1
|
Ye L, Xing H, Wang Y, Ma W. Genetic association between epilepsy and gliomas: Insights from Mendelian randomization and single-cell transcriptomic analyses. Epilepsy Behav 2024; 161:110114. [PMID: 39488096 DOI: 10.1016/j.yebeh.2024.110114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/16/2024] [Accepted: 10/23/2024] [Indexed: 11/04/2024]
Abstract
BACKGROUND Seizures are prevalent in glioma patients, especially in those with low-grade gliomas. The interaction between gliomas and epilepsy involves complex biological mechanisms that are not fully understood. METHODS We collected Genome-Wide Association Study data for epilepsy and gliomas, performed differential expression analysis, and conducted Gene Ontology (GO) enrichment analysis on the identified genes. Single-cell RNA sequencing data (scRNA-seq) from GSE221534 dataset in Gene Expression Omnibus (GEO) were used to analyze cell-cell interactions within glioma samples from patients with and without epilepsy. RESULTS Mendelian Randomization (MR) analysis revealed significant associations between genetic variants related to epilepsy and glioma risk, suggesting a potential causal relationship, especially in astrocytomas. Differential expression analysis identified epilepsy-related genes that were significantly upregulated in astrocytoma tissues compared to normal brain tissues. GO enrichment analysis indicated that these genes are involved in critical biological processes such as neurogenesis and cellular signaling. The scRNA-seq analysis showed, compared to non-epileptic samples, glioma stem cells, microglia, and NK cells are increased in the core regions of astrocytomas in epileptic patients. Additionally, intercellular communication between tumor cells and other non-tumor cells is markedly enhanced in astrocytoma samples from epileptic patients. CONCLUSION This study provides evidence of a genetic association between epilepsy and gliomas and elucidates the biological mechanisms through which epilepsy may influence glioma progression.
Collapse
Affiliation(s)
- Liguo Ye
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hao Xing
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yu Wang
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Wenbin Ma
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
2
|
Mueller C, Hong H, Sharma AA, Qin H, Benveniste EN, Szaflarski JP. Brain temperature, brain metabolites, and immune system phenotypes in temporal lobe epilepsy. Epilepsia Open 2024. [PMID: 39470707 DOI: 10.1002/epi4.13082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 10/03/2024] [Accepted: 10/09/2024] [Indexed: 10/30/2024] Open
Abstract
OBJECTIVE Epileptogenesis is linked to neuroinflammation. We hypothesized that local heat production caused by neuroinflammation can be visualized non-invasively in vivo via brain magnetic resonance spectroscopic imaging (MRSI) and MRSI-thermometry (MRSI-t) and that there is a relationship in patients with temporal lobe epilepsy (TLE) between MRSI-t and brain metabolites choline and myo-inositol and between neuroimaging and cellular and serum biomarkers of inflammation. METHODS Thirty-six (36) participants, 18 with temporal lobe epilepsy (13 females) and 18 age-matched healthy controls (nine females), were enrolled prospectively and underwent MRSI/MRSI-t; TLE participants also provided blood samples. Temperature was measured using creatine as a reference metabolite. Analysis of Functional NeuroImages 3dttest++ tool was used to analyze voxel-level group differences in temperature, choline, and myo-inositol. Associations with immune cell subsets, cytokines, and chemokines related to inflammation were quantified using correlation coefficients with significant relationships as noted. RESULTS Patients with TLE showed elevated temperature, choline, and myo-inositol in the temporal lobes. Higher brain temperature was associated with higher levels of cytokines and chemokines, including GM-CSF, TNF, IL-1β, and IL - 12p70, and lower frequency of immune cells including CD3+ T-cells, CD4+ T-cells, CD8+ T-cells, and classical monocytes. Higher choline was associated with higher levels of the cytokines including LT-α, IL-13, and IL-4, and higher myo-inositol was associated with a higher frequency of CD4+ T-cell and CD19+ B-cell subsets and higher levels of cytokines and chemokines including LT-α, IL-13, and CCL3. SIGNIFICANCE This study, for the first time, showed that in temporal lobes of patients with TLE temperature and metabolite changes correlate with cellular and serum biomarkers of inflammation. Our results provide support for further development of MRSI-t as a measure of neuroinflammation in epilepsy and potentially other neurological disorders and as an investigative and clinical tool. PLAIN LANGUAGE SUMMARY Neuroinflammation is associated with excessive heat production which can be visualized with magnetic resonance spectroscopic imaging and thermometry (MRSI-t). We prospectively investigated the relationship between MRSI-t and cellular and serum measures of peripheral inflammation in patients with temporal lobe epilepsy (TLE); we compared the results of MRSI-t in patients with TLE to healthy controls. We showed a relationship between the temperature elevations in TLE and elevations of various measures of peripheral inflammation. Our results support further development of MRSI-t as a measure of neuroinflammation in epilepsy and potentially other neurological disorders and as an investigative and clinical tool.
Collapse
Affiliation(s)
- Christina Mueller
- Department of Neurology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Huixian Hong
- Department of Cell, Developmental and Integrative Biology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Ayushe A Sharma
- Department of Neurology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Hongwei Qin
- Department of Cell, Developmental and Integrative Biology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Etty N Benveniste
- Department of Cell, Developmental and Integrative Biology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Jerzy P Szaflarski
- Department of Neurology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
3
|
Veremeyko T, Barteneva NS, Vorobyev I, Ponomarev ED. The Emerging Role of Immunoglobulins and Complement in the Stimulation of Neuronal Activity and Repair: Not as Simple as We Thought. Biomolecules 2024; 14:1323. [PMID: 39456256 PMCID: PMC11506258 DOI: 10.3390/biom14101323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/20/2024] [Accepted: 09/30/2024] [Indexed: 10/28/2024] Open
Abstract
Neurologic disorders such as traumatic brain injury, multiple sclerosis, Alzheimer's disease, and drug-resistant epilepsy have a high socioeconomic impact around the world. Current therapies for these disorders are often not effective. This creates a demand for the development of new therapeutic approaches to treat these disorders. Recent data suggest that autoreactive naturally occurring immunoglobulins produced by subsets of B cells, called B1 B cells, combined with complement, are actively involved in the processes of restoration of neuronal functions during pathological conditions and remyelination. The focus of this review is to discuss the possibility of creating specific therapeutic antibodies that can activate and fix complement to enhance neuronal survival and promote central nervous system repair after injuries associated with many types of neurodegenerative diseases.
Collapse
Affiliation(s)
- Tatyana Veremeyko
- Department of Biology, School of Sciences and Humanities, Nazarbayev University, Astana 010000, Kazakhstan; (T.V.); (N.S.B.); (I.V.)
| | - Natasha S. Barteneva
- Department of Biology, School of Sciences and Humanities, Nazarbayev University, Astana 010000, Kazakhstan; (T.V.); (N.S.B.); (I.V.)
| | - Ivan Vorobyev
- Department of Biology, School of Sciences and Humanities, Nazarbayev University, Astana 010000, Kazakhstan; (T.V.); (N.S.B.); (I.V.)
- Laboratory of Cell Motility, National Laboratory Astana, Nazarbayev University, Astana 010000, Kazakhstan
| | - Eugene D. Ponomarev
- Department of Biology, School of Sciences and Humanities, Nazarbayev University, Astana 010000, Kazakhstan; (T.V.); (N.S.B.); (I.V.)
- Department of Biomedical Sciences, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong
| |
Collapse
|
4
|
Wang H, Ma Y, Jin D, Yang X, Xu X. Ulinastatin modulates NLRP3 inflammasome pathway in PTZ-induced epileptic mice: A potential mechanistic insight. Heliyon 2024; 10:e38050. [PMID: 39386862 PMCID: PMC11462202 DOI: 10.1016/j.heliyon.2024.e38050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 09/03/2024] [Accepted: 09/17/2024] [Indexed: 10/12/2024] Open
Abstract
Objective The NLRP3 (NOD-like receptor family, pyrin domain containing 3) inflammasome-driven immune-inflammatory response has been shown to play a critical role in epilepsy progression across multiple studies. While Ulinastatin (UTI), an immunomodulatory agent known to target the NLRP3 pathway in neurological disorders, its implications in epilepsy have not been extensively studied. This investigation aims to explore UTI's role and underlying mechanisms in epilepsy. Methods To assess UTI's effects on epilepsy severity, neuroinflammation, and BBB integrity, a pentylenetetrazole (PTZ)-induced epilepsy model in mice and a co-culture system involving BV2 and HT22 cells stimulated by lipopolysaccharide (LPS) and ATP were employed. Techniques utilized included qPCR, Western blotting, ELISA, immunohistochemistry (IHC) staining, Evans Blue dye extravasation, glutamate assays, the Morris water maze, and Annexin V apoptosis assays. Results In the PTZ model, UTI administration led to a substantial decrease in seizure intensity and susceptibility, inhibited NLRP3 inflammasome activation, reduced neuroinflammatory interactions, lowered hippocampal and systemic inflammatory mediator levels, and improved cognitive performance. Furthermore, UTI upregulated claudin-5 expression, a tight junction protein in the endothelium, and diminished Evans Blue dye leakage, indicating improved BBB integrity. In BV2 and HT22 cell co-culture models, UTI exerted neuroprotective effects by mitigating microglia-mediated neurotoxicity and fostering neuronal recovery. Conclusions The findings demonstrate that UTI exerts transformative regulatory effects on the NLRP3 inflammasome in epilepsy models. This intervention effectively suppresses neuroinflammation, lessens seizure severity and susceptibility, and ameliorates epilepsy-related BBB dysfunction and cognitive impairments.
Collapse
Affiliation(s)
- Huan Wang
- Department of Neonatology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Yuzhu Ma
- Department of Pediatrics, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Dongmei Jin
- Department of Neonatology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Xinlei Yang
- The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Xiangping Xu
- Department of Pediatrics, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| |
Collapse
|
5
|
Chen Z, Sun H, Zhang W, Hou S, Yang X, Lin J, Ma X, Meng H. Exploring correlations between immune cell phenotypes and the risk of epilepsy: A bidirectional Mendelian randomization study. Epilepsy Behav 2024; 157:109896. [PMID: 38905914 DOI: 10.1016/j.yebeh.2024.109896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/11/2024] [Accepted: 06/09/2024] [Indexed: 06/23/2024]
Abstract
BACKGROUND Neuroinflammation plays an important pathophysiological role in epilepsy; however, the precise connection between immune cells and epilepsy remains unclear. This study used Mendelian randomization (MR) to analyze the causal relationship between 731 immune cell traits and epilepsy. METHODS Based on data from a genome-wide association study (GWAS), a bidirectional two-sample MR analysis was conducted to investigate the potential influence of immune cell phenotypes on epilepsy. Five MR methods were used to analyze the results, with the inverse variance weighted (IVW) method as the primary method, and the results were corrected using the false discovery rate (FDR) method. Sensitivity analyses were performed to test for heterogeneity and horizontal pleiotropy. RESULTS After correction for FDR, four immune traits remained significantly associated with epilepsy risk: CD25 expression on memory (OR = 1.04, 95 % CI = 1.02 ∼ 1.06,P = 2.55 × 10-4), IgD+CD38dim (OR = 1.05, 95 % CI = 1.02 ∼ 1.08, P = 4.73 × 10-4), CD24+CD27+ (OR = 1.04, 95 % CI = 1.02 ∼ 1.06, P = 4.82 × 10-4), and IgD-CD38dim (OR = 1.04, 95 % CI = 1.02 ∼ 1.06, P = 1.04 × 10-3) B cells. The risk of generalized epilepsy was significantly associated with two immune cell traits, whereas that of focal epilepsy was significantly associated with seven immune cell traits. Furthermore, immune cell phenotypes are not affected by genetically predicted epilepsy. CONCLUSION This MR study affirms the causal connection between circulating immune cells and epilepsy, offering guidance for further understanding of the immune mechanisms that underlie epilepsy and the discovery of novel targets for therapy.
Collapse
Affiliation(s)
- Zhiqing Chen
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Huaiyu Sun
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Wuqiong Zhang
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Shuai Hou
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Xi Yang
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Jingqi Lin
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Xiaohui Ma
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Hongmei Meng
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China.
| |
Collapse
|
6
|
Sanz P, Rubio T, Garcia-Gimeno MA. Neuroinflammation and Epilepsy: From Pathophysiology to Therapies Based on Repurposing Drugs. Int J Mol Sci 2024; 25:4161. [PMID: 38673747 PMCID: PMC11049926 DOI: 10.3390/ijms25084161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/04/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
Neuroinflammation and epilepsy are different pathologies, but, in some cases, they are so closely related that the activation of one of the pathologies leads to the development of the other. In this work, we discuss the three main cell types involved in neuroinflammation, namely (i) reactive astrocytes, (ii) activated microglia, and infiltration of (iii) peripheral immune cells in the central nervous system. Then, we discuss how neuroinflammation and epilepsy are interconnected and describe the use of different repurposing drugs with anti-inflammatory properties that have been shown to have a beneficial effect in different epilepsy models. This review reinforces the idea that compounds designed to alleviate seizures need to target not only the neuroinflammation caused by reactive astrocytes and microglia but also the interaction of these cells with infiltrated peripheral immune cells.
Collapse
Affiliation(s)
- Pascual Sanz
- Instituto de Biomedicina de Valencia, Consejo Superior de Investigaciones Científicas, Jaime Roig 11, 46010 Valencia, Spain;
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 46010 Valencia, Spain
| | - Teresa Rubio
- Instituto de Biomedicina de Valencia, Consejo Superior de Investigaciones Científicas, Jaime Roig 11, 46010 Valencia, Spain;
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 46010 Valencia, Spain
- Faculty of Health Science, Universidad Europea de Valencia, 46010 Valencia, Spain
| | - Maria Adelaida Garcia-Gimeno
- Department of Biotechnology, Escuela Técnica Superior de Ingeniería Agronómica y del Medio Natural, Universitat Politécnica de València, 46022 Valencia, Spain;
| |
Collapse
|
7
|
Wang W, Ren Y, Xu F, Zhang X, Wang F, Wang T, Zhong H, Wang X, Yao Y. Identification of hub genes significantly linked to temporal lobe epilepsy and apoptosis via bioinformatics analysis. Front Mol Neurosci 2024; 17:1300348. [PMID: 38384278 PMCID: PMC10879302 DOI: 10.3389/fnmol.2024.1300348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 01/23/2024] [Indexed: 02/23/2024] Open
Abstract
Background Epilepsy stands as an intricate disorder of the central nervous system, subject to the influence of diverse risk factors and a significant genetic predisposition. Within the pathogenesis of temporal lobe epilepsy (TLE), the apoptosis of neurons and glial cells in the brain assumes pivotal importance. The identification of differentially expressed apoptosis-related genes (DEARGs) emerges as a critical imperative, providing essential guidance for informed treatment decisions. Methods We obtained datasets related to epilepsy, specifically GSE168375 and GSE186334. Utilizing differential expression analysis, we identified a set of 249 genes exhibiting significant variations. Subsequently, through an intersection with apoptosis-related genes, we pinpointed 16 genes designated as differentially expressed apoptosis-related genes (DEARGs). These DEARGs underwent a comprehensive array of analyses, including enrichment analyses, biomarker selection, disease classification modeling, immune infiltration analysis, prediction of miRNA and transcription factors, and molecular docking analysis. Results In the epilepsy datasets examined, we successfully identified 16 differentially expressed apoptosis-related genes (DEARGs). Subsequent validation in the external dataset GSE140393 revealed the diagnostic potential of five biomarkers (CD38, FAIM2, IL1B, PAWR, S100A8) with remarkable accuracy, exhibiting an impressive area under curve (AUC) (The overall AUC of the model constructed by the five key genes was 0.916, and the validation set was 0.722). Furthermore, a statistically significant variance (p < 0.05) was observed in T cell CD4 naive and eosinophil cells across different diagnostic groups. Exploring interaction networks uncovered intricate connections, including gene-miRNA interactions (164 interactions involving 148 miRNAs), gene-transcription factor (TF) interactions (22 interactions with 20 TFs), and gene-drug small molecule interactions (15 interactions involving 15 drugs). Notably, IL1B and S100A8 demonstrated interactions with specific drugs. Conclusion In the realm of TLE, we have successfully pinpointed noteworthy differentially expressed apoptosis-related genes (DEARGs), including CD38, FAIM2, IL1B, PAWR, and S100A8. A comprehensive understanding of the implications associated with these identified genes not only opens avenues for advancing our comprehension of the underlying pathophysiology but also bears considerable potential in guiding the development of innovative diagnostic methodologies and therapeutic interventions for the effective management of epilepsy in the future.
Collapse
Affiliation(s)
- Weiliang Wang
- Epilepsy Center, Xiamen Humanity Hospital, Fujian Medical University, Xiamen, Fujian, China
| | - Yinghao Ren
- Department of Dermatology, Xiamen Humanity Hospital, Fujian Medical University, Xiamen, Fujian, China
| | - Fei Xu
- Department of Pharmacogenomics, College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Xiaobin Zhang
- Epilepsy Center, Xiamen Humanity Hospital, Fujian Medical University, Xiamen, Fujian, China
| | - Fengpeng Wang
- Epilepsy Center, Xiamen Humanity Hospital, Fujian Medical University, Xiamen, Fujian, China
| | - Tianyu Wang
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Huijuan Zhong
- Epilepsy Center, Xiamen Humanity Hospital, Fujian Medical University, Xiamen, Fujian, China
| | - Xin Wang
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Yi Yao
- Epilepsy Center, Xiamen Humanity Hospital, Fujian Medical University, Xiamen, Fujian, China
| |
Collapse
|
8
|
Milano C, Montali M, Barachini S, Burzi IS, Pratesi F, Petrozzi L, Chico L, Morganti R, Gambino G, Rossi L, Ceravolo R, Siciliano G, Migliorini P, Petrini I, Pizzanelli C. Increased production of inflammatory cytokines by circulating monocytes in mesial temporal lobe epilepsy: A possible role in drug resistance. J Neuroimmunol 2024; 386:578272. [PMID: 38160122 DOI: 10.1016/j.jneuroim.2023.578272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 12/05/2023] [Accepted: 12/20/2023] [Indexed: 01/03/2024]
Abstract
We analyzed peripheral blood mononuclear cells (PBMCs) and serum inflammatory biomarkers in patients with mesial temporal lobe epilepsy (drug-resistant - DR, vs. drug-sensitive - DS). Patients with epilepsy showed higher levels of serum CCL2, CCL3, IL-8 and AOPP, and lower levels of FRAP and thiols compared to healthy controls (HC). Although none of the serum biomarkers distinguished DR from DS patients, when analysing intracellular cytokines after in vitro stimulation, DR patients presented higher percentages of IL-1β and IL-6 positive monocytes compared to DS patients and HC. Circulating innate immune cells might be implicated in DR epilepsy and constitute potential new targets for treatments.
Collapse
Affiliation(s)
- C Milano
- Department of Clinical and Experimental Medicine, Neurology Unit, University of Pisa, Pisa, Italy.
| | - M Montali
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - S Barachini
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - I S Burzi
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - F Pratesi
- Department of Translational Research and New Technology in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - L Petrozzi
- Department of Clinical and Experimental Medicine, Neurology Unit, University of Pisa, Pisa, Italy
| | - L Chico
- Department of Clinical and Experimental Medicine, Neurology Unit, University of Pisa, Pisa, Italy
| | - R Morganti
- Section of Statistics, University of Pisa, Pisa, Italy
| | - G Gambino
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - L Rossi
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - R Ceravolo
- Department of Clinical and Experimental Medicine, Neurology Unit, University of Pisa, Pisa, Italy
| | - G Siciliano
- Department of Clinical and Experimental Medicine, Neurology Unit, University of Pisa, Pisa, Italy
| | - P Migliorini
- Department of Clinical and Experimental Medicine, Clinical Immunology and Allergy Unit, University of Pisa, Pisa, Italy
| | - I Petrini
- Department of Translational Research and New Technology in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - C Pizzanelli
- Department of Clinical and Experimental Medicine, Neurology Unit, University of Pisa, Pisa, Italy.
| |
Collapse
|
9
|
DePaula-Silva AB. The Contribution of Microglia and Brain-Infiltrating Macrophages to the Pathogenesis of Neuroinflammatory and Neurodegenerative Diseases during TMEV Infection of the Central Nervous System. Viruses 2024; 16:119. [PMID: 38257819 PMCID: PMC10819099 DOI: 10.3390/v16010119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/06/2024] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
The infection of the central nervous system (CNS) with neurotropic viruses induces neuroinflammation and is associated with the development of neuroinflammatory and neurodegenerative diseases, including multiple sclerosis and epilepsy. The activation of the innate and adaptive immune response, including microglial, macrophages, and T and B cells, while required for efficient viral control within the CNS, is also associated with neuropathology. Under healthy conditions, resident microglia play a pivotal role in maintaining CNS homeostasis. However, during pathological events, such as CNS viral infection, microglia become reactive, and immune cells from the periphery infiltrate into the brain, disrupting CNS homeostasis and contributing to disease development. Theiler's murine encephalomyelitis virus (TMEV), a neurotropic picornavirus, is used in two distinct mouse models: TMEV-induced demyelination disease (TMEV-IDD) and TMEV-induced seizures, representing mouse models of multiple sclerosis and epilepsy, respectively. These murine models have contributed substantially to our understanding of the pathophysiology of MS and seizures/epilepsy following viral infection, serving as critical tools for identifying pharmacological targetable pathways to modulate disease development. This review aims to discuss the host-pathogen interaction during a neurotropic picornavirus infection and to shed light on our current understanding of the multifaceted roles played by microglia and macrophages in the context of these two complexes viral-induced disease.
Collapse
Affiliation(s)
- Ana Beatriz DePaula-Silva
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Utah, Salt Lake City, UT 84112, USA
| |
Collapse
|
10
|
Shpak AA, Rider FK, Druzhkova TA, Zhanina MY, Popova SB, Guekht AB, Gulyaeva NV. Reduced Levels of Lacrimal Glial Cell Line-Derived Neurotrophic Factor (GDNF) in Patients with Focal Epilepsy and Focal Epilepsy with Comorbid Depression: A Biomarker Candidate. Int J Mol Sci 2023; 24:16818. [PMID: 38069144 PMCID: PMC10705972 DOI: 10.3390/ijms242316818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/21/2023] [Accepted: 11/24/2023] [Indexed: 12/18/2023] Open
Abstract
Our previous studies showed that in patients with brain diseases, neurotrophic factors in lacrimal fluid (LF) may change more prominently than in blood serum (BS). Since glial cell line-derived neurotrophic factor (GDNF) is involved in the control of neuronal networks in an epileptic brain, we aimed to assess the GDNF levels in LF and BS as well as the BDNF and the hypothalamic-pituitary-adrenocortical and inflammation indices in BS of patients with focal epilepsy (FE) and epilepsy and comorbid depression (FE + MDD) and to compare them with those of patients with major depressive disorder (MDD) and healthy controls (HC). GDNF levels in BS were similar in patients and HC and higher in FE taking valproates. GDNF levels in LF were significantly lower in all patient groups compared to controls, and independent of drugs used. GDNF concentrations in LF and BS positively correlated in HC, but not in patient groups. BDNF level was lower in BS of patients compared with HC and higher in FE + MDD taking valproates. A reduction in the GDNF level in LF might be an important biomarker of FE. Logistic regression models demonstrated that the probability of FE can be evaluated using GDNF in LF and BDNF in BS; that of MDD using GDNF in LF and cortisol and TNF-α in BS; and that of epilepsy with MDD using GDNF in LF and TNF-α and BDNF in BS.
Collapse
Affiliation(s)
- Alexander A. Shpak
- The S. Fyodorov Eye Microsurgery Federal State Institution, 127486 Moscow, Russia;
- Moscow Research and Clinical Center for Neuropsychiatry, Moscow Healthcare Department, 115419 Moscow, Russia; (F.K.R.); (T.A.D.); (M.Y.Z.); (S.B.P.); (A.B.G.)
| | - Flora K. Rider
- Moscow Research and Clinical Center for Neuropsychiatry, Moscow Healthcare Department, 115419 Moscow, Russia; (F.K.R.); (T.A.D.); (M.Y.Z.); (S.B.P.); (A.B.G.)
| | - Tatiana A. Druzhkova
- Moscow Research and Clinical Center for Neuropsychiatry, Moscow Healthcare Department, 115419 Moscow, Russia; (F.K.R.); (T.A.D.); (M.Y.Z.); (S.B.P.); (A.B.G.)
| | - Marina Y. Zhanina
- Moscow Research and Clinical Center for Neuropsychiatry, Moscow Healthcare Department, 115419 Moscow, Russia; (F.K.R.); (T.A.D.); (M.Y.Z.); (S.B.P.); (A.B.G.)
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, 117465 Moscow, Russia
| | - Sofya B. Popova
- Moscow Research and Clinical Center for Neuropsychiatry, Moscow Healthcare Department, 115419 Moscow, Russia; (F.K.R.); (T.A.D.); (M.Y.Z.); (S.B.P.); (A.B.G.)
| | - Alla B. Guekht
- Moscow Research and Clinical Center for Neuropsychiatry, Moscow Healthcare Department, 115419 Moscow, Russia; (F.K.R.); (T.A.D.); (M.Y.Z.); (S.B.P.); (A.B.G.)
| | - Natalia V. Gulyaeva
- Moscow Research and Clinical Center for Neuropsychiatry, Moscow Healthcare Department, 115419 Moscow, Russia; (F.K.R.); (T.A.D.); (M.Y.Z.); (S.B.P.); (A.B.G.)
