Aquila, Italy; (A.C.); (A.M.); (A.R.)
| |
Collapse
|
40
|
Multiple Faces of the Glioblastoma Microenvironment. Int J Mol Sci 2022; 23:ijms23020595. [PMID: 35054779 PMCID: PMC8775531 DOI: 10.3390/ijms23020595] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 12/31/2021] [Accepted: 01/03/2022] [Indexed: 12/23/2022] Open
Abstract
The tumor microenvironment is a highly dynamic accumulation of resident and infiltrating tumor cells, responsible for growth and invasion. The authors focused on the leading-edge concepts regarding the glioblastoma microenvironment. Due to the fact that the modern trend in the research and treatment of glioblastoma is represented by multiple approaches that target not only the primary tumor but also the neighboring tissue, the study of the microenvironment in the peritumoral tissue is an appealing direction for current and future therapies.
Collapse
|
41
|
Vandenbark AA, Offner H, Matejuk S, Matejuk A. Microglia and astrocyte involvement in neurodegeneration and brain cancer. J Neuroinflammation 2021; 18:298. [PMID: 34949203 PMCID: PMC8697466 DOI: 10.1186/s12974-021-02355-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 12/14/2021] [Indexed: 12/15/2022] Open
Abstract
The brain is unique and the most complex organ of the body, containing neurons and several types of glial cells of different origins and properties that protect and ensure normal brain structure and function. Neurological disorders are the result of a failure of the nervous system multifaceted cellular networks. Although great progress has been made in the understanding of glia involvement in neuropathology, therapeutic outcomes are still not satisfactory. Here, we discuss recent perspectives on the role of microglia and astrocytes in neurological disorders, including the two most common neurodegenerative conditions, Alzheimer disease and progranulin-related frontotemporal lobar dementia, as well as astrocytoma brain tumors. We emphasize key factors of microglia and astrocytic biology such as the highly heterogeneic glial nature strongly dependent on the environment, genetic factors that predispose to certain pathologies and glia senescence that inevitably changes the CNS landscape. Our understanding of diverse glial contributions to neurological diseases can lead advances in glial biology and their functional recovery after CNS malfunction.
Collapse
Affiliation(s)
- Arthur A Vandenbark
- Neuroimmunology Research, R&D-31, VA Portland Health Care System, 3710 SW U.S. Veterans Hospital Rd., Portland, OR, 97239, USA. .,Department of Neurology, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd., Portland, OR, 97239, USA. .,Department of Molecular Microbiology and Immunology, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd., Portland, OR, 97239, USA.
| | - Halina Offner
- Neuroimmunology Research, R&D-31, VA Portland Health Care System, 3710 SW U.S. Veterans Hospital Rd., Portland, OR, 97239, USA.,Department of Neurology, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd., Portland, OR, 97239, USA.,Department of Anesthesiology and Perioperative Medicine, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd., Portland, OR, 97239, USA
| | - Szymon Matejuk
- Medical Student of Jagiellonian University, Cracow, Poland
| | - Agata Matejuk
- Department of Immunology, Collegium Medicum, University of Zielona Góra, Zielona Góra, Poland.
| |
Collapse
|
42
|
Differential Regulation of the EGFR/PI3K/AKT/PTEN Pathway between Low- and High-Grade Gliomas. Brain Sci 2021; 11:brainsci11121655. [PMID: 34942957 PMCID: PMC8699139 DOI: 10.3390/brainsci11121655] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 12/09/2021] [Accepted: 12/14/2021] [Indexed: 01/07/2023] Open
Abstract
Gliomas represent 70% of all central system nervous tumors and are classified according to the degree of malignancy as low- or high-grade. The permanent activation of the EGFR/PI3K/AKT pathway by various genetic or post-translational alterations of EGFR, PI3KCA, and PTEN has been associated with increased proliferation and resistance to apoptosis. The present study aimed to analyze the molecular/genetic changes in the EGFR/PI3K/AKT/PTEN pathway between low-grade and high-grade gliomas in a sample of Colombian patients. A total of 30 samples were tested for PI3K and PTEN mutations, EGFR, PI3K, and AKT gene amplification, AKT, PI3K, BAX, Bcl2 expression levels, and phosphorylation of AKT and PTEN, EGFR and/or PI3K gene amplification was found in 50% of low-grade and 45% of high-grade ones. AKT amplification was found in 25% of the low-grade and 13.6% of the high-grade. The expression of PI3K, AKT, Bcl2, and BAX was increased particularly to a high degree. AKT phosphorylation was found in 66% of low-grade and 31.8% of high-grade. Increased phosphorylation of PTEN was found in 77% low-grade and 66% high-grade. Our results indicate that alterations in the EGFR/PI3K/AKT/PTEN pathway could be important in the initiation and malignant progression of this type of tumor.
Collapse
|
43
|
Multiple Irradiation Affects Cellular and Extracellular Components of the Mouse Brain Tissue and Adhesion and Proliferation of Glioblastoma Cells in Experimental System In Vivo. Int J Mol Sci 2021; 22:ijms222413350. [PMID: 34948147 PMCID: PMC8703639 DOI: 10.3390/ijms222413350] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/09/2021] [Accepted: 12/10/2021] [Indexed: 12/11/2022] Open
Abstract
Intensive adjuvant radiotherapy (RT) is a standard treatment for glioblastoma multiforme (GBM) patients; however, its effect on the normal brain tissue remains unclear. Here, we investigated the short-term effects of multiple irradiation on the cellular and extracellular glycosylated components of normal brain tissue and their functional significance. Triple irradiation (7 Gy*3 days) of C57Bl/6 mouse brain inhibited the viability, proliferation and biosynthetic activity of normal glial cells, resulting in a fast brain-zone-dependent deregulation of the expression of proteoglycans (PGs) (decorin, biglycan, versican, brevican and CD44). Complex time-point-specific (24–72 h) changes in decorin and brevican protein and chondroitin sulfate (CS) and heparan sulfate (HS) content suggested deterioration of the PGs glycosylation in irradiated brain tissue, while the transcriptional activity of HS-biosynthetic system remained unchanged. The primary glial cultures and organotypic slices from triple-irradiated brain tissue were more susceptible to GBM U87 cells’ adhesion and proliferation in co-culture systems in vitro and ex vivo. In summary, multiple irradiation affects glycosylated components of normal brain extracellular matrix (ECM) through inhibition of the functional activity of normal glial cells. The changed content and pattern of PGs and GAGs in irradiated brain tissues are accompanied by the increased adhesion and proliferation of GBM cells, suggesting a novel molecular mechanism of negative side-effects of anti-GBM radiotherapy.
Collapse
|
44
|
Virtuoso A, Colangelo AM, Maggio N, Fennig U, Weinberg N, Papa M, De Luca C. The Spatiotemporal Coupling: Regional Energy Failure and Aberrant Proteins in Neurodegenerative Diseases. Int J Mol Sci 2021; 22:11304. [PMID: 34768733 PMCID: PMC8583302 DOI: 10.3390/ijms222111304] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/15/2021] [Accepted: 10/17/2021] [Indexed: 12/14/2022] Open
Abstract
The spatial and temporal coordination of each element is a pivotal characteristic of systems, and the central nervous system (CNS) is not an exception. Glial elements and the vascular interface have been considered more recently, together with the extracellular matrix and the immune system. However, the knowledge of the single-element configuration is not sufficient to predict physiological or pathological long-lasting changes. Ionic currents, complex molecular cascades, genomic rearrangement, and the regional energy demand can be different even in neighboring cells of the same phenotype, and their differential expression could explain the region-specific progression of the most studied neurodegenerative diseases. We here reviewed the main nodes and edges of the system, which could be studied to develop a comprehensive knowledge of CNS plasticity from the neurovascular unit to the synaptic cleft. The future goal is to redefine the modeling of synaptic plasticity and achieve a better understanding of neurological diseases, pointing out cellular, subcellular, and molecular components that couple in specific neuroanatomical and functional regions.
Collapse
Affiliation(s)
- Assunta Virtuoso
- Laboratory of Neuronal Networks, Department of Mental and Physical Health and Preventive Medicine, University of Campania ‘‘Luigi Vanvitelli”, 80138 Naples, Italy; (A.V.); (C.D.L.)
| | - Anna Maria Colangelo
- SYSBIO Centre of Systems Biology ISBE-IT, University of Milano-Bicocca, 20126 Milan, Italy;
- Laboratory of Neuroscience “R. Levi-Montalcini”, Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126 Milan, Italy
| | - Nicola Maggio
- Department of Neurology and Neurosurgery, Sackler Faculty of Medicine, Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel; (N.M.); (U.F.); (N.W.)
- Department of Neurology, The Chaim Sheba Medical Center at Tel HaShomer, Ramat Gan 52662, Israel
| | - Uri Fennig
- Department of Neurology and Neurosurgery, Sackler Faculty of Medicine, Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel; (N.M.); (U.F.); (N.W.)
- Department of Neurology, The Chaim Sheba Medical Center at Tel HaShomer, Ramat Gan 52662, Israel
| | - Nitai Weinberg
- Department of Neurology and Neurosurgery, Sackler Faculty of Medicine, Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel; (N.M.); (U.F.); (N.W.)
- Department of Neurology, The Chaim Sheba Medical Center at Tel HaShomer, Ramat Gan 52662, Israel
| | - Michele Papa
- Laboratory of Neuronal Networks, Department of Mental and Physical Health and Preventive Medicine, University of Campania ‘‘Luigi Vanvitelli”, 80138 Naples, Italy; (A.V.); (C.D.L.)
- SYSBIO Centre of Systems Biology ISBE-IT, University of Milano-Bicocca, 20126 Milan, Italy;
| | - Ciro De Luca
- Laboratory of Neuronal Networks, Department of Mental and Physical Health and Preventive Medicine, University of Campania ‘‘Luigi Vanvitelli”, 80138 Naples, Italy; (A.V.); (C.D.L.)
| |
Collapse
|
45
|
Sulforaphane Causes Cell Cycle Arrest and Apoptosis in Human Glioblastoma U87MG and U373MG Cell Lines under Hypoxic Conditions. Int J Mol Sci 2021; 22:ijms222011201. [PMID: 34681862 PMCID: PMC8541491 DOI: 10.3390/ijms222011201] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/11/2021] [Accepted: 10/15/2021] [Indexed: 12/12/2022] Open
Abstract
Glioblastoma multiforme (GBM) is the most prevalent and aggressive primary brain tumor. The median survival rate from diagnosis ranges from 15 to 17 months because the tumor is resistant to most therapeutic strategies. GBM exhibits microvascular hyperplasia and pronounced necrosis triggered by hypoxia. Sulforaphane (SFN), an isothiocyanate derived from cruciferous vegetables, has already demonstrated the ability to inhibit cell proliferation, by provoking cell cycle arrest, and leading to apoptosis in many cell lines. In this study, we investigated the antineoplastic effects of SFN [20-80 μM for 48 h] in GBM cells under normoxic and hypoxic conditions. Cell viability assays, flow cytometry, and Western blot results revealed that SFN could induce apoptosis of GBM cells in a dose-dependent manner, under both conditions. In particular, SFN significantly induced caspase 3/7 activation and DNA fragmentation. Moreover, our results demonstrated that SFN suppressed GBM cells proliferation by arresting the cell cycle at the S-phase, also under hypoxic condition, and that these effects may be due in part to its ability to induce oxidative stress by reducing glutathione levels and to increase the phosphorylation of extracellular signal-regulated kinases (ERKs). Overall, we hypothesized that SFN treatment might serve as a potential therapeutic strategy, alone or in combination, against GBM.
Collapse
|