1
|
Aygün MİŞ, Yalçın Ö. LAG-3 and TIM-3 expression in melanoma and histopathological correlation: a single-center study. Clin Transl Oncol 2025:10.1007/s12094-024-03836-3. [PMID: 39752003 DOI: 10.1007/s12094-024-03836-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 12/19/2024] [Indexed: 01/04/2025]
Affiliation(s)
- Mine İlayda Şengör Aygün
- Department of Pathology, University of Health Sciences Bagcilar Traning and Research Hospital, İstanbul, Turkey.
| | - Özben Yalçın
- Department of Pathology, University of Health Sciences Prof. Dr. Cemil Taşcıoğlu City Hospital, İstanbul, Turkey
| |
Collapse
|
2
|
Tang CY, Lin YT, Yeh YC, Chung SY, Chang YC, Hung YP, Chen SC, Chen MH, Chiang NJ. The correlation between LAG-3 expression and the efficacy of chemoimmunotherapy in advanced biliary tract cancer. Cancer Immunol Immunother 2025; 74:41. [PMID: 39751894 PMCID: PMC11699023 DOI: 10.1007/s00262-024-03878-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 10/30/2024] [Indexed: 01/04/2025]
Abstract
In our previous phase II T1219 trial for advanced biliary tract cancer (ABTC), the combination of nivolumab with modified gemcitabine and S-1 exhibited promising efficacy, while the programmed-death-ligand-1 (PD-L1) expression did not predict chemoimmunotherapy efficacy. Lymphocyte-activation-gene-3 (LAG-3), a negative immune checkpoint, is frequently co-expressed with PD-L1. This study assessed the predictive value of LAG-3 expression in ABTC patients who received chemoimmunotherapy. We analyzed 44 formalin-fixed ABTC samples using immunohistochemical staining for PD-L1 and LAG-3 and correlated them with the clinical efficacy of chemoimmunotherapy. Digital spatial profiling was conducted in selected regions of interest to examine immune cell infiltration and checkpoint expression in six cases. Three public BTC datasets were used for analysis: TCGA-CHOL, GSE32225, and GSE132305. LAG-3 positivity was observed in 38.6% of the ABTC samples and was significantly correlated with PD-L1 positivity (P < 0.001). The objective response rate (ORR) was significantly higher in LAG-3-positive tumors than in LAG-3-negative tumors (70.6% vs. 33.3%, P = 0.029). The LAG-3 expression level was associated with an increased ORR (33%, 58%, and 100% for LAG-3 < 1%, 1-9%, and ≥ 10%, respectively; P = 0.018) and a deeper therapeutic response (20.1%, 38.6%, and 57.6% for the same respective groups; P = 0.04). LAG-3 expression is positively correlated with the expression of numerous immune checkpoints. Enrichment of CD8+ T cells was observed in LAG-3-positive BTC, indicating that LAG-3 expression may serve as a biomarker for identifying immune-inflamed tumors and predicting the therapeutic response to chemoimmunotherapy in ABTC.
Collapse
Affiliation(s)
- Cheng-Yu Tang
- Division of Medical Oncology, Department of Oncology, Taipei Veterans General Hospital, No. 201, Sec. 2, Shipai Road, Beitou District, Taipei, 112201, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yi-Ting Lin
- Division of Medical Oncology, Department of Oncology, Taipei Veterans General Hospital, No. 201, Sec. 2, Shipai Road, Beitou District, Taipei, 112201, Taiwan
| | - Yi-Chen Yeh
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Pathology and Laboratory Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- Institute of Biomedical Informatics, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Shin-Yi Chung
- Division of Medical Oncology, Department of Oncology, Taipei Veterans General Hospital, No. 201, Sec. 2, Shipai Road, Beitou District, Taipei, 112201, Taiwan
| | - Yu-Chan Chang
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yi-Ping Hung
- Division of Medical Oncology, Department of Oncology, Taipei Veterans General Hospital, No. 201, Sec. 2, Shipai Road, Beitou District, Taipei, 112201, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - San-Chi Chen
- Division of Medical Oncology, Department of Oncology, Taipei Veterans General Hospital, No. 201, Sec. 2, Shipai Road, Beitou District, Taipei, 112201, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Ming-Huang Chen
- Division of Medical Oncology, Department of Oncology, Taipei Veterans General Hospital, No. 201, Sec. 2, Shipai Road, Beitou District, Taipei, 112201, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Nai-Jung Chiang
- Division of Medical Oncology, Department of Oncology, Taipei Veterans General Hospital, No. 201, Sec. 2, Shipai Road, Beitou District, Taipei, 112201, Taiwan.
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.
- National Institute of Cancer Research, National Health Research Institutes, Tainan, Taiwan.
| |
Collapse
|
3
|
Dong C, Zhao Y, Han Y, Li M, Wang G. Targeting glutamine metabolism crosstalk with tumor immune response. Biochim Biophys Acta Rev Cancer 2024:189257. [PMID: 39746457 DOI: 10.1016/j.bbcan.2024.189257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 12/23/2024] [Accepted: 12/29/2024] [Indexed: 01/04/2025]
Abstract
Glutamine, akin to glucose, is a fundamental nutrient for human physiology. Tumor progression is often accompanied by elevated glutamine consumption, resulting in a disrupted nutritional balance and metabolic reprogramming within the tumor microenvironment. Furthermore, immune cells, which depend on glutamine for metabolic support, may experience functional impairments and dysregulation. Although the role of glutamine in tumors has been extensively studied, the specific impact of glutamine competition on immune responses, as well as the precise cellular alterations within immune cells, remains incompletely understood. In this review, we summarize the consequences of glutamine deprivation induced by tumor-driven glutamine uptake on immune cells, assessing the underlying mechanisms from the perspective of various components of the immune microenvironment. Additionally, we discuss the potential synergistic effects of glutamine supplementation and immunotherapy, offering insights into future research directions. This review provides compelling evidence for the integration of glutamine metabolism and immunotherapy as a promising strategy in cancer therapy.
Collapse
Affiliation(s)
- Chenshuang Dong
- Key Laboratory of Cell Biology, Department of Cell Biology, Ministry of Public Health and Key Laboratory of Medical Cell Biology, Ministry of Education, School of Life Sciences, China Medical University, Shenyang, Liaoning 110122, China
| | - Yan Zhao
- Department of Breast Surgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Yecheng Han
- Key Laboratory of Cell Biology, Department of Cell Biology, Ministry of Public Health and Key Laboratory of Medical Cell Biology, Ministry of Education, School of Life Sciences, China Medical University, Shenyang, Liaoning 110122, China
| | - Ming Li
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China.
| | - Guiling Wang
- Key Laboratory of Cell Biology, Department of Cell Biology, Ministry of Public Health and Key Laboratory of Medical Cell Biology, Ministry of Education, School of Life Sciences, China Medical University, Shenyang, Liaoning 110122, China.
| |
Collapse
|
4
|
Arafat Hossain M. A comprehensive review of immune checkpoint inhibitors for cancer treatment. Int Immunopharmacol 2024; 143:113365. [PMID: 39447408 DOI: 10.1016/j.intimp.2024.113365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 09/28/2024] [Accepted: 10/05/2024] [Indexed: 10/26/2024]
Abstract
Immunology-based therapies are emerging as an effective cancer treatment, using the body's immune system to target tumors. Immune checkpoints, which regulate immune responses to prevent tissue damage and autoimmunity, are often exploited by cancer cells to avoid destruction. The discovery of checkpoint proteins like PD-1/PD-L1 and CTLA-4 was pivotal in developing cancer immunotherapy. Immune checkpoint inhibitors (ICIs) have shown great success, with FDA-approved drugs like PD-1 inhibitors (Nivolumab, Pembrolizumab, Cemiplimab), PD-L1 inhibitors (Atezolizumab, Durvalumab, Avelumab), and CTLA-4 inhibitors (Ipilimumab, Tremelimumab), alongside LAG-3 inhibitor Relatlimab. Research continues on new checkpoints like TIM-3, VISTA, B7-H3, BTLA, and TIGIT. Biomarkers like PDL-1 expression, tumor mutation burden, interferon-γ presence, microbiome composition, and extracellular matrix characteristics play a crucial role in predicting responses to immunotherapy with checkpoint inhibitors. Despite their effectiveness, not all patients experience the same level of benefit, and organ-specific immune-related adverse events (irAEs) such as rash or itching, colitis, diarrhea, hyperthyroidism, and hypothyroidism may occur. Given the rapid advancements in this field and the variability in patient outcomes, there is an urgent need for a comprehensive review that consolidates the latest findings on immune checkpoint inhibitors, covering their clinical status, biomarkers, resistance mechanisms, strategies to overcome resistance, and associated adverse effects. This review aims to fill this gap by providing an analysis of the current clinical status of ICIs, emerging biomarkers, mechanisms of resistance, strategies to enhance therapeutic efficacy, and assessment of adverse effects. This review is crucial to furthering our understanding of ICIs and optimizing their application in cancer therapy.
Collapse
Affiliation(s)
- Md Arafat Hossain
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh.
| |
Collapse
|
5
|
Fayyaz A, Haqqi A, Khan R, Irfan M, Khan K, Reiner Ž, Sharifi-Rad J, Calina D. Revolutionizing cancer treatment: the rise of personalized immunotherapies. Discov Oncol 2024; 15:756. [PMID: 39692978 DOI: 10.1007/s12672-024-01638-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Accepted: 11/26/2024] [Indexed: 12/19/2024] Open
Abstract
Interest in biological therapy for cancer has surged due to its precise targeting of cancer cells and minimized impact on surrounding healthy tissues. This review discusses various biological cancer therapies, highlighting advanced alternatives over conventional chemotherapy alone. It explores DNA and RNA-based vaccines, T-cell modifications, adoptive cell transfer, CAR T cell therapy, angiogenesis inhibitors, and the combination of immunotherapy with chemotherapy, offering a holistic view of the potential in cancer treatment. Additionally, it discusses the role of nanotechnology in increasing the efficacy of cancer-targeting drugs, as well as cytokine and immunoconjugate therapies for bolstering immune system effectiveness against neoplastic cells. The potential of gene potential for precise targeting of cancer-linked genes and the application of oncolytic viruses against virus-associated cancers are also discussed. The review identifies significant advancements in the targeted treatment of cancer by biological methods. It acknowledges the challenges, including drug resistance and the need for high specificity in certain therapies, while also highlighting the effectiveness of cancer vaccines, modified T-cells, and oncolytic viruses. Biological therapies are a promising frontier in cancer treatment, offering the potential for more personalized and effective therapeutic strategies. Despite existing challenges, ongoing research and clinical trials are fundamental for overcoming current limitations and enhancing the efficacy of biological therapies in cancer care.
Collapse
Affiliation(s)
- Amna Fayyaz
- Atta-Ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Aleena Haqqi
- School of Medical Laboratory Technology, Faculty of Allied Health Sciences, Minhaj University Lahore (MUL), Lahore, 54000, Pakistan
| | - Rashid Khan
- Department of Pharmacy, Punjab University College of Pharmacy University of Punjab Lahore, Lahore, 54000, Pakistan
| | - Muhammad Irfan
- Atta-Ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Khushbukhat Khan
- Cancer Clinical Research Unit, Trials360, Lahore, 54000, Pakistan.
| | - Željko Reiner
- Department for Metabolic Diseases, University Hospital Center Zagreb, Zagreb, Croatia
- Polish Mother's Memorial Hospital Research Institute, Lodz, Poland
| | - Javad Sharifi-Rad
- Universidad Espíritu Santo, Samborondón, 092301, Ecuador.
- Centro de Estudios Tecnológicos, Universitarios del Golfo, Veracruz, Mexico.
- Department of Medicine, College of Medicine, Korea University, Seoul, 02841, Republic of Korea.
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, 200349, Craiova, Romania.
| |
Collapse
|
6
|
Wu R, Zeng M, Zhang Y, He J. LAG3 immune inhibitors: a novel strategy for melanoma treatment. Front Oncol 2024; 14:1514578. [PMID: 39743998 PMCID: PMC11688305 DOI: 10.3389/fonc.2024.1514578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 11/27/2024] [Indexed: 01/04/2025] Open
Abstract
Melanoma, a highly aggressive skin cancer, poses significant challenges in treatment, particularly for advanced or metastatic cases. While immunotherapy, especially immune checkpoint inhibitors (ICIs) targeting CTLA-4 and PD-1, has transformed melanoma management, many patients experience limited responses or develop resistance, highlighting the need for new therapeutic strategies. Lymphocyte activation gene 3 (LAG-3) has emerged as a promising target in cancer immunotherapy. LAG-3 inhibitors have shown potential in restoring T cell functions and enhancing anti-tumor immunity, particularly when used in combination with existing ICIs. This review discusses the latest advancements in LAG-3 inhibition for advanced melanoma, emphasizing its role in overcoming resistance and improving patient outcomes.
Collapse
Affiliation(s)
- Renzheng Wu
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, China
| | - Mingtang Zeng
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, China
| | - Yuchen Zhang
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, China
| | - Jianping He
- Division of Abdominal Tumor Multimodality Treatment, Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
7
|
Wang B, Zhang B, Wu M, Xu T. Unlocking therapeutic potential: Targeting lymphocyte activation Gene-3 (LAG-3) with fibrinogen-like protein 1 (FGL1) in systemic lupus erythematosus. J Transl Autoimmun 2024; 9:100249. [PMID: 39228513 PMCID: PMC11369448 DOI: 10.1016/j.jtauto.2024.100249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 07/21/2024] [Accepted: 07/26/2024] [Indexed: 09/05/2024] Open
Abstract
Systemic lupus erythematosus (SLE) represents an autoimmune disorder that affects multiple systems. In the treatment of this condition, the focus primarily revolves around inflammation suppression and immunosuppression. Consequently, targeted therapy has emerged as a prevailing approach. Currently, the quest for highly sensitive and specifically effective targets has gained significant momentum in the context of SLE treatment. Lymphocyte activation gene-3 (LAG-3) stands out as a crucial inhibitory receptor that binds to pMHC-II, thereby effectively dampening autoimmune responses. Fibrinogen-like protein 1 (FGL1) serves as the principal immunosuppressive ligand for LAG-3, and their combined action demonstrates a potent immunosuppressive effect. This intricate mechanism paves the way for potential SLE treatment by targeting LAG-3 with FGL1. This work provides a comprehensive summary of LAG-3's role in the pathogenesis of SLE and elucidates the feasibility of leveraging FGL1 as a therapeutic approach for SLE management. It introduces a novel therapeutic target and opens up new avenues of therapeutic consideration in the clinical context of SLE treatment.
Collapse
Affiliation(s)
- Bing Wang
- Department of Rheumatology and Immunology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu Province, China
| | - Biqing Zhang
- Department of Rheumatology and Immunology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu Province, China
| | - Min Wu
- Department of Rheumatology and Immunology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu Province, China
| | - Ting Xu
- Department of Rheumatology and Immunology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu Province, China
| |
Collapse
|
8
|
Leitner J, Aigner‐Radakovics K, Steinberger P. LAG-3-An incompletely understood target in cancer therapy. FASEB J 2024; 38:e70190. [PMID: 39560030 PMCID: PMC11698013 DOI: 10.1096/fj.202401639r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 10/23/2024] [Accepted: 11/05/2024] [Indexed: 11/20/2024]
Abstract
LAG-3 is a member of the immunoglobulin superfamily expressed on activated T cells, but also on other immune cells. It has significant homology to CD4. Both molecules have four extracellular Ig-like domains with similar structural motifs but the sequence identity between LAG-3 and CD4 is low. Furthermore, unlike CD4 LAG-3 restrains T cell responses and antibodies targeting this receptor are emerging drugs in cancer immunotherapy. A combination of LAG-3 and PD-1 antibodies has already been approved for the treatment of metastatic melanoma. Despite this success, its biology is still not well understood. Here we summarize the current knowledge on expression, ligands, and function of LAG-3. We point to the differences between LAG-3 and other inhibitory immune checkpoints and describe obstacles to study the role of this receptor in T cell activation processes. Finally, we discuss future directions for scientific efforts to come to a more complete understanding of the biology of this eminent immune checkpoint.
Collapse
Affiliation(s)
- Judith Leitner
- Division for Immune Receptors and T Cell Activation, Institute of Immunology, Center for Pathophysiology, Infectiology and ImmunologyMedical University of ViennaViennaAustria
| | - Katharina Aigner‐Radakovics
- Division for Immune Receptors and T Cell Activation, Institute of Immunology, Center for Pathophysiology, Infectiology and ImmunologyMedical University of ViennaViennaAustria
| | - Peter Steinberger
- Division for Immune Receptors and T Cell Activation, Institute of Immunology, Center for Pathophysiology, Infectiology and ImmunologyMedical University of ViennaViennaAustria
| |
Collapse
|
9
|
Ren K, Hamdy H, Meyiah A, Elkord E. Lymphocyte-activation gene 3 in cancer immunotherapy: function, prognostic biomarker and therapeutic potentials. Front Immunol 2024; 15:1501613. [PMID: 39660130 PMCID: PMC11628531 DOI: 10.3389/fimmu.2024.1501613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 11/07/2024] [Indexed: 12/12/2024] Open
Abstract
Lymphocyte-activation gene 3 (LAG-3) has emerged as a key immune checkpoint regulating immune responses in the context of cancer. The inhibitory effect of LAG-3-expressing T cells contributes to suppressing anti-tumor immunity and promoting tumor progression. This review discusses the function of LAG-3 in immune suppression, its interactions with ligands, and its potential as a prognostic biomarker for cancers. We also explore therapeutic strategies targeting LAG-3, including monoclonal antibodies, small molecule inhibitors, and CAR T cells. This review summarizes the current preclinical and clinical studies on LAG-3, highlighting the potential of therapeutic regimens targeting LAG-3 to enhance antitumor immunity and improve patients' outcomes. Further studies are needed to fully elucidate the mechanism of action of LAG-3 and optimize its application in tumor therapy.
Collapse
Affiliation(s)
- Ke Ren
- Department of Biosciences and Bioinformatics, School of Science, Suzhou Municipal Key Lab in Biomedical Sciences and Translational Immunology, Xi’an Jiaotong-Liverpool University, Suzhou, Jiangsu, China
| | - Hayam Hamdy
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, New Valley University, New Valley, Egypt
| | - Abdo Meyiah
- Department of Biosciences and Bioinformatics, School of Science, Suzhou Municipal Key Lab in Biomedical Sciences and Translational Immunology, Xi’an Jiaotong-Liverpool University, Suzhou, Jiangsu, China
| | - Eyad Elkord
- Department of Biosciences and Bioinformatics, School of Science, Suzhou Municipal Key Lab in Biomedical Sciences and Translational Immunology, Xi’an Jiaotong-Liverpool University, Suzhou, Jiangsu, China
- College of Health Sciences, Abu Dhabi University, Abu Dhabi, United Arab Emirates
- Biomedical Research Center, School of Science, Engineering and Environment, University of Salford, Manchester, United Kingdom
| |
Collapse
|
10
|
Zhang A, Fan T, Liu Y, Yu G, Li C, Jiang Z. Regulatory T cells in immune checkpoint blockade antitumor therapy. Mol Cancer 2024; 23:251. [PMID: 39516941 PMCID: PMC11545879 DOI: 10.1186/s12943-024-02156-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 10/14/2024] [Indexed: 11/16/2024] Open
Abstract
Regulatory T cells (Tregs), an essential component of the human immune system, are a heterogeneous group of T lymphocytes with the ability to suppress immune responses and maintain immune homeostasis. Recent evidence indicates that Tregs may impair antitumor immunity and facilitate cancer progression by weakening functions of effector T cells (Teffs). Consequently, targeting Tregs to eliminate them from tumor microenvironments to improve Teffs' activity could emerge as an effective strategy for cancer immunotherapy. This review outlines the biology of Tregs, detailing their origins, classification, and crucial markers. Our focus lies on the complex role of Tregs in cancer's development, progression and treatment, particularly on their suppressive role upon antitumor responses via multiple mechanisms. We delve into Tregs' involvement in immune checkpoint blockade (ICB) therapy, their dual effect on cancer immunotherapy and their potential biomarkers for ICB therapy effectiveness. We also summarize advances in the therapies that adjust Tregs to optimize ICB therapy, which may be crucial for devising innovative cancer treatment strategies.
Collapse
Affiliation(s)
- An Zhang
- Department of Colorectal Surgery, National Clinical Research Center for Cancer/Cancer Hospital, National Cancer Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Tao Fan
- Department of Thoracic Surgery, National Clinical Research Center for Cancer/Cancer Hospital, National Cancer Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yixiao Liu
- Department of Colorectal Surgery, National Clinical Research Center for Cancer/Cancer Hospital, National Cancer Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Guanhua Yu
- Department of Colorectal Surgery, National Clinical Research Center for Cancer/Cancer Hospital, National Cancer Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Chunxiang Li
- Department of Thoracic Surgery, National Clinical Research Center for Cancer/Cancer Hospital, National Cancer Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Zheng Jiang
- Department of Colorectal Surgery, National Clinical Research Center for Cancer/Cancer Hospital, National Cancer Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| |
Collapse
|
11
|
Chick RC, Pawlik TM. Updates in Immunotherapy for Pancreatic Cancer. J Clin Med 2024; 13:6419. [PMID: 39518557 PMCID: PMC11546190 DOI: 10.3390/jcm13216419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/20/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is an aggressive malignancy with limited effective therapeutic options. Due to a variety of cancer cell-intrinsic factors, including KRAS mutations, chemokine production, and other mechanisms that elicit a dysregulated host immune response, PDAC is often characterized by poor immune infiltration and an immune-privileged fibrotic stroma. As understanding of the tumor microenvironment (TME) evolves, novel therapies are being developed to target immunosuppressive mechanisms. Immune checkpoint inhibitors have limited efficacy when used alone or with radiation. Combinations of immune therapies, along with chemotherapy or chemoradiation, have demonstrated promise in preclinical and early clinical trials. Despite dismal response rates for immunotherapy for metastatic PDAC, response rates with neoadjuvant immunotherapy are somewhat encouraging, suggesting that incorporation of immunotherapy in the treatment of PDAC should be earlier in the disease course. Precision therapy for PDAC may be informed by advances in transcriptomic sequencing that can identify immunophenotypes, allowing for more appropriate treatment selection for each individual patient. Personalized and antigen-specific therapies are an increasing topic of interest, including adjuvant immunotherapy using personalized mRNA vaccines to prevent recurrence. Further development of personalized immune therapies will need to balance precision with generalizability and cost.
Collapse
Affiliation(s)
| | - Timothy M. Pawlik
- Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA;
| |
Collapse
|
12
|
Liu Y, Yao Y, Yang X, Wei M, Lu B, Dong K, Lyu D, Li Y, Guan W, Huang R, Xu G, Pan X. Lymphocyte activation gene 3 served as a potential prognostic and immunological biomarker across various cancer types: a clinical and pan-cancer analysis. Clin Transl Immunology 2024; 13:e70009. [PMID: 39372371 PMCID: PMC11450455 DOI: 10.1002/cti2.70009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 08/29/2024] [Accepted: 09/19/2024] [Indexed: 10/08/2024] Open
Abstract
Objectives Lymphocyte activation gene 3 (LAG3), an inhibitory receptor in T-cell activation, is a negative prognostic factor. However, its impact on tumours has yet to be comprehensively elucidated on a pan-cancer scale. Thus, we aim to reveal its role at the pan-cancer level. Methods We performed IHC staining on a retrospective cohort of 370 patients. Then we assessed the prognostic effect of LAG3 using Kaplan-Meier survival analysis and multivariate Cox regression analysis. In pan-cancer analysis, we constructed competing endogenous RNA and protein-protein interaction networks, conducted gene set enrichment analysis and identified correlations between LAG3 gene expression and various factors, including clinical characteristics, tumour purity, mutations, tumour immunity and drug sensitivity across 33 cancer types. Results LAG3 was expressed higher in normal kidney tissues than in tumours. A high level of LAG3 gene expression was an independent prognostic factor for OS (HR = 6.60, 95% CI = 2.43-17.90, P < 0.001) and PFS (HR = 3.44, 95% CI = 1.68-7.10, P < 0.001). In pan-cancer analysis, LAG3 exhibited robust correlations with survival and tumour stages in various cancers. Moreover, LAG3 was strongly associated with immune-related genes, proteins and signalling pathways. LAG3 gene expression was positively associated with increased infiltration of activated immune cells and decreased infiltration of several resting cells. LAG3 gene expression was associated with tumour mutation burden and microsatellite instability in multiple cancers. Conclusion High LAG3 gene expression was an independent risk factor in kidney neoplasms. It also functioned as a biomarker for prognosis, TIME and immunotherapy efficacy in the pan-cancer dimension.
Collapse
Affiliation(s)
- Yifan Liu
- Department of UrologyXinhua Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Yuntao Yao
- Department of UrologyXinhua Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Xinyue Yang
- Department of UrologyXinhua Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Maodong Wei
- Department of UrologyXinhua Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Bingnan Lu
- Department of UrologyXinhua Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Keqing Dong
- Department of UrologyXinhua Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Donghao Lyu
- Department of UrologyXinhua Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Yuanan Li
- Department of UrologyXinhua Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Wenbin Guan
- Department of PathologyXinhua Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Runzhi Huang
- Department of Burn SurgeryThe First Affiliated Hospital of Naval Medical UniversityShanghaiChina
| | - Guofeng Xu
- Department of UrologyXinhua Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Xiuwu Pan
- Department of UrologyXinhua Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| |
Collapse
|
13
|
Shen S, Hong Y, Huang J, Qu X, Sooranna SR, Lu S, Li T, Niu B. Targeting PD-1/PD-L1 in tumor immunotherapy: Mechanisms and interactions with host growth regulatory pathways. Cytokine Growth Factor Rev 2024; 79:16-28. [PMID: 39179486 DOI: 10.1016/j.cytogfr.2024.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 08/06/2024] [Accepted: 08/07/2024] [Indexed: 08/26/2024]
Abstract
Tumor immunotherapy has garnered considerable attention, emerging as a new standard of care in cancer treatment. The conventional targets, such as VEGF and EGFR, have been extended to others including BRAF and PD-1/PD-L1, which have shown significant potential in recent cancer treatments. This review aims to succinctly overview the impact and mechanisms of therapies that modulate PD-1/PD-L1 expression by targeting VEGF, EGFR, LAG-3, CTLA-4 and BRAF. We investigated how modulation of PD-1/PD-L1 expression impacts growth factor signaling, shedding light on the interplay between immunomodulatory pathways and growth factor networks within the tumor microenvironment. By elucidating these interactions, we aim to provide insights into novel potential synergistic therapeutic strategies for cancer immunotherapy.
Collapse
Affiliation(s)
- Songyu Shen
- School of life Science, Shanghai University, 99 Shangda Road, 200444, China
| | - Yihan Hong
- School of life Science, Shanghai University, 99 Shangda Road, 200444, China
| | - Jiajun Huang
- School of life Science, Shanghai University, 99 Shangda Road, 200444, China
| | - Xiaosheng Qu
- Guangxi Botanical Garden of Medicinal Plants, Nanning, Guangxi 530023, China
| | - Suren Rao Sooranna
- Department of Metabolism, Digestion and Reproduction, Imperial College London, 369 Fulham Road, London SW10 9NH, United Kingdom
| | - Sheng Lu
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| | - Tian Li
- School of Basic Medicine, Fourth Military Medical University, 169 Changle West Rd, Xi'an 710032, China.
| | - Bing Niu
- School of life Science, Shanghai University, 99 Shangda Road, 200444, China.
| |
Collapse
|
14
|
Fishman D, Choe J. Immunotherapy in Head and Neck Cancer: Treatment Paradigms, Future Directions, and Questions. Surg Oncol Clin N Am 2024; 33:605-615. [PMID: 39244283 DOI: 10.1016/j.soc.2024.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2024]
Abstract
The use of immunotherapy in head and neck squamous cell carcinoma (HNSCC)has increased treatment options for patients who may not be candidates for traditional cytotoxic chemotherapy. Recent studies have resulted in the approval of immunotherapy in the first and second line setting for recurrent/metastatic disease. Various combinations of immunotherapy with targeted therapies, monoclonal antibodies, or human papilloma virus vaccines are also being studied in recurrent/metastatic disease. Currently, programmed death-ligand 1 status is the main marker utilized to assess potential response to immunotherapy. Studies are focused on identifying additional markers, which may help better predict response to immunotherapy for HNSCC patients.
Collapse
Affiliation(s)
- Danielle Fishman
- Department of Medicine, Vanderbilt University Medical Center, 1161 21st Avenue S, Nashville, TN 37232, USA; Division of Hematology/Oncology, Department of Medicine, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, 2220 Pierce Avenue, PRB 790, Nashville, TN 37232, USA
| | - Jennifer Choe
- Division of Hematology/Oncology, Department of Medicine, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, 2220 Pierce Avenue, PRB 790, Nashville, TN 37232, USA.
| |
Collapse
|
15
|
Yadav R, Khatkar R, Yap KCH, Kang CYH, Lyu J, Singh RK, Mandal S, Mohanta A, Lam HY, Okina E, Kumar RR, Uttam V, Sharma U, Jain M, Prakash H, Tuli HS, Kumar AP, Jain A. The miRNA and PD-1/PD-L1 signaling axis: an arsenal of immunotherapeutic targets against lung cancer. Cell Death Discov 2024; 10:414. [PMID: 39343796 PMCID: PMC11439964 DOI: 10.1038/s41420-024-02182-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 08/21/2024] [Accepted: 09/18/2024] [Indexed: 10/01/2024] Open
Abstract
Lung cancer is a severe challenge to the health care system with intrinsic resistance to first and second-line chemo/radiotherapies. In view of the sterile environment of lung cancer, several immunotherapeutic drugs including nivolumab, pembrolizumab, atezolizumab, and durvalumab are currently being used in clinics globally with the intention of releasing exhausted T-cells back against refractory tumor cells. Immunotherapies have a limited response rate and may cause immune-related adverse events (irAEs) in some patients. Hence, a deeper understanding of regulating immune checkpoint interactions could significantly enhance lung cancer treatments. In this review, we explore the role of miRNAs in modulating immunogenic responses against tumors. We discuss various aspects of how manipulating these checkpoints can bias the immune system's response against lung cancer. Specifically, we examine how altering the miRNA profile can impact the activity of various immune checkpoint inhibitors, focusing on the PD-1/PD-L1 pathway within the complex landscape of lung cancer. We believe that a clear understanding of the host's miRNA profile can influence the efficacy of checkpoint inhibitors and significantly contribute to existing immunotherapies for lung cancer patients. Additionally, we discuss ongoing clinical trials involving immunotherapeutic drugs, both as standalone treatments and in combination with other therapies, intending to advance the development of immunotherapy for lung cancer.
Collapse
Affiliation(s)
- Ritu Yadav
- Non-Coding RNA and Cancer Biology Laboratory, Department of Zoology, Central University of Punjab, Bathinda, Punjab, India
| | - Rinku Khatkar
- Non-Coding RNA and Cancer Biology Laboratory, Department of Zoology, Central University of Punjab, Bathinda, Punjab, India
| | - Kenneth C-H Yap
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Chloe Yun-Hui Kang
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Juncheng Lyu
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Rahul Kumar Singh
- Non-Coding RNA and Cancer Biology Laboratory, Department of Zoology, Central University of Punjab, Bathinda, Punjab, India
| | - Surojit Mandal
- Non-Coding RNA and Cancer Biology Laboratory, Department of Zoology, Central University of Punjab, Bathinda, Punjab, India
| | - Adrija Mohanta
- Non-Coding RNA and Cancer Biology Laboratory, Department of Zoology, Central University of Punjab, Bathinda, Punjab, India
| | - Hiu Yan Lam
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Elena Okina
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Rajiv Ranjan Kumar
- Non-Coding RNA and Cancer Biology Laboratory, Department of Zoology, Central University of Punjab, Bathinda, Punjab, India
| | - Vivek Uttam
- Non-Coding RNA and Cancer Biology Laboratory, Department of Zoology, Central University of Punjab, Bathinda, Punjab, India
| | - Uttam Sharma
- Non-Coding RNA and Cancer Biology Laboratory, Department of Zoology, Central University of Punjab, Bathinda, Punjab, India
| | - Manju Jain
- Department of Biochemistry, Central University of Punjab, Bathinda, Punjab, India
| | | | | | - Alan Prem Kumar
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
- NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| | - Aklank Jain
- Non-Coding RNA and Cancer Biology Laboratory, Department of Zoology, Central University of Punjab, Bathinda, Punjab, India.
| |
Collapse
|
16
|
Principe N, Phung AL, Stevens KLP, Elaskalani O, Wylie B, Tilsed CM, Sheikh F, Orozco Morales ML, Kidman J, Marcq E, Fisher SA, Nowak AK, McDonnell AM, Lesterhuis WJ, Chee J. Anti-metabolite chemotherapy increases LAG-3 expressing tumor-infiltrating lymphocytes which can be targeted by combination immune checkpoint blockade. J Immunother Cancer 2024; 12:e008568. [PMID: 39343508 PMCID: PMC11440230 DOI: 10.1136/jitc-2023-008568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 09/08/2024] [Indexed: 10/01/2024] Open
Abstract
BACKGROUND Antibodies that target immune checkpoints such as cytotoxic T lymphocyte antigen 4 (CTLA-4), programmed cell death protein/ligand 1 (PD-1/PD-L1) are approved for treatment of multiple cancer types. Chemotherapy is often administered with immune checkpoint blockade (ICB) therapies that target CTLA-4 and/or PD-(L)1. ICB targeting other immune checkpoints such as lymphocyte activating gene-3 (LAG-3) has the potential to improve antitumor responses when combined with chemotherapy. Response to anti-PD-1 ICB is dependent on progenitor exhausted CD8+ T cells (TPEX) in the tumor, but it is unclear how chemotherapy alters TPEX proportions and phenotype. METHODS Here we investigated whether sequential chemotherapy altered TPEX frequency and immune checkpoint expression in multiple murine tumor models. RESULTS Two doses of two different anti-metabolite chemotherapies increased tumor infiltrating CD4+, and CD8+ TPEX expressing LAG-3 in multiple mouse models, which was not restricted to tumor antigen specific CD8+ T cells. To determine if LAG-3+tumor infiltrating lymphocytes (TILs) could be targeted to improve tumor control, we administered anti-LAG-3 and anti-PD-1 ICB after two doses of chemotherapy and found combination therapy generated robust antitumor responses compared with each agent alone. Both anti-LAG-3 and anti-PD-1 ICB with chemotherapy were required for the complete tumor regression observed. CONCLUSIONS Changes in immune checkpoint expression on TILs during chemotherapy administration informs selection of ICB therapies to combine with.
Collapse
Affiliation(s)
- Nicola Principe
- Institute for Respiratory Health, National Centre for Asbestos Related Diseases, The University of Western Australia, Perth, Western Australia, Australia
- School of Biomedical Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Amber-Lee Phung
- Institute for Respiratory Health, National Centre for Asbestos Related Diseases, The University of Western Australia, Perth, Western Australia, Australia
| | - Kofi L P Stevens
- Institute for Respiratory Health, National Centre for Asbestos Related Diseases, The University of Western Australia, Perth, Western Australia, Australia
| | - Omar Elaskalani
- Telethon Kids Institute, Nedlands, Western Australia, Australia
| | - Ben Wylie
- Telethon Kids Institute, Nedlands, Western Australia, Australia
| | - Caitlin M Tilsed
- Perelman School of Medicine, Pulmonary, Allergy and Critical Care Division, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Fezaan Sheikh
- Institute for Respiratory Health, National Centre for Asbestos Related Diseases, The University of Western Australia, Perth, Western Australia, Australia
- School of Biomedical Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - M Lizeth Orozco Morales
- Institute for Respiratory Health, National Centre for Asbestos Related Diseases, The University of Western Australia, Perth, Western Australia, Australia
- Telethon Kids Institute, Nedlands, Western Australia, Australia
| | - Joel Kidman
- Institute for Respiratory Health, National Centre for Asbestos Related Diseases, The University of Western Australia, Perth, Western Australia, Australia
- School of Biomedical Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Elly Marcq
- Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), University of Antwerp, Antwerpen, Belgium
- Brussels Center for Immunology, Vrije Universiteit Brussel, Brussels, Belgium
- Lab of Dendritic Cell Biology and Cancer Immunotherapy, VIB Center for Inflammation Research, Brussels, Belgium
| | - Scott A Fisher
- Institute for Respiratory Health, National Centre for Asbestos Related Diseases, The University of Western Australia, Perth, Western Australia, Australia
- School of Biomedical Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Anna K Nowak
- Institute for Respiratory Health, National Centre for Asbestos Related Diseases, The University of Western Australia, Perth, Western Australia, Australia
- Medical School, The University of Western Australia, Crawley, Western Australia, Australia
| | | | | | - Jonathan Chee
- Institute for Respiratory Health, National Centre for Asbestos Related Diseases, The University of Western Australia, Perth, Western Australia, Australia
- School of Biomedical Sciences, The University of Western Australia, Perth, Western Australia, Australia
| |
Collapse
|
17
|
Hu Y, Zhang Y, Shi F, Yang R, Yan J, Han T, Guan L. Reversal of T-cell exhaustion: Mechanisms and synergistic approaches. Int Immunopharmacol 2024; 138:112571. [PMID: 38941674 DOI: 10.1016/j.intimp.2024.112571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/21/2024] [Accepted: 06/24/2024] [Indexed: 06/30/2024]
Abstract
T cells suffer from long-term antigen stimulation and insufficient energy supply, leading to a decline in their effector functions, memory capabilities, and proliferative capacity, ultimately resulting in T cell exhaustion and an inability to perform normal immune functions in the tumor microenvironment. Therefore, exploring how to restore these exhausted T cells to a state with effector functions is of great significance. Exhausted T cells exhibit a spectrum of molecular alterations, such as heightened expression of inhibitory receptors, shifts in transcription factor profiles, and modifications across epigenetic, metabolic, and transcriptional landscapes. This review provides a comprehensive overview of various strategies to reverse T cell exhaustion, including immune checkpoint blockade, and explores the potential synergistic effects of combining multiple approaches to reverse T cell exhaustion. It offers new insights and methods for achieving more durable and effective reversal of T cell exhaustion.
Collapse
Affiliation(s)
- Yang Hu
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Yaqi Zhang
- Institutes of Health Central Plains, Xinxiang Medical University, Xinxiang 453003, China
| | - Fenfen Shi
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Ruihan Yang
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Jiayu Yan
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Tao Han
- Institutes of Health Central Plains, Xinxiang Medical University, Xinxiang 453003, China.
| | - Liping Guan
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China.
| |
Collapse
|
18
|
Reyes JGA, Ni D, Santner-Nanan B, Pinget GV, Kraftova L, Ashhurst TM, Marsh-Wakefield F, Wishart CL, Tan J, Hsu P, King NJC, Macia L, Nanan R. A unique human cord blood CD8 +CD45RA +CD27 +CD161 + T-cell subset identified by flow cytometric data analysis using Seurat. Immunology 2024; 173:106-124. [PMID: 38798051 DOI: 10.1111/imm.13803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 05/06/2024] [Indexed: 05/29/2024] Open
Abstract
Advances in single-cell level analytical techniques, especially cytometric approaches, have led to profound innovation in biomedical research, particularly in the field of clinical immunology. This has resulted in an expansion of high-dimensional data, posing great challenges for comprehensive and unbiased analysis. Conventional manual analysis is thus becoming untenable to handle these challenges. Furthermore, most newly developed computational methods lack flexibility and interoperability, hampering their accessibility and usability. Here, we adapted Seurat, an R package originally developed for single-cell RNA sequencing (scRNA-seq) analysis, for high-dimensional flow cytometric data analysis. Based on a 20-marker antibody panel and analyses of T-cell profiles in both adult blood and cord blood (CB), we showcased the robust capacity of Seurat in flow cytometric data analysis, which was further validated by Spectre, another high-dimensional cytometric data analysis package, and conventional manual analysis. Importantly, we identified a unique CD8+ T-cell population defined as CD8+CD45RA+CD27+CD161+ T cell that was predominantly present in CB. We characterised its IFN-γ-producing and potential cytotoxic properties using flow cytometry experiments and scRNA-seq analysis from a published dataset. Collectively, we identified a unique human CB CD8+CD45RA+CD27+CD161+ T-cell subset and demonstrated that Seurat, a widely used package for scRNA-seq analysis, possesses great potential to be repurposed for cytometric data analysis. This facilitates an unbiased and thorough interpretation of complicated high-dimensional data using a single analytical pipeline and opens a novel avenue for data-driven investigation in clinical immunology.
Collapse
Affiliation(s)
- Julen Gabirel Araneta Reyes
- Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia
- Nepean Hospital, Nepean Blue Mountains Local Health District, Penrith, New South Wales, Australia
- Nepean Clinical School, The University of Sydney, Sydney, New South Wales, Australia
| | - Duan Ni
- Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia
- Nepean Hospital, Nepean Blue Mountains Local Health District, Penrith, New South Wales, Australia
- Nepean Clinical School, The University of Sydney, Sydney, New South Wales, Australia
| | - Brigitte Santner-Nanan
- Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia
- Nepean Hospital, Nepean Blue Mountains Local Health District, Penrith, New South Wales, Australia
- Nepean Clinical School, The University of Sydney, Sydney, New South Wales, Australia
| | - Gabriela Veronica Pinget
- Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia
- Nepean Clinical School, The University of Sydney, Sydney, New South Wales, Australia
| | - Lucie Kraftova
- Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia
- Nepean Clinical School, The University of Sydney, Sydney, New South Wales, Australia
- Department of Microbiology, Faculty of Medicine, University Hospital in Pilsen, Charles University, Pilsen, Czech Republic
- Biomedical Center, Faculty of Medicine, Charles University, Pilsen, Czech Republic
| | - Thomas Myles Ashhurst
- Sydney Cytometry Core Research Facility, Charles Perkins Centre, The University of Sydney and Centenary Institute, Sydney, New South Wales, Australia
| | - Felix Marsh-Wakefield
- Liver Injury and Cancer Program, Centenary Institute, Sydney, New South Wales, Australia
- Human Cancer and Viral Immunology Laboratory, The University of Sydney, Sydney, New South Wales, Australia
| | - Claire Leana Wishart
- Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia
- Viral immunopathology Laboratory, Infection, Immunity and Inflammation Research Theme, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
- Ramaciotti Facility for Human System Biology, The University of Sydney and Centenary Institute, Sydney, New South Wales, Australia
| | - Jian Tan
- Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Peter Hsu
- Kids Research, The Children's Hospital at Westmead, Sydney, New South Wales, Australia
- Discipline of Child and Adolescent Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Nicholas Jonathan Cole King
- Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia
- Sydney Cytometry Core Research Facility, Charles Perkins Centre, The University of Sydney and Centenary Institute, Sydney, New South Wales, Australia
- Viral immunopathology Laboratory, Infection, Immunity and Inflammation Research Theme, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
- Ramaciotti Facility for Human System Biology, The University of Sydney and Centenary Institute, Sydney, New South Wales, Australia
- The University of Sydney Institute for Infectious Diseases, The University of Sydney, Sydney, New South Wales, Australia
- Sydney Nano, The University of Sydney, Sydney, New South Wales, Australia
| | - Laurence Macia
- Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia
- Sydney Cytometry Core Research Facility, Charles Perkins Centre, The University of Sydney and Centenary Institute, Sydney, New South Wales, Australia
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Ralph Nanan
- Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia
- Nepean Hospital, Nepean Blue Mountains Local Health District, Penrith, New South Wales, Australia
- Nepean Clinical School, The University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
19
|
Zhang W, Fu J, Du J, Liu X, Cheng J, Wei C, Xu Y, Fu J. A disintegrin and metalloproteinase domain 10 expression inhibition by the small molecules adenosine, cordycepin and N6, N6-dimethyladenosine and immune regulation in malignant cancers. Front Immunol 2024; 15:1434027. [PMID: 39211038 PMCID: PMC11357967 DOI: 10.3389/fimmu.2024.1434027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 07/29/2024] [Indexed: 09/04/2024] Open
Abstract
A disintegrin and metalloproteinase domain 10 (ADAM10), a member of the ADAM family, is a cellular surface protein with potential adhesion and protease/convertase functions. The expression regulations in cancers by natural products [adenosine (AD) and its analogs, cordycepin (CD), and N6, N6-dimethyladenosine (m6 2A)], and immune regulation are unclear. As results, AD, CD, and m6 2A inhibited ADAM10 expression in various cancer cell lines, indicating their roles in anti-cancer agents. Further molecular docking with ADAM10 protein found the binding energies of all docking groups were <-7 kcal/mol for all small-molecules (AD, CD and m6 2A), suggesting very good binding activities. In addition, analysis of the immunomodulatory roles in cancer showed that ADAM10 was negatively correlated with immunomodulatory genes such as CCL27, CCL14, CCL25, CXCR5, HLA-B, HLA-DOB1, LAG3, TNFRSF18, and TNFRSF4 in bladder urothelial carcinoma, thymoma, breast invasive carcinoma, TGCT, kidney renal papillary cell carcinoma, SKCM and thyroid carcinoma, indicating the immune-promoting roles for ADAM10. LAG3 mRNA levels were reduced by both AD and CD in vivo. ADAM10 is also negatively associated with tumor immunosuppression and interrelated with the immune infiltration of tumors. Overall, the present study determined ADAM10 expression by AD, CD and m6 2A, and in AD or CD/ADAM10/LAG3 signaling in cancers, and suggested a potential method for immunotherapy of cancers by targeting ADAM10 using the small molecules AD, CD and m6 2A.
Collapse
Affiliation(s)
- Wenqian Zhang
- Key Laboratory of Epigenetics and Oncology, The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, Sichuan, China
- Department of Rehabilitation Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
- State Key Laboratory of Quality Research in Chinese Medicine, Faculty of Chinese Medicine, Macau University of Science and Technology, Taipa, Macao SAR, China
| | - Jiewen Fu
- Key Laboratory of Epigenetics and Oncology, The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, Sichuan, China
| | - Jiaman Du
- Key Laboratory of Epigenetics and Oncology, The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, Sichuan, China
| | - Xiaoyan Liu
- Key Laboratory of Epigenetics and Oncology, The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, Sichuan, China
| | - Jingliang Cheng
- Key Laboratory of Epigenetics and Oncology, The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, Sichuan, China
| | - Chunli Wei
- Key Laboratory of Epigenetics and Oncology, The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, Sichuan, China
| | - Youhua Xu
- State Key Laboratory of Quality Research in Chinese Medicine, Faculty of Chinese Medicine, Macau University of Science and Technology, Taipa, Macao SAR, China
| | - Junjiang Fu
- Key Laboratory of Epigenetics and Oncology, The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, Sichuan, China
- State Key Laboratory of Quality Research in Chinese Medicine, Faculty of Chinese Medicine, Macau University of Science and Technology, Taipa, Macao SAR, China
| |
Collapse
|
20
|
Zhang R, Jiang Q, Zhuang Z, Zeng H, Li Y. A bibliometric analysis of drug resistance in immunotherapy for breast cancer: trends, themes, and research focus. Front Immunol 2024; 15:1452303. [PMID: 39188717 PMCID: PMC11345160 DOI: 10.3389/fimmu.2024.1452303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 07/24/2024] [Indexed: 08/28/2024] Open
Abstract
While breast cancer treatments have advanced significantly nowadays, yet metastatic, especially triple-negative breast cancer (TNBC), remains challenging with low survival. Cancer immunotherapy, a promising approach for HER2-positive and TNBC, still faces resistance hurdles. Recently, numerous studies have set their sights on the resistance of immunotherapy for breast cancer. Our study provides a thorough comprehension of the current research landscape, hotspots, and emerging breakthroughs in this critical area through a meticulous bibliometric analysis. As of March 26, 2024, a total of 1341 articles on immunology resistance in breast cancer have been gathered from Web of Science Core Collection, including 765 articles and 576 reviews. Bibliometrix, CiteSpace and VOSviewer software were utilized to examine publications and citations per year, prolific countries, contributive institutions, high-level journals and scholars, as well as highly cited articles, references and keywords. The research of immunotherapy resistance in breast cancer has witnessed a remarkable surge over the past seven years. The United States and China have made significant contributions, with Harvard Medical School being the most prolific institution and actively engaging in collaborations. The most contributive author is Curigliano, G from the European Institute of Oncology in Italy, while Wucherpfennig, K. W. from the Dana-Farber Cancer Institute in the USA, had the highest citations. Journals highly productive primarily focus on clinical, immunology and oncology research. Common keywords include "resistance", "expression", "tumor microenvironment", "cancer", "T cell", "therapy", "chemotherapy" and "cell". Current research endeavors to unravel the mechanisms of immune resistance in breast cancer through the integration of bioinformatics, basic experiments, and clinical trials. Efforts are underway to develop strategies that improve the effectiveness of immunotherapy, including the exploration of combination therapies and advancements in drug delivery systems. Additionally, there is a strong focus on identifying novel biomarkers that can predict patient response to immunology. This study will provide researchers with an up-to-date overview of the present knowledge in drug resistance of immunology for breast cancer, serving as a valuable resource for informed decision-making and further research on innovative approaches to address immunotherapy resistance.
Collapse
Affiliation(s)
- Rendong Zhang
- Department of Breast Surgery, Cancer Hospital of Shantou University Medical College, Shantou, China
| | - Qiongzhi Jiang
- Department of Radiation Oncology, Cancer Hospital of Shantou University Medical College, Shantou, China
| | - Zhemin Zhuang
- Engineering College, Shantou University, Shantou, Guangdong, China
| | - Huancheng Zeng
- Department of Breast Surgery, Cancer Hospital of Shantou University Medical College, Shantou, China
| | - Yaochen Li
- The Central Laboratory, Cancer Hospital of Shantou University Medical College, Shantou, China
| |
Collapse
|
21
|
Ding L, Wang F, Wang Z, Pan Y, Liu T, Cheng L, Liu W, Ding K, Zhu H, Yang Z. Construction of [ 89Zr]Zr-Labeled HuL13 for ImmunoPET Imaging of LAG-3 Checkpoint Expression on Tumor-Infiltrating T Cells. Mol Pharm 2024; 21:3992-4003. [PMID: 38941565 DOI: 10.1021/acs.molpharmaceut.4c00343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/30/2024]
Abstract
Lymphocyte activation gene 3 (LAG-3) has attracted much attention as a potentially valuable immune checkpoint. Individual identification of LAG-3 expression at screening and during treatment could improve the successful implementation of anti-LAG-3 therapies. HuL13 is a human IgG1 monoclonal antibody that binds to the LAG-3 receptor in T cells. Here, we used [89Zr]Zr-labeled HuL13 to delineate LAG-3+ T-cell infiltration into tumors via positron emission tomography (PET) imaging. A549/LAG-3 cells, which stably express LAG-3, were generated by infection with lentivirus. The uptake of [89Zr]Zr-DFO-HuL13 in A549/LAG-3 cells was greater than that in the negative control (A549/NC) cells at each time point. The equilibrium dissociation constant (Kd) of [89Zr]Zr-DFO-HuL13 for the LAG-3 receptor was 8.22 nM. PET imaging revealed significant uptake in the tumor areas of A549/LAG-3 tumor-bearing mice from 24 h after injection (SUVmax = 2.43 ± 0.06 at 24 h). As a proof of concept, PET imaging of the [89Zr]Zr-DFO-HuL13 tracer was further investigated in an MC38 tumor-bearing humanized LAG-3 mouse model. PET imaging revealed that the [89Zr]Zr-DFO-HuL13 tracer specifically targets human LAG-3 expressed on tumor-infiltrating lymphocytes (TILs). In addition to the tumors, the spleen was also noticeably visible. Tumor uptake of the [89Zr]Zr-DFO-HuL13 tracer was lower than its uptake in the spleen, but high uptake in the spleen could be reduced by coinjection of unlabeled antibodies. Coinjection of unlabeled antibodies increases tracer activity in the blood pool, thereby improving tumor uptake. Dosimetry evaluation of the healthy mouse models revealed that the highest absorbed radiation dose was in the spleen, followed by the liver and heart wall. In summary, these studies demonstrate the feasibility of using the [89Zr]Zr-DFO-HuL13 tracer for the detection of LAG-3 expression on TILs. Further clinical evaluation of the [89Zr]Zr-DFO-HuL13 tracer may be of significant help in the stratification and management of patients suitable for anti-LAG-3 therapy.
Collapse
Affiliation(s)
- Lixin Ding
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Feng Wang
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Zilei Wang
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Yongxiang Pan
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Teli Liu
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Liansheng Cheng
- Hefei HankeMab Biotechnology Limited, Hefei, Anhui 230088, China
| | - Wenting Liu
- Hefei HankeMab Biotechnology Limited, Hefei, Anhui 230088, China
| | - Kuke Ding
- Office for Public Health Management, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Hua Zhu
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Zhi Yang
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing 100142, China
| |
Collapse
|
22
|
Rodriguez C, Chocarro L, Echaide M, Ausin K, Escors D, Kochan G. Fractalkine in Health and Disease. Int J Mol Sci 2024; 25:8007. [PMID: 39125578 PMCID: PMC11311528 DOI: 10.3390/ijms25158007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/18/2024] [Accepted: 07/20/2024] [Indexed: 08/12/2024] Open
Abstract
CX3CL1 is one of the 50 up-to-date identified and characterized chemokines. While other chemokines are produced as small, secreted proteins, CX3CL1 (fractalkine) is synthetized as a transmembrane protein which also leads to a soluble form produced as a result of proteolytic cleavage. The membrane-bound protein and the soluble forms exhibit different biological functions. While the role of the fractalkine/CX3CR1 signaling axis was described in the nervous system and was also related to the migration of leukocytes to sites of inflammation, its actions are controversial in cancer progression and anti-tumor immunity. In the present review, we first describe the known biology of fractalkine concerning its action through its cognate receptor, but also its role in the activation of different integrins. The second part of this review is dedicated to its role in cancer where we discuss its role in anti-cancer or procarcinogenic activities.
Collapse
Grants
- FIS PI23/00196 Instituto de Salud Carlos III-FEDER
- FIS PI20/00010 Instituto de Salud Carlos III-FEDER
- BMED 036-2023 Departamento de Salud del Gobierno de Navarra-FEDER, Spain
- LINTERNA, Ref. 0011-1411-2020-000033 Departamento de Industria, Gobierno de Navarra, Spain
- ARNMUNE, 0011-1411-2023-000111 Departamento de Industria, Gobierno de Navarra, Spain
- ISOLDA project, under grant agreement ID: 848166. Horizon 2020, European Union
- PFIS, FI21/00080 Instituto de Salud Carlos III-FEDER
Collapse
Affiliation(s)
| | | | | | | | - David Escors
- Oncoimmunology Unit, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Navarrabiomed-Fundación Miguel Servet, Universidad Pública de Navarra (UPNA), Hospital Universitario de Navarra (HUN), 31008 Pamplona, Spain; (C.R.); (L.C.); (M.E.); (K.A.)
| | - Grazyna Kochan
- Oncoimmunology Unit, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Navarrabiomed-Fundación Miguel Servet, Universidad Pública de Navarra (UPNA), Hospital Universitario de Navarra (HUN), 31008 Pamplona, Spain; (C.R.); (L.C.); (M.E.); (K.A.)
| |
Collapse
|
23
|
Xie H, Zhong X, Chen J, Wang S, Huang Y, Yang N. VISTA Deficiency Exacerbates the Development of Pulmonary Fibrosis by Promoting Th17 Differentiation. J Inflamm Res 2024; 17:3983-3999. [PMID: 38911987 PMCID: PMC11194012 DOI: 10.2147/jir.s458651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 05/30/2024] [Indexed: 06/25/2024] Open
Abstract
Background Interstitial lung disease (ILD), characterized by pulmonary fibrosis (PF), represents the end-stage of various ILDs. The immune system plays an important role in the pathogenesis of PF. V-domain immunoglobulin suppressor of T-cell activation (VISTA) is an immune checkpoint with immune suppressive functions. However, its specific role in the development of PF and the underlying mechanisms remain to be elucidated. Methods We assessed the expression of VISTA in CD4 T cells from patients with connective tissue disease-related interstitial lung disease (CTD-ILD). Spleen cells from wild-type (WT) or Vsir -/- mice were isolated and induced for cell differentiation in vitro. Additionally, primary lung fibroblasts were isolated and treated with interleukin-17A (IL-17A). Mice were challenged with bleomycin (BLM) following VISTA blockade or Vsir knockout. Moreover, WT or Vsir -/- CD4 T cells were transferred into Rag1 -/- mice, which were then challenged with BLM. Results VISTA expression was decreased in CD4 T cells from patients with CTD-ILD. Vsir deficiency augmented T-helper 17 (Th17) cell differentiation in vitro. Furthermore, IL-17A enhanced the production of inflammatory cytokines, as well as the differentiation and migration of lung fibroblasts. Both VISTA blockade and knockout of Vsir increased the percentage of IL-17A-producing Th17 cells and promoted BLM-induced PF. In addition, mice receiving Vsir -/- CD4 T cells exhibited a higher percentage of Th17 cells and more severe PF compared to those receiving WT CD4 T cells. Conclusion These findings demonstrate the significant role of VISTA in modulating the development of PF by controlling Th17 cell differentiation. These insights suggest that targeting VISTA could be a promising therapeutic strategy for PF.
Collapse
Affiliation(s)
- Haiping Xie
- Department of Rheumatology and Clinical Immunology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, People’s Republic of China
| | - Xuexin Zhong
- Department of Rheumatology and Clinical Immunology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, People’s Republic of China
| | - Junlin Chen
- Department of Pediatrics, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, People’s Republic of China
| | - Shuang Wang
- Department of Rheumatology and Clinical Immunology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, People’s Republic of China
| | - Yuefang Huang
- Department of Pediatrics, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, People’s Republic of China
| | - Niansheng Yang
- Department of Rheumatology and Clinical Immunology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, People’s Republic of China
| |
Collapse
|
24
|
Zeng Z, Zhu Q. Progress and prospects of biomarker-based targeted therapy and immune checkpoint inhibitors in advanced gastric cancer. Front Oncol 2024; 14:1382183. [PMID: 38947886 PMCID: PMC11211377 DOI: 10.3389/fonc.2024.1382183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 05/24/2024] [Indexed: 07/02/2024] Open
Abstract
Gastric cancer and gastroesophageal junction cancer represent the leading cause of tumor-related death worldwide. Although advances in immunotherapy and molecular targeted therapy have expanded treatment options, they have not significantly altered the prognosis for patients with unresectable or metastatic gastric cancer. A minority of patients, particularly those with PD-L1-positive, HER-2-positive, or MSI-high tumors, may benefit more from immune checkpoint inhibitors and/or HER-2-directed therapies in advanced stages. However, for those lacking specific targets and unique molecular features, conventional chemotherapy remains the only recommended effective and durable regimen. In this review, we summarize the roles of various signaling pathways and further investigate the available targets. Then, the current results of phase II/III clinical trials in advanced gastric cancer, along with the superiorities and limitations of the existing biomarkers, are specifically discussed. Finally, we will offer our insights in precision treatment pattern when encountering the substantial challenges.
Collapse
Affiliation(s)
| | - Qing Zhu
- Department of Abdominal Oncology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
25
|
Blinova VG, Zhdanov DD. Many Faces of Regulatory T Cells: Heterogeneity or Plasticity? Cells 2024; 13:959. [PMID: 38891091 PMCID: PMC11171907 DOI: 10.3390/cells13110959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/21/2024] [Accepted: 05/22/2024] [Indexed: 06/21/2024] Open
Abstract
Regulatory T cells (Tregs) are essential for maintaining the immune balance in normal and pathological conditions. In autoimmune diseases and transplantation, they restrain the loss of self-tolerance and promote engraftment, whereas in cancer, an increase in Treg numbers is mostly associated with tumor growth and poor prognosis. Numerous markers and their combinations have been used to identify Treg subsets, demonstrating the phenotypic diversity of Tregs. The complexity of Treg identification can be hampered by the unstable expression of some markers, the decrease in the expression of a specific marker over time or the emergence of a new marker. It remains unclear whether such phenotypic shifts are due to new conditions or whether the observed changes are due to initially different populations. In the first case, cellular plasticity is observed, whereas in the second, cellular heterogeneity is observed. The difference between these terms in relation to Tregs is rather blurred. Considering the promising perspectives of Tregs in regenerative cell-based therapy, the existing confusing data on Treg phenotypes require further investigation and analysis. In our review, we introduce criteria that allow us to distinguish between the heterogeneity and plasticity of Tregs normally and pathologically, taking a closer look at their diversity and drawing the line between two terms.
Collapse
Affiliation(s)
- Varvara G. Blinova
- Laboratory of Medical Biotechnology, Institute of Biomedical Chemistry, Pogodinskaya st. 10/8, 119121 Moscow, Russia;
| | - Dmitry D. Zhdanov
- Laboratory of Medical Biotechnology, Institute of Biomedical Chemistry, Pogodinskaya st. 10/8, 119121 Moscow, Russia;
- Department of Biochemistry, People’s Friendship University of Russia Named after Patrice Lumumba (RUDN University), Miklukho-Maklaya st. 6, 117198 Moscow, Russia
| |
Collapse
|
26
|
Bos J, Groen-van Schooten TS, Brugman CP, Jamaludin FS, van Laarhoven HWM, Derks S. The tumor immune composition of mismatch repair deficient and Epstein-Barr virus-positive gastric cancer: A systematic review. Cancer Treat Rev 2024; 127:102737. [PMID: 38669788 DOI: 10.1016/j.ctrv.2024.102737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/16/2024] [Accepted: 04/19/2024] [Indexed: 04/28/2024]
Abstract
BACKGROUND Gastric cancer (GC), known for its unfavorable prognosis, has been classified in four distinct molecular subtypes. These subtypes not only exhibit differences in their genome and transcriptome but also in the composition of their tumor immune microenvironment. The microsatellite instable (MSI) and Epstein-Barr virus (EBV) positive GC subtypes show clear clinical benefits from immune checkpoint blockade, likely due to a neoantigen-driven and virus-driven antitumor immune response and high expression of immune checkpoint molecule PD-L1. However, even within these subtypes response to checkpoint inhibition is variable, which is potentially related to heterogeneity in the tumor immune microenvironment (TIME) and expression of co-inhibitory molecules. We conducted a systematic review to outline the current knowledge about the immunological features on the TIME of MSI and EBV + GCs. METHODS A systematic search was performed in PubMed, EMBASE and Cochrane Library. All articles from the year 1990 and onwards addressing immune features of gastric adenocarcinoma were reviewed and included based on predefined in- and exclusion criteria. RESULTS In total 5962 records were screened, of which 139 were included that reported immunological data on molecular GC subtypes. MSI and EBV + GCs were reported to have a more inflamed TIME compared to non-MSI and EBV- GC subtypes. Compared to microsatellite stable (MSS) tumors, MSI tumors were characterized by higher numbers of CD8 + and FoxP3 + T cells, and tumor infiltrating pro- and anti-inflammatory macrophages. HLA-deficiency was most common in MSI tumors compared to other molecular GC subtypes and associated with lower T and B cell infiltrates compared to HLA-proficient tumors. EBV + was associated with a high number of CD8 + T cells, Tregs, NK cells and macrophages. Expression of PD-L1, CTLA-4, Granzyme A and B, Perforin and interferon-gamma was enriched in EBV + tumors. Overall, MSI tumors harbored a more heterogeneous TIME in terms of immune cell composition and immune checkpoints compared to the EBV + tumors. DISCUSSION AND CONCLUSION MSI and EBV + GCs are highly Handbook for Conducting a Literature-Based Health Assessment Using OHAT Approach for Systematic Review and Evidence Integration.; 2019pro-inflammatory immune cell populations. Although studies on the direct comparison of EBV + and MSI tumors are limited, EBV + tumors show less intra-subgroup heterogeneity compared to MSI tumors. More studies are needed to identify how Intra-subgroup heterogeneity impacts response to immunotherapy efficacy.
Collapse
Affiliation(s)
- J Bos
- Amsterdam UMC Location University of Amsterdam, Department of Medical Oncology, Meibergdreef 9, Amsterdam, the Netherlands; Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, the Netherlands; Oncode Institute, Amsterdam, the Netherlands
| | - T S Groen-van Schooten
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, the Netherlands; Oncode Institute, Amsterdam, the Netherlands; Amsterdam UMC Location Vrije Universiteit Amsterdam, Department of Medical Oncology, De Boelelaan 1117, Amsterdam, the Netherlands
| | - C P Brugman
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, the Netherlands; Oncode Institute, Amsterdam, the Netherlands; Amsterdam UMC Location Vrije Universiteit Amsterdam, Department of Medical Oncology, De Boelelaan 1117, Amsterdam, the Netherlands
| | - F S Jamaludin
- Amsterdam UMC Location University of Amsterdam, Medical Library AMC, Meibergdreef 9, Amsterdam, the Netherlands
| | - H W M van Laarhoven
- Amsterdam UMC Location University of Amsterdam, Department of Medical Oncology, Meibergdreef 9, Amsterdam, the Netherlands; Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, the Netherlands
| | - S Derks
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, the Netherlands; Oncode Institute, Amsterdam, the Netherlands; Amsterdam UMC Location Vrije Universiteit Amsterdam, Department of Medical Oncology, De Boelelaan 1117, Amsterdam, the Netherlands.
| |
Collapse
|
27
|
Grigolo S, Filgueira L. Immunotherapy of Clear-Cell Renal-Cell Carcinoma. Cancers (Basel) 2024; 16:2092. [PMID: 38893211 PMCID: PMC11171115 DOI: 10.3390/cancers16112092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/27/2024] [Accepted: 05/29/2024] [Indexed: 06/21/2024] Open
Abstract
Clear-cell Renal-Cell Carcinoma (ccRCC) is the most common type of renal-cell carcinoma (RCC). In many cases, RCC patients manifest the first symptoms during the advanced stage of the disease. For this reason, immunotherapy appears to be one of the dominant treatments to achieve a resolution. In this review, we focus on the presentation of the main immune checkpoint proteins that act as negative regulators of immune responses, such as PD-1, CTLA-4, LAG-3, TIGIT, and TIM-3, and their respective inhibitors. Interleukin-2, another potential component of the treatment of ccRCC patients, has also been covered. The synergy between several immunotherapies is one of the main aspects that unites the conclusions of research in recent years. To date, the combination of several immunotherapies enhances the efficacy of a monotherapy, which often manifests important limitations. Immunotherapy aimed at restoring the anti-cancer immune response in ccRCC, involved in the recognition and elimination of cancer cells, may also be a valid solution for many other types of immunogenic tumors that are diagnosed in the final stages.
Collapse
Affiliation(s)
| | - Luis Filgueira
- Anatomy, University of Fribourg, 1700 Fribourg, Switzerland;
| |
Collapse
|
28
|
Giuliano A, Pimentel PAB, Horta RS. Checkpoint Inhibitors in Dogs: Are We There Yet? Cancers (Basel) 2024; 16:2003. [PMID: 38893123 PMCID: PMC11171034 DOI: 10.3390/cancers16112003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/20/2024] [Accepted: 05/21/2024] [Indexed: 06/21/2024] Open
Abstract
Immune checkpoint inhibitors (ICI) have revolutionised cancer treatment in people. Immune checkpoints are important regulators of the body's reaction to immunological stimuli. The most studied immune checkpoint molecules are programmed death (PD-1) with its ligand (PD-L1) and cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) with its ligands CD80 (B7-1) and CD86 (B7-2). Certain tumours can evade immunosurveillance by activating these immunological checkpoint targets. These proteins are often upregulated in cancer cells and tumour-infiltrating lymphocytes, allowing cancer cells to evade immune surveillance and promote tumour growth. By blocking inhibitory checkpoints, ICI can help restore the immune system to effectively fight cancer. Several studies have investigated the expression of these and other immune checkpoints in human cancers and have shown their potential as therapeutic targets. In recent years, there has been growing interest in studying the expression of immune checkpoints in dogs with cancer, and a few small clinical trials with ICI have already been performed on these species. Emerging studies in veterinary oncology are centred around developing and validating canine-targeted antibodies. Among ICIs, anti-PD-1 and anti-PD-L1 treatments stand out as the most promising, mirroring the success in human medicine over the past decade. Nevertheless, the efficacy of caninized antibodies remains suboptimal, especially for canine oral melanoma. To enhance the utilisation of ICIs, the identification of predictive biomarkers for treatment response and the thorough screening of individual tumours are crucial. Such endeavours hold promise for advancing personalised medicine within veterinary practice, thereby improving treatment outcomes. This article aims to review the current research literature about the expression of immune checkpoints in canine cancer and the current results of ICI treatment in dogs.
Collapse
Affiliation(s)
- Antonio Giuliano
- Department of Veterinary Clinical Science, Jockey Club College of Veterinary Medicine, City University of Hong Kong, Hong Kong, China
- Veterinary Medical Centre, City University of Hong Kong, Hong Kong, China
| | - Pedro A. B. Pimentel
- Department of Veterinary Medicine and Surgery, Veterinary School, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte 31270-901, MG, Brazil;
| | - Rodrigo S. Horta
- Department of Veterinary Medicine and Surgery, Veterinary School, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte 31270-901, MG, Brazil;
| |
Collapse
|
29
|
Bauer M, Schöbel CM, Wickenhauser C, Seliger B, Jasinski-Bergner S. Deciphering the role of alternative splicing in neoplastic diseases for immune-oncological therapies. Front Immunol 2024; 15:1386993. [PMID: 38736877 PMCID: PMC11082354 DOI: 10.3389/fimmu.2024.1386993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 04/16/2024] [Indexed: 05/14/2024] Open
Abstract
Alternative splicing (AS) is an important molecular biological mechanism regulated by complex mechanisms involving a plethora of cis and trans-acting elements. Furthermore, AS is tissue specific and altered in various pathologies, including infectious, inflammatory, and neoplastic diseases. Recently developed immuno-oncological therapies include monoclonal antibodies (mAbs) and chimeric antigen receptor (CAR) T cells targeting, among others, immune checkpoint (ICP) molecules. Despite therapeutic successes have been demonstrated, only a limited number of patients showed long-term benefit from these therapies with tumor entity-related differential response rates were observed. Interestingly, splice variants of common immunotherapeutic targets generated by AS are able to completely escape and/or reduce the efficacy of mAb- and/or CAR-based tumor immunotherapies. Therefore, the analyses of splicing patterns of targeted molecules in tumor specimens prior to therapy might help correct stratification, thereby increasing therapy success by antibody panel selection and antibody dosages. In addition, the expression of certain splicing factors has been linked with the patients' outcome, thereby highlighting their putative prognostic potential. Outstanding questions are addressed to translate the findings into clinical application. This review article provides an overview of the role of AS in (tumor) diseases, its molecular mechanisms, clinical relevance, and therapy response.
Collapse
Affiliation(s)
- Marcus Bauer
- Institute of Pathology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Chiara-Maria Schöbel
- Institute for Translational Immunology, Brandenburg Medical School (MHB), Theodor Fontane, Brandenburg an der Havel, Germany
| | - Claudia Wickenhauser
- Institute of Pathology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Barbara Seliger
- Institute for Translational Immunology, Brandenburg Medical School (MHB), Theodor Fontane, Brandenburg an der Havel, Germany
- Department of Good Manufacturing Practice (GMP) Development & Advanced Therapy Medicinal Products (ATMP) Design, Fraunhofer Institute for Cell Therapy and Immunology (IZI), Leipzig, Germany
- Institute for Medical Immunology, Medical Faculty, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Simon Jasinski-Bergner
- Institute for Translational Immunology, Brandenburg Medical School (MHB), Theodor Fontane, Brandenburg an der Havel, Germany
| |
Collapse
|
30
|
Mansour L, Alqahtani M, Aljuaimlani A, Al-Tamimi J, Al-Harbi N, Alomar S. Association of Polymorphisms in PD-1 and LAG-3 Genes with Acute Myeloid Leukemia. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:721. [PMID: 38792904 PMCID: PMC11123055 DOI: 10.3390/medicina60050721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/22/2024] [Accepted: 04/25/2024] [Indexed: 05/26/2024]
Abstract
Background and objectives: Acute myeloid leukemia (AML) is a hematological malignancy characterized by uncontrolled proliferation of immature myeloid cells. Immune checkpoint molecules such as programmed cell death protein 1 (PD-1) and lymphocyte activation gene-3 (LAG-3) are essential for controlling anti-tumor immune responses. This study aims to explore the correlation between specific genetic variations (SNPs) in the PDCD1 (rs2227981) and LAG3 (rs12313899) genes and the likelihood of developing AML in the Saudi population. Material and methods: total of 98 Saudi AML patients and 131 healthy controls were genotyped for the PDCD1 rs2227981 and LAG3 rs12313899 polymorphisms using TaqMan genotyping assays. A logistic regression analysis was conducted to evaluate the relationship between the SNPs and AML risk using several genetic models. Results: The results revealed a significant association between the PDCD1 rs2227981 polymorphism and increased AML risk. In AML patients, the frequency of the G allele was considerably greater than in healthy controls (OR = 1.93, 95% CI: 1.31-2.81, p = 0.00080). The GG and AG genotypes were associated with a very high risk of developing AML (p < 0.0001). In contrast, no significant association was observed between the LAG3 rs12313899 polymorphism and AML risk in the studied population. In silico analysis of gene expression profiles from public databases suggested the potential impact of PDCD1 expression levels on the overall survival of AML patients. Conclusions: This study provides evidence for the association of the PDCD1 rs2227981 polymorphism with an increased risk for AML in the Saudi population.
Collapse
Affiliation(s)
- Lamjed Mansour
- Department of Zoology, College of Science, King Saud University, Building 05, Riyadh 11451, Saudi Arabia; (M.A.); (A.A.); (J.A.-T.); (N.A.-H.); (S.A.)
| | | | | | | | | | | |
Collapse
|
31
|
Mačak Šafranko Ž, Jakopec L, Svaguša K, Cvetko Krajinović L, Tomasović D, Lukić LJ, Markotić A. Serum Concentrations of TIM-3, LAG-3, and PD-1 in Patients with Hemorrhagic Fever with Renal Syndrome. Life (Basel) 2024; 14:551. [PMID: 38792573 PMCID: PMC11121887 DOI: 10.3390/life14050551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/05/2024] [Accepted: 04/06/2024] [Indexed: 05/26/2024] Open
Abstract
Hemorrhagic fever with renal syndrome (HFRS) is a rodent-borne disease widespread in Europe and Asia. HFRS is caused by negative-sensed single-stranded RNA orthohantaviruses transmitted to humans through inhaling aerosolized excreta of infected rodents. Symptoms of HFRS include acute kidney injury, thrombocytopenia, hemorrhages, and hypotension. The immune response raised against viral antigens plays an important role in the pathogenesis of HFRS. Inhibitory co-receptors are essential in regulating immune responses, mitigating immunopathogenesis, and reducing tissue damage. Our research showed an increased soluble form of inhibitory co-receptors TIM-3, LAG-3, and PD-1 in HFRS patients associated with disease severity. Our study aimed to investigate the impact of HFRS on the concentrations of soluble forms of inhibitory receptors TIM-3, LAG-3, and PD-1 in the patient's serum and the potential correlation with key clinical parameters. Our study aimed to investigate the impact of HFRS on the concentrations of soluble forms of inhibitory receptors TIM-3, LAG-3, and PD-1 in the patient's serum and their possible association with relevant clinical parameters. Using multiplex immunoassay, we found elevated levels of TIM-3, LAG-3, and PD-1 proteins in the serum of HFRS patients. Furthermore, increased levels were associated with creatinine, urea, lactate dehydrogenase concentrations, and platelet count. These findings suggest that these proteins play a role in regulating the immune response and disease progression.
Collapse
Affiliation(s)
- Željka Mačak Šafranko
- Research Unit, University Hospital for Infectious Diseases “Dr. Fran Mihaljevic”, 10000 Zagreb, Croatia
| | - Lana Jakopec
- Research Unit, University Hospital for Infectious Diseases “Dr. Fran Mihaljevic”, 10000 Zagreb, Croatia
| | - Karla Svaguša
- Research Unit, University Hospital for Infectious Diseases “Dr. Fran Mihaljevic”, 10000 Zagreb, Croatia
| | - Lidija Cvetko Krajinović
- Research Unit, University Hospital for Infectious Diseases “Dr. Fran Mihaljevic”, 10000 Zagreb, Croatia
| | - Domagoj Tomasović
- Research Unit, University Hospital for Infectious Diseases “Dr. Fran Mihaljevic”, 10000 Zagreb, Croatia
| | - Ljiljana Lukić
- Research Unit, University Hospital for Infectious Diseases “Dr. Fran Mihaljevic”, 10000 Zagreb, Croatia
| | - Alemka Markotić
- Research Unit, University Hospital for Infectious Diseases “Dr. Fran Mihaljevic”, 10000 Zagreb, Croatia
- Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia
- Faculty of Medicine, Catholic University of Croatia, 10000 Zagreb, Croatia
| |
Collapse
|
32
|
Dreyling M, Fowler NH, Dickinson M, Martinez-Lopez J, Kolstad A, Butler J, Ghosh M, Popplewell L, Chavez JC, Bachy E, Kato K, Harigae H, Kersten MJ, Andreadis C, Riedell PA, Ho PJ, Pérez-Simón JA, Chen AI, Nastoupil LJ, von Tresckow B, María Ferreri AJ, Teshima T, Patten PEM, McGuirk JP, Petzer AL, Offner F, Viardot A, Zinzani PL, Malladi R, Paule I, Zia A, Awasthi R, Han X, Germano D, O’Donovan D, Ramos R, Maier HJ, Masood A, Thieblemont C, Schuster SJ. Durable response after tisagenlecleucel in adults with relapsed/refractory follicular lymphoma: ELARA trial update. Blood 2024; 143:1713-1725. [PMID: 38194692 PMCID: PMC11103095 DOI: 10.1182/blood.2023021567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 11/21/2023] [Accepted: 12/16/2023] [Indexed: 01/11/2024] Open
Abstract
ABSTRACT Tisagenlecleucel is approved for adults with relapsed/refractory (r/r) follicular lymphoma (FL) in the third- or later-line setting. The primary analysis (median follow-up, 17 months) of the phase 2 ELARA trial reported high response rates and excellent safety profile in patients with extensively pretreated r/r FL. Here, we report longer-term efficacy, safety, pharmacokinetic, and exploratory biomarker analyses after median follow-up of 29 months (interquartile range, 22.2-37.7). As of 29 March 2022, 97 patients with r/r FL (grades 1-3A) received tisagenlecleucel infusion (0.6 × 108-6 × 108 chimeric antigen receptor-positive viable T cells). Bridging chemotherapy was allowed. Baseline clinical factors, tumor microenvironment, blood soluble factors, and circulating blood cells were correlated with clinical response. Cellular kinetics were assessed by quantitative polymerase chain reaction. Median progression-free survival (PFS), duration of response (DOR), and overall survival (OS) were not reached. Estimated 24-month PFS, DOR, and OS rates in all patients were 57.4% (95% confidence interval [CI], 46.2-67), 66.4% (95% CI, 54.3-76), and 87.7% (95% CI, 78.3-93.2), respectively. Complete response rate and overall response rate were 68.1% (95% CI, 57.7-77.3) and 86.2% (95% CI, 77.5-92.4), respectively. No new safety signals or treatment-related deaths were reported. Low levels of tumor-infiltrating LAG3+CD3+ exhausted T cells and higher baseline levels of naïve CD8+ T cells were associated with improved outcomes. Tisagenlecleucel continued to demonstrate highly durable efficacy and a favorable safety profile in this extended follow-up of 29 months in patients with r/r FL enrolled in ELARA. This trial was registered at www.clinicaltrials.gov as #NCT03568461.
Collapse
Affiliation(s)
- Martin Dreyling
- Department of Medicine, Medical Clinic III, Ludwig-Maximilian-University Hospital, Munich, Germany
| | - Nathan Hale Fowler
- The University of Texas MD Anderson Cancer Center, Houston, TX
- BostonGene, Waltham, MA
| | - Michael Dickinson
- Peter MacCallum Cancer Centre, Royal Melbourne Hospital and the Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, Australia
| | - Joaquin Martinez-Lopez
- Hospital 12 De Octubre, Complutense University, Centro Nacional de Investigaciones Oncológicas, Madrid, Spain
| | | | - Jason Butler
- Royal Brisbane Hospital, Herston, QLD, Australia
| | - Monalisa Ghosh
- Division of Hematology/Oncology, Michigan Medicine University of Michigan, Ann Arbor, MI
| | | | - Julio C. Chavez
- Department of Malignant Hematology, Moffitt Cancer Center, Tampa, FL
| | - Emmanuel Bachy
- Clinical Hematology, Hospices Civils de Lyon and Université Claude Bernard Lyon 1, Lyon, France
| | - Koji Kato
- Department of Hematology, Oncology, and Cardiovascular Medicine, Kyushu University Hospital, Fukuoka, Japan
| | - Hideo Harigae
- Department of Hematology, Tohoku University Hospital, Sendai, Japan
| | - Marie José Kersten
- Department of Hematology, Amsterdam UMC, University of Amsterdam, Cancer Center Amsterdam, Amsterdam, The Netherlands, on behalf of Stichting Hemato-Oncologie voor Volwassenen Nederland/Lunenburg Lymphoma Phase I/II Consortium
| | - Charalambos Andreadis
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA
| | - Peter A. Riedell
- David and Etta Jonas Center for Cellular Therapy, University of Chicago, Chicago, IL
| | - P. Joy Ho
- Institute of Haematology, Royal Prince Alfred Hospital, Camperdown, NSW, Australia
| | - José Antonio Pérez-Simón
- Department of Hematology, University Hospital Virgen del Rocío, Instituto de Biomedicina de Sevilla Consejo Superior de Investigaciones Cientificas, Universidad de Sevilla, Seville, Spain
| | - Andy I. Chen
- Oregon Health and Science University, Portland, OR
| | - Loretta J. Nastoupil
- Department of Lymphoma/Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Bastian von Tresckow
- Department I of Internal Medicine, Medical Faculty and University Hospital Cologne, University of Cologne, Cologne, Germany
- Department of Hematology and Stem Cell Transplantation, West German Cancer Center and German Cancer Consortium, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Andrés José María Ferreri
- Unit of Lymphoid Malignancies, Department of Onco-Haematology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Takanori Teshima
- Department of Hematology, Hokkaido University Hospital, Sapporo, Japan
| | - Piers E. M. Patten
- Comprehensive Cancer Centre, King’s College London, London, United Kingdom
- Department of Haematology, King’s College Hospital, London, United Kingdom
| | - Joseph P. McGuirk
- Division of Hematologic Malignancies and Cellular Therapeutics, University of Kansas Cancer l Center, Westwood, KS
| | - Andreas L. Petzer
- Internal Medicine I, Ordensklinikum Linz Barmherzige Schwestern-Elisabethinen, Linz, Austria
| | | | - Andreas Viardot
- Department of Internal Medicine III, University Hospital of Ulm, Ulm, Germany
| | - Pier Luigi Zinzani
- IRCCS Azienda Ospedaliero-Universitaria di Bologna Istituto di Ematologia “Seràgnoli,” Bologna, Italy
- Dipartimento di Medicina Specialistica, Diagnostica e Sperimentale, Università di Bologna, Bologna, Italy
| | - Ram Malladi
- Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom
| | | | | | - Rakesh Awasthi
- Novartis Institutes for BioMedical Research, East Hanover, NJ
| | - Xia Han
- Novartis Pharmaceuticals Corporation, East Hanover, NJ
| | | | | | - Roberto Ramos
- Novartis Pharmaceuticals Corporation, East Hanover, NJ
| | | | - Aisha Masood
- Novartis Pharmaceuticals Corporation, East Hanover, NJ
| | | | - Stephen J. Schuster
- Lymphoma Program, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
33
|
Gorgulho J, Roderburg C, Beier F, Bokemeyer C, Brümmendorf TH, Loosen SH, Luedde T. Soluble lymphocyte activation gene-3 (sLAG3) and CD4/CD8 ratio dynamics as predictive biomarkers in patients undergoing immune checkpoint blockade for solid malignancies. Br J Cancer 2024; 130:1013-1022. [PMID: 38233492 PMCID: PMC10951205 DOI: 10.1038/s41416-023-02558-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 12/05/2023] [Accepted: 12/13/2023] [Indexed: 01/19/2024] Open
Abstract
BACKGROUND The search for biomarkers to identify suitable candidates for immune checkpoint inhibitor (ICI) therapy remains ongoing. We evaluate how soluble levels of the next generation immune checkpoint Lymphocyte Activation Gene-3 (sLAG-3) and its association with circulating T lymphocyte subsets could pose as a novel biomarker to predict outcome to ICI therapy. METHODS Circulating levels of sLAG3 were analyzed using multiplex immunoassay in n = 84 patients undergoing ICI therapy for advanced solid cancer, accompanied by flow cytometry analyses of peripheral blood mononuclear cells (PBMCs). RESULTS Uni- and multivariate analysis shows that patients with higher sLAG3 concentrations before ICI therapy had a significantly impaired progression-free (PFS) and overall survival (OS) (HRPFS: 1.005 [95%CI: 1.000-1.009], p = 0.039; HROS: 1.006 [95%CI: 1.001-1.011], p = 0.015). The CD4/CD8 cell ratio and its dynamics during therapy were strong predictors of PFS and OS with patients with a decreasing ratio between baseline and after 1-2 cycles having an improved median OS compared to patients with increasing values (p = 0.012, HR: 3.32). An immunological score combining sLAG3 and the CD4/CD8 ratio showed the highest predictive potential (HROS: 10.3). CONCLUSION Pending prospective validation, sLAG3 and correlating circulating T-cell subsets can be used as a non-invasive predictive marker to predict outcome to ICI therapy to help identifying ideal ICI candidates in the future.
Collapse
Affiliation(s)
- Joao Gorgulho
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section of Pneumology, University Medical Centre Hamburg-Eppendorf, Martinistraße 52, 20251, Hamburg, Germany
- Mildred Scheel Cancer Career Center, University Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christoph Roderburg
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital Düsseldorf, Medical Faculty of Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
- Center for Integrated Oncology Aachen-Bonn-Cologne-Düsseldorf (CIOABCD), Aachen, Germany
| | - Fabian Beier
- Center for Integrated Oncology Aachen-Bonn-Cologne-Düsseldorf (CIOABCD), Aachen, Germany
- Department of Medicine IV, University Hospital RWTH Aachen, Pauwelsstrasse 30, 52074, Aachen, Germany
| | - Carsten Bokemeyer
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section of Pneumology, University Medical Centre Hamburg-Eppendorf, Martinistraße 52, 20251, Hamburg, Germany
| | - Tim H Brümmendorf
- Center for Integrated Oncology Aachen-Bonn-Cologne-Düsseldorf (CIOABCD), Aachen, Germany
- Department of Medicine IV, University Hospital RWTH Aachen, Pauwelsstrasse 30, 52074, Aachen, Germany
| | - Sven H Loosen
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital Düsseldorf, Medical Faculty of Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany.
- Center for Integrated Oncology Aachen-Bonn-Cologne-Düsseldorf (CIOABCD), Aachen, Germany.
| | - Tom Luedde
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital Düsseldorf, Medical Faculty of Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany.
- Center for Integrated Oncology Aachen-Bonn-Cologne-Düsseldorf (CIOABCD), Aachen, Germany.
| |
Collapse
|
34
|
Haham N, Zveik O, Rechtman A, Brill L, Vaknin-Dembinsky A. Altered immune co-inhibitory receptor expression and correlation of LAG-3 expression to disease severity in NMOSD. J Neuroimmunol 2024; 388:578289. [PMID: 38301597 DOI: 10.1016/j.jneuroim.2024.578289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/20/2023] [Accepted: 01/10/2024] [Indexed: 02/03/2024]
Abstract
Co-inhibitory receptors (CIR)s regulate T cell-mediated immune responses and growing evidence links co-inhibitory receptors to the progression of neuroimmunological diseases. We studied the expression levels of CIRs: TIM-3, TIGIT, PD-1 and LAG-3 in the peripheral blood mononuclear cells (PBMCs) of 30 patients with Neuromyelitis optica spectrum disorder (NMOSD), 11 Multiple sclerosis (MS) patients and 31 Healthy controls (HC). We found that the mRNA expression levels of TIM-3 were significantly increased in NMOSD compared with HC, and increased LAG-3 surface protein expression was also observed on T-cells of NMOSD patients. Moreover, we observed a negative correlation between LAG-3 expression and disease severity in NMOSD. Our findings suggest a protective effect of LAG-3 in the setting of NMOSD, and that the differential expression of CIRs observed in this study may play a role in the pathological process of NMOSD.
Collapse
Affiliation(s)
- Nitsan Haham
- Department of Neurology and Laboratory of Neuroimmunology and the Agnes-Ginges Center for Neurogenetics, Hadassah- Medical Center, Ein-Kerem, Faculty of Medicine, Hebrew University of Jerusalem, Ein-Karem, Jerusalem 91120, Israel.
| | - Omri Zveik
- Department of Neurology and Laboratory of Neuroimmunology and the Agnes-Ginges Center for Neurogenetics, Hadassah- Medical Center, Ein-Kerem, Faculty of Medicine, Hebrew University of Jerusalem, Ein-Karem, Jerusalem 91120, Israel
| | - Ariel Rechtman
- Department of Neurology and Laboratory of Neuroimmunology and the Agnes-Ginges Center for Neurogenetics, Hadassah- Medical Center, Ein-Kerem, Faculty of Medicine, Hebrew University of Jerusalem, Ein-Karem, Jerusalem 91120, Israel
| | - Livnat Brill
- Department of Neurology and Laboratory of Neuroimmunology and the Agnes-Ginges Center for Neurogenetics, Hadassah- Medical Center, Ein-Kerem, Faculty of Medicine, Hebrew University of Jerusalem, Ein-Karem, Jerusalem 91120, Israel
| | - Adi Vaknin-Dembinsky
- Department of Neurology and Laboratory of Neuroimmunology and the Agnes-Ginges Center for Neurogenetics, Hadassah- Medical Center, Ein-Kerem, Faculty of Medicine, Hebrew University of Jerusalem, Ein-Karem, Jerusalem 91120, Israel.
| |
Collapse
|
35
|
Tian J, Liu X, Liang H, Shen Y, Xiang X, Zhu F, Wang X, Liu C, Xu X, Zhang X, Xue Q, Gu Y. Expression of lymphocyte activation gene-3 on CD4 +T cells is regulated by cytokine interleukin-18 in myasthenia gravis. J Neuroimmunol 2024; 388:578308. [PMID: 38325197 DOI: 10.1016/j.jneuroim.2024.578308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 01/18/2024] [Accepted: 01/31/2024] [Indexed: 02/09/2024]
Abstract
Myasthenia gravis (MG) is a T cell-dependent, B cell-mediated, and complement-dependent autoimmune disease. Lymphocyte activation gene-3 (LAG-3; CD223) is an immune checkpoint protein that plays an important role in maintaining autoimmune tolerance and homeostasis. To investigate the cytokine-regulated expression pattern of LAG-3, CD4+T cells were sorted from the peripheral blood of healthy volunteers by density gradient centrifugation and stimulated with various cytokines in vitro. The expression of membrane LAG-3 (mLAG-3), membrane a disintegrin and metallopeptidase domain10 (mADAM10) and membrane ADAM17 (mADAM17) on CD4+T cells was detected by flow cytometry; the concentration of soluble LAG-3 (sLAG-3) was detected by ELISA; and the relative expression of genes at the transcriptional level was detected by fluorescence quantitative RT-PCR (qRT-PCR). sLAG-3 levels were significantly increased in the peripheral plasma of AChR Ab-positive patients with MG compared to healthy volunteers, while the percentage of mLAG-3 expression on CD4+T lymphocytes in the peripheral blood of patients with MG was significantly reduced. IL-18 inhibited mLAG-3 levels on CD4+T cells in a concentration-dependent manner. Additionally, the concentration of sLAG-3 in the supernatant increased. After PHA and IL-18 stimulation, ADAM10 and ADAM17 also increased compared to those in the PHA-active group. Moreover, there were significant differences in the expression of mADAM10 and mADAM17 in CD4+T lymphocytes between patients with MG and healthy volunteers. These results suggest that IL-18 may regulate the expression pattern of mLAG-3 in CD4+T cells and sLAG-3 via ADAM10- and ADAM17-mediated pathways, thus affecting the immune effects of CD4+T cells. This study provides a preliminary exploration of the upstream regulatory molecules of the LAG-3 and IL-18/LAG-3 signalling pathways for potential targeted therapy of autoimmune diseases in the future.
Collapse
Affiliation(s)
- Jingluan Tian
- Department of Neurology, First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Xuan Liu
- Department of Neurology, First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Hansi Liang
- Jiangsu Institute of Clinical Immunology, Jiangsu Key Laboratory of Clinical Immunology, First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Yu Shen
- Jiangsu Institute of Clinical Immunology, Jiangsu Key Laboratory of Clinical Immunology, First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Xuanyi Xiang
- Department of Neurology, First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Feng Zhu
- Department of Neurology, First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Xin Wang
- Department of Neurology, First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Cuiping Liu
- Jiangsu Institute of Clinical Immunology, Jiangsu Key Laboratory of Clinical Immunology, First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Xingshun Xu
- Department of Neurology, First Affiliated Hospital of Soochow University, Suzhou 215006, China; Institute of Neuroscience, Soochow University, Suzhou 215031, China
| | - Xueguang Zhang
- Jiangsu Institute of Clinical Immunology, Jiangsu Key Laboratory of Clinical Immunology, First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Qun Xue
- Department of Neurology, First Affiliated Hospital of Soochow University, Suzhou 215006, China; Jiangsu Institute of Clinical Immunology, Jiangsu Key Laboratory of Clinical Immunology, First Affiliated Hospital of Soochow University, Suzhou 215006, China.
| | - Yanzheng Gu
- Jiangsu Institute of Clinical Immunology, Jiangsu Key Laboratory of Clinical Immunology, First Affiliated Hospital of Soochow University, Suzhou 215006, China.
| |
Collapse
|
36
|
Li T, Niu M, Zhou J, Wu K, Yi M. The enhanced antitumor activity of bispecific antibody targeting PD-1/PD-L1 signaling. Cell Commun Signal 2024; 22:179. [PMID: 38475778 PMCID: PMC10935874 DOI: 10.1186/s12964-024-01562-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 03/05/2024] [Indexed: 03/14/2024] Open
Abstract
The programmed cell death 1 (PD-1) signaling pathway, a key player in immune checkpoint regulation, has become a focal point in cancer immunotherapy. In the context of cancer, upregulated PD-L1 on tumor cells can result in T cell exhaustion and immune evasion, fostering tumor progression. The advent of PD-1/PD-L1 inhibitor has demonstrated clinical success by unleashing T cells from exhaustion. Nevertheless, challenges such as resistance and adverse effects have spurred the exploration of innovative strategies, with bispecific antibodies (BsAbs) emerging as a promising frontier. BsAbs offer a multifaceted approach to cancer immunotherapy by simultaneously targeting PD-L1 and other immune regulatory molecules. We focus on recent advancements in PD-1/PD-L1 therapy with a particular emphasis on the development and potential of BsAbs, especially in the context of solid tumors. Various BsAb products targeting PD-1 signaling are discussed, highlighting their unique mechanisms of action and therapeutic potential. Noteworthy examples include anti-TGFβ × PD-L1, anti-CD47 × PD-L1, anti-VEGF × PD-L1, anti-4-1BB × PD-L1, anti-LAG-3 × PD-L1, and anti-PD-1 × CTLA-4 BsAbs. Besides, we summarize ongoing clinical studies evaluating the efficacy and safety of these innovative BsAb agents. By unraveling the intricacies of the tumor microenvironment and harnessing the synergistic effects of anti-PD-1/PD-L1 BsAbs, there exists the potential to elevate the precision and efficacy of cancer immunotherapy, ultimately enabling the development of personalized treatment strategies tailored to individual patient profiles.
Collapse
Affiliation(s)
- Tianye Li
- Department of Gynecology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310009, People's Republic of China
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Hangzhou, China
| | - Mengke Niu
- Cancer Center, Shanxi Bethune Hospital, Shanxi Academy of Medical Science, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, Shanxi, People's Republic of China
| | - Jianwei Zhou
- Department of Gynecology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310009, People's Republic of China
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Hangzhou, China
| | - Kongming Wu
- Cancer Center, Shanxi Bethune Hospital, Shanxi Academy of Medical Science, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, Shanxi, People's Republic of China.
| | - Ming Yi
- Department of Breast Surgery, College of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, 310000, People's Republic of China.
| |
Collapse
|
37
|
Bae J, Kitayama S, Herbert Z, Daheron L, Kurata K, Keskin DB, Livak K, Li S, Tarannum M, Romee R, Samur M, Munshi NC, Kaneko S, Ritz J, Anderson KC. Differentiation of BCMA-specific induced pluripotent stem cells into rejuvenated CD8αβ+ T cells targeting multiple myeloma. Blood 2024; 143:895-911. [PMID: 37890146 PMCID: PMC10940063 DOI: 10.1182/blood.2023020528] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 10/16/2023] [Accepted: 10/17/2023] [Indexed: 10/29/2023] Open
Abstract
ABSTRACT A major hurdle in adoptive T-cell therapy is cell exhaustion and failure to maintain antitumor responses. Here, we introduce an induced pluripotent stem cell (iPSC) strategy for reprogramming and revitalizing precursor exhausted B-cell maturation antigen (BCMA)-specific T cells to effectively target multiple myeloma (MM). Heteroclitic BCMA72-80 (YLMFLLRKI)-specific CD8+ memory cytotoxic T lymphocytes (CTL) were epigenetically reprogrammed to a pluripotent state, developed into hematopoietic progenitor cells (CD34+ CD43+/CD14- CD235a-), differentiated into the T-cell lineage and evaluated for their polyfunctional activities against MM. The final T-cell products demonstrated (1) mature CD8αβ+ memory phenotype, (2) high expression of activation or costimulatory molecules (CD38, CD28, and 41BB), (3) no expression of immune checkpoint and senescence markers (CTLA4, PD1, LAG3, and TIM3; CD57), and (4) robust proliferation and polyfunctional immune responses to MM. The BCMA-specific iPSC-T cells possessed a single T-cell receptor clonotype with cognate BCMA peptide recognition and specificity for targeting MM. RNA sequencing analyses revealed distinct genome-wide shifts and a distinctive transcriptional profile in selected iPSC clones, which can develop CD8αβ+ memory T cells. This includes a repertoire of gene regulators promoting T-cell lineage development, memory CTL activation, and immune response regulation (LCK, IL7R, 4-1BB, TRAIL, GZMB, FOXF1, and ITGA1). This study highlights the potential application of iPSC technology to an adaptive T-cell therapy protocol and identifies specific transcriptional patterns that could serve as a biomarker for selection of suitable iPSC clones for the successful development of antigen-specific CD8αβ+ memory T cells to improve the outcome in patients with MM.
Collapse
Affiliation(s)
- Jooeun Bae
- Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
- Harvard Medical School, Boston, MA
| | - Shuichi Kitayama
- Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
- Harvard Medical School, Boston, MA
| | - Zach Herbert
- Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
- Harvard Medical School, Boston, MA
| | | | - Keiji Kurata
- Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
- Harvard Medical School, Boston, MA
| | - Derin B. Keskin
- Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
- Harvard Medical School, Boston, MA
| | - Kenneth Livak
- Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
- Harvard Medical School, Boston, MA
| | - Shuqiang Li
- Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
- Harvard Medical School, Boston, MA
- Broad Institute of MIT and Harvard, Cambridge, MA
| | - Mubin Tarannum
- Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
- Harvard Medical School, Boston, MA
| | - Rizwan Romee
- Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
- Harvard Medical School, Boston, MA
| | - Mehmet Samur
- Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
- Harvard Medical School, Boston, MA
| | - Nikhil C. Munshi
- Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
- Harvard Medical School, Boston, MA
| | - Shin Kaneko
- Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| | - Jerome Ritz
- Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
- Harvard Medical School, Boston, MA
| | - Kenneth C. Anderson
- Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
- Harvard Medical School, Boston, MA
| |
Collapse
|
38
|
Krizova L, Benesova I, Zemanova P, Spacek J, Strizova Z, Humlova Z, Mikulova V, Petruzelka L, Vocka M. Immunophenotyping of peripheral blood in NSCLC patients discriminates responders to immune checkpoint inhibitors. J Cancer Res Clin Oncol 2024; 150:99. [PMID: 38383923 PMCID: PMC10881622 DOI: 10.1007/s00432-024-05628-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 01/19/2024] [Indexed: 02/23/2024]
Abstract
PURPOSE Immune checkpoint inhibitors (ICIs) dramatically changed the prognosis of patients with NSCLC. Unfortunately, a reliable predictive biomarker is still missing. Commonly used biomarkers, such as PD-L1, MSI, or TMB, are not quite accurate in predicting ICI efficacy. METHODS In this prospective observational cohort study, we investigated the predictive role of erythrocytes, thrombocytes, innate and adaptive immune cells, complement proteins (C3, C4), and cytokines from peripheral blood of 224 patients with stage III/IV NSCLC treated with ICI alone (pembrolizumab, nivolumab, and atezolizumab) or in combination (nivolumab + ipilimumab) with chemotherapy. These values were analyzed for associations with the response to the treatment and survival endpoints. RESULTS Higher baseline Tregs, MPV, hemoglobin, and lower monocyte levels were associated with favorable PFS and OS. Moreover, increased baseline basophils and lower levels of C3 predicted significantly improved PFS. The levels of the baseline immature granulocytes, C3, and monocytes were significantly associated with the occurrence of partial regression at the first restaging. Multiple studied parameters (n = 9) were related to PFS benefit at the time of first restaging as compared to baseline values. In addition, PFS nonbenefit group showed a decrease in lymphocyte count after three months of therapy. The OS benefit was associated with higher levels of lymphocytes, erythrocytes, hemoglobin, MCV, and MPV, and a lower value of NLR after three months of treatment. CONCLUSION Our work suggests that parameters from peripheral venous blood may be potential biomarkers in NSCLC patients on ICI. The baseline values of Tregs, C3, monocytes, and MPV are especially recommended for further investigation.
Collapse
Affiliation(s)
- Ludmila Krizova
- Department of Oncology, General University Hospital in Prague and First Faculty of Medicine, Charles University, U Nemocnice 499/2, 128 00, Prague 2, Czech Republic
| | - Iva Benesova
- Department of Immunology, Second Faculty of Medicine, Charles University in Prague and University Hospital in Motol, Prague, Czech Republic
| | - Petra Zemanova
- Department of Oncology, General University Hospital in Prague and First Faculty of Medicine, Charles University, U Nemocnice 499/2, 128 00, Prague 2, Czech Republic
| | - Jan Spacek
- Department of Oncology, General University Hospital in Prague and First Faculty of Medicine, Charles University, U Nemocnice 499/2, 128 00, Prague 2, Czech Republic
| | - Zuzana Strizova
- Department of Immunology, Second Faculty of Medicine, Charles University in Prague and University Hospital in Motol, Prague, Czech Republic
| | - Zuzana Humlova
- Institute of Immunology and Microbiology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Veronika Mikulova
- Institute of Medical Biochemistry and Laboratory Diagnostics, Laboratory of Clinical Immunology and Allergology, General University Hospital in Prague and First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Lubos Petruzelka
- Department of Oncology, General University Hospital in Prague and First Faculty of Medicine, Charles University, U Nemocnice 499/2, 128 00, Prague 2, Czech Republic
| | - Michal Vocka
- Department of Oncology, General University Hospital in Prague and First Faculty of Medicine, Charles University, U Nemocnice 499/2, 128 00, Prague 2, Czech Republic.
| |
Collapse
|
39
|
Alqurashi YE. Lymphocyte-activation gene 3 (LAG-3) as a promising immune checkpoint in cancer immunotherapy: From biology to the clinic. Pathol Res Pract 2024; 254:155124. [PMID: 38295462 DOI: 10.1016/j.prp.2024.155124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 01/07/2024] [Accepted: 01/08/2024] [Indexed: 02/02/2024]
Abstract
In recent years, there have been notable advancements in the field of cancer immunotherapy, namely in the area of immune checkpoint inhibition. The Lymphocyte-activation gene 3 (LAG-3) has garnered attention as a potentially valuable focus of study in this particular field. The present study examines the biological aspects of LAG-3, its clinical consequences, and the potential therapeutic opportunities associated with its modulation. LAG-3, similar to CD4, has a regulatory role in modulating the immune system. The upregulation of this protein inside the neoplastic milieu hampers the immune system's ability to mount an effective response, hence enabling the evasion of cancer cells from immune surveillance. The LAG-3 protein interacts with ligands, inhibiting cytotoxic immune cells such as CD8+ T cells and NK cells. The potential of LAG-3 inhibitors presents intriguing prospects. Integrating these medicines with established treatments like PD-1/PD-L1 or CTLA-4 inhibitors can broaden the range of available therapy choices and address resistance issues. The advent of personalized therapy is imminent, as evidenced by the utilization of predictive biomarkers such as LAG-3 expression to inform individualized therapeutic approaches. Additionally, inhibitors of LAG-3 exhibit promise in addressing immunological depletion and resistance by revitalizing T cells and producing durable immune responses. The realization of LAG-3's promise necessitates global collaboration and equal access. Multinational trials are expected to ascertain the efficacy of the intervention in various patient groups.
Collapse
Affiliation(s)
- Yaser E Alqurashi
- Department of Biology, College of Science Al-zulfi, Majmaah University, Al-Majmaah 11952, Saudi Arabia.
| |
Collapse
|
40
|
Zhang Q, Yang C, Gao X, Dong J, Zhong C. Phytochemicals in regulating PD-1/PD-L1 and immune checkpoint blockade therapy. Phytother Res 2024; 38:776-796. [PMID: 38050789 DOI: 10.1002/ptr.8082] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 10/27/2023] [Accepted: 11/12/2023] [Indexed: 12/06/2023]
Abstract
Clinical treatment and preclinical studies have highlighted the role of immune checkpoint blockade in cancer treatment. Research has been devoted to developing immune checkpoint inhibitors in combination with other drugs to achieve better efficacy or reduce adverse effects. Phytochemicals sourced from vegetables and fruits have demonstrated antiproliferative, proapoptotic, anti-migratory, and antiangiogenic effects against several cancers. Phytochemicals also modulate the tumor microenvironment such as T cells, regulatory T cells, and cytokines. Recently, several phytochemicals have been reported to modulate immune checkpoint proteins in in vivo or in vitro models. Phytochemicals decreased programmed cell death ligand-1 expression and synergized programmed cell death receptor 1 (PD-1) monoclonal antibody to suppress tumor growth. Combined administration of phytochemicals and PD-1 monoclonal antibody enhanced the tumor growth inhibition as well as CD4+ /CD8+ T-cell infiltration. In this review, we discuss immune checkpoint molecules as potential therapeutic targets of cancers. We further assess the impact of phytochemicals including carotenoids, polyphenols, saponins, and organosulfur compounds on cancer PD-1/programmed cell death ligand-1 immune checkpoint molecules and document their combination effects with immune checkpoint inhibitors on various malignancies.
Collapse
Affiliation(s)
- Qi Zhang
- Department of Public Health, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Chenying Yang
- Yinzhou Center for Disease Control and Prevention, Ningbo, China
| | - Xingsu Gao
- Department of Public Health, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Ju Dong
- Department of Public Health, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Caiyun Zhong
- Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, Nanjing, China
| |
Collapse
|
41
|
Wildiers H, Armstrong A, Cuypere E, Dalenc F, Dirix L, Chan S, Marme F, Schröder CP, Huober J, Duhoux FP, Vuylsteke P, Jager A, Brain E, Kuemmel S, Pápai Z, Menke-van der Houven van Oordt CW, Perjesi L, Mueller C, Brignone C, Triebel F. Paclitaxel plus Eftilagimod Alpha, a Soluble LAG-3 Protein, in Metastatic, HR+ Breast Cancer: Results from AIPAC, a Randomized, Placebo Controlled Phase IIb Trial. Clin Cancer Res 2024; 30:532-541. [PMID: 37939105 PMCID: PMC10831339 DOI: 10.1158/1078-0432.ccr-23-1173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 09/15/2023] [Accepted: 11/03/2023] [Indexed: 11/10/2023]
Abstract
PURPOSE Eftilagimod alpha (efti), a soluble lymphocyte activation gene (LAG-3) protein and MHC class II agonist, enhances innate and adaptive immunity. Active Immunotherapy PAClitaxel (AIPAC) evaluated safety and efficacy of efti plus paclitaxel in patients with predominantly endocrine-resistant, hormone receptor-positive, HER2-negative metastatic breast cancer (ET-resistant HR+ HER2- MBC). PATIENTS AND METHODS Women with HR+ HER2- MBC were randomized 1:1 to weekly intravenous paclitaxel (80 mg/m2) and subcutaneous efti (30 mg) or placebo every 2 weeks for six 4-week cycles, then monthly subcutaneous efti (30 mg) or placebo maintenance. Primary endpoint was progression-free survival (PFS) by blinded independent central review. Secondary endpoints included overall survival (OS), safety/tolerability, pharmacokinetics/pharmacodynamics, and quality of life. Exploratory endpoints included cellular biomarkers. RESULTS 114 patients received efti and 112 patients received placebo. Median age was 60 years (91.6% visceral disease, 84.1% ET-resistant, 44.2% with previous CDK4/6 inhibitor treatment). Median PFS at 7.3 months was similar for efti and placebo. Median OS was not significantly improved for efti (20.4 vs. 17.5 months; HR, 0.88; P = 0.197) but became significant for predefined exploratory subgroups. EORTC QLQC30-B23 global health status was sustained for efti but deteriorated for placebo. Efti increased absolute lymphocyte, monocyte and secondary target cell (CD4, CD8) counts, plasma IFNγ and CXCL10 levels. CONCLUSIONS Although the primary endpoint, PFS, was not met, AIPAC confirmed expected pharmacodynamic effects and demonstrated excellent safety profile for efti. OS was not significantly improved globally (2.9-month difference), but was significantly improved in exploratory biomarker subgroups, warranting further studies to clarify efti's role in patients with ET-resistant HER2- MBC.
Collapse
Affiliation(s)
- Hans Wildiers
- Department of General Medical Oncology and Multidisciplinary Breast Centre, Leuven, Belgium
| | - Anne Armstrong
- The Christie NHS Foundation Trust, Manchester, United Kingdom
| | | | | | - Luc Dirix
- GZA ziekenhuizen Campus Sint-Augustinus, Antwerp, Belgium
| | - Steve Chan
- Nottingham Cancer Clinical Trials Team (NCCTT), Nottingham, United Kingdom
| | - Frederik Marme
- National Center for Tumor Diseases (NCT) Heidelberg, Heidelberg, Germany
| | - Carolina P. Schröder
- Netherlands Cancer Institute-Antoni van Leeuwenhoek, Amsterdam and University Medical Center Groningen, the Netherlands
| | - Jens Huober
- Breast Center Cantonal Hospital St Gallen, Switzerland and Department of Gynaecology, University of Ulm, Ulm, Germany
| | | | - Peter Vuylsteke
- CHU UCL Namur, Site Sainte-Elisabeth, UCLouvain, Namur, Belgium
| | - Agnes Jager
- Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Etienne Brain
- Institut Curie-Hôpital René Huguenin, Saint-Cloud, France
| | - Sherko Kuemmel
- Breat Unit, KEM Kliniken Essen-Mitte, Essen, Germany, Charité – Universitätsmedizin Berlin, Department of Gynecology with Breast Center, Berlin, Germany
| | - Zsuzsanna Pápai
- MH Egészségügyi Központ Onkológiai Osztály, Budapest, Hungary
| | | | | | | | | | | |
Collapse
|
42
|
Ghanbar MI, Suresh K. Pulmonary toxicity of immune checkpoint immunotherapy. J Clin Invest 2024; 134:e170503. [PMID: 38226621 PMCID: PMC10786690 DOI: 10.1172/jci170503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2024] Open
Abstract
Cancer remains a leading cause of mortality on a global scale. Lung cancer, specifically non-small cell lung cancer (NSCLC), is a prominent contributor to this burden. The management of NSCLC has advanced substantially in recent years, with immunotherapeutic agents, such as immune checkpoint inhibitors (ICIs), leading to improved patient outcomes. Although generally well tolerated, the administration of ICIs can result in unique side effects known as immune-related adverse events (irAEs). The occurrence of irAEs involving the lungs, specifically checkpoint inhibitor pneumonitis (CIP), can have a profound effect on both future therapy options and overall survival. Despite CIP being one of the more common serious irAEs, limited treatment options are currently available, in part due to a lack of understanding of the underlying mechanisms involved in its development. In this Review, we aim to provide an overview of the epidemiology and clinical characteristics of CIP, followed by an examination of the emerging literature on the pathobiology of this condition.
Collapse
Affiliation(s)
| | - Karthik Suresh
- Division of Pulmonary & Critical Care Medicine, Department of Medicine, and
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
43
|
Kennedy-Batalla R, Acevedo D, Luo Y, Esteve-Solé A, Vlagea A, Correa-Rocha R, Seoane-Reula ME, Alsina L. Treg in inborn errors of immunity: gaps, knowns and future perspectives. Front Immunol 2024; 14:1278759. [PMID: 38259469 PMCID: PMC10800401 DOI: 10.3389/fimmu.2023.1278759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 12/13/2023] [Indexed: 01/24/2024] Open
Abstract
Regulatory T cells (Treg) are essential for immune balance, preventing overreactive responses and autoimmunity. Although traditionally characterized as CD4+CD25+CD127lowFoxP3hi, recent research has revealed diverse Treg subsets such as Tr1, Tr1-like, and CD8 Treg. Treg dysfunction leads to severe autoimmune diseases and immune-mediated inflammatory disorders. Inborn errors of immunity (IEI) are a group of disorders that affect correct functioning of the immune system. IEI include Tregopathies caused by genetic mutations affecting Treg development or function. In addition, Treg dysfunction is also observed in other IEIs, whose underlying mechanisms are largely unknown, thus requiring further research. This review provides a comprehensive overview and discussion of Treg in IEI focused on: A) advances and controversies in the evaluation of Treg extended subphenotypes and function; B) current knowledge and gaps in Treg disturbances in Tregopathies and other IEI including Treg subpopulation changes, genotype-phenotype correlation, Treg changes with disease activity, and available therapies, and C) the potential of Treg cell-based therapies for IEI with immune dysregulation. The aim is to improve both the diagnostic and the therapeutic approaches to IEI when there is involvement of Treg. We performed a non-systematic targeted literature review with a knowledgeable selection of current, high-quality original and review articles on Treg and IEI available since 2003 (with 58% of the articles within the last 6 years) in the PubMed database.
Collapse
Affiliation(s)
- Rebeca Kennedy-Batalla
- Laboratory of Immune-Regulation, Gregorio Marañón Health Research Institute (IISGM), Madrid, Spain
| | - Daniel Acevedo
- Clinical Immunology and Primary Immunodeficiencies Unit, Allergy and Clinical Immunology Department, Hospital Sant Joan de Déu, Barcelona, Spain
- Clinical Immunology Unit, Hospital Sant Joan de Déu-Hospital Clínic, Barcelona, Spain
- Study Group for Immune Dysfunction Diseases in Children (GEMDIP), Institut de Recerca Sant Joan de Déu, Barcelona, Spain
| | - Yiyi Luo
- Clinical Immunology and Primary Immunodeficiencies Unit, Allergy and Clinical Immunology Department, Hospital Sant Joan de Déu, Barcelona, Spain
- Clinical Immunology Unit, Hospital Sant Joan de Déu-Hospital Clínic, Barcelona, Spain
- Study Group for Immune Dysfunction Diseases in Children (GEMDIP), Institut de Recerca Sant Joan de Déu, Barcelona, Spain
| | - Ana Esteve-Solé
- Clinical Immunology and Primary Immunodeficiencies Unit, Allergy and Clinical Immunology Department, Hospital Sant Joan de Déu, Barcelona, Spain
- Clinical Immunology Unit, Hospital Sant Joan de Déu-Hospital Clínic, Barcelona, Spain
- Study Group for Immune Dysfunction Diseases in Children (GEMDIP), Institut de Recerca Sant Joan de Déu, Barcelona, Spain
| | - Alexandru Vlagea
- Clinical Immunology Unit, Hospital Sant Joan de Déu-Hospital Clínic, Barcelona, Spain
- Immunology Department, Biomedic Diagnostic Center (CDB), Hospital Clínic of Barcelona, Clinical Immunology Unit Hospital Sant Joan de Déu-Hospital Clínic de Barcelona, Barcelona, Spain
| | - Rafael Correa-Rocha
- Laboratory of Immune-Regulation, Gregorio Marañón Health Research Institute (IISGM), Madrid, Spain
| | - Ma Elena Seoane-Reula
- Laboratory of Immune-Regulation, Gregorio Marañón Health Research Institute (IISGM), Madrid, Spain
- Pediatric Immuno-Allergy Unit, Allergy Department, Hospital General Universitario Gregorio Marañón, Madrid, Spain
- Primary Immunodeficiencies Unit, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - Laia Alsina
- Clinical Immunology and Primary Immunodeficiencies Unit, Allergy and Clinical Immunology Department, Hospital Sant Joan de Déu, Barcelona, Spain
- Clinical Immunology Unit, Hospital Sant Joan de Déu-Hospital Clínic, Barcelona, Spain
- Study Group for Immune Dysfunction Diseases in Children (GEMDIP), Institut de Recerca Sant Joan de Déu, Barcelona, Spain
- Department of Surgery and Surgical Specializations, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
44
|
Meng L, Wu H, Wu J, Ding P, He J, Sang M, Liu L. Mechanisms of immune checkpoint inhibitors: insights into the regulation of circular RNAS involved in cancer hallmarks. Cell Death Dis 2024; 15:3. [PMID: 38177102 PMCID: PMC10766988 DOI: 10.1038/s41419-023-06389-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 12/06/2023] [Accepted: 12/11/2023] [Indexed: 01/06/2024]
Abstract
Current treatment strategies for cancer, especially advanced cancer, are limited and unsatisfactory. One of the most substantial advances in cancer therapy, in the last decades, was the discovery of a new layer of immunotherapy approach, immune checkpoint inhibitors (ICIs), which can specifically activate immune cells by targeting immune checkpoints. Immune checkpoints are a type of immunosuppressive molecules expressed on immune cells, which can regulate the degree of immune activation and avoid autoimmune responses. ICIs, such as anti-PD-1/PD-L1 drugs, has shown inspiring efficacy and broad applicability across various cancers. Unfortunately, not all cancer patients benefit remarkably from ICIs, and the overall response rates to ICIs remain relatively low for most cancer types. Moreover, the primary and acquired resistance to ICIs pose serious challenges to the clinical application of cancer immunotherapy. Thus, a deeper understanding of the molecular biological properties and regulatory mechanisms of immune checkpoints is urgently needed to improve clinical options for current therapies. Recently, circular RNAs (circRNAs) have attracted increasing attention, not only due to their involvement in various aspects of cancer hallmarks, but also for their impact on immune checkpoints in shaping the tumor immune microenvironment. In this review, we systematically summarize the current status of immune checkpoints in cancer and the existing regulatory roles of circRNAs on immune checkpoints. Meanwhile, we also aim to settle the issue in an evidence-oriented manner that circRNAs involved in cancer hallmarks regulate the effects and resistance of ICIs by targeting immune checkpoints.
Collapse
Affiliation(s)
- Lingjiao Meng
- Department of Tumor Immunotherapy, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050035, China
- Research Center and Tumor Research Institute, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050017, China
| | - Haotian Wu
- The Third Department of Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050011, China
- Hebei Key Laboratory of Precision Diagnosis and Comprehensive Treatment of Gastric Cancer, Shijiazhuang, 050011, China
| | - Jiaxiang Wu
- The Third Department of Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050011, China
- Hebei Key Laboratory of Precision Diagnosis and Comprehensive Treatment of Gastric Cancer, Shijiazhuang, 050011, China
| | - Ping'an Ding
- The Third Department of Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050011, China
- Hebei Key Laboratory of Precision Diagnosis and Comprehensive Treatment of Gastric Cancer, Shijiazhuang, 050011, China
| | - Jinchen He
- The Third Department of Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050011, China
- Hebei Key Laboratory of Precision Diagnosis and Comprehensive Treatment of Gastric Cancer, Shijiazhuang, 050011, China
| | - Meixiang Sang
- Research Center and Tumor Research Institute, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050017, China.
- Science and Education Department, Shanghai Electric Power Hospital, Shanghai, 20050, China.
| | - Lihua Liu
- Department of Tumor Immunotherapy, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050035, China.
| |
Collapse
|
45
|
Tawfeeq C, Song J, Khaniya U, Madej T, Wang J, Youkharibache P, Abrol R. Towards a structural and functional analysis of the immunoglobulin-fold proteome. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2024; 138:135-178. [PMID: 38220423 DOI: 10.1016/bs.apcsb.2023.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2024]
Abstract
The immunoglobulin fold (Ig fold) domain is a super-secondary structural motif consisting of a sandwich with two layers of β-sheets that is present in many proteins with very diverse biological functions covering a wide range of physiological processes. This domain presents a modular architecture built with β strands connected by variable length loops that has a highly conserved structural core of four β-strands and quite variable β-sheet extensions in the two sandwich layers that enable both divergent and convergent evolutionary mechanisms in the known Ig fold proteome. The central role of this Ig fold's structural plasticity in the evolutionary success of antibodies in our immune system is well established. Nature has also utilized this Ig fold in all domains of life in many different physiological contexts that go way beyond the immune system. Here we will present a structural and functional overview of the utilization of the Ig fold in different biological processes and in different cellular contexts to highlight some of the innumerable ways that this structural motif can interact in multidomain proteins to enable their diversity of functions. This includes shareable specific protein structure visualizations behind those functions that serve as starting points for further explorations of the biomolecular interactions spanning the Ig fold proteome. This overview also highlights how this Ig fold is being utilized through natural adaptation, engineering, and even building from scratch for a range of biotechnological applications.
Collapse
Affiliation(s)
- Caesar Tawfeeq
- Department of Chemistry and Biochemistry, California State University Northridge, Northridge, United States
| | - James Song
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, United States
| | - Umesh Khaniya
- Cancer Data Science Laboratory, National Cancer Institute, National Institutes of Health, Bethesda, United States
| | - Thomas Madej
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, United States
| | - Jiyao Wang
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, United States
| | - Philippe Youkharibache
- Cancer Data Science Laboratory, National Cancer Institute, National Institutes of Health, Bethesda, United States.
| | - Ravinder Abrol
- Department of Chemistry and Biochemistry, California State University Northridge, Northridge, United States.
| |
Collapse
|
46
|
Quan Z, Han Z, Yang Y, Wang J, Wang H, Yang L, A R, Hu X, Wang J, Li X, Li X, Yu H, Chen W, Wang K, Sun X. Noninvasive Monitoring of Immunotherapy in Lung Cancer by Lymphocyte Activation Gene 3 PET Imaging of Tumor-Infiltrating Lymphocytes. J Nucl Med 2024; 65:25-32. [PMID: 37973186 DOI: 10.2967/jnumed.123.266002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 10/14/2023] [Indexed: 11/19/2023] Open
Abstract
Although immunotherapy has revolutionized the entire cancer treatment landscape, small fractions of patients respond to immunotherapy. Early identification of responders may improve patient management during immunotherapy. In this study, we evaluated a PET approach for monitoring immunotherapy in lung cancer by imaging the upregulation of lymphocyte activation gene 3 (LAG-3)-expressing (LAG-3+) tumor-infiltrating lymphocytes (TILs). Methods: We synthesized a LAG-3-targeted molecular imaging probe, [68Ga]Ga-NOTA-C25 and performed a series of in vitro and in vivo assays to test its specificity. Next, [68Ga]Ga-NOTA-C25 PET was used to monitor immunotherapy in murine lung cancer-bearing mice and in humanized mouse models for assessing clinical translational potential, with confirmation by immunostaining and flow cytometry analysis. Results: [68Ga]Ga-NOTA-C25 PET could noninvasively detect intertumoral differences in LAG-3+ TIL levels in different tumor models. Importantly, in Lewis lung carcinoma tumor models treated with an agonist of a stimulator of interferon genes, [68Ga]Ga-NOTA-C25 PET also detected an immunophenotyping transition of the tumor from "cold" to "hot" before changes in tumor size. Meanwhile, animals carrying "hot" tumor showed more significant tumor inhibition and longer survival than those carrying "cold" tumor. [68Ga]Ga-NOTA-C25 PET also showed markedly higher tumor uptake in immune system-humanized mice carrying human non-small cell lung cancer than immunodeficient models. Conclusion: [68Ga]Ga-NOTA-C25 PET could be used to noninvasively monitor the early response to immunotherapy by imaging LAG-3+ TILs in lung cancer. [68Ga]Ga-NOTA-C25 PET also exhibited excellent translational potential, with great significance for the precise management of lung cancer patients receiving immunotherapy.
Collapse
Affiliation(s)
- Zhen Quan
- Department of Nuclear Medicine, Fourth Hospital of Harbin Medical University, Harbin, Heilongjiang, China
- NHC Key Laboratory of Molecular Probe and Targeted Diagnosis and Therapy, Molecular Imaging Research Center (MIRC) of Harbin Medical University, Harbin, Heilongjiang, China
| | - Zhaoguo Han
- Department of Nuclear Medicine, Fourth Hospital of Harbin Medical University, Harbin, Heilongjiang, China
- NHC Key Laboratory of Molecular Probe and Targeted Diagnosis and Therapy, Molecular Imaging Research Center (MIRC) of Harbin Medical University, Harbin, Heilongjiang, China
- Biomedical Research Imaging Center (BRIC), The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Yang Yang
- Department of Nuclear Medicine, Fourth Hospital of Harbin Medical University, Harbin, Heilongjiang, China
- NHC Key Laboratory of Molecular Probe and Targeted Diagnosis and Therapy, Molecular Imaging Research Center (MIRC) of Harbin Medical University, Harbin, Heilongjiang, China
| | - Jiannan Wang
- Department of Nuclear Medicine, Fourth Hospital of Harbin Medical University, Harbin, Heilongjiang, China
- NHC Key Laboratory of Molecular Probe and Targeted Diagnosis and Therapy, Molecular Imaging Research Center (MIRC) of Harbin Medical University, Harbin, Heilongjiang, China
| | - Hui Wang
- Department of Hematology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China; and
| | - Lili Yang
- Department of Nuclear Medicine, Fourth Hospital of Harbin Medical University, Harbin, Heilongjiang, China
- NHC Key Laboratory of Molecular Probe and Targeted Diagnosis and Therapy, Molecular Imaging Research Center (MIRC) of Harbin Medical University, Harbin, Heilongjiang, China
| | - Rong A
- Department of Nuclear Medicine, Fourth Hospital of Harbin Medical University, Harbin, Heilongjiang, China
- NHC Key Laboratory of Molecular Probe and Targeted Diagnosis and Therapy, Molecular Imaging Research Center (MIRC) of Harbin Medical University, Harbin, Heilongjiang, China
| | - Xinxin Hu
- Department of Nuclear Medicine, Fourth Hospital of Harbin Medical University, Harbin, Heilongjiang, China
- NHC Key Laboratory of Molecular Probe and Targeted Diagnosis and Therapy, Molecular Imaging Research Center (MIRC) of Harbin Medical University, Harbin, Heilongjiang, China
| | - Jing Wang
- Department of Nuclear Medicine, Fourth Hospital of Harbin Medical University, Harbin, Heilongjiang, China
- NHC Key Laboratory of Molecular Probe and Targeted Diagnosis and Therapy, Molecular Imaging Research Center (MIRC) of Harbin Medical University, Harbin, Heilongjiang, China
| | - Xiaona Li
- Department of Nuclear Medicine, Fourth Hospital of Harbin Medical University, Harbin, Heilongjiang, China
- NHC Key Laboratory of Molecular Probe and Targeted Diagnosis and Therapy, Molecular Imaging Research Center (MIRC) of Harbin Medical University, Harbin, Heilongjiang, China
| | - Xiaoqian Li
- Department of Nuclear Medicine, Fourth Hospital of Harbin Medical University, Harbin, Heilongjiang, China
- NHC Key Laboratory of Molecular Probe and Targeted Diagnosis and Therapy, Molecular Imaging Research Center (MIRC) of Harbin Medical University, Harbin, Heilongjiang, China
| | - Hong Yu
- Department of Nuclear Medicine, Fourth Hospital of Harbin Medical University, Harbin, Heilongjiang, China
- NHC Key Laboratory of Molecular Probe and Targeted Diagnosis and Therapy, Molecular Imaging Research Center (MIRC) of Harbin Medical University, Harbin, Heilongjiang, China
| | - Wei Chen
- Department of Nuclear Medicine and Laboratory of Clinical Nuclear Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Kai Wang
- Department of Nuclear Medicine, Fourth Hospital of Harbin Medical University, Harbin, Heilongjiang, China
- NHC Key Laboratory of Molecular Probe and Targeted Diagnosis and Therapy, Molecular Imaging Research Center (MIRC) of Harbin Medical University, Harbin, Heilongjiang, China
| | - Xilin Sun
- Department of Nuclear Medicine, Fourth Hospital of Harbin Medical University, Harbin, Heilongjiang, China;
- NHC Key Laboratory of Molecular Probe and Targeted Diagnosis and Therapy, Molecular Imaging Research Center (MIRC) of Harbin Medical University, Harbin, Heilongjiang, China
| |
Collapse
|
47
|
Peng J, Du Z, Sun Y, Zhou Z. A combined analysis of multi-omics data reveals the prognostic values and immunotherapy response of LAG3 in human cancers. Eur J Med Res 2023; 28:604. [PMID: 38115039 PMCID: PMC10729452 DOI: 10.1186/s40001-023-01583-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 12/10/2023] [Indexed: 12/21/2023] Open
Abstract
Lymphocyte-activation gene 3 (LAG3) is a highly anticipated immune checkpoint in the context of cancer, exerting regulatory control over immune cell proliferation and function to reinforce the advancement of cancers. However, the comprehensive functional analysis of LAG3 across various cancer types remains undisclosed; thus, this study aims to investigate the pan-cancer expression profile of LAG3. We have investigated the expression profile, prognostic significance, and genetic alterations of LAG3 in various cancers while elucidating its characteristic in immune response regulation. Our findings demonstrated that elevated LAG3 expression is significantly associated with favorable prognosis in patients with cutaneous melanoma (SKCM), and it may be a potential biomarker for SKCM. Furthermore, multiple immune algorithms have highlighted the important regulatory role of LAG3 for the tumor-infiltrating immune cells including CD8 + T cells, B cells, dendritic cells (DCs), macrophages, and natural killer (NK) cells. We also examined the distribution of LAG3 at the single-cell level and explored its functional significance. A comprehensive and systematic analysis of LAG3 would facilitate a comprehensive evaluation of LAG3 in cancer biology and provide valuable insights for cancer management.
Collapse
Affiliation(s)
- Jinwu Peng
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Department of Pathology, Xiangya Changde Hospital, Changde, 415000, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Zhihao Du
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Yuwei Sun
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Zhiyang Zhou
- Department of Breast Surgery, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
| |
Collapse
|
48
|
Li R, Qiu J, Zhang Z, Qu C, Tang Z, Yu W, Tian Y, Tian H. Prognostic significance of Lymphocyte-activation gene 3 (LAG3) in patients with solid tumors: a systematic review, meta-analysis and pan-cancer analysis. Cancer Cell Int 2023; 23:306. [PMID: 38041068 PMCID: PMC10693146 DOI: 10.1186/s12935-023-03157-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 11/21/2023] [Indexed: 12/03/2023] Open
Abstract
BACKGROUND Lymphocyte-activation gene 3 (LAG3) is a recently discovered immune checkpoint molecule that has been linked to immunosuppression and the advancement of cancer in different types of solid tumors. This study aimed to evaluate the prognostic importance of LAG3 and its role in the immune system within solid tumors. METHODS Extensive literature searches were conducted using the Pubmed, EMBASE, and Cochrane Library databases to identify relevant studies exploring the effect of LAG3 on survival outcomes. Pooled hazard ratios (HRs) with its 95% confidence intervals (CIs) were calculated to evaluate the prognostic values of LAG3. Afterwards, subgroup analysis and sensitivity analysis were conducted. Pan-cancer analysis investigated the possible relationships between LAG3 expression and genetic alterations, RNA methylation modification-related genes, genomic instability, immune checkpoint genes, and infiltration of immune cells. RESULTS A total of 43 studies with 7,118 patients were included in this analysis. Higher expression of LAG3 was associated with worse overall survival (HR = 1.10, 95% CI 1.01-1.19, P = 0.023), but not disease-free survival (HR = 1.41, 95% CI 0.96-2.07, P = 0.078), progression-free survival (HR = 1.12, 95% CI 0.90-1.39, P = 0.317) or recurrence-free survival (HR = 0.98, 95% CI 0.81-1.19, P = 0.871). Subgroup analysis showed that LAG3 might play different prognostic roles in different solid tumors. LAG3 expression was positively associated with immune cell infiltration and immune checkpoint genes in all of the cancers included. LAG3 expression was also found to be associated with microsatellite instability (MSI), copy number variation (CNV), simple nucleoside variation (SNV), tumor mutation burden (TMB), and neoantigen in various types of cancers. CONCLUSIONS Elevated expression of LAG3 is linked to poorer prognosis among patients diagnosed with solid cancers. LAG3 might play varying prognostic roles in different types of solid tumors. Given its substantial involvement in cancer immunity and tumorigenesis, LAG3 has garnered attention as a promising prognostic biomarker and a potential target for immunotherapy.
Collapse
Affiliation(s)
- Rongyang Li
- Department of Thoracic Surgery, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, China
| | - Jianhao Qiu
- Department of Thoracic Surgery, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, China
| | - Zhan Zhang
- Department of Thoracic Surgery, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, China
| | - Chenghao Qu
- Department of Thoracic Surgery, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, China
| | - Zhanpeng Tang
- Department of Thoracic Surgery, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, China
| | - Wenhao Yu
- Department of Thoracic Surgery, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, China
| | - Yu Tian
- Department of Thoracic Surgery, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, China.
| | - Hui Tian
- Department of Thoracic Surgery, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, China.
| |
Collapse
|
49
|
Lamas NJ, Lassalle S, Martel A, Nahon-Estève S, Macocco A, Zahaf K, Lalvee S, Fayada J, Lespinet-Fabre V, Bordone O, Pedeutour F, Baillif S, Hofman P. Characterisation of the protein expression of the emerging immunotherapy targets VISTA, LAG-3 and PRAME in primary uveal melanoma: insights from a southern French patient cohort. Pathology 2023; 55:929-944. [PMID: 37863710 DOI: 10.1016/j.pathol.2023.08.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 07/02/2023] [Accepted: 08/04/2023] [Indexed: 10/22/2023]
Abstract
Uveal melanoma (UM) is the most common intraocular tumour in adults, with dismal prognosis once metastases develop, since therapeutic options for the metastatic disease are ineffective. Over the past decade, novel cancer therapies based on immunotherapy have changed the landscape of treatment of different forms of cancer leading to many hopes of improvement in patient overall survival (OS). VISTA, LAG-3 and PRAME are novel promising targets of immunotherapy that have recently gained attention in different solid tumours, but whose relevance in UM remained to be comprehensively evaluated until now. Here, we studied the protein expression of VISTA, LAG-3 and PRAME using immunohistochemistry in representative whole tissue sections from primary UM cases in a cohort of 30 patients from a single centre (Nice University Hospital, Nice, France). The expression of each of these markers was correlated with different clinical and pathological parameters, including onset of metastases and OS. We demonstrated the protein expression of VISTA and LAG-3 in small lymphocytes infiltrating the tumour, while no expression of the proteins was detected in UM cells. For PRAME, nuclear expression was observed in UM cells, but no expression in tumour infiltrating immune cells was identified. Increased levels of VISTA expression in tumour infiltrating lymphocytes (TILs) were associated with nuclear BAP1 expression and better prognosis. Higher levels of LAG-3 in TILs were associated with higher levels of CD8-positive TILs. PRAME nuclear positivity in melanoma cells was associated with epithelioid cell dominant (>90%) UM histological subtype, higher mitotic numbers and a higher percentage of chromosome 8q gain. This study proposes VISTA as a novel relevant immune checkpoint molecule in primary UM and contributes to confirm LAG-3 and PRAME as potentially important immunotherapy targets in the treatment of UM patients, helping to expand the number of immunotherapy candidate molecules that are relevant to modulate in this aggressive cancer.
Collapse
Affiliation(s)
- Nuno Jorge Lamas
- Université Côte d'Azur, Laboratory of Clinical and Experimental Pathology, Biobank BB-0033-00025, Pasteur Hospital, Centre Hospitalier Universitaire de Nice, Nice, France; Anatomic Pathology Service, Pathology Department, Centro Hospitalar Universitário de Santo António (CHUdSA), Porto, Largo Professor Abel Salazar, Porto, Portugal; Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, Braga, Portugal; ICVS/3B's, PT Government Associate Laboratory, University of Minho, Braga/Guimarães, Portugal
| | - Sandra Lassalle
- Université Côte d'Azur, Laboratory of Clinical and Experimental Pathology, Biobank BB-0033-00025, Pasteur Hospital, Centre Hospitalier Universitaire de Nice, Nice, France; IRCAN Team 4, Inserm U1081/CNRS 7284, Centre de Lutte contre le Cancer Antoine Lacassagne, Nice, France; FHU OncoAge, Centre Hospitalier Universitaire de Nice, Nice, France
| | - Arnaud Martel
- Université Côte d'Azur, Department of Ophthalmology, Pasteur Hospital, Centre Hospitalier Universitaire de Nice, Nice, France
| | - Sacha Nahon-Estève
- Université Côte d'Azur, Department of Ophthalmology, Pasteur Hospital, Centre Hospitalier Universitaire de Nice, Nice, France
| | - Adam Macocco
- Université Côte d'Azur, Laboratory of Clinical and Experimental Pathology, Biobank BB-0033-00025, Pasteur Hospital, Centre Hospitalier Universitaire de Nice, Nice, France
| | - Katia Zahaf
- Université Côte d'Azur, Laboratory of Clinical and Experimental Pathology, Biobank BB-0033-00025, Pasteur Hospital, Centre Hospitalier Universitaire de Nice, Nice, France
| | - Salome Lalvee
- Université Côte d'Azur, Laboratory of Clinical and Experimental Pathology, Biobank BB-0033-00025, Pasteur Hospital, Centre Hospitalier Universitaire de Nice, Nice, France
| | - Julien Fayada
- Université Côte d'Azur, Laboratory of Clinical and Experimental Pathology, Biobank BB-0033-00025, Pasteur Hospital, Centre Hospitalier Universitaire de Nice, Nice, France
| | - Virginie Lespinet-Fabre
- Université Côte d'Azur, Laboratory of Clinical and Experimental Pathology, Biobank BB-0033-00025, Pasteur Hospital, Centre Hospitalier Universitaire de Nice, Nice, France; IRCAN Team 4, Inserm U1081/CNRS 7284, Centre de Lutte contre le Cancer Antoine Lacassagne, Nice, France; FHU OncoAge, Centre Hospitalier Universitaire de Nice, Nice, France
| | - Olivier Bordone
- Université Côte d'Azur, Laboratory of Clinical and Experimental Pathology, Biobank BB-0033-00025, Pasteur Hospital, Centre Hospitalier Universitaire de Nice, Nice, France; IRCAN Team 4, Inserm U1081/CNRS 7284, Centre de Lutte contre le Cancer Antoine Lacassagne, Nice, France; FHU OncoAge, Centre Hospitalier Universitaire de Nice, Nice, France
| | - Florence Pedeutour
- Laboratory of Solid Tumour Genetics, Centre Hospitalier Universitaire de Nice, Université Côte d'Azur, Nice, France
| | - Stéphanie Baillif
- Université Côte d'Azur, Department of Ophthalmology, Pasteur Hospital, Centre Hospitalier Universitaire de Nice, Nice, France
| | - Paul Hofman
- Université Côte d'Azur, Laboratory of Clinical and Experimental Pathology, Biobank BB-0033-00025, Pasteur Hospital, Centre Hospitalier Universitaire de Nice, Nice, France; IRCAN Team 4, Inserm U1081/CNRS 7284, Centre de Lutte contre le Cancer Antoine Lacassagne, Nice, France; FHU OncoAge, Centre Hospitalier Universitaire de Nice, Nice, France.
| |
Collapse
|
50
|
Shan C, Wang Y, Li Y, Yang S, Sheng W, Liu X. The triple-drug combination DBDx enhances the antitumor efficacy of PD-1 antibody associated with Treg modulation. J Cancer Res Ther 2023; 19:1603-1609. [PMID: 38156928 DOI: 10.4103/jcrt.jcrt_350_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 07/03/2023] [Indexed: 01/03/2024]
Abstract
OBJECTIVE This study investigated the antitumor efficacy of programmed cell death protein-1 (PD-1) antibody and DBDx, a triple-drug combination of dipyridamole, bestatin, and dexamethasone, and their related immunomodulation. MATERIALS AND METHODS Mouse melanoma B16, mouse Lewis lung carcinoma, and mouse breast carcinoma 4T1 were used for evaluating the in vivo therapeutic efficacy of DBDx, PD-1 antibody, and their combination. The peripheral blood and tumor tissues of 4T1 tumor-bearing mice were collected to analyze regulatory T cells and measured using flow cytometry. RESULTS The combination of PD-1 antibody and DBDx enhanced the therapeutic efficacy against B16 melanoma. The suppression of tumor growth by PD-1 antibody and DBDx was more significant than that by anti-PD-1 monotherapy. The tumor growth inhibition rates of PD-1 antibody, DBDx, and their combination were 54.0%, 72.4%, and 83.1%, respectively, suggesting a synergistic effect as determined by the coefficient of drug interaction. No significant changes were found in the body weights in all the above groups, indicating that the treated mice tolerated the applied drug doses. Similarly, enhanced therapeutic efficacy of the PD-1 antibody and DBDx combination was observed in murine Lewis lung carcinoma and 4T1 breast cancer models. In 4T1 breast cancer-bearing mice, the immunotherapy-related changes in lymphocytes in peripheral blood and tumor microenvironment were evaluated with flow cytometry. Compared with anti-PD-1 monotherapy, peripheral blood and tumor-infiltrating lymphocytes were found a lower ratio of regulatory T cell (Treg) subset cells and a higher ratio of CD8+/Treg cells. CONCLUSIONS The combination of PD-1 antibody and DBDx could achieve enhanced therapeutic antitumor efficacy than anti-PD-1 monotherapy, suggesting potential for using the triple-drug combination DBDx in cancer immunotherapy.
Collapse
Affiliation(s)
- Chuankun Shan
- Department of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Suzhou, P.R. China
- Jiangsu Alphamab Biopharmaceuticals Co., Ltd, Suzhou, P.R. China
| | - Yuexuan Wang
- Department of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Suzhou, P.R. China
- Zibo Central Hospital, Zibo, P.R. China
| | - Yi Li
- Department of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Suzhou, P.R. China
| | - Siqi Yang
- Department of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Suzhou, P.R. China
- Qujing Center for Disease Control and Prevention, