1
|
Oh JH, Karadeniz F, Seo Y, Kong CS. Isopimpinellin inhibits UVA-induced overproduction of MMPs via suppression of MAPK/AP-1 signaling in human dermal fibroblasts. Food Sci Biotechnol 2024; 33:3579-3589. [PMID: 39493386 PMCID: PMC11525369 DOI: 10.1007/s10068-024-01611-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 05/14/2024] [Accepted: 05/17/2024] [Indexed: 11/05/2024] Open
Abstract
Corydalis heterocarpa is an edible halophyte and an ingredient in traditional Korean medicine. In the present study, isopimpinellin (IPN), a bioactive coumarin, was isolated from the medicinal halophyte C. heterocarpa, and the effects of IPN against UVA-induced photoaging were investigated in human dermal fibroblasts. Photoaging is a skin disorder that manifests itself as premature skin aging due to chronic exposure to UV radiation. The symptoms of photoaging mainly arise from degraded skin connective tissue produced by overly expressed matrix metalloproteinases (MMPs). IPN treatment decreased the UVA-induced formation of reactive oxygen species and decreased MMP-1, MMP-3, and MMP-9 collagenases at the protein level. The UVA-mediated suppression of tissue inhibitors of MMP-1 and -2 was attenuated with IPN. The presence of 10 μM IPN inhibited the MAPK-mediated phosphorylation of c-Fos and c-Jun. In conclusion, the overall result of the current study indicated that IPN inhibited the UVA-induced overexpression of MMPs via blocking the MAPK/AP-1 pathway.
Collapse
Affiliation(s)
- Jung Hwan Oh
- Marine Biotechnology Center for Pharmaceuticals and Foods, College of Medical and Life Sciences, Silla University, Busan, 46958 Republic of Korea
- Nutritional Education, Graduate School of Education, Silla University, Busan, 46958 Republic of Korea
| | - Fatih Karadeniz
- Marine Biotechnology Center for Pharmaceuticals and Foods, College of Medical and Life Sciences, Silla University, Busan, 46958 Republic of Korea
| | - Youngwan Seo
- Division of Convergence on Marine Science, College of Ocean Science and Technology, Korea Maritime and Ocean University, Busan, 49112 Republic of Korea
| | - Chang-Suk Kong
- Marine Biotechnology Center for Pharmaceuticals and Foods, College of Medical and Life Sciences, Silla University, Busan, 46958 Republic of Korea
- Department of Food and Nutrition, College of Medical and Life Sciences, Silla University, Busan, 46958 Republic of Korea
| |
Collapse
|
2
|
Dos Santos AKF, Martignago CCS, de Andrade ALM, Assis L, Pessoa RS, Costa DA, Dos Santos L, Tim C. A clinical study on the efficacy of high frequency therapy on nasolabial and periorbital wrinkles. J COSMET LASER THER 2024:1-8. [PMID: 39542028 DOI: 10.1080/14764172.2024.2427018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 11/06/2023] [Accepted: 11/05/2024] [Indexed: 11/17/2024]
Abstract
The high-frequency generator is considered a collagen stimulator and skin revitalizer, however there are few studies exploring its effects in the field of rejuvenation and aesthetics. Thus, this study aimed to investigate the impact of high frequency generator therapy on facial aging. A total of 26 participants aged between 50 and 60 years were selected and received high frequency generator treatment for eight weeks. The evaluation was conducted using a combination of photographic records and assessment tools, including Rosenberg scale, perception and satisfaction with treatment evaluation, overall aesthetic improvement scale, and modified Fitzpatrick scale. The analysis conducted by the Global Aesthetic Improvement Scale yielded significant results. The Modified Fitzpatrick Wrinkle Scale showed that high frequency therapy led to statistically significant improvements in the appearance of nasolabial wrinkles (right T0: 1.48, T8: 0.87; left T0: 1.51, T8: 1.05) and periorbital wrinkles (right T0: 1.69, T8: 1.05; left T0: 1.71, T8: 1.08). In conclusion, high frequency generator therapy can be a highly effective tool for treating skin aging on the face, however, we recommend that future research includes control groups, and adopts objective measures to expand knowledge about the effects of high frequency.
Collapse
Affiliation(s)
| | | | | | - Livia Assis
- Postgraduate Program in Biomedical Engineering, Universidade Brasil, Sao Paulo - SP, Brazil
| | - Rodrigo Sávio Pessoa
- Postgraduate Program in Biomedical Engineering, Universidade Brasil, Sao Paulo - SP, Brazil
- Department of Aerospace Science and Technology, Instituto Tecnológico Aeronáutico (ITA), Sao Jose dos Campos - SP, Brazil
| | | | - Laurita Dos Santos
- Postgraduate Program in Biomedical Engineering, Universidade Brasil, Sao Paulo - SP, Brazil
| | - Carla Tim
- Postgraduate Program in Biomedical Engineering, Universidade Brasil, Sao Paulo - SP, Brazil
| |
Collapse
|
3
|
Zheng S, Deng R, Huang G, Ou Z, Shen Z. Screening the active ingredients of plants via molecular docking technology and evaluating their ability to reduce skin photoaging. Biogerontology 2024; 25:1115-1143. [PMID: 39312047 DOI: 10.1007/s10522-024-10125-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 07/29/2024] [Indexed: 10/18/2024]
Abstract
The active ingredients of plants were screened by molecular docking technology and the result were verified. According to the verification results of molecular docking, the five active ingredients were combined in equal proportions to form a compound drug. In the HaCaT photoaging model, the effects of the compound drug on antioxidant and senescence-associated secretory phenotype (SASP) factors of the NF-κB and MAPK pathways were studied via SOD and MDA kits, DCFH-DA fluorescent probes and ELISA. In the skin photoaging model, the effects of the compound drug on antioxidants and the SASP factors of the NF-κB and MAPK pathways were studied via SOD, MDA, and CAT kits and ELISA. The results revealed that the compound drug increased SOD activity, decreased the MDA content and intracellular ROS, inhibited IL-6 in the NF-κB pathway, and inhibited MMP-1 and collagen I in the MAPK pathway. The results of HE, Masson and Victoria blue skin staining revealed that the compound drug inhibited abnormal thickening of the epidermis, abnormal breaking and accumulation of collagen fibers and elastic fibers, and maintained their orderly arrangement. Moreover, the results revealed that the compound drug increased SOD, CAT and collagen I, and reduced the MDA content, the SASP factors IL-6 and TNF-α of the NF-κB pathway, and the SASP factors MMP-1 of the MAPK pathway. The above results indicate that the active ingredients of the compound drug screened by molecular docking have the potential to reduce skin photoaging.
Collapse
Affiliation(s)
- Shiqian Zheng
- Guangdong Botanical Beauty Care Biotechnology Co., Ltd, Guangzhou, China
| | - Rongrong Deng
- Guangdong Botanical Beauty Care Biotechnology Co., Ltd, Guangzhou, China
| | - Gengjiu Huang
- Guangdong Botanical Beauty Care Biotechnology Co., Ltd, Guangzhou, China
| | - Zhiwen Ou
- Guangdong Botanical Beauty Care Biotechnology Co., Ltd, Guangzhou, China
| | - Zhibin Shen
- Guangdong Botanical Beauty Care Biotechnology Co., Ltd, Guangzhou, China.
| |
Collapse
|
4
|
Szabó I, Szenczi Á, Zand A, Varjas T, Varga C. The Effect of Szigetvár Medicinal Water on HaCaT Cells Exposed to Dithranol. Life (Basel) 2024; 14:1318. [PMID: 39459618 PMCID: PMC11509105 DOI: 10.3390/life14101318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 10/07/2024] [Accepted: 10/11/2024] [Indexed: 10/28/2024] Open
Abstract
(1) Introduction: Topical dithranol is still commonly used today as an effective treatment for psoriasis. Dithranol treatment is often supplemented with balneotherapy, which has been shown to increase effectiveness and reduce side effects. The inorganic salts (sulfhide, selenium, zinc) are usually thought to be responsible for the effect. The antioxidant effect of the waters is thought to be behind the therapeutic effect, for which inorganic substances (sulfides, selenium, zinc) are thought to be responsible. The organic matter content of medicinal waters is also particularly important, as humic acids, which are often found in medicinal waters, have antioxidant effects. (2) Methods: In this short-term experiment, we aimed to test the possible protective effect of Szigetvár medicinal water and its organic matter isolate on HaCaT cells exposed to dithranol. Malondialdehyde levels were measured, and RT-qPCR was used to investigate the gene expression of selected cytokines relevant in the oxidative stress response (IL-6, IL-8, TNF-α, GM-CSF) and the expression of microRNA-21. (3) Results: Szigetvár medicinal water and the organic isolate prevented the increase in malondialdehyde levels caused by dithranol treatment. The cytokine gene expressions elevated by dithranol exposure were reduced by the treatment. (4) Conclusions: Szigetvár medicinal water and organic substances alone may have a protective effect on patients' healthy skin surfaces against dithranol damage. We also demonstrated that the organic compounds are also responsible for the protective effect.
Collapse
Affiliation(s)
- István Szabó
- Department of Public Health Medicine, Medical School, University of Pécs, 7622 Pécs, Hungary; (Á.S.); (A.Z.); (T.V.); (C.V.)
| | | | | | | | | |
Collapse
|
5
|
Yuan M, Wan W, Xing W, Pu C, Wu X, Liao Z, Zhu X, Hu X, Li Z, Zhao Q, Zhao H, Xu X. Decoding the Immune Response and Its Biomarker B2M for High Altitude Pulmonary Edema in Rat: Implications for Diagnosis and Prognosis. J Inflamm Res 2024; 17:7195-7217. [PMID: 39411751 PMCID: PMC11476754 DOI: 10.2147/jir.s477633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 09/21/2024] [Indexed: 10/19/2024] Open
Abstract
Purpose We aimed to investigate whether peripheral blood biomarkers B2M related to immune response can serve as indicators of HAPE pathophysiological characteristics or disease progression. Patients and Methods Bioinformatics technology was used to explore the peripheral blood pathophysiological mechanisms and immune hub genes related to the occurrence of HAPE. The hub gene was verified through animal experiments, and its function and correlation between its expression level and the diagnosis, treatment effect and prognosis of HAPE were explored. Results The GSVA results showed that the occurrence of HAPE was related to the down-regulation of immune response pathways by RUNX3 and STING. WGCNA results showed that the peripheral blood immune gene module related to the development of HAPE was related to the decrease of immune function and the increase of immune checkpoint molecule PD-L1 gene expression, and the expression of immune checkpoint genes LILRB2 and SIGLEC15 increased. Cytoscape software, RT-qPCR and WB confirmed that the hub gene B2M is a specific peripheral blood biomarker of HAPE. ROC, DCA, RT-qPCR, HE and Masson results showed that the expression of peripheral blood B2M has the ability to indicate the diagnosis, treatment effect and prognosis of HAPE. The decreased expression of B2M protein in peripheral blood leukocytes may be a marker of HAPE. Single-gene GSEA confirmed that the reduced expression of B2M in peripheral blood may be involved in the down-regulation of the antigen presentation pathway mediated by MHC class I molecules, was positively correlated with the down-regulation of the TNF signaling pathway, and was negatively correlated with the expression of LILRB2 and SIGLEC15. Conclusion The occurrence of HAPE may be related to decreased immune function and immune tolerance. Peripheral blood B2M may be involved in the related pathways, its expression level can prompt the diagnosis, treatment and prognosis of HAPE.
Collapse
Affiliation(s)
- Mu Yuan
- Department of Stem Cell and Regenerative Medicine, National Key Laboratory of Trauma and Chemical Poisoning, Daping Hospital, Army Medical University, Chongqing, 400042, People’s Republic of China
- Central Laboratory, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University, Chongqing, 400042, People’s Republic of China
| | - Weijun Wan
- Department of Stem Cell and Regenerative Medicine, National Key Laboratory of Trauma and Chemical Poisoning, Daping Hospital, Army Medical University, Chongqing, 400042, People’s Republic of China
- Central Laboratory, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University, Chongqing, 400042, People’s Republic of China
| | - Wei Xing
- Department of Stem Cell and Regenerative Medicine, National Key Laboratory of Trauma and Chemical Poisoning, Daping Hospital, Army Medical University, Chongqing, 400042, People’s Republic of China
- Central Laboratory, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University, Chongqing, 400042, People’s Republic of China
| | - Chengxiu Pu
- Department of Stem Cell and Regenerative Medicine, National Key Laboratory of Trauma and Chemical Poisoning, Daping Hospital, Army Medical University, Chongqing, 400042, People’s Republic of China
- Central Laboratory, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University, Chongqing, 400042, People’s Republic of China
| | - Xiaofeng Wu
- Department of Stem Cell and Regenerative Medicine, National Key Laboratory of Trauma and Chemical Poisoning, Daping Hospital, Army Medical University, Chongqing, 400042, People’s Republic of China
- Central Laboratory, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University, Chongqing, 400042, People’s Republic of China
| | - Zhikang Liao
- Research Department Fourth Laboratory, Daping Hospital, Army Medical University, Chongqing, 400042, People’s Republic of China
| | - Xiyan Zhu
- Research Department Fourth Laboratory, Daping Hospital, Army Medical University, Chongqing, 400042, People’s Republic of China
| | - Xueting Hu
- Department of Stem Cell and Regenerative Medicine, National Key Laboratory of Trauma and Chemical Poisoning, Daping Hospital, Army Medical University, Chongqing, 400042, People’s Republic of China
- Central Laboratory, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University, Chongqing, 400042, People’s Republic of China
| | - Zhan Li
- Department of Stem Cell and Regenerative Medicine, National Key Laboratory of Trauma and Chemical Poisoning, Daping Hospital, Army Medical University, Chongqing, 400042, People’s Republic of China
- Central Laboratory, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University, Chongqing, 400042, People’s Republic of China
| | - Qing Zhao
- Department of Stem Cell and Regenerative Medicine, National Key Laboratory of Trauma and Chemical Poisoning, Daping Hospital, Army Medical University, Chongqing, 400042, People’s Republic of China
- Central Laboratory, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University, Chongqing, 400042, People’s Republic of China
| | - Hui Zhao
- Research Department Fourth Laboratory, Daping Hospital, Army Medical University, Chongqing, 400042, People’s Republic of China
| | - Xiang Xu
- Department of Stem Cell and Regenerative Medicine, National Key Laboratory of Trauma and Chemical Poisoning, Daping Hospital, Army Medical University, Chongqing, 400042, People’s Republic of China
- Central Laboratory, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University, Chongqing, 400042, People’s Republic of China
| |
Collapse
|
6
|
Phuphanitcharoenkun S, Louis F, Sowa Y, Uchida K, Katsuyama M, Waditee-Sirisattha R, Kageyama H, Matsusaki M, Palaga T. Characterization of macrophages associated with human skin models exposed to UV radiation. Commun Biol 2024; 7:1284. [PMID: 39379484 PMCID: PMC11461876 DOI: 10.1038/s42003-024-06975-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 09/26/2024] [Indexed: 10/10/2024] Open
Abstract
Skin macrophages play important roles in the response to external stimuli. Human skin equivalents (HSEs) incorporating the human monocytic cell line THP-1 were fabricated to generate immunocompetent human skin models. These HSEs were used to investigate the influence of the skin microenvironment and ultraviolet A (UVA) on macrophages. Transcriptomic analysis revealed that THP-1 cells in HSEs were enriched in extracellular matrix interaction hallmark but downregulated in DNA replication hallmark. Upon UVA exposure, immunocompetent HSEs presented epidermal distortion and increased DNA double-strand breaks (DSBs). The genes associated with oxidative stress and the inflammatory response were significantly upregulated in THP-1 cells. When the photoprotective agent mycosporine-2-glycine from cyanobacteria was applied to HSEs, the incidence of UVA-induced DSBs was significantly lower, and inflammatory and UV response hallmarks were downregulated in THP-1 cells. Taken together, these results suggest that immunocompetent HSEs can be used to investigate the responses of skin-resident macrophages to external stimuli.
Collapse
Affiliation(s)
- Suphanun Phuphanitcharoenkun
- Graduate Program in Biotechnology, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
- Center of Excellence in Materials and Bio-interfaces, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Fiona Louis
- Joint Research Laboratory (TOPPAN) for Advanced Cell Regulatory Chemistry, Graduate School of Engineering, Osaka University, Osaka, 565-0871, Japan
| | - Yoshihiro Sowa
- Department of Plastic and Reconstructive Surgery, Graduate School of Medical Sciences, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
- Department of Plastic Surgery, Jichi Medical University, Tochigi, 329-0498, Japan
| | - Kentaro Uchida
- Materials Solution Department, Product Analysis Center, Panasonic Holdings Corporation Kadoma, Osaka, 571-8686, Japan
| | - Misa Katsuyama
- Materials Solution Department, Product Analysis Center, Panasonic Holdings Corporation Kadoma, Osaka, 571-8686, Japan
| | | | - Hakuto Kageyama
- Graduate School of Environmental and Human Sciences, Meijo University, Nagoya, Aichi, 468-8502, Japan
| | - Michiya Matsusaki
- Joint Research Laboratory (TOPPAN) for Advanced Cell Regulatory Chemistry, Graduate School of Engineering, Osaka University, Osaka, 565-0871, Japan
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Osaka, 565-0871, Japan
| | - Tanapat Palaga
- Center of Excellence in Materials and Bio-interfaces, Chulalongkorn University, Bangkok, 10330, Thailand.
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
7
|
Dan X, Li S, Chen H, Xue P, Liu B, Ju Y, Lei L, Li Y, Fan X. Tailoring biomaterials for skin anti-aging. Mater Today Bio 2024; 28:101210. [PMID: 39285945 PMCID: PMC11402947 DOI: 10.1016/j.mtbio.2024.101210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/19/2024] [Accepted: 08/23/2024] [Indexed: 09/19/2024] Open
Abstract
Skin aging is the phenomenon of degenerative changes in the structure and function of skin tissues over time and is manifested by a gradual loss of skin elasticity and firmness, an increased number of wrinkles, and hyperpigmentation. Skin anti-aging refers to a reduction in the skin aging phenomenon through medical cosmetic technologies. In recent years, new biomaterials have been continuously developed for improving the appearance of the skin through mechanical tissue filling, regulating collagen synthesis and degradation, inhibiting pigmentation, and repairing the skin barrier. This review summarizes the mechanisms associated with skin aging, describes the biomaterials that are commonly used in medical aesthetics and their possible modes of action, and discusses the application strategies of biomaterials in this area. Moreover, the synergistic effects of such biomaterials and other active ingredients, such as stem cells, exosomes, growth factors, and antioxidants, on tissue regeneration and anti-aging are evaluated. Finally, the possible challenges and development prospects of biomaterials in the field of anti-aging are discussed, and novel ideas for future innovations in this area are summarized.
Collapse
Affiliation(s)
- Xin Dan
- Department of Plastic and Reconstructive Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Songjie Li
- Department of Plastic and Reconstructive Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Han Chen
- Department of Plastic and Reconstructive Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Ping Xue
- Department of Plastic and Reconstructive Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Bo Liu
- Department of Plastic and Reconstructive Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Yikun Ju
- Department of Plastic and Aesthetic (Burn) Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Lanjie Lei
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Institute of Translational Medicine, Zhejiang Shuren University, Hangzhou, 310015, China
| | - Yang Li
- Department of Plastic and Reconstructive Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Xing Fan
- Department of Plastic and Reconstructive Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| |
Collapse
|
8
|
Bai D, Wang Z, Xiao Y, Liu T, Pu Y, Sun H, Wang M, Guo C, Zhang J. Transdermal delivery of elastin peptide assisted by betaine-based deep eutectic solvent to ameliorate skin photoaging. BIOMATERIALS ADVANCES 2024; 163:213965. [PMID: 39053386 DOI: 10.1016/j.bioadv.2024.213965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/10/2024] [Accepted: 07/21/2024] [Indexed: 07/27/2024]
Abstract
The unique amino acid composition of elastin peptide (EP) makes it an excellent resource to obtain antioxidant peptides. It exhibits high elastase inhibitory activity with the potential to resist skin aging and is currently used in a many cosmetic products. However, the inherent low permeability of the skin limits its ability to penetrate the skin. To address this issue, a deep eutectic solvent (SAB) with excellent bioactivity was synthesized from betaine and succinic acid and used as a permeation enhancer to improve the absorption and utilization of EP in this paper. The results showed that low SAB concentrations significantly increased the transdermal delivery of EP. The 3D epidermal skin model (EpiKutis®) demonstrated that SAB/EP induced the synthesis of hyaluronic acid (HA) and filaggrin (FLG), accelerated skin barrier repair, and reduced water loss. Additionally, the zebrafish embryonic model showed that SAB/EP could reduce melanin secretion, decrease melanin deposition, and have an ameliorative effect on skin photoaging. Cellular experiments proved that SAB/EP can stimulate human skin fibroblasts to secrete procollagen I and elastin, improving skin elasticity and anti-wrinkle. The combination of EP and DES is a new attempt that is expected to be used as a safe and effective anti-wrinkle cosmetic material.
Collapse
Affiliation(s)
- De Bai
- Sauvage Laboratory for Smart Materials, Harbin Institute of Technology, Shenzhen 518055, PR China; State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Shenzhen 518055, PR China; Research Centre of Printed Flexible Electronics, School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055, PR China
| | - Zhenyuan Wang
- Shenzhen Shinehigh Innovation technology LTD., Shenzhen 518055, PR China
| | - Yuan Xiao
- Guangdong Marubi Biotechnol Co Ltd, Guangzhou 510700, PR China
| | - Tianqi Liu
- Sauvage Laboratory for Smart Materials, Harbin Institute of Technology, Shenzhen 518055, PR China; State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Shenzhen 518055, PR China; Research Centre of Printed Flexible Electronics, School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055, PR China
| | - Yan Pu
- Guangdong Marubi Biotechnol Co Ltd, Guangzhou 510700, PR China
| | - Huaiqing Sun
- Guangdong Marubi Biotechnol Co Ltd, Guangzhou 510700, PR China
| | - Mi Wang
- Sauvage Laboratory for Smart Materials, Harbin Institute of Technology, Shenzhen 518055, PR China; State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Shenzhen 518055, PR China; Research Centre of Printed Flexible Electronics, School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055, PR China.
| | - Chaowan Guo
- Guangdong Marubi Biotechnol Co Ltd, Guangzhou 510700, PR China.
| | - Jiaheng Zhang
- Sauvage Laboratory for Smart Materials, Harbin Institute of Technology, Shenzhen 518055, PR China; State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Shenzhen 518055, PR China; Research Centre of Printed Flexible Electronics, School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055, PR China; Shenzhen Shinehigh Innovation technology LTD., Shenzhen 518055, PR China.
| |
Collapse
|
9
|
Ahn SY, Kim KA, Lee S, Kim KH. Potential skin anti-aging effects of main phenolic compounds, tremulacin and tremuloidin from Salix chaenomeloides leaves on TNF-α-stimulated human dermal fibroblasts. Chem Biol Interact 2024; 402:111192. [PMID: 39127184 DOI: 10.1016/j.cbi.2024.111192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/30/2024] [Accepted: 08/07/2024] [Indexed: 08/12/2024]
Abstract
The genus Salix spp. has long been recognized as a healing herb for its use in treating fever, inflammation, and pain relief, as well as a food source for its nutritional value. In this study, we aimed to explore the potential bioactive natural products in the leaves of Salix chaenomeloides, commonly known as Korean pussy willow, for their protective effects against skin damage, including aging. Utilizing LC/MS-guided chemical analysis of the ethanol extract of S. chaenomeloides leaves, with a focus on major compounds, we successfully isolated two main phenolic compounds, tremulacin (1) and tremuloidin (2). Subsequently, we investigated the protective effects of tremulacin (1) and tremuloidin (2) in TNF-α-stimulated human dermal fibroblasts (HDFs). The results revealed that both tremulacin (1) and tremuloidin (2) inhibited TNF-α-stimulation-induced ROS, suppressed matrix metalloproteinase-1 (MMP-1) expression, and enhanced collagen secretion. This implies that both tremulacin (1) and tremuloidin (2) hold promise as preventive agents against photoaging-induced skin aging. Furthermore, we assessed the activity of mitogen-activated protein kinases (MAPKs), cyclooxygenase-2 (COX-2), and heme oxygenase 1 (HO-1) to elucidate the mechanism of photoaging inhibition by tremuloidin (2), which exhibited superior efficacy. We found that tremuloidin (2) inhibited ERK and p38 phosphorylation and notably suppressed COX-2 expression while significantly upregulating HO-1 expression. These findings suggest potent anti-inflammatory and antioxidant properties of tremuloidin (2), positioning it as a potential candidate for combating photoaging-induced skin aging.
Collapse
Affiliation(s)
- Si-Young Ahn
- Department of Life Science, College of Bio-Nano Technology, Gachon University, Seongnam, 13120, Republic of Korea
| | - Kyung Ah Kim
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Sullim Lee
- Department of Life Science, College of Bio-Nano Technology, Gachon University, Seongnam, 13120, Republic of Korea.
| | - Ki Hyun Kim
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| |
Collapse
|
10
|
Chen W, Xiang N, Huang J, Xu H, Wang Z, Ruan B, Zhang J, Wu C, Zhang J, Liang Y. Supramolecular collagen nanoparticles for anti-wrinkle, skin whitening, and moisturizing effects. Colloids Surf B Biointerfaces 2024; 245:114275. [PMID: 39383579 DOI: 10.1016/j.colsurfb.2024.114275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 09/24/2024] [Accepted: 09/26/2024] [Indexed: 10/11/2024]
Abstract
Collagen-based skincare products can replenish collagen in the skin; however, collagen cannot easily penetrate the dermis, limiting its effectiveness. Therefore, nanomaterials that can enable collagen to effectively penetrate the dermis are urgently needed. This study aimed to determine the potential role of the supramolecular collagen nanoparticles, namely, lactoferrin, recombinant human collagen, and palmitoyl tripeptide-5, in improving the effectiveness of skincare products. Lactoferrin and recombinant collagen served as carriers encapsulating palmitoyl tripeptide-5, with an encapsulation rate of 94.18 %. The supramolecular collagen nanoparticles demonstrated good stability after 1 month. Transdermal efficiency was improved by 69.90 %, allowing the nanoparticles to penetrate deeply into the dermis. Within 28 days of use, the moisture content of the stratum corneum increased by 10.51 %, facial elasticity improved by 8.15 %, skin firmness increased by 12.53 %, facial melanin index decreased by 1.84 %, and individual type angle increased by 19.10 %. Within 14 days, there was a 24.69 % reduction in eye bag wrinkles and a 37.61 % reduction in nasolabial wrinkles. Wrinkle lengths decreased by 10.22 % and 21.57 %, and areas decreased by 34.41 % and 27.92 %, respectively. The supramolecular collagen nanoparticles displayed multiple skincare benefits, including moisturizing, whitening, wrinkle reduction, and firming. In conclusion, the supramolecular collagen nanoparticles are promising candidates for cosmetic products.
Collapse
Affiliation(s)
- Wanling Chen
- Sauvage Laboratory for Smart Materials, Harbin Institute of Technology, Shenzhen, China; ShangYa (GuangZhou) Biogene Technology Co., Ltd, China
| | - Nanxi Xiang
- Beijing Institute of Technology Chongqing Innovation Center, Chongqing, China
| | - Jiahong Huang
- Sauvage Laboratory for Smart Materials, Harbin Institute of Technology, Shenzhen, China
| | - Huixian Xu
- Sauvage Laboratory for Smart Materials, Harbin Institute of Technology, Shenzhen, China
| | - Zhenyuan Wang
- Sauvage Laboratory for Smart Materials, Harbin Institute of Technology, Shenzhen, China
| | - Bo Ruan
- Sauvage Laboratory for Smart Materials, Harbin Institute of Technology, Shenzhen, China
| | - Jichuan Zhang
- Sauvage Laboratory for Smart Materials, Harbin Institute of Technology, Shenzhen, China
| | - Chengyu Wu
- College of Pharmacy, Shenzhen Technology University, Shenzhen, China.
| | - Jiaheng Zhang
- Sauvage Laboratory for Smart Materials, Harbin Institute of Technology, Shenzhen, China.
| | - YanZhen Liang
- ShangYa (GuangZhou) Biogene Technology Co., Ltd, China.
| |
Collapse
|
11
|
Wang Z, Chen H, Wang Y, Wu C, Ye T, Xia H, Huang R, Deng J, Li Z, Huang Y, Yang Y. Recombinant filaggrin-2 improves skin barrier function and attenuates ultraviolet B (UVB) irradiation-induced epidermal barrier disruption. Int J Biol Macromol 2024; 281:136064. [PMID: 39341309 DOI: 10.1016/j.ijbiomac.2024.136064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/23/2024] [Accepted: 09/25/2024] [Indexed: 10/01/2024]
Abstract
The integrity of the skin barrier is essential for maintaining skin health, with the stratum corneum and filaggrin 2 (FLG-2) playing a key role. FLG-2 deficiency or mutation has been linked to diseases such as atopic dermatitis, while external stressors such as ultraviolet B (UVB) radiation further damage the epidermal barrier. This study investigated the effects of recombinant filaggrin (rFLG) on skin barrier function and UVB induced epidermal destruction. Cell experiments showed that 10 μg/mL of rFLG could increase the mobility of HaCaT cells from 20 % to 42 %, increase the epithelial resistance (TEER) value by about 2 times, and up-regulate the tight junction associated protein by about 2 times. In mouse models of UVB-induced epidermal barrier destruction, rFLG at concentrations of 0.5, 1, and 2 mg/mL showed effective cell uptake and skin penetration, alleviating erythema, and reducing skin thickness in mice by 1.5-3 times. Among them, 2 mg/mL of rFLG treatment restored the expression of tight junction proteins (LOR, ZO-1, and caspase-14), reduced collagen degradation, and reduced oxidative stress by normalizing serum hydroxyproline and superoxide dismutase levels. In addition, 2 mg/mL of rFLG inhibited UVB-induced upregulation of matrix metalloproteinases (MMP-3 and MMP-9) and reduced pro-inflammatory factors (IL-10, IL-1α, IL-6, and TNF-α) and apoptotic markers (P38, Bax, and Bcl-2) to normal levels. These findings suggested that rFLG effectively enhanced skin barrier integrity and mitigated UVB-induced epidermal barrier destruction, highlighting its potential as a therapeutic agent for diseases associated with skin barrier dysfunction.
Collapse
Affiliation(s)
- Zhaoyang Wang
- Department of Cell Biology, Jinan University, Guangzhou 510632, China; State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou 510632, China
| | - Hongxia Chen
- Department of Cell Biology, Jinan University, Guangzhou 510632, China; State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou 510632, China
| | - Yuxin Wang
- Department of Cell Biology, Jinan University, Guangzhou 510632, China; State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou 510632, China
| | - Chunna Wu
- Department of Cell Biology, Jinan University, Guangzhou 510632, China
| | - Tao Ye
- Department of Cell Biology, Jinan University, Guangzhou 510632, China
| | - Huan Xia
- Jinan University&TYRAN Cosmetics Innovation Research Institute, Guangzhou 511447, China
| | - Rufei Huang
- Department of Cell Biology, Jinan University, Guangzhou 510632, China
| | - Jingxian Deng
- Department of Cell Biology, Jinan University, Guangzhou 510632, China
| | - Ziyi Li
- Department of Cell Biology, Jinan University, Guangzhou 510632, China
| | - Yadong Huang
- Department of Cell Biology, Jinan University, Guangzhou 510632, China; State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou 510632, China; National Engineering Research Center of Genetic Medicine, Guangzhou 510632, China; Guangdong Province Key Laboratory of Bioengineering Medicine, Guangzhou 510632, China.
| | - Yan Yang
- Department of Cell Biology, Jinan University, Guangzhou 510632, China; State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou 510632, China; National Engineering Research Center of Genetic Medicine, Guangzhou 510632, China; Guangdong Province Key Laboratory of Bioengineering Medicine, Guangzhou 510632, China.
| |
Collapse
|
12
|
Bagheri AM, Mirzahashemi M, Salarpour S, Dehghnnoudeh Y, Banat IM, Ohadi M, Dehghannoudeh G. Potential anti-aging applications of microbial-derived surfactantsin cosmetic formulations. Crit Rev Biotechnol 2024:1-22. [PMID: 39294002 DOI: 10.1080/07388551.2024.2393420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 07/14/2024] [Accepted: 07/30/2024] [Indexed: 09/20/2024]
Abstract
The skin aging process is a complex interaction of genetic, epigenetic, and environmental factors, such as chemical pollution and UV radiation. There is growing evidence that biosurfactants, especially those of microbial origin, have distinct age-supportive effects through different mechanisms, such as stimulation of fibroblast growth, high antioxidant capacities, and favorable anti-inflammatory properties. With a growing financial contribution of more than 15 m€per year, microbial surfactants (MSs) display unique biological effects on the skin including improved cell mobility, better nutrient access, and facilitated cellular growth under harsh conditions. Their biodegradable nature, unusual surface activity, good safety profile and tolerance to high temperature and pH variations widen their potential spectrum in biomedical and pharmaceutical applications. MSs typically have lower critical micelle concentration (CMC) levels than chemical surfactants enhancing their effectiveness. As natural surfactants, MSs are considered possible "green" alternatives to synthetic surfactants with better biodegradability, sustainability, and beneficial functional properties. This review therefore aims to explore the potential impacts of MSs as anti-aging ingredients.
Collapse
Affiliation(s)
- Amir Mohammad Bagheri
- Department of Pharmaceutics, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
- Student Research Committee, Kerman University of Medical Sciences, Kerman, Iran
| | - Masoud Mirzahashemi
- Department of Pharmaceutics, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
- Student Research Committee, Kerman University of Medical Sciences, Kerman, Iran
| | - Soodeh Salarpour
- Department of Pharmaceutics, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Yasmin Dehghnnoudeh
- Departeman of Biology, Faculty of Science, York University, Toronto, Ontario, Canada
| | - Ibrahim M Banat
- School of Biomedical Sciences, Faculty of Life & Health Sciences, Ulster University, Coleraine, N. Ireland, UK
| | - Mandana Ohadi
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Gholamreza Dehghannoudeh
- Department of Pharmaceutics, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
13
|
Wu X, Koch M, Martínez FPP, Schirhagl R, Włodarczyk-Biegun MK. Quantum Sensing Unravels Antioxidant Efficacy Within PCL/Matrigel Skin Equivalents. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2403729. [PMID: 39246220 DOI: 10.1002/smll.202403729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/27/2024] [Indexed: 09/10/2024]
Abstract
Skin equivalents (SE) that recapitulate biological and mechanical characteristics of the native tissue are promising platforms for assessing cosmetics and studying fundamental biological processes. Methods to achieve SEs with well-organized structure, and ideal biological and mechanical properties are limited. Here, the combination of melt electrowritten PCL scaffolds and cell-laden Matrigel to fabricate SE is described. The PCL scaffold provides ideal structural and mechanical properties, preventing deformation of the model. The model consists of a top layer for seeding keratinocytes to mimic the epidermis, and a bottom layer of Matrigel-based dermal compartment with fibroblasts. The compressive modulus and the biological properties after 3-day coculture indicate a close resemblance with the native skin. Using the SE, a testing system to study the damage caused by UVA irradiation and evaluate antioxidant efficacy is established. The effectiveness of Tea polyphenols (TPs) and L-ascorbic acid (Laa) is compared based on free radical generation. TPs are demonstrated to be more effective in downregulating free radical generation. Further, T1 relaxometry is used to detect the generation of free radicals at a single-cell level, which allows tracking of the same cell before and after UVA treatment.
Collapse
Affiliation(s)
- Xixi Wu
- Department of Biomedical Engineering, University Medical Centre Groningen and University of Groningen, Ant. Deusinglaan 1, Groningen, 9713 AV, The Netherlands
| | - Marcus Koch
- INM - Leibniz Institute for New Materials, Campus D2 2, 66123, Saarbruecken, Germany
| | - Felipe P Perona Martínez
- Department of Biomedical Engineering, University Medical Centre Groningen and University of Groningen, Ant. Deusinglaan 1, Groningen, 9713 AV, The Netherlands
| | - Romana Schirhagl
- Department of Biomedical Engineering, University Medical Centre Groningen and University of Groningen, Ant. Deusinglaan 1, Groningen, 9713 AV, The Netherlands
| | - Małgorzata K Włodarczyk-Biegun
- Polymer Science, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, Groningen, 9747 AG, The Netherlands
- Biotechnology Centre, The Silesian University of Technology, Krzywoustego 8, Gliwice, 44-100, Poland
| |
Collapse
|
14
|
Qin Y, Jiang B, Yuan C, Cui L, Lu M, Zheng X, Yu M. Light-emitting diode irradiation at 590 nm combined with active substances modulates ultraviolet B radiation-induced keratinocyte inflammation. Lasers Med Sci 2024; 39:231. [PMID: 39223344 DOI: 10.1007/s10103-024-04178-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024]
Abstract
To evaluate the efficacy of yellow light-emitting diode (LED) irradiation at 590 nm, alone or in combination with anti-inflammatory active substances against ultraviolet (UV)-induced inflammation in keratinocytes. HaCaT keratinocytes were pretreated with LED yellow light (590 nm) alone or in combination with an antiinflammatory active substance such as glycerophosphoinositol choline (GC), extract of grains of paradise (Aframomum melegueta Schum, AM), or a bisabolol and ginger root extract mixture (Bb-GE) before UVB irradiation. Following each treatment, we measured the levels of inflammatory mediators secreted by keratinocytes. HaCaT keratinocytes treated with UVB (300 mJ cm-²) and then cultured for 24 h exhibited significantly upregulated expression of proinflammatory factors, including interleukin (IL)-1α, prostaglandin E2 (PGE2), and IL-8. After pretreatment with 590 nm LED, UVB-induced inflammatory responses were significantly inhibited. Co-pretreatment with 590 nm LED irradiation and GC further inhibited the expression of IL-1α and IL-8. IL-8 expression was inhibited by co-pretreatment with 590 nm LED irradiation and AM, whereas PGE2 expression was inhibited by co-pretreatment with 590 nm LED irradiation and Bb-GE. Co-treatment with 590 nm LED irradiation and various active substances modulated UVB-induced inflammation in keratinocytes, suggesting the potential application of this approach to prevent damage caused by voluntary sun exposure in daily life.
Collapse
Affiliation(s)
- Yumei Qin
- Flossom Research Laboratories, 2601 Yingfeng Center, 3378 Binhai Avenue, Yuehai Street, Shenzhen, Guangdong, China
| | - Boyang Jiang
- Flossom Research Laboratories, 2601 Yingfeng Center, 3378 Binhai Avenue, Yuehai Street, Shenzhen, Guangdong, China.
- Shenzhen Rawskin Dermatology, Shenzhen, China.
| | - Chunfen Yuan
- Flossom Research Laboratories, 2601 Yingfeng Center, 3378 Binhai Avenue, Yuehai Street, Shenzhen, Guangdong, China
| | - Lei Cui
- , 22/F, Yingfeng Business Center, No.8 Yixing Road, Junlan Community, Beijiao Town, Shunde District, Foshan City, Guangdong, China
| | - Ming Lu
- , 702, Building B, Hongqiao International Business Plaza, 2679 Hechuan Road, Minhang District, Shanghai, China
| | - Xia Zheng
- , 702, Building B, Hongqiao International Business Plaza, 2679 Hechuan Road, Minhang District, Shanghai, China
| | - Minmin Yu
- , 702, Building B, Hongqiao International Business Plaza, 2679 Hechuan Road, Minhang District, Shanghai, China
| |
Collapse
|
15
|
Kumar P, Verma A, Ashique S, Bhowmick M, Mohanto S, Singh A, Gupta M, Gupta A, Haider T. Unlocking the role of herbal cosmeceutical in anti-ageing and skin ageing associated diseases. Cutan Ocul Toxicol 2024; 43:211-226. [PMID: 39024063 DOI: 10.1080/15569527.2024.2380326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/28/2024] [Accepted: 07/01/2024] [Indexed: 07/20/2024]
Abstract
The process of skin ageing is a natural biological phenomenon characterised by the emergence of wrinkles, age spots, sagging skin, and dryness over time. The increasing significance of skin in physical attractiveness has heightened skincare concerns. Anti-ageing cosmetics play a pivotal role in nurturing the skin, enhancing its quality, and promoting overall health. Today, cosmetics have evolved beyond mere aesthetics and are now integral to individual wellness. The contemporary quest for perpetual youth has intensified, prompting a deeper exploration into the skin ageing process. This comprehensive exploration delves into various elements involved in skin ageing, encompassing cells such as stem and endothelial cells, blood vessels, soft tissues, and signalling pathways. The molecular basis of skin ageing, including biochemical factors like reactive oxygen species, damaged DNA, free radicals, ions, and proteins (mRNA), is scrutinised alongside relevant animal models. The article critically analyzes the outcomes of utilising herbal components, emphasising their advantageous anti-ageing properties. The factors contributing to skin ageing, mechanistic perspectives, management approaches involving herbal cosmeceutical, and associated complications (especially cardiovascular diseases, Parkinson's, Alzheimer's, etc.) are succinctly addressed. In addition, the manuscript further summarises the recent patented innovations and toxicity of the herbal cosmeceuticals for anti-ageing and ageing associated disorders. Despite progress, further research is imperative to unlock the full potential of herbal components as anti-ageing agents.
Collapse
Affiliation(s)
- Prashant Kumar
- SRM University Delhi-NCR Campus, Ghaziabad, UPttarpradesh, India
| | - Anurag Verma
- Teerthanker Mahaveer College of Pharmacy, Teerthanker Mahaveer University, Moradabad, UPttarpradesh, India
| | - Sumel Ashique
- Department of Pharmaceutical Sciences, Bengal College of Pharmaceutical Sciences & Research, Durgapur, West Bengal, India
| | - Mithun Bhowmick
- Department of Pharmaceutical Sciences, Bengal College of Pharmaceutical Sciences & Research, Durgapur, West Bengal, India
| | - Sourav Mohanto
- Department of Pharmaceutics, Yenepoya Pharmacy College & Research Centre, Yenepoya (Deemed to be University), Mangalore, Karnataka, India
| | - Anita Singh
- Department of Pharmaceutical Sciences, Kumaun University Campus, Bhimtal, Uttarakhand, India
| | - Madhu Gupta
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, New Delhi, India
| | - Abhishek Gupta
- Department of Pharmacognosy and phytochemistry, Hygia Institute of Pharmaceutical Education & Research, Lucknow, Uttar Pradesh, India
| | - Tanweer Haider
- Department of Pharmaceutics, Amity Institute of Pharmacy, Amity University Madhya Pradesh, Gwalior, India
| |
Collapse
|
16
|
Vikram A, Patel SK, Singh A, Pathania D, Ray RS, Upadhyay AK, Dwivedi A. Natural autophagy activators: A promising strategy for combating photoaging. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 132:155508. [PMID: 38901286 DOI: 10.1016/j.phymed.2024.155508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 02/22/2024] [Accepted: 02/28/2024] [Indexed: 06/22/2024]
Abstract
BACKGROUND Photodamage to the skin stands out as one of the most widespread epidermal challenges globally. Prolonged exposure to sunlight containing ultraviolet radiation (UVR) instigates stress, thereby compromising the skin's functionality and culminating in photoaging. Recent investigations have shed light on the importance of autophagy in shielding the skin from photodamage. Despite the acknowledgment of numerous phytochemicals possessing photoprotective attributes, their potential to induce autophagy remains relatively unexplored. PURPOSE Diminished autophagy activity in photoaged skin underscores the potential benefits of restoring autophagy through natural compounds to enhance photoprotection. Consequently, this study aims to highlight the role of natural compounds in safeguarding against photodamage and to assess their potential to induce autophagy via an in-silico approach. METHODS A thorough search of the literature was done using several databases, including PUBMED, Science Direct, and Google Scholar, to gather relevant studies. Several keywords such as Phytochemical, Photoprotection, mTOR, Ultraviolet Radiation, Reactive oxygen species, Photoaging, and Autophagy were utilized to ensure thorough exploration. To assess the autophagy potential of phytochemicals through virtual screening, computational methodologies such as molecular docking were employed, utilizing tools like AutoDock Vina. Receptor preparation for docking was facilitated using MGLTools. RESULTS The initiation of structural and functional deterioration in the skin due to ultraviolet radiation (UVR) or sunlight-induced reactive oxygen species/reactive nitrogen species (ROS/RNS) involves the modulation of various pathways. Natural compounds like phenolics, flavonoids, flavones, and anthocyanins, among others, possess chromophores capable of absorbing light, thereby offering photoprotection by modulating these pathways. In our molecular docking study, these phytochemicals have shown binding affinity with mTOR, a negative regulator of autophagy, indicating their potential as autophagy modulators. CONCLUSION This integrated review underscores the photoprotective characteristics of natural compounds, while the in-silico analysis reveals their potential to modulate autophagy, which could significantly contribute to their anti-photoaging properties. The findings of this study hold promise for the advancement of cosmeceuticals and therapeutics containing natural compounds aimed at addressing photoaging and various skin-related diseases. By leveraging their dual benefits of photoprotection and autophagy modulation, these natural compounds offer a multifaceted approach to combatting skin aging and related conditions.
Collapse
Affiliation(s)
- Apeksha Vikram
- Photobiology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR- Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan 31, Mahatma Gandhi Marg, Lucknow-226001 Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002 Uttar Pradesh, India
| | - Sunil Kumar Patel
- Photobiology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR- Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan 31, Mahatma Gandhi Marg, Lucknow-226001 Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002 Uttar Pradesh, India
| | - Arshwinder Singh
- Department of Biotechnology, Thapar Institute of Engineering & Technology, Patiala-147004 Punjab, India
| | - Diksha Pathania
- Photobiology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR- Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan 31, Mahatma Gandhi Marg, Lucknow-226001 Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002 Uttar Pradesh, India
| | - Ratan Singh Ray
- Photobiology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR- Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan 31, Mahatma Gandhi Marg, Lucknow-226001 Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002 Uttar Pradesh, India
| | - Atul Kumar Upadhyay
- Department of Biotechnology, Thapar Institute of Engineering & Technology, Patiala-147004 Punjab, India.
| | - Ashish Dwivedi
- Photobiology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR- Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan 31, Mahatma Gandhi Marg, Lucknow-226001 Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002 Uttar Pradesh, India.
| |
Collapse
|
17
|
Saito P, Pinto IC, Rodrigues CCA, de Matos RLN, Vale DL, Melo CPB, Fattori V, Saraiva-Santos T, Mendes-Pierotti S, Bertozzi MM, Bracarense APFRL, Vignoli JA, Baracat MM, Georgetti SR, Verri WA, Casagrande R. Resolvin D5 Protects Female Hairless Mouse Skin from Pathological Alterations Caused by UVB Irradiation. Antioxidants (Basel) 2024; 13:1008. [PMID: 39199252 PMCID: PMC11351481 DOI: 10.3390/antiox13081008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/09/2024] [Accepted: 08/16/2024] [Indexed: 09/01/2024] Open
Abstract
Resolvin D5 (RvD5) is a lipid mediator that has been reported to present anti-inflammatory and pro-resolution properties. Evidence also supports its capability to enhance reactive oxygen species (ROS) production during bacterial infections, which would be detrimental in diseases driven by ROS. The biological activity of RvD5 and mechanisms against UVB irradiation skin pathology have not been investigated so far. Female hairless mice were treated intraperitoneally with RvD5 before UVB stimulus. RvD5 reduced skin edema in a dose-dependent manner as well as oxidative stress by increasing antioxidants (endogenous tissue antioxidant scavenging of cationic radical, iron reduction, catalase activity and reduced glutathione levels) and decreasing pro-oxidants (superoxide anion and lipid peroxidation). RvD5 antioxidant activity was accompanied by enhancement of Nrf2, HO-1 and NQO1 mRNA expression. RvD5 reduced the production of IL-1β, TNF-α, TGF-β, and IL-10. RvD5 also reduced the inflammatory cell counts, including mast cells and neutrophils/macrophages. The reduction of oxidative stress and inflammation resulted in diminished matrix metalloproteinase 9 activity, collagen degradation, epidermal thickening and sunburn cell development. Therefore, this study demonstrates, to our knowledge, the first body of evidence that RvD5 can be used to treat UVB skin pathology and unveils, at least in part, its mechanisms of action.
Collapse
Affiliation(s)
- Priscila Saito
- Departamento de Ciências Farmacêuticas, Universidade Estadual de Londrina, Avenida Robert Koch, 60, Hospital Universitário, Londrina 86039-440, Paraná, Brazil; (P.S.); (I.C.P.); (C.C.A.R.); (R.L.N.d.M.); (D.L.V.); (C.P.B.M.); (S.M.-P.); (M.M.B.); (S.R.G.)
| | - Ingrid C. Pinto
- Departamento de Ciências Farmacêuticas, Universidade Estadual de Londrina, Avenida Robert Koch, 60, Hospital Universitário, Londrina 86039-440, Paraná, Brazil; (P.S.); (I.C.P.); (C.C.A.R.); (R.L.N.d.M.); (D.L.V.); (C.P.B.M.); (S.M.-P.); (M.M.B.); (S.R.G.)
| | - Camilla C. A. Rodrigues
- Departamento de Ciências Farmacêuticas, Universidade Estadual de Londrina, Avenida Robert Koch, 60, Hospital Universitário, Londrina 86039-440, Paraná, Brazil; (P.S.); (I.C.P.); (C.C.A.R.); (R.L.N.d.M.); (D.L.V.); (C.P.B.M.); (S.M.-P.); (M.M.B.); (S.R.G.)
| | - Ricardo L. N. de Matos
- Departamento de Ciências Farmacêuticas, Universidade Estadual de Londrina, Avenida Robert Koch, 60, Hospital Universitário, Londrina 86039-440, Paraná, Brazil; (P.S.); (I.C.P.); (C.C.A.R.); (R.L.N.d.M.); (D.L.V.); (C.P.B.M.); (S.M.-P.); (M.M.B.); (S.R.G.)
| | - David L. Vale
- Departamento de Ciências Farmacêuticas, Universidade Estadual de Londrina, Avenida Robert Koch, 60, Hospital Universitário, Londrina 86039-440, Paraná, Brazil; (P.S.); (I.C.P.); (C.C.A.R.); (R.L.N.d.M.); (D.L.V.); (C.P.B.M.); (S.M.-P.); (M.M.B.); (S.R.G.)
| | - Cristina P. B. Melo
- Departamento de Ciências Farmacêuticas, Universidade Estadual de Londrina, Avenida Robert Koch, 60, Hospital Universitário, Londrina 86039-440, Paraná, Brazil; (P.S.); (I.C.P.); (C.C.A.R.); (R.L.N.d.M.); (D.L.V.); (C.P.B.M.); (S.M.-P.); (M.M.B.); (S.R.G.)
| | - Victor Fattori
- Departamento de Imunologia, Parasitologia e Patologia Geral, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Rodovia Celso Garcia Cid, Km 80, PR445, Cx. Postal 10.011, Londrina 86057-970, Paraná, Brazil; (V.F.); (T.S.-S.); (M.M.B.); (W.A.V.)
| | - Telma Saraiva-Santos
- Departamento de Imunologia, Parasitologia e Patologia Geral, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Rodovia Celso Garcia Cid, Km 80, PR445, Cx. Postal 10.011, Londrina 86057-970, Paraná, Brazil; (V.F.); (T.S.-S.); (M.M.B.); (W.A.V.)
| | - Soraia Mendes-Pierotti
- Departamento de Ciências Farmacêuticas, Universidade Estadual de Londrina, Avenida Robert Koch, 60, Hospital Universitário, Londrina 86039-440, Paraná, Brazil; (P.S.); (I.C.P.); (C.C.A.R.); (R.L.N.d.M.); (D.L.V.); (C.P.B.M.); (S.M.-P.); (M.M.B.); (S.R.G.)
| | - Mariana M. Bertozzi
- Departamento de Imunologia, Parasitologia e Patologia Geral, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Rodovia Celso Garcia Cid, Km 80, PR445, Cx. Postal 10.011, Londrina 86057-970, Paraná, Brazil; (V.F.); (T.S.-S.); (M.M.B.); (W.A.V.)
| | - Ana P. F. R. L. Bracarense
- Laboratório de Patologia Animal, Universidade Estadual de Londrina, Campus Universitário, Rodovia Celso Garcia Cid, Km 380, Londrina 86057-970, Paraná, Brazil;
| | - Josiane A. Vignoli
- Departamento de Bioquímica e Biotecnologia, Centro de Ciências Exatas, Universidade Estadual de Londrina, Rodovia Celso Garcia Cid, Km 380, Londrina 86057-970, Paraná, Brazil;
| | - Marcela M. Baracat
- Departamento de Ciências Farmacêuticas, Universidade Estadual de Londrina, Avenida Robert Koch, 60, Hospital Universitário, Londrina 86039-440, Paraná, Brazil; (P.S.); (I.C.P.); (C.C.A.R.); (R.L.N.d.M.); (D.L.V.); (C.P.B.M.); (S.M.-P.); (M.M.B.); (S.R.G.)
| | - Sandra R. Georgetti
- Departamento de Ciências Farmacêuticas, Universidade Estadual de Londrina, Avenida Robert Koch, 60, Hospital Universitário, Londrina 86039-440, Paraná, Brazil; (P.S.); (I.C.P.); (C.C.A.R.); (R.L.N.d.M.); (D.L.V.); (C.P.B.M.); (S.M.-P.); (M.M.B.); (S.R.G.)
| | - Waldiceu A. Verri
- Departamento de Imunologia, Parasitologia e Patologia Geral, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Rodovia Celso Garcia Cid, Km 80, PR445, Cx. Postal 10.011, Londrina 86057-970, Paraná, Brazil; (V.F.); (T.S.-S.); (M.M.B.); (W.A.V.)
| | - Rubia Casagrande
- Departamento de Ciências Farmacêuticas, Universidade Estadual de Londrina, Avenida Robert Koch, 60, Hospital Universitário, Londrina 86039-440, Paraná, Brazil; (P.S.); (I.C.P.); (C.C.A.R.); (R.L.N.d.M.); (D.L.V.); (C.P.B.M.); (S.M.-P.); (M.M.B.); (S.R.G.)
| |
Collapse
|
18
|
Solovev I, Sergeeva A, Geraskina A, Shaposhnikov M, Vedunova M, Borysova O, Moskalev A. Aging and physiological barriers: mechanisms of barrier integrity changes and implications for age-related diseases. Mol Biol Rep 2024; 51:917. [PMID: 39158744 DOI: 10.1007/s11033-024-09833-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 07/30/2024] [Indexed: 08/20/2024]
Abstract
The phenomenon of compartmentalization is one of the key traits of life. Biological membranes and histohematic barriers protect the internal environment of the cell and organism from endogenous and exogenous impacts. It is known that the integrity of these barriers decreases with age due to the loss of homeostasis, including age-related gene expression profile changes and the abnormal folding/assembly, crosslinking, and cleavage of barrier-forming macromolecules in addition to morphological changes in cells and tissues. The critical molecular and cellular mechanisms involved in physiological barrier integrity maintenance and aging-associated changes in their functioning are reviewed on different levels: molecular, organelle, cellular, tissue (histohematic, epithelial, and endothelial barriers), and organ one (skin). Biogerontology, which studies physiological barriers in the aspect of age, is still in its infancy; data are being accumulated, but there is no talk of the synthesis of complex theories yet. This paper mainly presents the mechanisms that will become targets of anti-aging therapy only in the future, possibly: pharmacological, cellular, and gene therapies, including potential geroprotectors, hormetins, senomorphic drugs, and senolytics.
Collapse
Affiliation(s)
- Ilya Solovev
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology, Komi Science Center, Ural Branch, Russian Academy of Sciences, 28 Kommunisticheskaya st, Syktyvkar, 167982, Russian Federation
- Pitirim Sorokin Syktyvkar State University, 55 Oktyabrsky prosp, Syktyvkar, 167001, Russian Federation
| | - Alena Sergeeva
- Lobachevsky State University, Nizhny Novgorod, 603022, Russian Federation
| | | | - Mikhail Shaposhnikov
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology, Komi Science Center, Ural Branch, Russian Academy of Sciences, 28 Kommunisticheskaya st, Syktyvkar, 167982, Russian Federation
| | - Maria Vedunova
- Laboratory of genetics and epigenetics of aging, Russian Clinical Research Center for Gerontology, Pirogov Russian National Research Medical University, Moscow, 129226, Russian Federation
| | | | - Alexey Moskalev
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology, Komi Science Center, Ural Branch, Russian Academy of Sciences, 28 Kommunisticheskaya st, Syktyvkar, 167982, Russian Federation.
- Lobachevsky State University, Nizhny Novgorod, 603022, Russian Federation.
- Laboratory of genetics and epigenetics of aging, Russian Clinical Research Center for Gerontology, Pirogov Russian National Research Medical University, Moscow, 129226, Russian Federation.
| |
Collapse
|
19
|
Jacques C, Jamin EL, Noustens A, Lauze C, Jouanin I, Doat G, Debrauwer L, Bessou-Touya S, Stockfleth E, Duplan H. Multi-omics analysis to evaluate the effects of solar exposure and a broad-spectrum SPF50+ sunscreen on markers of skin barrier function in a skin ecosystem model. Photochem Photobiol 2024. [PMID: 39054579 DOI: 10.1111/php.14001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 06/03/2024] [Accepted: 07/01/2024] [Indexed: 07/27/2024]
Abstract
Sun exposure induces major skin alterations, but its effects on skin metabolites and lipids remain largely unknown. Using an original reconstructed human epidermis (RHE) model colonized with human microbiota and supplemented with human sebum, we previously showed that a single dose of simulated solar radiation (SSR) significantly impacted the skin metabolome and microbiota. In this article, we further analyzed SSR-induced changes on skin metabolites and lipids in the same RHE model. Among the significantly altered metabolites (log2-fold changes with p ≤ 0.05), we found several natural moisturizing factors (NMFs): amino acids, lactate, glycerol, urocanic acid, pyrrolidone carboxylic acid and derivatives. Analyses of the stratum corneum lipids also showed that SSR induced lower levels of free fatty acids and higher levels of ceramides, cholesterols and its derivatives. An imbalance in NMFs and ceramides combined to an increase of proinflammatory lipids may participate in skin permeability barrier impairment, dehydration and inflammatory reaction to the sun. Our skin model also allowed the evaluation of an innovative ultraviolet/blue light (UV/BL) broad-spectrum sunscreen with a high sun protection factor (SPF50+). We found that using this sunscreen prior to SSR exposure could in part prevent SSR-induced alterations in NMFs and lipids in the skin ecosystem RHE model.
Collapse
Affiliation(s)
- Carine Jacques
- Pierre Fabre Dermo-Cosmétique et Personal Care, Centre R&D Pierre Fabre, Toulouse, France
| | - Emilien L Jamin
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France
- MetaboHUB-MetaToul, National Infrastructure of Metabolomics and Fluxomics, Toulouse, France
| | - Anais Noustens
- Pierre Fabre Dermo-Cosmétique et Personal Care, Centre R&D Pierre Fabre, Toulouse, France
| | - Christophe Lauze
- Pierre Fabre Dermo-Cosmétique et Personal Care, Centre R&D Pierre Fabre, Toulouse, France
| | - Isabelle Jouanin
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France
- MetaboHUB-MetaToul, National Infrastructure of Metabolomics and Fluxomics, Toulouse, France
| | - Gautier Doat
- Laboratoires Eau thermale Avène, Cauquillous, Lavaur, France
| | - Laurent Debrauwer
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France
- MetaboHUB-MetaToul, National Infrastructure of Metabolomics and Fluxomics, Toulouse, France
| | - Sandrine Bessou-Touya
- Pierre Fabre Dermo-Cosmétique et Personal Care, Centre R&D Pierre Fabre, Toulouse, France
| | - Eggert Stockfleth
- Department of Dermatology, Venerology and Allergology, St. Josef Hospital, Ruhr-University Bochum, Bochum, Germany
| | - Hélène Duplan
- Pierre Fabre Dermo-Cosmétique et Personal Care, Centre R&D Pierre Fabre, Toulouse, France
| |
Collapse
|
20
|
Li Y, Guo M, Li L, Yang F, Xiong L. Effects of rice fermentation and its bioactive components on UVA-induced oxidative stress and senescence in dermal fibroblasts. Photochem Photobiol 2024. [PMID: 39030789 DOI: 10.1111/php.14003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/04/2024] [Accepted: 07/07/2024] [Indexed: 07/22/2024]
Abstract
Photoaging, caused by ultraviolet (UV) radiation, is characterized by the senescence of skin cells and reduction of collagens. Although rice fermentation is widely used in the cosmetics, its impact on skin photoaging is still not well understood. Herein, we investigated the possible effectiveness of Maifuyin, a fermented rice product, and its components, succinic acid (SA), and choline, for safeguarding UVA-exposed human dermal fibroblasts (HDFs) against photoaging. In this study, the effects of Maifuyin, SA, and choline on UVA-induced cell death and senescence in fibroblasts were evaluated in cell counting kit-8 (CCK-8), expression of β-galactosidase (β-GAL), and matrix metalloproteinases (MMP)-1. To identify oxidative stress, the investigation focused on reactive oxygen species, glutathione, superoxide dismutase, and malondialdehyde. Additionally, a mRNA sequencing technology (RNA-seq) was applied to study the underlying mechanisms of these components on UVA-induced photoaging. Meanwhile, the level of C-X-C motif chemokine ligand 2 (CXCL2) in the cell supernatant was confirmed to assess the autocrine chemokine level. To reassess the involvement of CXCL2, the expression of β-GAL was evaluated in fibroblasts treated with or without CXCL2. The results indicated that 1 mg/mL Maifuyin and SA inhibited UVA-induced senescence in fibroblasts, MMP-1 expression, and oxidative damage. The RNA-seq revealed 1 mg/mL Maifuyin and SA might be recruited chemokine CXCLs to inhibit MMPs production and fibroblast senescence via TNFα, MAPK, and NF-κB pathways. ELISA results showed a significant reduction of autocrine CXCL2 in UVA-irradiated HDFs by pretreating Maifuyin and SA. The β-GAL staining assay revealed that CXCL2 treatment increased β-GAL activity, while the administration of Maifuyin and SA counteracted this effect in HDFs. These results highlighted the potential use of Maifuyin and SA as promising candidates for anti-photoaging applications.
Collapse
Affiliation(s)
- Yu Li
- Cosmetics Safety and Efficacy Evaluation Center, West China Hospital, Sichuan University, Chengdu, China
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, China
| | - Miao Guo
- Mageline Biology Tech Co., Ltd, Wuhan, China
| | - Li Li
- Cosmetics Safety and Efficacy Evaluation Center, West China Hospital, Sichuan University, Chengdu, China
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, China
- Sichuan Engineering Technology Research Center of Cosmetic, Chengdu, China
| | - Fan Yang
- Mageline Biology Tech Co., Ltd, Wuhan, China
| | - Lidan Xiong
- Cosmetics Safety and Efficacy Evaluation Center, West China Hospital, Sichuan University, Chengdu, China
- Sichuan Engineering Technology Research Center of Cosmetic, Chengdu, China
| |
Collapse
|
21
|
He X, Li P, Zhao S, Liu H, Tang W, Xie J, Tang J. Kunzea Ericoides (Kanuka) Leaf Extracts Show Moisturisation, Antioxidant, and UV Protection Effects in HaCaT Cells and Anti-melanogenesis Effects in B16F10 Cells. Appl Biochem Biotechnol 2024:10.1007/s12010-024-04989-1. [PMID: 39009952 DOI: 10.1007/s12010-024-04989-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/05/2024] [Indexed: 07/17/2024]
Abstract
Kunzea ericoides (kanuka) products are well-known for their potent medicinal values in antioxidant and anti-inflammatory applications. The present study identified various compounds, such as chlorogenic acid, gallic acid, quercetin, and (E)-ferulic acid in the kanuka leaf extract, showing its potential use in maintaining skin health. The influence of kanuka leaf extract upon epidermal cells concerning cytotoxicity and in vitro activities of moisturisation, antioxidation, UV protection, and anti-melanogenesis effects were explored in the study. Kanuka leaf extract demonstrated significant promotion in the proliferation of HaCaT and B16F10 cells. After incubation with kanuka leaf extract, the content of ROS and DPPH in HaCaT was significantly decreased; at the same time, more SOD was produced. Furthermore, hyaluronidase-1 (HYAL-1) and HYAL-4 expressions were inhibited, while the aquaporin 3 (AQP-3) content was significantly increased in HaCaT. Kanuka leaf extract also inhibited the expressions of matrix metalloproteinases-1 (MMP-1) and MMP-14 in UV-induced HaCaT cells. In the B16F10 cell line, melanin and tyrosinase production were decreased under the presence of kanuka leaf extract, and the expressions of microphthalmia-associated transcription factor (MITF), tyrosinase-related protein-1 (TYRP-1), and TYRP-2 were also inhibited. The study validated kanuka leaf extract as an effective natural product against photoaging and melanogenesis.
Collapse
Affiliation(s)
- Xuefeng He
- Department of Burns and Wound Repair, The First Affiliated Hospital of Sun Yat-sen University, No.58 Zhongshan Er Road, Guangzhou, 510080, People's Republic of China
| | - Peishan Li
- Department of Dermatology, Guangzhou Women and Children's Medical Center, Guangzhou, 510623, People's Republic of China
| | - Shixin Zhao
- Department of Burns and Wound Repair, The First Affiliated Hospital of Sun Yat-sen University, No.58 Zhongshan Er Road, Guangzhou, 510080, People's Republic of China
| | - Hengdeng Liu
- Department of Burns and Wound Repair, The First Affiliated Hospital of Sun Yat-sen University, No.58 Zhongshan Er Road, Guangzhou, 510080, People's Republic of China
| | - Weijian Tang
- Shanghai Urganic Bio-Technology Co., Ltd, Shanghai, 200000, People's Republic of China
| | - Julin Xie
- Department of Burns and Wound Repair, The First Affiliated Hospital of Sun Yat-sen University, No.58 Zhongshan Er Road, Guangzhou, 510080, People's Republic of China
| | - Jinming Tang
- Department of Burns and Wound Repair, The First Affiliated Hospital of Sun Yat-sen University, No.58 Zhongshan Er Road, Guangzhou, 510080, People's Republic of China.
| |
Collapse
|
22
|
Duo L, Yang J, Wang X, Zhang G, Zhao J, Zou H, Wang Z, Li Y. Krill oil: nutraceutical potential in skin health and disease. Front Nutr 2024; 11:1388155. [PMID: 39070257 PMCID: PMC11272659 DOI: 10.3389/fnut.2024.1388155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 06/14/2024] [Indexed: 07/30/2024] Open
Abstract
Krill oil (KO), extracted from the Antarctic marine crustacean Euphausia superba, is a nutrient-dense substance that includes rich profiles of n-3 polyunsaturated fatty acids (n-3 PUFAs), phospholipids (PLs), astaxanthin (ASX), as well as vitamins A and E, minerals, and flavonoids. As a high-quality lipid resource, KO has been widely used as a dietary supplement for its health-protective properties in recent years. KO has various benefits, including antioxidative, anti-inflammatory, metabolic regulatory, neuroprotective, and gut microbiome modulatory effects. Especially, the antioxidant and anti-inflammatory effects make KO have potential in skin care applications. With increasing demands for natural skin anti-aging solutions, KO has emerged as a valuable nutraceutical in dermatology, showing potential for mitigating the effects of skin aging and enhancing overall skin health and vitality. This review provides an overview of existing studies on the beneficial impact of KO on the skin, exploring its functional roles and underlying mechanisms through which it contributes to dermatological health and disease management.
Collapse
Affiliation(s)
- Lan Duo
- CAS Engineering Laboratory for Nutrition, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Jianzhong Yang
- Jiangsu Sunline Deep Sea Fishery Co., Ltd, Lianyungang, Jiangsu, China
| | - Xue Wang
- CAS Engineering Laboratory for Nutrition, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Gang Zhang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China
| | - Jiuxiang Zhao
- CAS Engineering Laboratory for Nutrition, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Hong Zou
- CAS Engineering Laboratory for Nutrition, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Zhi Wang
- Jiangsu Sunline Deep Sea Fishery Co., Ltd, Lianyungang, Jiangsu, China
| | - Yu Li
- CAS Engineering Laboratory for Nutrition, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
23
|
Xie Y, Yang A, Li N, Zheng H, Zhong Y, Jin Y, Li J, Ye R, Du L, Hu F. Lapagyl mitigates UV-induced inflammation and immunosuppression via Foxp3+ Tregs and CCL pathway: A single-cell transcriptomics study. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 129:155679. [PMID: 38701542 DOI: 10.1016/j.phymed.2024.155679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 03/19/2024] [Accepted: 04/23/2024] [Indexed: 05/05/2024]
Abstract
BACKGROUND As the largest organ of the body, the skin is constantly subjected to ultraviolet radiation (UVR), leading to inflammations and changes that mirror those seen in chronological aging. Although various small molecule drugs have been explored for treating skin photoaging, they typically suffer from low stability and a high incidence of adverse reactions. Consequently, the continued investigation of photoaging treatments, particularly those utilizing herbal products, remains a critical clinical endeavor. One such herbal product, Lapagyl, is derived from the bark of the lapacho tree and possesses antioxidant efficacies that could be beneficial in combating skin photoaging. PURPOSE This research aimed to evaluate the efficacy of the herbal product Lapagyl in combating UVR-induced skin photoaging. Additionally, it sought to unravel the mechanisms by which Lapagyl promotes the regeneration of the skin extracellular matrix. METHODS To investigate whether Lapagyl can alleviate skin aging and damage, a UVR radiation model was established using SKH-1 hairless mice. The dorsal skins of these mice were evaluated for wrinkle formation, texture, moisture, transepidermal water loss (TEWL), and elasticity. Pathological assessments were conducted to determine Lapagyl's efficacy. Additionally, single-cell sequencing and spectrum analysis were employed to elucidate the working mechanisms and primary components of Lapagyl in addressing UVR-induced skin aging and injury. RESULTS Lapagyl markedly reduced UVR-induced wrinkles, moisture loss, and elasticity decrease in SKH-1 mice. Single-cell sequencing demonstrated that Lapagyl corrected the imbalance in cell proportions caused by UVR, decreased UVR-induced ROS expression, and protected basal and spinous cells from skin damage. Additionally, Lapagyl effectively prevented the entry of inflammatory cells into the skin by reducing CCL8 expression and curtailed the UVR-induced formation of Foxp3+ regulatory T cells (Tregs) in the skin. Both pathological assessments and ex vivo skin model results demonstrated that Lapagyl effectively reduced UVR-induced damage to collagen and elastin. Spectrum analysis identified Salidroside as the primary compound remaining in the skin following Lapagyl treatment. Taken together, our study elucidated the skin protection mechanism of the herbal product Lapagyl against UVR damage at the cellular level, revealing its immunomodulatory effects, with salidroside identified as the primary active compound for skin. CONCLUSION Our study provided a thorough evaluation of Lapagyl's protective effects on skin against UVR damage, delving into the mechanisms at the cellular level. We discovered that Lapagyl mitigates skin inflammation and immunosuppression by regulating Foxp3+ Tregs and the CCL pathway. These insights indicate that Lapagyl has potential as a novel therapeutic option for addressing skin photoaging.
Collapse
Affiliation(s)
- Yicheng Xie
- Department of Dermatology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, 310052, Zhejiang Province, China.
| | - Anqi Yang
- Department of Dermatology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, 310052, Zhejiang Province, China
| | - Nihong Li
- UNISKIN Research Institute on Skin Aging, Inertia Shanghai Biotechnology Co., Ltd., Shanghai, China; DermaHealth Shanghai Biotechnology Co., Ltd., Shanghai, China
| | - Huiwen Zheng
- Department of Dermatology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, 310052, Zhejiang Province, China
| | - Ye Zhong
- UNISKIN Research Institute on Skin Aging, Inertia Shanghai Biotechnology Co., Ltd., Shanghai, China; DermaHealth Shanghai Biotechnology Co., Ltd., Shanghai, China
| | - Yuting Jin
- UNISKIN Research Institute on Skin Aging, Inertia Shanghai Biotechnology Co., Ltd., Shanghai, China; DermaHealth Shanghai Biotechnology Co., Ltd., Shanghai, China
| | - Jiabin Li
- Department of Dermatology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, 310052, Zhejiang Province, China
| | - Rui Ye
- UNISKIN Research Institute on Skin Aging, Inertia Shanghai Biotechnology Co., Ltd., Shanghai, China; DermaHealth Shanghai Biotechnology Co., Ltd., Shanghai, China
| | - Le Du
- UNISKIN Research Institute on Skin Aging, Inertia Shanghai Biotechnology Co., Ltd., Shanghai, China; DermaHealth Shanghai Biotechnology Co., Ltd., Shanghai, China
| | - Fan Hu
- UNISKIN Research Institute on Skin Aging, Inertia Shanghai Biotechnology Co., Ltd., Shanghai, China; DermaHealth Shanghai Biotechnology Co., Ltd., Shanghai, China.
| |
Collapse
|
24
|
Chen T, Yuan C, Zhao M. Women's skin care behaviors: How to influence sunscreen use. J Tissue Viability 2024:S0965-206X(24)00090-1. [PMID: 38951048 DOI: 10.1016/j.jtv.2024.06.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 06/14/2024] [Accepted: 06/27/2024] [Indexed: 07/03/2024]
Abstract
BACKGROUND It is well known that women have been plagued by various skin problems. However, research on the characteristics of women's skin at different ages is still inadequate. In addition, there is a lack of research on the extent of women's skincare habits and skin care awareness. METHODS A cross-sectional survey on skin was carried out in Shanghai, China, which was conducted by means of a questionnaire. 3678 women, aged 18-59 years, participated in the study. The information collected focused on the importance they place on their skin, the skin problems they have, and their use and perception of skin care products. RESULTS Before the age of 25, the most common skin problems that women face are dryness and oiliness, while after the age of 30, skin-ageing issues begin to appear and worsen with age. In addition, the higher the level of education, the higher the frequency of and compliance with sunscreen use, and the economy also affects women's use of sunscreen. Importantly, the importance women place on their skin and the level of sunscreen awareness affects women's use of sunscreen. CONCLUSIONS This study was conducted to understand the skin characteristics of women of different age groups as well as to determine the factors that influence the use of sunscreens, which will not only promote women's skin care practices and product development, but also provide important clues for future activities on sunscreen use and health promotion.
Collapse
Affiliation(s)
- Tian Chen
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai, 200336, China; NMPA Key Laboratory for Monitoring and Evaluation of Cosmetics, Shanghai, 200336, China
| | - Chao Yuan
- NMPA Key Laboratory for Monitoring and Evaluation of Cosmetics, Shanghai, 200336, China; Department of Skin and Cosmetic Research, Shanghai Skin Disease Hospital, Shanghai, China.
| | - Mengzhen Zhao
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China.
| |
Collapse
|
25
|
Siquier-Dameto G, Boadas-Vaello P, Verdú E. Intradermal Treatment with a Hyaluronic Acid Complex Supplemented with Amino Acids and Antioxidant Vitamins Improves Cutaneous Hydration and Viscoelasticity in Healthy Subjects. Antioxidants (Basel) 2024; 13:770. [PMID: 39061838 PMCID: PMC11274003 DOI: 10.3390/antiox13070770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/21/2024] [Accepted: 06/23/2024] [Indexed: 07/28/2024] Open
Abstract
Intradermal injection of bioactive compounds is used to reduce the effects of aging skin. The aim of this work is to study the response of facial injection of a hyaluronic acid complex supplemented with amino acids and antioxidant vitamins on skin rejuvenation. A total of 40 healthy adult subjects were recruited to whom this complex was injected into the facial skin, three consecutive times every two weeks. Together with assessing the degree of skin hydration, the level of skin microcirculation, wrinkles, skin color, and skin biomechanical parameters were evaluated. Using the GAIS scale, the degree of satisfaction of the participants was assessed. At 42 days (D42), there was an 11-12% increase in skin hydration and viscoelasticity, a 23% increase in skin density, a 27% increase in skin microcirculation, and a significant lightening and whitening of skin color, but without causing changes in skin wrinkles. A value between 1 and 3 on the GAIS scale was observed between 70 and 92% of the participants, and 87% of subjects found their skin more beautiful, 85% would recommend this treatment, and more than 50% found their face rejuvenated. In summary, the intradermal treatment tested suggests skin rejuvenation, with a good degree of safety.
Collapse
Affiliation(s)
- Gabriel Siquier-Dameto
- Dameto Clinics International, 1171 VC Badhoevedorp, The Netherlands;
- Research Group of Clinical Anatomy, Embryology and Neuroscience (NEOMA), Department of Medical Sciences, University of Girona, E-17003 Girona, Catalonia, Spain;
| | - Pere Boadas-Vaello
- Research Group of Clinical Anatomy, Embryology and Neuroscience (NEOMA), Department of Medical Sciences, University of Girona, E-17003 Girona, Catalonia, Spain;
| | - Enrique Verdú
- Research Group of Clinical Anatomy, Embryology and Neuroscience (NEOMA), Department of Medical Sciences, University of Girona, E-17003 Girona, Catalonia, Spain;
| |
Collapse
|
26
|
Vijayakumar S, Yesudhason BV, Anandharaj JL, Sathyaraj WV, Selvan Christyraj JRS. Impact of double-strand breaks induced by uv radiation on neuroinflammation and neurodegenerative disorders. Mol Biol Rep 2024; 51:725. [PMID: 38851636 DOI: 10.1007/s11033-024-09693-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 05/31/2024] [Indexed: 06/10/2024]
Abstract
Exposure to UV affects the development and growth of a wide range of organisms. Nowadays, researchers are focusing on the impact of UV radiation and its underlying molecular mechanisms, as well as devising strategies to mitigate its harmful effects. Different forms of UV radiation, their typical exposure effects, the impact of UV on DNA integrity, and the deterioration of genetic material are discussed in this review; furthermore, we also review the effects of UV radiation that affect the biological functions of the organisms. Subsequently, we address the processes that aid organisms in navigating the damage in genetic material, neuroinflammation, and neurodegeneration brought on by UV-mediated double-strand breaks. To emphasize the molecular pathways, we conclude the review by going over the animal model studies that highlight the genes and proteins that are impacted by UV radiation.
Collapse
Affiliation(s)
- Srilakshmi Vijayakumar
- Regeneration and Stem Cell Biology Lab, Centre for Molecular and Nanomedical Sciences, International Research Centre, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, India
| | - Beryl Vedha Yesudhason
- Regeneration and Stem Cell Biology Lab, Centre for Molecular and Nanomedical Sciences, International Research Centre, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, India.
| | - Jenif Leo Anandharaj
- Regeneration and Stem Cell Biology Lab, Centre for Molecular and Nanomedical Sciences, International Research Centre, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, India
| | - Weslen Vedakumari Sathyaraj
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, Tamilnadu, India
| | - Johnson Retnaraj Samuel Selvan Christyraj
- Regeneration and Stem Cell Biology Lab, Centre for Molecular and Nanomedical Sciences, International Research Centre, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, India.
| |
Collapse
|
27
|
Thasneem A, Sif S, Rahman MM, Crovella S. Can telomeric changes orchestrate the development of autoinflammatory skin diseases? Ital J Dermatol Venerol 2024; 159:318-328. [PMID: 38502535 DOI: 10.23736/s2784-8671.23.07689-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
Telomeres, the safeguarding caps at the tips of chromosomes, are pivotal in the aging process of cells and have been linked to skin ailments and inflammatory conditions. Telomeres undergo a gradual reduction in length and factors such as oxidative stress hasten this diminishing process. Skin diseases including inflammatory conditions can be correlated with the shortening of telomeres and the persistent activation of DNA damage response in skin tissues. Telomere dysfunction could disrupt the balance of the skin, impairs wound healing, and may contribute to abnormal cytokine production. Skin aging and processes related to telomeres may function as one of the triggers for skin diseases. The presence of proinflammatory cytokines and dysfunctional telomeres in conditions such as Dyskeratosis Congenita implies a possible connection between the shortening of telomeres and the onset of chronic inflammatory skin disorders. In autoinflammatory skin diseases, chronic inflammation hinders wound healing thus aggravating the progression of the disease. The NF-ĸB pathway might contribute to the initiation or progression of chronic disorders by influencing mechanisms associated with telomere biology. The intricate connections between telomeres, telomerase, telomere-associated proteins, and skin diseases are still a complex puzzle to be solved. Here, we provide an overview of the impact of telomeres on both health and disease with a specific emphasis on their role in skin, inflammation and autoinflammatory skin disorders.
Collapse
Affiliation(s)
- Ayshath Thasneem
- Biological Science Program, Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, Doha, Qatar
| | - Said Sif
- Biological Science Program, Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, Doha, Qatar
| | - Md Mizanur Rahman
- Biological Science Program, Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, Doha, Qatar
| | - Sergio Crovella
- Laboratory of Animal Research Center (LARC), Qatar University, Doha, Qatar -
| |
Collapse
|
28
|
Li Pomi F, Peterle L, d'Aloja A, Di Tano A, Vaccaro M, Borgia F. Anti-aging Effects of Tirbanibulin 1% Ointment: A Real-Life Experience. Dermatol Ther (Heidelb) 2024; 14:1683-1696. [PMID: 38740726 PMCID: PMC11169325 DOI: 10.1007/s13555-024-01178-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 04/26/2024] [Indexed: 05/16/2024] Open
Abstract
INTRODUCTION Tirbanibulin 1% ointment has been licensed to treat non-hyperkeratotic actinic keratosis (AKs) on the face and scalp in adults to ensure excellent patient tolerability due to the mild side effects and the brief application time compared to other topical therapies on the market. A growing body of evidence suggests that, beyond their primary function, the treatments for AKs and the cancerization field may inadvertently confer substantial cosmetic benefits to patients. METHODS We report a single-center retrospective case series of patients referred to the Dermatology Unit of the University Hospital of Messina, Italy, between February and December 2023 seeking treatment for AKs in the context of photodamaged areas in which the application of tirbanibulin 1% ointment induced, besides clearance of AKs, anti-aging effects on both skin texture and solar lentigos. RESULTS Seven patients affected by Olsen grade 1-2 AKs experienced a powerful rejuvenating effect in the treated areas, with a marked efficacy in skin lightening and clearance of solar lentigo. CONCLUSIONS Tirbanibulin 1% ointment seems able to improve skin aging as a desirable side effect at the site of application for AKs on chronic photodamaged skin. Such preliminary observation needs further confirmation in real-life studies on larger cohorts of patients, to explain the pathogenic mechanisms responsible for such aesthetically relevant results.
Collapse
Affiliation(s)
- Federica Li Pomi
- Department of Precision Medicine in Medical, Surgical and Critical Care (Me.Pre.C.C.), University of Palermo, 90127, Palermo, Italy
| | - Lucia Peterle
- Department of Clinical and Experimental Medicine, Section of Dermatology, University of Messina, Messina, Italy
| | - Andrea d'Aloja
- Department of Clinical and Experimental Medicine, Section of Dermatology, University of Messina, Messina, Italy
| | - Antonio Di Tano
- Department of Clinical and Experimental Medicine, Section of Dermatology, University of Messina, Messina, Italy
| | - Mario Vaccaro
- Department of Clinical and Experimental Medicine, Section of Dermatology, University of Messina, Messina, Italy
| | - Francesco Borgia
- Department of Clinical and Experimental Medicine, Section of Dermatology, University of Messina, Messina, Italy.
| |
Collapse
|
29
|
Merzel Šabović EK, Kocjan T, Zalaudek I. Treatment of menopausal skin - A narrative review of existing treatments, controversies, and future perspectives. Post Reprod Health 2024; 30:85-94. [PMID: 38379168 DOI: 10.1177/20533691241233440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
Menopause is a state of estrogen deficiency that affects numerous estrogen-dependent tissues in the female body. Skin is one of the most affected organs. Many consider menopausal skin changes to be merely an aesthetic problem; however, they can significantly affect women's quality of life. Currently, there are no approved effective treatments to prevent or alleviate skin changes associated with estrogen deficiency. Standard systemic hormone replacement therapy used to treat menopausal symptoms may be effective to some degree for skin treatment. In addition, compounded bioidentical hormone replacement therapy, selective estrogen receptor modulators, and phytoestrogens could also be used for skin treatment, although this is only hypothetical due to lack of data. Many questions therefore remain unanswered. On the other hand, topical, low-dose estrogen that would act only on the skin without systemic effects could be a possible option, as could be skin-only acting topical phytoestrogens. Such topical products without systemic effects could play a role in the treatment of menopausal skin. However, they are not currently approved because there is insufficient data on their safety and efficacy. A healthy lifestyle could have a positive effect on the menopausal skin. In this review, we provide an overview of the characteristics of menopausal skin, an outlook on the future treatment of menopausal skin with estrogens and other approaches, and the associated controversies and speculations. Overall, the importance of menopausal skin changes should not be neglected, and high-quality research is needed to gain new insights into the treatment of menopausal skin.
Collapse
Affiliation(s)
- Eva K Merzel Šabović
- Department of Dermatology, University Medical Centre Ljubljana, Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Tomaž Kocjan
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
- Department of Endocrinology, Diabetes, and Metabolic Diseases, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Iris Zalaudek
- Department of Dermatology, Maggiore Hospital, University of Trieste, Trieste, Italy
| |
Collapse
|
30
|
Zhang X, Zhou Q, Qi Y, Chen X, Deng J, Zhang Y, Li R, Fan J. The effect of tomato and lycopene on clinical characteristics and molecular markers of UV-induced skin deterioration: A systematic review and meta-analysis of intervention trials. Crit Rev Food Sci Nutr 2024; 64:6198-6217. [PMID: 36606553 DOI: 10.1080/10408398.2022.2164557] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Lycopene as a natural antioxidant that have been studied for ultraviolet radiation (UVR) photo protection and is one of the most effective carotenoids to scavenge reactive oxygen species (ROS). This review aims to summarize the protective effect of tomato and lycopene on skin photo damage and skin photoaging in healthy subjects by reviewing the existing population intervention experiments. A total of five electronic databases including PubMed, Scopus, EBSCO, Web of Science and Cochrane Library were searched from inceptions to January 2021 without any restriction. Out of 19336 publications identified, 21 fulfilled the inclusion criteria and were meta-analysis. Overall, interventions supplementing tomato and lycopene were associated with significant reductions in Δa*, MMP-1, ICAM-1 and skin pigmentation; while tomato and lycopene supplementation were associated with significant increase in MED, skin thickness and skin density. Based on the results of this systematic review and meta-analysis, supplementation with tomato and lycopene could reduce skin erythema formation and improve the appearance and pigmentation of the skin, thereby preventing light-induced skin photodamage and skin photoaging. Lycopene-rich products could be used as endogenous sun protection and may be a potential nutraceutical for sun protection.
Collapse
Affiliation(s)
- Xiaofeng Zhang
- Department of Nutrition and Food Hygiene, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Qilun Zhou
- Department of Nutrition and Food Hygiene, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Yue Qi
- Department of Nutrition and Food Hygiene, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Xiaoli Chen
- Department of Nutrition and Food Hygiene, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Jinlan Deng
- Department of Nutrition and Food Hygiene, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Yongping Zhang
- Department of Nutrition and Food Hygiene, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Ruonan Li
- Department of Nutrition and Food Hygiene, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Jianming Fan
- Department of Nutrition and Food Hygiene, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
31
|
Dong Y, Zhang Y, Yu H, Zhou L, Zhang Y, Wang H, Hu Z, Luo S. Poly-l-lactic acid microspheres delay aging of epidermal stem cells in rat skin. Front Immunol 2024; 15:1394530. [PMID: 38881903 PMCID: PMC11177849 DOI: 10.3389/fimmu.2024.1394530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 05/14/2024] [Indexed: 06/18/2024] Open
Abstract
Objective Injectable skin fillers offer a wider range of options for cutaneous anti-aging and facial rejuvenation. PLLA microspheres are increasingly favored as degradable and long-lasting fillers. The present study focused solely on the effect of PLLA on dermal collagen, without investigating its impact on the epidermis. In this study, we investigated the effects of PLLA microspheres on epidermal stem cells (EpiSCs). Methods Different concentrations of PLLA microspheres on epidermal stem cells (EpiSCs) in vitro through culture, and identification of primary rat EpiSCs. CCK-8 detection, apoptosis staining, flow cytometry, Transwell assay, wound healing assay, q-PCR analysis, and immunofluorescence staining were used to detect the effects of PLLA on EpiSCs. Furthermore, we observed the effect on the epidermis by injecting PLLA into the dermis of the rat skin in vivo. Results PLLA microspheres promote cell proliferation and migration while delaying cell senescence and maintaining its stemness. In vitro, Intradermal injection of PLLA microspheres in the rat back skin resulted in delayed aging, as evidenced by histological and immunohistochemical staining of the skin at 2, 4, and 12 weeks of follow-up. Conclusion This study showed the positive effects of PLLA on rat epidermis and EpiSCs, while providing novel insights into the anti-aging mechanism of PLLA.
Collapse
Affiliation(s)
- Yunxian Dong
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Department of Plastic and Reconstructive Surgery, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Youliang Zhang
- Department of Plastic and Reconstructive Surgery, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Hao Yu
- Department of Plastic and Reconstructive Surgery, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Lingcong Zhou
- Department of Plastic and Reconstructive Surgery, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Yaan Zhang
- Department of Plastic and Reconstructive Surgery, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Haibin Wang
- Department of Plastic and Reconstructive Surgery, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Zhicheng Hu
- Department of Burns, Wound Repair and Reconstruction, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Shengkang Luo
- Department of Plastic and Reconstructive Surgery, Guangdong Second Provincial General Hospital, Guangzhou, China
| |
Collapse
|
32
|
Batsukh S, Oh S, Lee JM, Joo JHJ, Son KH, Byun K. Extracellular Vesicles from Ecklonia cava and Phlorotannin Promote Rejuvenation in Aged Skin. Mar Drugs 2024; 22:223. [PMID: 38786614 PMCID: PMC11123375 DOI: 10.3390/md22050223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 05/07/2024] [Accepted: 05/14/2024] [Indexed: 05/25/2024] Open
Abstract
Plant-derived extracellular vesicles (EVs) elicit diverse biological effects, including promoting skin health. EVs isolated from Ecklonia cava (EV-EC) carry heat shock protein 70 (HSP70), which inhibits key regulators such as TNF-α, MAPKs, and NF-κB, consequently downregulating matrix metalloproteinases (MMPs). Aging exacerbates oxidative stress, upregulating MAPK and NF-κB signaling and worsening extracellular matrix degradation in the skin. E. cava-derived phlorotannin (PT) mitigates MAPK and NF-κB signaling. We evaluated the impact of EV-EC and PT on skin rejuvenation using an in vitro keratinocyte senescence model and an in vivo aged-mouse model. Western blotting confirmed the presence of HSP70 in EV-EC. Treatment with EV-EC and PT in senescent keratinocytes increased HSP70 expression and decreased the expression of TNF-α, MAPK, NF-κB, activator protein-1 (AP-1), and MMPs. Oxidative stress was also reduced. Sequential treatment with PT and EV-EC (PT/EV-EC) yielded more significant results compared to individual treatments. The administration of PT/EV-EC to the back skin of aged mice mirrored the in vitro findings, resulting in increased collagen fiber accumulation and improved elasticity in the aged skin. Therefore, PT/EV-EC holds promise in promoting skin rejuvenation by increasing HSP70 expression, decreasing the expression of MMPs, and reducing oxidative stress in aged skin.
Collapse
Affiliation(s)
- Sosorburam Batsukh
- Department of Anatomy & Cell Biology, College of Medicine, Gachon University, Incheon 21936, Republic of Korea
- Functional Cellular Networks Laboratory, Graduate School and Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999, Republic of Korea
| | - Seyeon Oh
- Functional Cellular Networks Laboratory, Graduate School and Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999, Republic of Korea
| | - Ji Min Lee
- Doctors Dermatologic Clinic, Gangdong Godeok, Seoul 05269, Republic of Korea
| | | | - Kuk Hui Son
- Department of Thoracic and Cardiovascular Surgery, Gachon University Gil Medical Center, Gachon University, Incheon 21565, Republic of Korea
| | - Kyunghee Byun
- Department of Anatomy & Cell Biology, College of Medicine, Gachon University, Incheon 21936, Republic of Korea
- Functional Cellular Networks Laboratory, Graduate School and Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999, Republic of Korea
- Department of Health Sciences and Technology, Gachon Advanced Institute for Health & Sciences and Technology (GAIHST), Gachon University, Incheon 21999, Republic of Korea
| |
Collapse
|
33
|
De Los Santos Gomez P, Costello L, Goncalves K, Przyborski S. Comparison of photodamage in non-pigmented and pigmented human skin equivalents exposed to repeated ultraviolet radiation to investigate the role of melanocytes in skin photoprotection. Front Med (Lausanne) 2024; 11:1355799. [PMID: 38698778 PMCID: PMC11063240 DOI: 10.3389/fmed.2024.1355799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 03/20/2024] [Indexed: 05/05/2024] Open
Abstract
Introduction Daily solar ultraviolet (UV) radiation has an important impact on skin health. Understanding the initial events of the UV-induced response is critical to prevent deleterious conditions. However, studies in human volunteers have ethical, technical, and economic implications that make skin equivalents a valuable platform to investigate mechanisms related to UV exposure to the skin. In vitro human skin equivalents can recreate the structure and function of in vivo human skin and represent a valuable tool for academic and industrial applications. Previous studies have utilised non-pigmented full-thickness or pigmented epidermal skin equivalents to investigate skin responses to UV exposure. However, these do not recapitulate the dermal-epidermal crosstalk and the melanocyte role in photoprotection that occurs in vivo. In addition, the UV radiation used in these studies is generally not physiologically representative of real-world UV exposure. Methods Well-characterised pigmented and non-pigmented skin equivalents that contain human dermal fibroblasts, endogenous secreted extracellular matrix proteins (ECM) and a well-differentiated and stratified epidermis have been developed. These constructs were exposed to UV radiation for ×5 consecutive days with a physiologically relevant UV dose and subsequently analysed using appropriate end-points to ascertain photodamage to the skin. Results We have described that repeated irradiation of full-thickness human skin equivalents in a controlled laboratory environment can recreate UV-associated responses in vitro, mirroring those found in photoexposed native human skin: morphological damage, tanning, alterations in epidermal apoptosis, DNA lesions, proliferation, inflammatory response, and ECM-remodelling. Discussion We have found a differential response when using the same UV doses in non-pigmented and pigmented full-thickness skin equivalents, emphasising the role of melanocytes in photoprotection.
Collapse
Affiliation(s)
| | - Lydia Costello
- Department of Biosciences, Durham University, Durham, United Kingdom
| | - Kirsty Goncalves
- Department of Biosciences, Durham University, Durham, United Kingdom
| | - Stefan Przyborski
- Department of Biosciences, Durham University, Durham, United Kingdom
- Reprocell Europe Ltd., Glasgow, United Kingdom
| |
Collapse
|
34
|
Shu P, Mo J, Li Z, Li M, Zhu W, Du Z. Ferulic acid in synergy with retinol alleviates oxidative injury of HaCaT cells during UVB-induced photoaging. Aging (Albany NY) 2024; 16:7153-7173. [PMID: 38643459 PMCID: PMC11087097 DOI: 10.18632/aging.205749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 02/20/2024] [Indexed: 04/22/2024]
Abstract
Application of retinol (Vitamin A, VA) in skincare is limited for instability, poor water solubility, and skin intolerance that combats skin aging. We employed computer-aided virtual screening and cell experiments with transcriptomics, thereby unveiling the comprehensive gene expression and regulation pathway of photoaging HaCaT cell treated with ferulic acid (FA) in synergizing with VA. Through network pharmacology analysis, the combined use of VA and FA exhibited highly correlated cross-targets with skin aging acting on EGFR, PTPN1, ESR2, GSK3B, BACE1, PYGL, PTGS2 and APP. The indicators of oxidative stress, such as SOD, GSH, MDA, CAT and ROS in HaCaT cells after co-administration, were significantly improved from those in photoaging group (p<0.0001). 155 differential expressed genes (DEGs) were specific between groups, while reducing the expression of PTGS2 was identified as an important regulatory factor in photoaging HaCaT cells by VA and FA. Those DEGs of co-administration group focused on oxidative-reduction enzyme activity, skin growth, keratinization, and steroid biosynthesis. Apparently, the co-administration of VA and FA effectively mitigated the process of UVB-induced photoaging by reducing oxidative stress injury, inflammation responses, and regulating cell growth. This synergistic approach significantly slowed down the photoaging progression and improved the applied performance of VA in HaCaT cells.
Collapse
Affiliation(s)
- Peng Shu
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, CAS Key Laboratory of Chemistry of Plant Resources in Arid Regions, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, Xinjiang, P.R. China
- HBN Research Institute and Biological Laboratory, Shenzhen Hujia Technology Co., Ltd., Shenzhen 518000, Guangdong, P.R. China
- University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Jiaxin Mo
- The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou 510006, Guangdong, P.R. China
| | - Zunjiang Li
- The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou 510006, Guangdong, P.R. China
| | - Mingjie Li
- HBN Research Institute and Biological Laboratory, Shenzhen Hujia Technology Co., Ltd., Shenzhen 518000, Guangdong, P.R. China
| | - Wei Zhu
- The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou 510006, Guangdong, P.R. China
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou 510006, Guangdong, P.R. China
| | - Zhiyun Du
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, CAS Key Laboratory of Chemistry of Plant Resources in Arid Regions, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, Xinjiang, P.R. China
- University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| |
Collapse
|
35
|
Choi K, Kim H, Nam SY, Heo CY. Enhancement of skin rejuvenation and hair growth through novel near-infrared light emitting diode (nNIR) lighting: in vitro and in vivo study. Lasers Med Sci 2024; 39:104. [PMID: 38630175 PMCID: PMC11024053 DOI: 10.1007/s10103-024-04044-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 03/21/2024] [Indexed: 04/19/2024]
Abstract
The study aimed to explore the impact of a novel near-infrared LED (nNIR) with an extended spectrum on skin enhancement and hair growth. Various LED sources, including White and nNIRs, were compared across multiple parameters: cytotoxicity, adenosine triphosphate (ATP) synthesis, reactive oxygen species (ROS) reduction, skin thickness, collagen synthesis, collagenase expression, and hair follicle growth. Experiments were conducted on human skin cells and animal models. Cytotoxicity, ATP synthesis, and ROS reduction were evaluated in human skin cells exposed to nNIRs and Whites. LED irradiation effects were also studied on a UV-induced photoaging mouse model, analyzing skin thickness, collagen synthesis, and collagenase expression. Hair growth promotion was examined as well. Results revealed both White and nNIR were non-cytotoxic to human skin cells. nNIR enhanced ATP and collagen synthesis while reducing ROS levels, outperforming the commonly used 2chip LEDs. In the UV-induced photoaging mouse model, nNIR irradiation led to reduced skin thickness, increased collagen synthesis, and lowered collagenase expression. Additionally, nNIR irradiation stimulated hair growth, augmented skin thickness, and increased hair follicle count. In conclusion, the study highlighted positive effects of White and nNIR irradiation on skin and hair growth. However, nNIR exhibited superior outcomes compared to White. Its advancements in ATP content, collagen synthesis, collagenase inhibition, and hair growth promotion imply increased ATP synthesis activity. These findings underscore nNIR therapy's potential as an innovative and effective approach for enhancing skin and promoting hair growth.
Collapse
Affiliation(s)
- Keonwoo Choi
- Department of Plastic and Reconstructive Surgery, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
- Korean Institute of Nonclinical Study, Seongnam, Republic of Korea
- H&BIO Corporation/R&D Center, Seongnam, Republic of Korea
| | - Hongbin Kim
- Department of Plastic and Reconstructive Surgery, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
- Korean Institute of Nonclinical Study, Seongnam, Republic of Korea
- H&BIO Corporation/R&D Center, Seongnam, Republic of Korea
| | - Sun-Young Nam
- Department of Plastic and Reconstructive Surgery, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
- H&BIO Corporation/R&D Center, Seongnam, Republic of Korea
| | - Chan Yeong Heo
- Department of Plastic and Reconstructive Surgery, Seoul National University Bundang Hospital, Seongnam, Republic of Korea.
- Korean Institute of Nonclinical Study, Seongnam, Republic of Korea.
- H&BIO Corporation/R&D Center, Seongnam, Republic of Korea.
- Department of Plastic and Reconstructive Surgery, College of Medicine, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
36
|
Cui X, Buonfiglio F, Pfeiffer N, Gericke A. Aging in Ocular Blood Vessels: Molecular Insights and the Role of Oxidative Stress. Biomedicines 2024; 12:817. [PMID: 38672172 PMCID: PMC11048681 DOI: 10.3390/biomedicines12040817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/01/2024] [Accepted: 04/05/2024] [Indexed: 04/28/2024] Open
Abstract
Acknowledged as a significant pathogenetic driver for numerous diseases, aging has become a focal point in addressing the profound changes associated with increasing human life expectancy, posing a critical concern for global public health. Emerging evidence suggests that factors influencing vascular aging extend their impact to choroidal and retinal blood vessels. The objective of this work is to provide a comprehensive overview of the impact of vascular aging on ocular blood vessels and related diseases. Additionally, this study aims to illuminate molecular insights contributing to vascular cell aging, with a particular emphasis on the choroid and retina. Moreover, innovative molecular targets operating within the domain of ocular vascular aging are presented and discussed.
Collapse
Affiliation(s)
- Xiuting Cui
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany; (F.B.); (N.P.)
| | | | | | - Adrian Gericke
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany; (F.B.); (N.P.)
| |
Collapse
|
37
|
Wu Y, Geng L, Zhang J, Wu N, Yang Y, Zhang Q, Duan D, Wang J. Preparation of Multifunctional Seaweed Polysaccharides Derivatives Composite Hydrogel to Protect Ultraviolet B-Induced Photoaging In Vitro and In Vivo. Macromol Biosci 2024; 24:e2300292. [PMID: 37985229 DOI: 10.1002/mabi.202300292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 10/20/2023] [Indexed: 11/22/2023]
Abstract
Seaweed polysaccharides can be used for protective skin photoaging which is caused by long-term exposure to ultraviolet B (UVB). In this study, a multifunctional composite hydrogel (FACP5) is prepared using sulfated galactofucan polysaccharides, alginate oligosaccharides as active ingredients, and polyacrylonitrile modified κ-Carrageenan as substrate. The properties of FACP5 show that it has good water retention, spreadability, and adhesion. The antiphotoaging activity is evaluated in vitro and in vivo. In vitro experiments demonstrate that the components of FACP5 exhibit good biocompatibility, antioxidant, and anti-tyrosinase activities, and could reduce the cell death rate induced by UVB. In vivo experiments demonstrate that, compared with the mice skin in model group, the skin water content treated with FACP5 increases by 29.80%; the thicknesses of epidermis and dermis decrease by 53.56% and 43.98%, respectively; the activities of catalase and superoxide dismutase increase by 1.59 and 0.72 times, respectively; the contents of interleukin-6 and tumor necrosis factor-α decrease by 19.21% and 17.85%, respectively; hydroxyproline content increases by 32.42%; the expression level of matrix metalloproteinase-3 downregulates by 42.80%. These results indicate that FACP5 has skin barrier repairing, antioxidant, anti-inflammatory, and inhibiting collagen degradation activies, FACP5 can be used as a skin protection remedy for photoaging.
Collapse
Affiliation(s)
- Yumeng Wu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, China
| | - Lihua Geng
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, 168 Wenhai Road, Qingdao, 266237, China
| | - Jingjing Zhang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, China
- Department of Pharmacy, Qingdao Eighth People's Hospital, 84 Fengshan Road, Qingdao, 266121, China
| | - Ning Wu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, 168 Wenhai Road, Qingdao, 266237, China
| | - Yue Yang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, 168 Wenhai Road, Qingdao, 266237, China
| | - Quanbin Zhang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, 168 Wenhai Road, Qingdao, 266237, China
| | - Delin Duan
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, 168 Wenhai Road, Qingdao, 266237, China
| | - Jing Wang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, 168 Wenhai Road, Qingdao, 266237, China
| |
Collapse
|
38
|
He X, Gao X, Guo Y, Xie W. Research Progress on Bioactive Factors against Skin Aging. Int J Mol Sci 2024; 25:3797. [PMID: 38612608 PMCID: PMC11011925 DOI: 10.3390/ijms25073797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 03/24/2024] [Accepted: 03/26/2024] [Indexed: 04/14/2024] Open
Abstract
The relentless pursuit of effective strategies against skin aging has led to significant interest in the role of bioactive factors, particularly secondary metabolites from natural sources. The purpose of this study is to meticulously explore and summarize the recent advancements in understanding and utilization of bioactive factors against skin aging, with a focus on their sources, mechanisms of action, and therapeutic potential. Skin, the largest organ of the body, directly interacts with the external environment, making it susceptible to aging influenced by factors such as UV radiation, pollution, and oxidative stress. Among various interventions, bioactive factors, including peptides, amino acids, and secondary metabolites, have shown promising anti-aging effects by modulating the biological pathways associated with skin integrity and youthfulness. This article provides a comprehensive overview of these bioactive compounds, emphasizing collagen peptides, antioxidants, and herbal extracts, and discusses their effectiveness in promoting collagen synthesis, enhancing skin barrier function, and mitigating the visible signs of aging. By presenting a synthesis of the current research, this study aims to highlight the therapeutic potential of these bioactive factors in developing innovative anti-aging skin care solutions, thereby contributing to the broader field of dermatological research and offering new perspectives for future studies. Our findings underscore the importance of the continued exploration of bioactive compounds for their potential to revolutionize anti-aging skin care and improve skin health and aesthetics.
Collapse
Affiliation(s)
- Xin He
- State Key Laboratory of Chemical Oncogenomics, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; (X.H.); (X.G.); (Y.G.)
- Open FIESTA Center, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Shenzhen Key Laboratory of Health Science and Technology, Institute of Biopharmaceutical and Health, Tsinghua University, Shenzhen 518055, China
| | - Xinyu Gao
- State Key Laboratory of Chemical Oncogenomics, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; (X.H.); (X.G.); (Y.G.)
- Shenzhen Key Laboratory of Health Science and Technology, Institute of Biopharmaceutical and Health, Tsinghua University, Shenzhen 518055, China
| | - Yifan Guo
- State Key Laboratory of Chemical Oncogenomics, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; (X.H.); (X.G.); (Y.G.)
- Open FIESTA Center, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Shenzhen Key Laboratory of Health Science and Technology, Institute of Biopharmaceutical and Health, Tsinghua University, Shenzhen 518055, China
| | - Weidong Xie
- State Key Laboratory of Chemical Oncogenomics, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; (X.H.); (X.G.); (Y.G.)
- Open FIESTA Center, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Shenzhen Key Laboratory of Health Science and Technology, Institute of Biopharmaceutical and Health, Tsinghua University, Shenzhen 518055, China
| |
Collapse
|
39
|
Yang D, Liu Q, Xu Q, Zheng L, Zhang S, Lu S, Xiao G, Zhao M. Effects of collagen hydrolysates on UV-induced photoaging mice: Gly-Pro-Hyp as a potent anti-photoaging peptide. Food Funct 2024; 15:3008-3022. [PMID: 38411396 DOI: 10.1039/d3fo04949c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
This work aimed to investigate the protective effects of collagen hydrolysates containing different contents of Gly-Pro-Xaa tripeptides on UV-induced photoaging mice and to identify potent anti-photoaging peptides. Results showed that oral ingestion of collagen hydrolysates with a higher content of Gly-Pro-Xaa tripeptides (∼11.4%, HCH) dramatically enhanced the absorption of Pro-Hyp, Hyp-Gly, and Gly-Pro-Hyp into the body, which were 1.77-, 2.18-, and 65.07-fold higher in area under the concentration-time curve (AUC) values than that of collagen hydrolysates with a lower content of Gly-Pro-Xaa tripeptides (∼3.8%, LCH), respectively. Furthermore, the protective effects of HCH on the photo-aged skin of mice were significantly stronger than those of LCH in terms of increases in the contents of hyaluronic acid and collagen, improvement in skin elasticity and epidermal thickness, alleviation in inflammation, and decreases in the contents of matrix metalloproteinase-1 (MMP-1) and MMP-3. More importantly, Gly-Pro-Hyp displayed potent anti-photoaging activities comparable to HCH based on an equivalent amount of Hyp. Network pharmacology analysis for potential mechanisms further indicated that Gly-Pro-Hyp might interact with JUN and FOS and regulate IL-17 and TNF signaling pathways. Collectively, our results suggested that HCH had great potential to be applied in functional foods for skin health and Gly-Pro-Hyp was found to be a potent collagen-derived anti-photoaging peptide, which might contribute to the excellent anti-photoaging effects of HCH.
Collapse
Affiliation(s)
- Danyin Yang
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China.
| | - Qi Liu
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China.
| | - Qiongyao Xu
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China.
| | - Lin Zheng
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China.
| | - Silu Zhang
- Shenzhen Porshealth Bioengineering Co., Ltd, Shenzhen 518116, China.
| | - Shan Lu
- Shenzhen Porshealth Bioengineering Co., Ltd, Shenzhen 518116, China.
| | - Guoxun Xiao
- Shenzhen Porshealth Bioengineering Co., Ltd, Shenzhen 518116, China.
| | - Mouming Zhao
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China.
| |
Collapse
|
40
|
Qu L, Ma X, Wang F. The roles of gut microbiome and metabolites associated with skin photoaging in mice by intestinal flora sequencing and metabolomics. Life Sci 2024; 341:122487. [PMID: 38316265 DOI: 10.1016/j.lfs.2024.122487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/03/2024] [Accepted: 02/02/2024] [Indexed: 02/07/2024]
Abstract
Photoaging of skin, a chronic disease, can produce the appearance changes and cancer lesions of skin. Therefore, it is of great significance to investigate the mechanisms and explore effective methods to treat the disorder. Gut microbiota and intestinal metabolisms have critical roles in a variety of diseases. However, their roles on photoaging of skin were not well tested. In the present work, the results showed that compared with control group, the levels of MDA, SOD and CAT associated with oxidative stress, the levels of COL I, CER, and HA associated with skin function, and the mRNA levels of IL-1β, IL-6, TNF-α associated with inflammation after long-term exposure to ultraviolet radiation in mice were significantly changed. Skin pathological tissue was also seriously damaged. The protein levels of AQP3 and FLG were significantly decreased. Ultraviolet exposure also promoted skin photoaging by activating TNFR1/TRAF2-mediated MAPK pathway, in which the protein levels of P38/P-P38, c-FOS/P-c-FOS, MMP1, TNFR1 and TRAF2 were significantly increased in model mice compared with control group. In fecal microbiota transplantation (FMT) experiment, we found that the intestinal microbiome of control mice alleviated skin photoaging via adjusting the protein levels of P38/P-P38, c-FOS/P-c-FOS, MMP1, TNFR1 and TRAF2. 16S rRNA sequencing found that 1639 intestinal bacteria were found, in which 15 bacteria including norank_f_Ruminococcaceae, Lachnospirac -eae_NK4A136_group, Lachnoclostridium, etc., were significantly different at the genus level. Untargeted GC-TOF/MS and UHPLC-MS/MS metabolomics showed 72 and 188 metabolites including taurine, ornithine, L-arginine, L-histidine, sucrose with significant differences compared with control group. Then, amino acid targeting assay showed 10 amino acids including L-ornithine, L-arginine and L-citrulline with higher levels in control group compared with model group. In addition, we also found that the variation of Lachnoclostridium abundance may regulate L-arginine metabolism to affect skin photoaging. Some intestinal bacteria and metabolites including amino acids may be closely related to skin photoaging, which should provide new methods to treat skin photoaging in the future.
Collapse
Affiliation(s)
- Liping Qu
- Yunnan Botanee Bio-technology Group Co., Ltd., Kunming 650106, China; Yunnan Characteristic Plant Extraction Laboratory, Yunnan Yunke Characteristic Plant Extraction Laboratory Co., Ltd., Kunming 650106, China; Innovation Materials Research and Development Center, Botanee Research Institute, Shanghai Jiyan Biomedical Development Co., Ltd., Shanghai 201702, China
| | - Xiao Ma
- Yunnan Botanee Bio-technology Group Co., Ltd., Kunming 650106, China; Yunnan Characteristic Plant Extraction Laboratory, Yunnan Yunke Characteristic Plant Extraction Laboratory Co., Ltd., Kunming 650106, China
| | - Feifei Wang
- Yunnan Botanee Bio-technology Group Co., Ltd., Kunming 650106, China; Yunnan Characteristic Plant Extraction Laboratory, Yunnan Yunke Characteristic Plant Extraction Laboratory Co., Ltd., Kunming 650106, China; Innovation Materials Research and Development Center, Botanee Research Institute, Shanghai Jiyan Biomedical Development Co., Ltd., Shanghai 201702, China.
| |
Collapse
|
41
|
Tang X, Yang T, Yu D, Xiong H, Zhang S. Current insights and future perspectives of ultraviolet radiation (UV) exposure: Friends and foes to the skin and beyond the skin. ENVIRONMENT INTERNATIONAL 2024; 185:108535. [PMID: 38428192 DOI: 10.1016/j.envint.2024.108535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/25/2024] [Accepted: 02/25/2024] [Indexed: 03/03/2024]
Abstract
Ultraviolet (UV) radiation is ubiquitous in the environment, which has been classified as an established human carcinogen. As the largest and outermost organ of the body, direct exposure of skin to sunlight or UV radiation can result in sunburn, inflammation, photo-immunosuppression, photoaging and even skin cancers. To date, there are tactics to protect the skin by preventing UV radiation and reducing the amount of UV radiation to the skin. Nevertheless, deciphering the essential regulatory mechanisms may pave the way for therapeutic interventions against UV-induced skin disorders. Additionally, UV light is considered beneficial for specific skin-related conditions in medical UV therapy. Recent evidence indicates that the biological effects of UV exposure extend beyond the skin and include the treatment of inflammatory diseases, solid tumors and certain abnormal behaviors. This review mainly focuses on the effects of UV on the skin. Moreover, novel findings of the biological effects of UV in other organs and systems are also summarized. Nevertheless, the mechanisms through which UV affects the human organism remain to be fully elucidated to achieve a more comprehensive understanding of its biological effects.
Collapse
Affiliation(s)
- Xiaoyou Tang
- Medical College of Tibet University, Lasa 850000, China; Laboratory of Radiation Medicine, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Tingyi Yang
- Laboratory of Radiation Medicine, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Daojiang Yu
- Laboratory of Radiation Medicine, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China; The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu 610051, China
| | - Hai Xiong
- Medical College of Tibet University, Lasa 850000, China; West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China.
| | - Shuyu Zhang
- Medical College of Tibet University, Lasa 850000, China; Laboratory of Radiation Medicine, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China; The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu 610051, China; NHC Key Laboratory of Nuclear Technology Medical Transformation (Mianyang Central Hospital), Mianyang 621099, China.
| |
Collapse
|
42
|
Qi Z, Wang F, Huang Y, Wang P. Analysis of the correlation between skin barrier function and age in rosacea patients in Qinghai region. J Cosmet Dermatol 2024; 23:999-1003. [PMID: 37864385 DOI: 10.1111/jocd.16041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 09/24/2023] [Accepted: 10/11/2023] [Indexed: 10/22/2023]
Abstract
OBJECTIVE This study aims at investigating the difference in facial skin barrier function between rosacea patients and the healthy population of different ages in the Qinghai region and its correlation with age, providing a basis for clinical nursing and treatment. METHODS The data of 216 rosacea patients were collected, and 211 healthy testers were selected as the control group. The skin barrier characteristics of rosacea patients of different ages were evaluated by comparing transepidermal water loss (TEWL), stratum corneum hydration (SCH), sebum content (SC), and pH values between the two groups. Then, the correlation between skin barrier function and age in rosacea patients and the healthy population was analyzed. RESULTS In all four age groups, the TEWL of the rosacea group was higher than that of the healthy control group, and the epidermal hydration was lower than the healthy control group. In the population aged over 40, the sebum content in rosacea was lower than that in the healthy control group. In the age group of 40-59, the pH value of the rosacea group was higher than the healthy control group. In both the rosacea and the control groups, TEWL was positively correlated with age, and epidermal hydration was negatively correlated with age. The sebum content in rosacea group was negatively correlated with age (p < 0.05). CONCLUSION As age increases, the facial epidermal function of both rosacea patients and the healthy population declines. Therefore, with increasing age, attention should be paid to enhance the epidermal function to slow down the skin aging process.
Collapse
Affiliation(s)
- Zixuan Qi
- Xining No.1 People's Hospital, Xining, China
| | - Feng Wang
- Xining No.1 People's Hospital, Xining, China
| | | | - Ping Wang
- Xining No.1 People's Hospital, Xining, China
| |
Collapse
|
43
|
Liu M, Huang S, Park S. Inhibitory effects of bioactive compounds on UVB-induced photodamage in human keratinocytes: modulation of MMP1 and Wnt signaling pathways. Photochem Photobiol Sci 2024; 23:463-478. [PMID: 38326693 DOI: 10.1007/s43630-023-00531-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 12/22/2023] [Indexed: 02/09/2024]
Abstract
UVB radiation significantly threatens skin health, contributing to wrinkle formation and an elevated risk of skin cancer. This study aimed to explore bioactive compounds with potential UVB-protective properties. Using in silico analysis, we chose compounds to reduce binding energy with matrix metalloproteinase-1 (MMP1). Piperitoside, procyanidin C1, and mulberrofuran E emerged as promising candidates through this computational screening process. We investigated the UVB-protective efficacy of the selected compounds and underlying mechanisms in human immortalized keratinocytes (HaCaT). We also investigated the molecular pathways implicated in their action, focusing on the transforming growth factor (TGF)-β and wingless-related integration site (Wnt)/β-catenin signaling pathways. In UVB-exposed HaCaT cells (100 mJ/cm2 for 30 min), piperitoside, procyanidin C1, and mulberrofuran E significantly reduced reactive oxygen species (ROS) and lipid peroxides, coupled with an augmentation of collagen expression. These compounds suppressed MMP1, tumor necrosis factor-alpha (TNF-α), and inducible nitric oxide synthase (iNOS) expression, while they concurrently enhanced collagen-1 (COL1A1), β-catenin (CTNNB1), and superoxide dismutase type-1 (SOD1) expression. Furthermore, Wnt/β-catenin inhibitors, when administered subsequently, partially counteracted the reduction in MMP1 expression and alleviated inflammatory and oxidative stress markers induced by the bioactive compounds. In conclusion, piperitoside, procyanidin C1, and mulberrofuran E protected against UVB-induced damage in HaCaT cells by inhibiting MMP1 expression and elevating β-catenin expression. Consequently, these bioactive compounds emerge as promising preventive agents for UVB-induced skin damage, promoting skin health.
Collapse
Affiliation(s)
- Meiling Liu
- Department of Chemical Engineering, Shanxi Institute of Science and Technology, Jincheng, 048011, China
| | - Shaokai Huang
- Department of Bioconvergence, Hoseo University, Asan, 31499, Korea
| | - Sunmin Park
- Department of Food and Nutrition, Obesity/Diabetes Research Center, Hoseo University, 165 Sechul-Ri, BaeBang-Yup, Asan-Si, ChungNam-Do, 336-795, South Korea.
| |
Collapse
|
44
|
Titisari RS, Herawati E, Astirin OP. Oral intake of collagen hydrolysate from mackerel scad ( Decapterus macarellus) attenuates skin photoaging by suppressing the UVB-induced expression of MMP-1 and IL-6. JOURNAL OF COMPLEMENTARY & INTEGRATIVE MEDICINE 2024; 21:71-79. [PMID: 37961756 DOI: 10.1515/jcim-2023-0209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023]
Abstract
OBJECTIVES Excessive skin exposure to UVB radiation can induce photoaging caused by an imbalance in oxidative stress and inflammatory responses, damaging the skin's structure and surface layer. A previous study revealed that collagen hydrolisate extracted from the skin of mackarel scads (Decapterus macarellus) had antiaging properties that were tested in vitro, which serves as a foundation for a subsequent study of its use in vivo. This study aimed at investigating the repair effect of the mackerel scad's skin collagen hydrolysate (MSS-CH) in photoaging conditions in a mouse model. METHODS MSS-CH was given orally in mice model of skin photoaging under chronic exposure to UVB irradiation for 12 weeks. Morphological and histological changes on the skin were evaluated using SEM and HE staining, along with the measurement of the expression of matrix metalloproteinases (MMP-1) and cytokine pro-inflammatory interleukin 6 (IL-6) using ELISA. RESULTS MSS-CH inhibits the occurrence of epidermal thickening and damage to the dermal layer of the skin. As a result, it restores the epidermis' barrier function and reduces surface damage caused by photoaging. The skin of the MSS-CH treated group exhibited improved physical appearance with reduced fine lines, wrinkles, and enhanced smoothness. Additionally, administering MSS-CH to the mice groups reduced the expression of MMP-1 and IL-6 in UVB-exposed skin. CONCLUSIONS Altogether, this in vivo study demonstrates the photoaging-protective properties of CH-MSS, aligning with previous in vitro data. Thus, MSS-CH emerges as a strong candidate for use as an ingredient in nutraceuticals and biocosmetics.
Collapse
Affiliation(s)
- Rizki Sandhi Titisari
- Graduate Program of Bioscience, Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Sebelas Maret, Surakarta 57126, Indonesia
| | - Elisa Herawati
- Graduate Program of Bioscience, Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Sebelas Maret, Surakarta 57126, Indonesia
| | - Okid Parama Astirin
- Graduate Program of Bioscience, Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Sebelas Maret, Surakarta 57126, Indonesia
| |
Collapse
|
45
|
Trisnawaty S, Gunadi JW, Ratnawati H, Lesmana R. Carotenoids in red fruit ( Pandanus conoideus Lam.) have a potential role as an anti‑pigmentation agent (Review). Biomed Rep 2024; 20:54. [PMID: 38357234 PMCID: PMC10865171 DOI: 10.3892/br.2024.1742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 01/04/2024] [Indexed: 02/16/2024] Open
Abstract
Melasma is a persistent condition characterized by excessive melanin production in the skin. The management of melasma necessitates a protracted treatment duration, which is associated with diminished levels of patient satisfaction. One effective strategy for mitigating occurrence of melasma is consumption of nutricosmetics with depigmentation properties. The present review aimed to investigate the potential of red fruit as a depigmentation agent. Carotenoids serve a crucial role in human nutrition as a precursor to vitamin A. Carotenoids serve as scavengers of reactive oxygen species generated by ultraviolet radiation. Carotenoids promote skin health. Red fruit, a fruit originating from Papua (Indonesia) has anti-pigmentation properties associated with its ability to block melanogenesis through various protein pathways such as PKA, ERK, and AKT signaling pathways. The consumption of food rich in carotenoids, such as red fruit, has advantageous properties to reduce hyperpigmentation and skin brightening.
Collapse
Affiliation(s)
- Sri Trisnawaty
- Master Program of Skin Ageing and Aesthetic Medicine, Faculty of Medicine, Universitas Kristen Maranatha, Bandung, West Java 40164, Indonesia
| | - Julia Windi Gunadi
- Department of Physiology, Faculty of Medicine, Universitas Kristen Maranatha, Bandung, West Java 40164, Indonesia
- Maranatha Biomedical Research Laboratory, Faculty of Medicine, Universitas Kristen Maranatha, Bandung, West Java 40164, Indonesia
| | - Hana Ratnawati
- Department of Histology, Faculty of Medicine, Universitas Kristen Maranatha, Bandung, West Java 40164, Indonesia
| | - Ronny Lesmana
- Physiology Division, Department of Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Sumedang, West Java 45363, Indonesia
| |
Collapse
|
46
|
Wang BJ, Chen YY, Chang HH, Chen RJ, Wang YJ, Lee YH. Zinc oxide nanoparticles exacerbate skin epithelial cell damage by upregulating pro-inflammatory cytokines and exosome secretion in M1 macrophages following UVB irradiation-induced skin injury. Part Fibre Toxicol 2024; 21:9. [PMID: 38419076 PMCID: PMC10900617 DOI: 10.1186/s12989-024-00571-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 02/20/2024] [Indexed: 03/02/2024] Open
Abstract
BACKGROUND Zinc oxide nanoparticles (ZnONPs) are common materials used in skin-related cosmetics and sunscreen products due to their whitening and strong UV light absorption properties. Although the protective effects of ZnONPs against UV light in intact skin have been well demonstrated, the effects of using ZnONPs on damaged or sunburned skin are still unclear. In this study, we aimed to reveal the detailed underlying mechanisms related to keratinocytes and macrophages exposed to UVB and ZnONPs. RESULTS We demonstrated that ZnONPs exacerbated mouse skin damage after UVB exposure, followed by increased transepidermal water loss (TEWL) levels, cell death and epithelial thickness. In addition, ZnONPs could penetrate through the damaged epithelium, gain access to the dermis cells, and lead to severe inflammation by activation of M1 macrophage. Mechanistic studies indicated that co-exposure of keratinocytes to UVB and ZnONPs lysosomal impairment and autophagy dysfunction, which increased cell exosome release. However, these exosomes could be taken up by macrophages, which accelerated M1 macrophage polarization. Furthermore, ZnONPs also induced a lasting inflammatory response in M1 macrophages and affected epithelial cell repair by regulating the autophagy-mediated NLRP3 inflammasome and macrophage exosome secretion. CONCLUSIONS Our findings propose a new concept for ZnONP-induced skin toxicity mechanisms and the safety issue of ZnONPs application on vulnerable skin. The process involved an interplay of lysosomal impairment, autophagy-mediated NLRP3 inflammasome and macrophage exosome secretion. The current finding is valuable for evaluating the effects of ZnONPs for cosmetics applications.
Collapse
Affiliation(s)
- Bour-Jr Wang
- Department of Cosmetic Science and Institute of Cosmetic Science, Chia Nan University of Pharmacy and Science, Tainan, 71710, Taiwan
- Department of Occupational and Environmental Medicine, National Cheng Kung University Hospital, Tainan, 70403, Taiwan
| | - Yu-Ying Chen
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, 138 Sheng-Li Road, Tainan, 70428, Taiwan
| | - Hui-Hsuan Chang
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, 138 Sheng-Li Road, Tainan, 70428, Taiwan
| | - Rong-Jane Chen
- Department of Food Safety/Hygiene and Risk Management, College of Medicine, National Cheng Kung University, 138 Sheng-Li Road, Tainan, 70428, Taiwan
| | - Ying-Jan Wang
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, 138 Sheng-Li Road, Tainan, 70428, Taiwan.
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, 406040, Taiwan.
| | - Yu-Hsuan Lee
- Department of Cosmeceutics, China Medical University, Taichung, 406040, Taiwan.
| |
Collapse
|
47
|
Calvo MJ, Navarro C, Durán P, Galan-Freyle NJ, Parra Hernández LA, Pacheco-Londoño LC, Castelanich D, Bermúdez V, Chacin M. Antioxidants in Photoaging: From Molecular Insights to Clinical Applications. Int J Mol Sci 2024; 25:2403. [PMID: 38397077 PMCID: PMC10889126 DOI: 10.3390/ijms25042403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 02/05/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
Photoaging (PA) is considered a silent disease affecting millions of people globally and is defined as skin damage due to prolonged exposure to ultraviolet radiation (UVR) from the sun. Physiologically, the skin is in a state of renewal and synthesis of components of the extracellular matrix (ECM). However, exposure to UVR affects the production of the ECM, and the functioning and response of skin cells to UVR begins to change, thus expressing clinical and phenotypic characteristics of PA. The primary mechanisms involved in PA are direct damage to the DNA of skin cells, increases in oxidative stress, the activation of cell signaling pathways responsible for the loss of skin integrity, and cytotoxicity. The medical and scientific community has been researching new therapeutic tools that counteract PA, considering that the damage caused by UVR exceeds the antioxidant defense mechanisms of the skin. Thus, in recent years, certain nutraceuticals and phytochemicals have been found to exhibit potential antioxidant and photoprotective effects. Therefore, the main objective of this review is to elucidate the molecular bases of PA and the latest pharmaceutical industry findings on antioxidant treatment against the progression of PA.
Collapse
Affiliation(s)
- María José Calvo
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo 4001, Venezuela (C.N.); (P.D.)
| | - Carolina Navarro
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo 4001, Venezuela (C.N.); (P.D.)
| | - Pablo Durán
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo 4001, Venezuela (C.N.); (P.D.)
| | - Nataly J. Galan-Freyle
- Centro de Investigaciones en Ciencias de la Vida (CICV), Universidad Simón Bolívar, Barranquilla 080003, Colombia; (N.J.G.-F.); (L.C.P.-L.); (V.B.)
| | - Luis Alberto Parra Hernández
- International Society for Non-Surgical Facial Rejuvenation (SIRF), Barranquilla 080003, Colombia; (L.A.P.H.); (D.C.)
| | - Leonardo C Pacheco-Londoño
- Centro de Investigaciones en Ciencias de la Vida (CICV), Universidad Simón Bolívar, Barranquilla 080003, Colombia; (N.J.G.-F.); (L.C.P.-L.); (V.B.)
| | - Desiree Castelanich
- International Society for Non-Surgical Facial Rejuvenation (SIRF), Barranquilla 080003, Colombia; (L.A.P.H.); (D.C.)
- Argentine Society of Dermatology, Buenos Aires B1228, Argentina
| | - Valmore Bermúdez
- Centro de Investigaciones en Ciencias de la Vida (CICV), Universidad Simón Bolívar, Barranquilla 080003, Colombia; (N.J.G.-F.); (L.C.P.-L.); (V.B.)
- Facultad de Ciencias de la Salud, Universidad Simón Bolívar, Barranquilla 080003, Colombia
| | - Maricarmen Chacin
- Centro de Investigaciones en Ciencias de la Vida (CICV), Universidad Simón Bolívar, Barranquilla 080003, Colombia; (N.J.G.-F.); (L.C.P.-L.); (V.B.)
- Facultad de Ciencias de la Salud, Universidad Simón Bolívar, Barranquilla 080003, Colombia
| |
Collapse
|
48
|
Fatima N, Yaqoob S, Rana S, Hameed A, Mirza MR, Jabeen A. In vitro photoprotective potential of aryl-sandwiched (thio)semicarbazones against UVA mediated cellular and DNA damage. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2024; 251:112841. [PMID: 38194816 DOI: 10.1016/j.jphotobiol.2024.112841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 12/01/2023] [Accepted: 01/03/2024] [Indexed: 01/11/2024]
Abstract
The most prevalent solar ultraviolet radiation is ultraviolet-A (UVA) radiation. It is the inducer of reactive oxygen species (ROS), a potent mediator of inflammation and photocarcinogenesis. Regular application of sunscreens containing UVA filters is an effective preventive measure in mitigating the risk associated with the formation of dermal carcinoma. Therefore, the development of new photoprotective agents is of great need. The current work examined the in vitro photoprotection of the aryl-linked (thio)semicarbazone derivatives against UVA-mediated DNA damage, inflammation, reactive nitrogen species (RNS), and ROS. Except for the inflammatory cytokine assay, which was carried out on the human monocytic leukemia (THP-1) cell line, all tests were conducted on the human dermal fibroblast (BJ) cell line. In comparison to benzophenone (reference compound), the compound (2Z, 2'Z)-2,2'-(1,3-Phenylenebis (methanylylidene)) bis (hydrazine-1-carbothioamide) (DD-21) demonstrated considerable protection against UVA-induced damage. Compared to the UVA-irradiated control, DD-21 significantly decreased the levels of nitric oxide (NO) and ROS (p < 0.001). In the presence of DD-21, the release of UVA-induced pro-inflammatory cytokines, tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β), was also significantly reduced (p < 0.05). Moreover, it was observed that DD-21 protected the cells from UVA-mediated DNA strand breaks and also inhibited the formation of cyclobutane pyrimidine dimers (CPDs) upon comparison to the UVA-exposed control cells (p < 0.001). In conclusion, the findings of this study revealed that DD-21 exhibits remarkable photoprotective properties, thus demonstrating its potential as a candidate UVA filter.
Collapse
Affiliation(s)
- Noor Fatima
- Molecular Biology and Human Genetics Laboratory, Dr. Panjwani Center for Molecular Medicine and Drug Research (PCMD), International Center for Chemical and Biological Sciences (ICCBS), University of Karachi, Karachi 75270, Pakistan
| | - Sana Yaqoob
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Sobia Rana
- Molecular Biology and Human Genetics Laboratory, Dr. Panjwani Center for Molecular Medicine and Drug Research (PCMD), International Center for Chemical and Biological Sciences (ICCBS), University of Karachi, Karachi 75270, Pakistan.
| | - Abdul Hameed
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan; Department of Chemistry, University of Sahiwal, Sahiwal, Pakistan
| | - Munazza Raza Mirza
- Molecular Biology and Human Genetics Laboratory, Dr. Panjwani Center for Molecular Medicine and Drug Research (PCMD), International Center for Chemical and Biological Sciences (ICCBS), University of Karachi, Karachi 75270, Pakistan
| | - Almas Jabeen
- Molecular Biology and Human Genetics Laboratory, Dr. Panjwani Center for Molecular Medicine and Drug Research (PCMD), International Center for Chemical and Biological Sciences (ICCBS), University of Karachi, Karachi 75270, Pakistan
| |
Collapse
|
49
|
Zhang J, Yu H, Man M, Hu L. Aging in the dermis: Fibroblast senescence and its significance. Aging Cell 2024; 23:e14054. [PMID: 38040661 PMCID: PMC10861215 DOI: 10.1111/acel.14054] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 10/29/2023] [Accepted: 11/15/2023] [Indexed: 12/03/2023] Open
Abstract
Skin aging is characterized by changes in its structural, cellular, and molecular components in both the epidermis and dermis. Dermal aging is distinguished by reduced dermal thickness, increased wrinkles, and a sagging appearance. Due to intrinsic or extrinsic factors, accumulation of excessive reactive oxygen species (ROS) triggers a series of aging events, including imbalanced extracellular matrix (ECM) homeostasis, accumulation of senescent fibroblasts, loss of cell identity, and chronic inflammation mediated by senescence-associated secretory phenotype (SASP). These events are regulated by signaling pathways, such as nuclear factor erythroid 2-related factor 2 (Nrf2), mechanistic target of rapamycin (mTOR), transforming growth factor beta (TGF-β), and insulin-like growth factor 1 (IGF-1). Senescent fibroblasts can induce and accelerate age-related dysfunction of other skin cells and may even cause systemic inflammation. In this review, we summarize the role of dermal fibroblasts in cutaneous aging and inflammation. Moreover, the underlying mechanisms by which dermal fibroblasts influence cutaneous aging and inflammation are also discussed.
Collapse
Affiliation(s)
- Jing Zhang
- Immunology Department, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education)Tianjin Medical UniversityTianjinChina
| | - Haoyue Yu
- Immunology Department, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education)Tianjin Medical UniversityTianjinChina
| | - Mao‐Qiang Man
- Dermatology HospitalSouthern Medical UniversityGuangdongChina
- Department of DermatologyUniversity of California San Francisco and Veterans Affairs Medical CenterSan FranciscoCaliforniaUSA
| | - Lizhi Hu
- Immunology Department, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education)Tianjin Medical UniversityTianjinChina
| |
Collapse
|
50
|
Michel P, Żbikowska HM, Rudnicka K, Gonciarz W, Krupa A, Gajewski A, Machała P, Olszewska MA. Anti-inflammatory, antioxidant and photoprotective activity of standardised Gaultheria procumbens L. leaf, stem, and fruit extracts in UVA-irradiated human dermal fibroblasts. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117219. [PMID: 37742876 DOI: 10.1016/j.jep.2023.117219] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/10/2023] [Accepted: 09/21/2023] [Indexed: 09/26/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Gaultheria procumbens L. is a polyphenolic-rich medicinal and food plant. Its leaves, stems, and fruits are traditional anti-inflammatory, antipyretic, antioxidant, and antimicrobial herbal medicines used to treat internal and external inflammation-related ailments, including rheumatic diseases, influenza, the common cold, fever, and skin and periodontal problems. Moreover, G. procumbens leaf extract is used for skin care as an anti-ageing and anti-wrinkle ingredient. AIM OF THE STUDY Various environmental factors, especially solar ultraviolet radiation, accelerate skin ageing by promoting oxidative stress and inflammation. Despite the dermoprotective and anti-ageing applications, the impact of G. procumbens on human dermal fibroblasts is unknown. Therefore, the study aimed to evaluate the anti-inflammatory, antioxidant, and photoprotective activity of G. procumbens standardised leaf, stem, and fruit extracts in cellular models, including human dermal fibroblasts (Hs68 cells) under UVA-irradiation, the primary pro-ageing skin stressor. MATERIALS AND METHODS Hs68 fibroblasts were pre-treated (24h) with G. procumbens extracts (0.5-100 μg/mL) or reference compounds followed by UVA-irradiation (8 J/cm2). Cell viability and metabolic activity were measured by CCK-8 and MTT assays in human Hs68 and mouse L929 fibroblasts, respectively. The ROS level, SOD, and GST activities were estimated by fluorescence and spectrophotometric techniques. The pro-inflammatory potential (NF-κB transcription factor activation) was checked using THP1-Blue™ NF-κB cells, and the anti-inflammatory activity was studied by measuring IL-8, ICAM-1, and NF-κB levels and phosphorylation of Erk kinase in LPS-stimulated Hs68 cells by spectrophotometry and confocal microscopy. The UVA-induced DNA damage and cell migration were evaluated by comet and scratch assays, respectively. RESULTS The extracts did not affect the metabolic activity of mouse L929 fibroblasts and the viability of unirradiated human Hs68 cells. Additionally, the extracts noticeably enhanced the viability of UVA-irradiated Hs68 cells up to 115-120% (p < 0.001) for stem and leaf extract at 25 μg/mL. All extracts in a wide concentration range (0.5-100 μg/mL) did not activate monocytes or induce the NF-κB transcription factor in LPS-stimulated Hs68 fibroblasts. On the other hand, the extracts (5-25 μg/mL) restored the activity of endogenous antioxidant enzymes, i.e., SOD and GST, up to 120-140% (p < 0.001) in the UVA-irradiated Hs68 cells. Moreover, a statistically significant reduction of ROS, IL-8, ICAM-1, and NF-κB levels by up to 48%, 88%, 43%, and 39%, respectively (p < 0.001) and strong suppression of Erk kinase activation was observed for the extracts (25-50 μg/mL) in LPS-stimulated human fibroblasts. The total DNA damage (% tail DNA) in irradiated Hs68 cells was also strongly decreased by up to 66-69% (p < 0.001) at 50 μg/mL. However, the treatment with the extracts did not relevantly enhance the cell migration of Hs68 fibroblasts. CONCLUSIONS The results suggest that G. procumbens may effectively protect human skin fibroblast from UVA irradiation. The leaf and stem extracts were the most potent antioxidants, while fruit and stem extracts revealed the strongest anti-inflammatory activity. The observed effects support the traditional use of aerial plant parts (leaves, stems, and fruits) in treating inflammation-related skin disorders cross-linked with oxidative stress and the topical application of Gaultheria extracts as anti-ageing agents intended for skin care.
Collapse
Affiliation(s)
- Piotr Michel
- Department of Pharmacognosy, Faculty of Pharmacy, Medical University of Lodz, Muszyńskiego 1, 90-151, Lodz, Poland.
| | - Halina Małgorzata Żbikowska
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236, Lodz, Poland.
| | - Karolina Rudnicka
- Department of Immunology and Infectious Biology, Institute of Microbiology, Biotechnology and Immunology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237, Lodz, Poland.
| | - Weronika Gonciarz
- Department of Immunology and Infectious Biology, Institute of Microbiology, Biotechnology and Immunology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237, Lodz, Poland.
| | - Agnieszka Krupa
- Department of Immunology and Infectious Biology, Institute of Microbiology, Biotechnology and Immunology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237, Lodz, Poland.
| | - Adrian Gajewski
- Department of Immunology and Allergy, Medical University of Lodz, Pomorska 251, 92-213 Lodz, Poland.
| | - Paulina Machała
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236, Lodz, Poland.
| | - Monika Anna Olszewska
- Department of Pharmacognosy, Faculty of Pharmacy, Medical University of Lodz, Muszyńskiego 1, 90-151, Lodz, Poland.
| |
Collapse
|