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, 117465 Moscow, Russia
| |
Collapse
|
11
|
Watanabe Y, Yamanaka G, Morichi S, Hayashi K, Suzuki S, Takeshita M, Morishita N, Ishida Y, Oana S, Takata F, Kawashima H. Altered serum levels of platelet-derived growth factor receptor β and cluster of differentiation 13 suggest a role for pericytes in West syndrome. Brain Dev 2023; 45:479-486. [PMID: 37263884 DOI: 10.1016/j.braindev.2023.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 05/12/2023] [Accepted: 05/17/2023] [Indexed: 06/03/2023]
Abstract
BACKGROUND Pericytes play a role in the maintenance of the blood-brain barrier and neuroinflammation, attracting attention as to whether they are also involved in the pathogenesis of epilepsy.This study aimed to explore the relationship between West syndrome and pericytes. METHODS Eighteen Japanese pediatric West syndrome patients and nine controls aged 2 years or younger were retrospectively enrolled in this study. We assessed theserumlevels of pericyte markers, serum PDGFRβ (platelet-derived growth factor receptorβ),CD13 (aminopeptidase N), and 27 cytokines in 17 pediatric patients with West syndrome and the control group. RESULTS Patients with West syndrome exhibited significantly increased CD13 and decreased PDGFRβ levels, compared with controls but not serum cytokine levels. These values did not differ significantly between symptomatic and idiopathic West syndrome. CONCLUSION Pericytes might be implicated in the pathogenesis of West syndrome.
Collapse
Affiliation(s)
- Yusuke Watanabe
- Department of Pediatrics and Adolescent Medicine, Tokyo Medical University, 6-7-1 Nishi-Shinjuku, Shinjuku-ku, Tokyo 160-0023, Japan.
| | - Gaku Yamanaka
- Department of Pediatrics and Adolescent Medicine, Tokyo Medical University, 6-7-1 Nishi-Shinjuku, Shinjuku-ku, Tokyo 160-0023, Japan
| | - Shinichiro Morichi
- Department of Pediatrics and Adolescent Medicine, Tokyo Medical University, 6-7-1 Nishi-Shinjuku, Shinjuku-ku, Tokyo 160-0023, Japan
| | - Kanako Hayashi
- Department of Pediatrics and Adolescent Medicine, Tokyo Medical University, 6-7-1 Nishi-Shinjuku, Shinjuku-ku, Tokyo 160-0023, Japan
| | - Shinji Suzuki
- Department of Pediatrics and Adolescent Medicine, Tokyo Medical University, 6-7-1 Nishi-Shinjuku, Shinjuku-ku, Tokyo 160-0023, Japan
| | - Mika Takeshita
- Department of Pediatrics and Adolescent Medicine, Tokyo Medical University, 6-7-1 Nishi-Shinjuku, Shinjuku-ku, Tokyo 160-0023, Japan
| | - Natsumi Morishita
- Department of Pediatrics and Adolescent Medicine, Tokyo Medical University, 6-7-1 Nishi-Shinjuku, Shinjuku-ku, Tokyo 160-0023, Japan
| | - Yu Ishida
- Department of Pediatrics and Adolescent Medicine, Tokyo Medical University, 6-7-1 Nishi-Shinjuku, Shinjuku-ku, Tokyo 160-0023, Japan
| | - Shingo Oana
- Department of Pediatrics and Adolescent Medicine, Tokyo Medical University, 6-7-1 Nishi-Shinjuku, Shinjuku-ku, Tokyo 160-0023, Japan
| | - Fuyuko Takata
- Department of Pharmaceutical Care and Health Sciences, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka 814-0180, Japan
| | - Hisashi Kawashima
- Department of Pediatrics and Adolescent Medicine, Tokyo Medical University, 6-7-1 Nishi-Shinjuku, Shinjuku-ku, Tokyo 160-0023, Japan
| |
Collapse
|
12
|
Yu C, Deng XJ, Xu D. Microglia in epilepsy. Neurobiol Dis 2023; 185:106249. [PMID: 37536386 DOI: 10.1016/j.nbd.2023.106249] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 07/07/2023] [Accepted: 07/31/2023] [Indexed: 08/05/2023] Open
Abstract
Epilepsy is one of most common chronic neurological disorders, and the antiseizure medications developed by targeting neurocentric mechanisms have not effectively reduced the proportion of patients with drug-resistant epilepsy. Further exploration of the cellular or molecular mechanism of epilepsy is expected to provide new options for treatment. Recently, more and more researches focus on brain network components other than neurons, among which microglia have attracted much attention for their diverse biological functions. As the resident immune cells of the central nervous system, microglia have highly plastic transcription, morphology and functional characteristics, which can change dynamically in a context-dependent manner during the progression of epilepsy. In the pathogenesis of epilepsy, highly reactive microglia interact with other components in the epileptogenic network by performing crucial functions such as secretion of soluble factors and phagocytosis, thus continuously reshaping the landscape of the epileptic brain microenvironment. Indeed, microglia appear to be both pro-epileptic and anti-epileptic under the different spatiotemporal contexts of disease, rendering interventions targeting microglia biologically complex and challenging. This comprehensive review critically summarizes the pathophysiological role of microglia in epileptic brain homeostasis alterations and explores potential therapeutic or modulatory targets for epilepsy targeting microglia.
Collapse
Affiliation(s)
- Cheng Yu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, Hubei Province 430022, China
| | - Xue-Jun Deng
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, Hubei Province 430022, China
| | - Da Xu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, Hubei Province 430022, China.
| |
Collapse
|
13
|
Mengoli M, Conti G, Fabbrini M, Candela M, Brigidi P, Turroni S, Barone M. Microbiota-gut-brain axis and ketogenic diet: how close are we to tackling epilepsy? MICROBIOME RESEARCH REPORTS 2023; 2:32. [PMID: 38045924 PMCID: PMC10688818 DOI: 10.20517/mrr.2023.24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 08/01/2023] [Accepted: 08/21/2023] [Indexed: 12/05/2023]
Abstract
The microbiota-gut-brain axis refers to the intricate bidirectional communication between commensal microorganisms residing in the digestive tract and the central nervous system, along neuroendocrine, metabolic, immune, and inflammatory pathways. This axis has been suggested to play a role in several neurological disorders, such as Parkinson's disease, Alzheimer's disease, multiple sclerosis, and epilepsy, paving the way for microbiome-based intervention strategies for the mitigation and treatment of symptoms. Epilepsy is a multifaceted neurological condition affecting more than 50 million individuals worldwide, 30% of whom do not respond to conventional pharmacological therapies. Among the first-hand microbiota modulation strategies, nutritional interventions represent an easily applicable option in both clinical and home settings. In this narrative review, we summarize the mechanisms underlying the microbiota-gut-brain axis involvement in epilepsy, discuss the impact of antiepileptic drugs on the gut microbiome, and then the impact of a particular dietary pattern, the ketogenic diet, on the microbiota-gut-brain axis in epileptic patients. The investigation of the microbiota response to non-pharmacological therapies is an ever-expanding field with the potential to allow the design of increasingly accessible and successful intervention strategies.
Collapse
Affiliation(s)
- Mariachiara Mengoli
- Microbiomics Unit, Department of Medical and Surgical Sciences, University of Bologna, Bologna 40138, Italy
| | - Gabriele Conti
- Microbiomics Unit, Department of Medical and Surgical Sciences, University of Bologna, Bologna 40138, Italy
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology, University of Bologna, Bologna 40126, Italy
| | - Marco Fabbrini
- Microbiomics Unit, Department of Medical and Surgical Sciences, University of Bologna, Bologna 40138, Italy
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology, University of Bologna, Bologna 40126, Italy
| | - Marco Candela
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology, University of Bologna, Bologna 40126, Italy
| | - Patrizia Brigidi
- Microbiomics Unit, Department of Medical and Surgical Sciences, University of Bologna, Bologna 40138, Italy
| | - Silvia Turroni
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology, University of Bologna, Bologna 40126, Italy
| | - Monica Barone
- Microbiomics Unit, Department of Medical and Surgical Sciences, University of Bologna, Bologna 40138, Italy
| |
Collapse
|
14
|
Çarçak N, Onat F, Sitnikova E. Astrocytes as a target for therapeutic strategies in epilepsy: current insights. Front Mol Neurosci 2023; 16:1183775. [PMID: 37583518 PMCID: PMC10423940 DOI: 10.3389/fnmol.2023.1183775] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 07/12/2023] [Indexed: 08/17/2023] Open
Abstract
Astrocytes are specialized non-neuronal glial cells of the central nervous system, contributing to neuronal excitability and synaptic transmission (gliotransmission). Astrocytes play a key roles in epileptogenesis and seizure generation. Epilepsy, as a chronic disorder characterized by neuronal hyperexcitation and hypersynchronization, is accompanied by substantial disturbances of glial cells and impairment of astrocytic functions and neuronal signaling. Anti-seizure drugs that provide symptomatic control of seizures primarily target neural activity. In epileptic patients with inadequate control of seizures with available anti-seizure drugs, novel therapeutic candidates are needed. These candidates should treat epilepsy with anti-epileptogenic and disease-modifying effects. Evidence from human and animal studies shows that astrocytes have value for developing new anti-seizure and anti-epileptogenic drugs. In this review, we present the key functions of astrocytes contributing to neuronal hyperexcitability and synaptic activity following an etiology-based approach. We analyze the role of astrocytes in both development (epileptogenesis) and generation of seizures (ictogenesis). Several promising new strategies that attempted to modify astroglial functions for treating epilepsy are being developed: (1) selective targeting of glia-related molecular mechanisms of glutamate transport; (2) modulation of tonic GABA release from astrocytes; (3) gliotransmission; (4) targeting the astrocytic Kir4.1-BDNF system; (5) astrocytic Na+/K+/ATPase activity; (6) targeting DNA hypo- or hypermethylation of candidate genes in astrocytes; (7) targeting astrocytic gap junction regulators; (8) targeting astrocytic adenosine kinase (the major adenosine-metabolizing enzyme); and (9) targeting microglia-astrocyte communication and inflammatory pathways. Novel disease-modifying therapeutic strategies have now been developed, such as astroglia-targeted gene therapy with a broad spectrum of genetic constructs to target astroglial cells.
Collapse
Affiliation(s)
- Nihan Çarçak
- Department of Pharmacology, Faculty of Pharmacy, Istanbul University, Istanbul, Turkey
- Institute of Health Sciences, Department of Neuroscience, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Filiz Onat
- Institute of Health Sciences, Department of Neuroscience, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
- Department of Medical Pharmacology, Faculty of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Evgenia Sitnikova
- Institute of Higher Nervous Activity and Neurophysiology of Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
15
|
Yang X, Zhang X, Shen K, Wang Z, Liu G, Huang K, He Z, Li Y, Hou Z, Lv S, Zhang C, Yang H, Liu S, Ke Y. Cuproptosis-related genes signature and validation of differential expression and the potential targeting drugs in temporal lobe epilepsy. Front Pharmacol 2023; 14:1033859. [PMID: 37435496 PMCID: PMC10330702 DOI: 10.3389/fphar.2023.1033859] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 06/13/2023] [Indexed: 07/13/2023] Open
Abstract
Introduction: Temporal lobe epilepsy (TLE) is the most common subtype of epilepsy in adults and is characterized by neuronal loss, gliosis, and sprouting mossy fibers in the hippocampus. But the mechanism underlying neuronal loss has not been fully elucidated. A new programmed cell death, cuproptosis, has recently been discovered; however, its role in TLE is not clear. Methods: We first investigated the copper ion concentration in the hippocampus tissue. Then, using the Sample dataset and E-MTAB-3123 dataset, we analyzed the features of 12 cuproptosis-related genes in TLEs and controls using the bioinformatics tools. Then, the expression of the key cuproptosis genes were confirmed using real-time PCR and immunohistochemical staining (IHC). Finally, the Enrichr database was used to screen the small molecules and drugs targeting key cuproptosis genes in TLE. Results: The Sample dataset displayed four differentially expressed cuproptosis-related genes (DECRGs; LIPT1, GLS, PDHA1, and CDKN2A) while the E-MTAB-3123 dataset revealed seven DECRGs (LIPT1, DLD, FDX1, GLS, PDHB, PDHA1, and DLAT). Remarkably, only LIPT1 was uniformly upregulated in both datasets. Additionally, these DECRGs are implicated in the TCA cycle and pyruvate metabolism-both crucial for cell cuproptosis-as well as various immune cell infiltrations, especially macrophages and T cells, in the TLE hippocampus. Interestingly, DECRGs were linked to most infiltrating immune cells during TLE's acute phase, but this association considerably weakened in the latent phase. In the chronic phase, DECRGs were connected with several T-cell subclasses. Moreover, LIPT1, FDX1, DLD, and PDHB were related to TLE identification. PCR and IHC further confirmed LIPT1 and FDX1's upregulation in TLE compared to controls. Finally, using the Enrichr database, we found that chlorzoxazone and piperlongumine inhibited cell cuproptosis by targeting LIPT1, FDX1, DLD, and PDHB. Conclusion: Our findings suggest that cuproptosis is directly related to TLE. The signature of cuproptosis-related genes presents new clues for exploring the roles of neuronal death in TLE. Furthermore, LIPT1 and FDX1 appear as potential targets of neuronal cuproptosis for controlling TLE's seizures and progression.
Collapse
Affiliation(s)
- Xiaolin Yang
- Department of Neurosurgery, Second Affiliated Hospital, Army Medical University, Chongqing, China
| | - Xiaoqing Zhang
- Department of Neurosurgery, Second Affiliated Hospital, Army Medical University, Chongqing, China
| | - Kaifeng Shen
- Department of Neurosurgery, Second Affiliated Hospital, Army Medical University, Chongqing, China
| | - Zhongke Wang
- Department of Neurosurgery, Armed Police Hospital, Chongqing, China
| | - Guolong Liu
- Department of Neurosurgery, Second Affiliated Hospital, Army Medical University, Chongqing, China
| | - Kaixuan Huang
- Department of Neurosurgery, Second Affiliated Hospital, Army Medical University, Chongqing, China
| | - Zeng He
- Department of Neurosurgery, Second Affiliated Hospital, Army Medical University, Chongqing, China
| | - Yang Li
- Department of Neurosurgery, Second Affiliated Hospital, Army Medical University, Chongqing, China
| | - Zhi Hou
- Department of Neurosurgery, Second Affiliated Hospital, Army Medical University, Chongqing, China
| | - Shengqing Lv
- Department of Neurosurgery, Second Affiliated Hospital, Army Medical University, Chongqing, China
| | - Chunqing Zhang
- Department of Neurosurgery, Second Affiliated Hospital, Army Medical University, Chongqing, China
- Guangyang Bay Laboratory, Chongqing Institute for Brain and Intelligence, Chongqing, China
| | - Hui Yang
- Department of Neurosurgery, Second Affiliated Hospital, Army Medical University, Chongqing, China
- Guangyang Bay Laboratory, Chongqing Institute for Brain and Intelligence, Chongqing, China
| | - Shiyong Liu
- Department of Neurosurgery, Second Affiliated Hospital, Army Medical University, Chongqing, China
- Guangyang Bay Laboratory, Chongqing Institute for Brain and Intelligence, Chongqing, China
| | - Yanyan Ke
- Department of Neurosurgery, Second Affiliated Hospital, Army Medical University, Chongqing, China
| |
Collapse
|
16
|
Rubio T, Viana R, Moreno-Estellés M, Campos-Rodríguez Á, Sanz P. TNF and IL6/Jak2 signaling pathways are the main contributors of the glia-derived neuroinflammation present in Lafora disease, a fatal form of progressive myoclonus epilepsy. Neurobiol Dis 2023; 176:105964. [PMID: 36526090 PMCID: PMC10682476 DOI: 10.1016/j.nbd.2022.105964] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/05/2022] [Accepted: 12/10/2022] [Indexed: 12/15/2022] Open
Abstract
Lafora disease (LD; OMIM#254780) is a rare form of progressive myoclonus epilepsy (prevalence <1:1,000,000) characterized by the accumulation of insoluble deposits of aberrant glycogen (polyglucosans), named Lafora bodies, in the brain but also in peripheral tissues. LD is the most severe form of the group of progressive myoclonus epilepsies, since patients present a rapid deterioration and dementia with amplification of seizures, leading to death after a decade from the onset of the first symptoms. We have recently described that reactive glia-derived neuroinflammation should be considered a novel hallmark of LD since we observed a florid upregulation of differentially expressed genes in both LD mouse lines, which were mainly related to mediators of inflammatory response. In this work, we define an upregulation of the expression of mediators of the TNF and IL6/JAK2 signaling pathways in LD. In addition, we describe the activation of the non-canonical form of the inflammasome. Furthermore, we describe the infiltration of peripheral immune cells in the brain parenchyma, which could aggravate glia-derived neuroinflammation. Finally, we describe CXCL10 and S100b as blood biomarkers of the disease, which will allow the study of the progression of the disease using serum blood samples. We consider that the identification of these initial inflammatory changes in LD will be very important to implement possible anti-inflammatory therapeutic strategies to prevent the development of the disease.
Collapse
Affiliation(s)
- Teresa Rubio
- Instituto de Biomedicina de Valencia, CSIC, Jaime Roig 11, 46010 Valencia, Spain
| | - Rosa Viana
- Instituto de Biomedicina de Valencia, CSIC, Jaime Roig 11, 46010 Valencia, Spain
| | - Mireia Moreno-Estellés
- Instituto de Biomedicina de Valencia, CSIC, Jaime Roig 11, 46010 Valencia, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 46010 Valencia, Spain
| | | | - Pascual Sanz
- Instituto de Biomedicina de Valencia, CSIC, Jaime Roig 11, 46010 Valencia, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 46010 Valencia, Spain..
| |
Collapse
|
17
|
Wang L, Duan C, Wang R, Chen L, Wang Y. Inflammation-related genes and immune infiltration landscape identified in kainite-induced temporal lobe epilepsy based on integrated bioinformatics analysis. Front Neurosci 2022; 16:996368. [PMID: 36389252 PMCID: PMC9648357 DOI: 10.3389/fnins.2022.996368] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 10/06/2022] [Indexed: 08/19/2023] Open
Abstract
BACKGROUND Temporal lobe epilepsy (TLE) is a common brain disease. However, the pathogenesis of TLE and its relationship with immune infiltration remains unclear. We attempted to identify inflammation-related genes (IRGs) and the immune cell infiltration pattern involved in the pathological process of TLE via bioinformatics analysis. MATERIALS AND METHODS The GSE88992 dataset was downloaded from the Gene Expression Omnibus (GEO) database to perform differentially expressed genes screening and weighted gene co-expression network analysis (WGCNA). Subsequently, the functional enrichment analysis was performed to explore the biological function of the differentially expressed IRGs (DEIRGs). The hub genes were further identified by the CytoHubba algorithm and validated by an external dataset (GSE60772). Furthermore, the CIBERSORT algorithm was applied to assess the differential immune cell infiltration between control and TLE groups. Finally, we used the DGIbd database to screen the candidate drugs for TLE. RESULTS 34 DEIRGs (33 up-regulated and 1 down-regulated gene) were identified, and they were significantly enriched in inflammation- and immune-related pathways. Subsequently, 4 hub DEIRGs (Ptgs2, Jun, Icam1, Il6) were further identified. Immune cell infiltration analysis revealed that T cells CD4 memory resting, NK cells activated, Monocytes and Dendritic cells activated were involved in the TLE development. Besides, there was a significant correlation between hub DEIRGs and some of the specific immune cells. CONCLUSION 4 hub DEIRGs (Ptgs2, Jun, Icam1, Il6) were associated with the pathogenesis of TLE via regulation of immune cell functions, which provided a novel perspective for the understanding of TLE.
Collapse
Affiliation(s)
| | | | | | | | - Yue Wang
- Department of Neurology, Xinqiao Hospital and The Second Affiliated Hospital, Army Medical University, Chongqing, China
| |
Collapse
|
18
|
Druzhkova TA, Yakovlev AA, Rider FK, Zinchuk MS, Guekht AB, Gulyaeva NV. Elevated Serum Cortisol Levels in Patients with Focal Epilepsy, Depression, and Comorbid Epilepsy and Depression. Int J Mol Sci 2022; 23:ijms231810414. [PMID: 36142325 PMCID: PMC9499608 DOI: 10.3390/ijms231810414] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 09/03/2022] [Accepted: 09/06/2022] [Indexed: 11/16/2022] Open
Abstract
Background: The hypothalamic-pituitary-adrenal (HPA) axis, inflammatory processes and neurotrophic factor systems are involved in pathogenesis of both epilepsy and depressive disorders. The study aimed to explore these systems in patients with focal epilepsy (PWE, n = 76), epilepsy and comorbid depression (PWCED n = 48), and major depressive disorder (PWMDD, n = 62) compared with healthy controls (HC, n = 78). Methods: Parameters of the HPA axis, neurotrophic factors, and TNF-α were measured in blood serum along with the hemogram. Results: Serum cortisol level was augmented in PWE, PWCED, and PWMDD compared with HC and was higher in PWMDD than in PWE. Serum cortisol negatively correlated with Mini–Mental State Examination (MMSE) score in PWE, and positively with depression inventory–II (BDI-II) score in PWMDD. Only PWMDD demonstrated elevated plasma ACTH. Serum TNF-α, lymphocytes, and eosinophils were augmented in PWMDD; monocytes elevated in PWE and PWCED, while neutrophils were reduced in PWE and PWMDD. Serum BDNF was decreased in PWE and PWCED, CNTF was elevated in all groups of patients. In PWE, none of above indices depended on epilepsy etiology. Conclusions: The results confirm the involvement of HPA axis and inflammatory processes in pathogenesis of epilepsy and depression and provide new insights in mechanisms of epilepsy and depression comorbidity.
Collapse
Affiliation(s)
- Tatyana A. Druzhkova
- Research and Clinical Center for Neuropsychiatry of Moscow Healthcare Department, 115419 Moscow, Russia
| | - Alexander A. Yakovlev
- Research and Clinical Center for Neuropsychiatry of Moscow Healthcare Department, 115419 Moscow, Russia
- Department of Functional Biochemistry of Nervous System, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, 117485 Moscow, Russia
| | - Flora K. Rider
- Research and Clinical Center for Neuropsychiatry of Moscow Healthcare Department, 115419 Moscow, Russia
| | - Mikhail S. Zinchuk
- Research and Clinical Center for Neuropsychiatry of Moscow Healthcare Department, 115419 Moscow, Russia
| | - Alla B. Guekht
- Research and Clinical Center for Neuropsychiatry of Moscow Healthcare Department, 115419 Moscow, Russia
- Department of Neurology, Neurosurgery and Medical Genetics, Pirogov Russian National Research Medical University, 119049 Moscow, Russia
| | - Natalia V. Gulyaeva
- Research and Clinical Center for Neuropsychiatry of Moscow Healthcare Department, 115419 Moscow, Russia
- Department of Functional Biochemistry of Nervous System, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, 117485 Moscow, Russia
- Correspondence:
| |
Collapse
|
19
|
Wu Q, Wang H, Liu X, Zhao Y, Zhang J. The Role of the Negative Regulation of Microglia-Mediated Neuroinflammation in Improving Emotional Behavior After Epileptic Seizures. Front Neurol 2022; 13:823908. [PMID: 35493845 PMCID: PMC9046666 DOI: 10.3389/fneur.2022.823908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 03/16/2022] [Indexed: 11/13/2022] Open
Abstract
ObjectiveStudies have long shown that uncontrolled inflammatory responses in the brain play a key role in epilepsy pathogenesis. Microglias play an important role in epileptic-induced neuroinflammation, but their role after epileptic seizures is still poorly understood. Alleviating epilepsy and its comorbidities has become a key area of interest for pediatricians.MethodsA pilocarpine-induced rat model of epilepsy was established. The rats were randomly divided into four groups: a control group, epilepsy group, TLR4 inhibitor group (epilepsy+TAK-242), and NF-κB antagonist group (epilepsy+BAY11–7082).Results1. The results of TUNEL staining showed that the expression in rats in the epilepsy group was the most obvious and was significantly different from that in rats in the control, EP+BAY and EP+TAK groups. 2. The expression of TLR4 and NF-κB was highest in rats in the epilepsy group and was significantly different from that in rats in the control, EP+BAY and EP+TAK groups. 3. The fluorescence intensity and number of IBA-1-positive cells in rats in the epilepsy group were highest and significantly different from those in rats in the control, EP+BAY and EP+TAK groups. Western blot analysis of IBA-1 showed that the expression in rats in the epilepsy group was the highest and was statistically significant. 4. CD68 was the highest in rats in the epilepsy group and was statistically significant. 5. In the open-field experiment, the central region residence time of rats in the EP group was delayed, the central region movement distance traveled was prolonged, the total distance traveled was prolonged, and the average speed was increased. Compared with rats in the EP group, rats in the EP+BAY and EP+ TAK groups exhibited improvements to different degrees.ConclusionAt the tissue level, downregulation of the TLR4/NF-κB inflammatory pathway in epilepsy could inhibit microglial activation and the expression of the inflammatory factor CD68, could inhibit hyperphagocytosis, and inhibit the occurrence and exacerbation of epilepsy, thus improving cognitive and emotional disorders after epileptic seizures.
Collapse
|
20
|
Costagliola G, Depietri G, Michev A, Riva A, Foiadelli T, Savasta S, Bonuccelli A, Peroni D, Consolini R, Marseglia GL, Orsini A, Striano P. Targeting Inflammatory Mediators in Epilepsy: A Systematic Review of Its Molecular Basis and Clinical Applications. Front Neurol 2022; 13:741244. [PMID: 35359659 PMCID: PMC8961811 DOI: 10.3389/fneur.2022.741244] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 02/08/2022] [Indexed: 12/12/2022] Open
Abstract
Introduction Recent studies prompted the identification of neuroinflammation as a potential target for the treatment of epilepsy, particularly drug-resistant epilepsy, and refractory status epilepticus. This work provides a systematic review of the clinical experience with anti-cytokine agents and agents targeting lymphocytes and aims to evaluate their efficacy and safety for the treatment of refractory epilepsy. Moreover, the review analyzes the main therapeutic perspectives in this field. Methods A systematic review of the literature was conducted on MEDLINE database. Search terminology was constructed using the name of the specific drug (anakinra, canakinumab, tocilizumab, adalimumab, rituximab, and natalizumab) and the terms “status epilepticus,” “epilepsy,” and “seizure.” The review included clinical trials, prospective studies, case series, and reports published in English between January 2016 and August 2021. The number of patients and their age, study design, specific drugs used, dosage, route, and timing of administration, and patients outcomes were extracted. The data were synthesized through quantitative and qualitative analysis. Results Our search identified 12 articles on anakinra and canakinumab, for a total of 37 patients with epilepsy (86% febrile infection-related epilepsy syndrome), with reduced seizure frequency or seizure arrest in more than 50% of the patients. The search identified nine articles on the use of tocilizumab (16 patients, 75% refractory status epilepticus), with a high response rate. Only one reference on the use of adalimumab in 11 patients with Rasmussen encephalitis showed complete response in 45% of the cases. Eight articles on rituximab employment sowed a reduced seizure burden in 16/26 patients. Finally, one trial concerning natalizumab evidenced a response in 10/32 participants. Conclusion The experience with anti-cytokine agents and drugs targeting lymphocytes in epilepsy derives mostly from case reports or series. The use of anti-IL-1, anti-IL-6, and anti-CD20 agents in patients with drug-resistant epilepsy and refractory status epilepticus has shown promising results and a good safety profile. The experience with TNF inhibitors is limited to Rasmussen encephalitis. The use of anti-α4-integrin agents did not show significant effects in refractory focal seizures. Concerning research perspectives, there is increasing interest in the potential use of anti-chemokine and anti-HMGB-1 agents.
Collapse
Affiliation(s)
- Giorgio Costagliola
- Pediatric Immunology, Pediatric University Department, Azienda Ospedaliero Universitaria Pisana, University of Pisa, Pisa, Italy
| | - Greta Depietri
- Pediatric Neurology, Pediatric University Department, Azienda Ospedaliero Universitaria Pisana, University of Pisa, Pisa, Italy
| | - Alexandre Michev
- Pediatric Clinic, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Policlinico San Matteo Foundation, University of Pavia, Pavia, Italy
- *Correspondence: Alexandre Michev
| | - Antonella Riva
- Pediatric Neurology and Muscular Diseases Unit, IRCCS Istituto “Giannina Gaslini”, Genova, Italy
| | - Thomas Foiadelli
- Pediatric Clinic, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Policlinico San Matteo Foundation, University of Pavia, Pavia, Italy
| | - Salvatore Savasta
- Pediatric Clinic, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Policlinico San Matteo Foundation, University of Pavia, Pavia, Italy
| | - Alice Bonuccelli
- Pediatric Neurology, Pediatric University Department, Azienda Ospedaliero Universitaria Pisana, University of Pisa, Pisa, Italy
| | - Diego Peroni
- Pediatric Immunology, Pediatric University Department, Azienda Ospedaliero Universitaria Pisana, University of Pisa, Pisa, Italy
- Pediatric Neurology, Pediatric University Department, Azienda Ospedaliero Universitaria Pisana, University of Pisa, Pisa, Italy
| | - Rita Consolini
- Pediatric Immunology, Pediatric University Department, Azienda Ospedaliero Universitaria Pisana, University of Pisa, Pisa, Italy
| | - Gian Luigi Marseglia
- Pediatric Clinic, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Policlinico San Matteo Foundation, University of Pavia, Pavia, Italy
| | - Alessandro Orsini
- Pediatric Neurology, Pediatric University Department, Azienda Ospedaliero Universitaria Pisana, University of Pisa, Pisa, Italy
| | - Pasquale Striano
- Pediatric Neurology and Muscular Diseases Unit, IRCCS Istituto “Giannina Gaslini”, Genova, Italy
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genova, Genova, Italy
| |
Collapse
|
21
|
Takamatsu T, Yamanaka G, Ohno K, Hayashi K, Watanabe Y, Takeshita M, Suzuki S, Morichi S, Go S, Ishida Y, Oana S, Kashiwagi Y, Kawashima H. Involvement of Peripheral Monocytes with IL-1β in the Pathogenesis of West Syndrome. J Clin Med 2022; 11:jcm11020447. [PMID: 35054141 PMCID: PMC8779005 DOI: 10.3390/jcm11020447] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 01/02/2022] [Accepted: 01/14/2022] [Indexed: 12/31/2022] Open
Abstract
Neuroinflammation has been implicated in the pathogenesis of West syndrome (WS). Inflammatory cytokines, including interleukin-1β(IL-1β), have been reported to be associated with epilepsy. However, the assessment of cytokine changes in humans is not always simple or deterministic. This study aimed to elucidate the immunological mechanism of WS. We examined the intracellular cytokine profiles of peripheral blood cells collected from 13 patients with WS, using flow cytometry, and measured their serum cytokine levels. These were compared with those of 10 age-matched controls. We found that the WS group had significantly higher percentages of inter IL-1β, interleukin-1 receptor antagonist (IL-1RA)-positive monocytes, and interferon gamma (IFN-γ) in their CD8+ T cells than the control group. Interestingly, the group with sequelae revealed significantly lower levels of intracellular IFN-γ and IL-6 in their CD8+ T and CD4+ T cells, respectively, than the group without sequelae. There was no correlation between the ratios of positive cells and the serum levels of a particular cytokine in the WS patients. These cytokines in the peripheral immune cells might be involved in the neuroinflammation of WS, even in the absence of infectious or immune disease. Overall, an immunological approach using flow cytometry analysis might be useful for immunological studies of epilepsy.
Collapse
|
22
|
Neuroinflammation and Proinflammatory Cytokines in Epileptogenesis. Mol Neurobiol 2022; 59:1724-1743. [PMID: 35015252 DOI: 10.1007/s12035-022-02725-6] [Citation(s) in RCA: 71] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 12/30/2021] [Indexed: 02/06/2023]
Abstract
Increasing evidence corroborates the fundamental role of neuroinflammation in the development of epilepsy. Proinflammatory cytokines (PICs) are crucial contributors to the inflammatory reactions in the brain. It is evidenced that epileptic seizures are associated with elevated levels of PICs, particularly interleukin-1β (IL-1β), IL-6, and tumor necrosis factor-α (TNF-α), which underscores the impact of neuroinflammation and PICs on hyperexcitability of the brain and epileptogenesis. Since the pathophysiology of epilepsy is unknown, determining the possible roles of PICs in epileptogenesis could facilitate unraveling the pathophysiology of epilepsy. About one-third of epileptic patients are drug-resistant, and existing treatments only resolve symptoms and do not inhibit epileptogenesis; thus, treatment of epilepsy is still challenging. Accordingly, understanding the function of PICs in epilepsy could provide us with promising targets for the treatment of epilepsy, especially drug-resistant type. In this review, we outline the role of neuroinflammation and its primary mediators, including IL-1β, IL-1α, IL-6, IL-17, IL-18, TNF-α, and interferon-γ (IFN-γ) in the pathophysiology of epilepsy. Furthermore, we discuss the potential therapeutic targeting of PICs and cytokine receptors in the treatment of epilepsy.
Collapse
|
23
|
Wang Q, Ma M, Yu H, Yu H, Zhang S, Li R. Mirtazapine prevents cell activation, inflammation, and oxidative stress against isoflurane exposure in microglia. Bioengineered 2022; 13:521-530. [PMID: 34964706 PMCID: PMC8805817 DOI: 10.1080/21655979.2021.2009971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 11/18/2021] [Indexed: 11/23/2022] Open
Abstract
Mirtazapine is an antidepressant drug that has been proven to possess a cognitive enhancer efficiency. In this study, we evaluated the potential protective effects of mirtazapine on BV2 microglia in response to isoflurane exposure. Our results show that mirtazapine attenuated isoflurane-induced expression of microglia-specific protein Iba1 in BV2 microglia. Mirtazapine prevented isoflurane-induced production of the pro-inflammatory factors interleukin (IL)-1β and IL-18 by inhibiting the activation of the nod-like receptor family protein 3 (NLRP3) inflammasome in BV2 microglia. The increased reactive oxygen species (ROS) production and elevated expression level of NADPH oxidase 4 (NOX4) in isoflurane-induced BV2 microglia were mitigated by mirtazapine. Isoflurane exposure reduced triggering receptor expressed on myeloid cells 2 (TREM2) expression in BV2 microglia, which was restored by mirtazapine. Moreover, silencing of TREM2 abolished the inhibitory effects of mirtazapine on ionized calcium-binding adapter molecule 1 (Iba1) expression and inflammation in BV2 microglia. From these results, we could infer that mirtazapine exerted a protective effect on BV2 microglia against isoflurane exposure-caused microglia activation, neuroinflammation, and oxidative stress via inducing TREM2 activation. Hence, mirtazapine might be a potential intervention strategy to prevent isoflurane exposure-caused cognitive dysfunction in clinical practice.
Collapse
Affiliation(s)
- Qi Wang
- Department of Anesthesiology, Cangzhou Central Hospital, Cangzhou, Hebei, China
| | - Meina Ma
- Department of Anesthesiology, Cangzhou Central Hospital, Cangzhou, Hebei, China
| | - Hong Yu
- Department of Anesthesiology, Cangzhou Central Hospital, Cangzhou, Hebei, China
| | - Hongmei Yu
- Department of Anesthesiology, Cangzhou Central Hospital, Cangzhou, Hebei, China
| | - Shuai Zhang
- Department of Anesthesiology, Cangzhou Central Hospital, Cangzhou, Hebei, China
| | - Rui Li
- Department of Anesthesiology, Cangzhou Central Hospital, Cangzhou, Hebei, China
| |
Collapse
|
24
|
Litovchenko AV, Zabrodskaya YM, Sitovskaya DA, Khuzhakhmetova LK, Nezdorovina VG, Bazhanova ED. Markers of Neuroinflammation and Apoptosis in the Temporal Lobe of Patients with Drug-Resistant Epilepsy. J EVOL BIOCHEM PHYS+ 2021. [DOI: 10.1134/s0022093021050069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Abstract
Current antiepileptic strategies aim to normalize the interaction
of the excitatory and inhibitory systems, which is ineffective in
treating patients with drug-resistant epilepsy. Neuroinflammatory processes
in the epileptic focus and its perifocal area can trigger apoptosis
and also contribute to the development of drug resistance. The level
of pro- and anti-apoptotic proteins (p-NF-kB, TNF-α, p53, FAS, caspase-3,
caspase-9) was analyzed in intraoperative biopsies of the temporal
lobe gray and white matter in the brain of patients with drug-resistant
epilepsy. An increased level of pro-apoptotic proteins was revealed
in the cortex and perifocal area’s white matter against the background
of an imbalance of protective anti-apoptotic proteins. It appears
that the activation of the extrinsic pathway of apoptosis occurs
in the perifocal area, while in the epileptic focus, there are proteins
responsible for the activation of the anti-apoptotic survival pathways.
Active neuroinflammation in the epileptic focus and perifocal area
of the temporal lobe may contribute to the development of the resistance
to antiepileptic drugs and the progression of neurodegeneration in
such patients.
Collapse
|
25
|
Ding M, Lang Y, Shu H, Shao J, Cui L. Microbiota-Gut-Brain Axis and Epilepsy: A Review on Mechanisms and Potential Therapeutics. Front Immunol 2021; 12:742449. [PMID: 34707612 PMCID: PMC8542678 DOI: 10.3389/fimmu.2021.742449] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 09/17/2021] [Indexed: 12/16/2022] Open
Abstract
The gut-brain axis refers to the bidirectional communication between the gut and brain, and regulates intestinal homeostasis and the central nervous system via neural networks and neuroendocrine, immune, and inflammatory pathways. The development of sequencing technology has evidenced the key regulatory role of the gut microbiota in several neurological disorders, including Parkinson's disease, Alzheimer's disease, and multiple sclerosis. Epilepsy is a complex disease with multiple risk factors that affect more than 50 million people worldwide; nearly 30% of patients with epilepsy cannot be controlled with drugs. Interestingly, patients with inflammatory bowel disease are more susceptible to epilepsy, and a ketogenic diet is an effective treatment for patients with intractable epilepsy. Based on these clinical facts, the role of the microbiome and the gut-brain axis in epilepsy cannot be ignored. In this review, we discuss the relationship between the gut microbiota and epilepsy, summarize the possible pathogenic mechanisms of epilepsy from the perspective of the microbiota gut-brain axis, and discuss novel therapies targeting the gut microbiota. A better understanding of the role of the microbiota in the gut-brain axis, especially the intestinal one, would help investigate the mechanism, diagnosis, prognosis evaluation, and treatment of intractable epilepsy.
Collapse
Affiliation(s)
| | | | | | | | - Li Cui
- Department of Neurology, First Hospital of Jilin University, Changchun, China
| |
Collapse
|
26
|
Yamanaka G, Suzuki S, Morishita N, Takeshita M, Kanou K, Takamatsu T, Suzuki S, Morichi S, Watanabe Y, Ishida Y, Go S, Oana S, Kashiwagi Y, Kawashima H. Role of Neuroinflammation and Blood-Brain Barrier Permutability on Migraine. Int J Mol Sci 2021; 22:ijms22168929. [PMID: 34445635 PMCID: PMC8396312 DOI: 10.3390/ijms22168929] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/14/2021] [Accepted: 08/16/2021] [Indexed: 12/13/2022] Open
Abstract
Currently, migraine is treated mainly by targeting calcitonin gene-related peptides, although the efficacy of this method is limited and new treatment strategies are desired. Neuroinflammation has been implicated in the pathogenesis of migraine. In patients with migraine, peripheral levels of pro-inflammatory cytokines, such as interleukin-1β (IL-1β) and tumor necrosis factor-α, are known to be increased. Additionally, animal models of headache have demonstrated that immunological responses associated with cytokines are involved in the pathogenesis of migraine. Furthermore, these inflammatory mediators might alter the function of tight junctions in brain vascular endothelial cells in animal models, but not in human patients. Based on clinical findings showing elevated IL-1β, and experimental findings involving IL-1β and both the peripheral trigeminal ganglion and central trigeminal vascular pathways, regulation of the Il-1β/IL-1 receptor type 1 axis might lead to new treatments for migraine. However, the integrity of the blood-brain barrier is not expected to be affected during attacks in patients with migraine.
Collapse
|
27
|
The Neuroinflammatory Role of Pericytes in Epilepsy. Biomedicines 2021; 9:biomedicines9070759. [PMID: 34209145 PMCID: PMC8301485 DOI: 10.3390/biomedicines9070759] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/25/2021] [Accepted: 06/26/2021] [Indexed: 02/07/2023] Open
Abstract
Pericytes are a component of the blood-brain barrier (BBB) neurovascular unit, in which they play a crucial role in BBB integrity and are also implicated in neuroinflammation. The association between pericytes, BBB dysfunction, and the pathophysiology of epilepsy has been investigated, and links between epilepsy and pericytes have been identified. Here, we review current knowledge about the role of pericytes in epilepsy. Clinical evidence has shown an accumulation of pericytes with altered morphology in the cerebral vascular territories of patients with intractable epilepsy. In vitro, proinflammatory cytokines, including IL-1β, TNFα, and IL-6, cause morphological changes in human-derived pericytes, where IL-6 leads to cell damage. Experimental studies using epileptic animal models have shown that cerebrovascular pericytes undergo redistribution and remodeling, potentially contributing to BBB permeability. These series of pericyte-related modifications are promoted by proinflammatory cytokines, of which the most pronounced alterations are caused by IL-1β, a cytokine involved in the pathogenesis of epilepsy. Furthermore, the pericyte-glial scarring process in leaky capillaries was detected in the hippocampus during seizure progression. In addition, pericytes respond more sensitively to proinflammatory cytokines than microglia and can also activate microglia. Thus, pericytes may function as sensors of the inflammatory response. Finally, both in vitro and in vivo studies have highlighted the potential of pericytes as a therapeutic target for seizure disorders.
Collapse
|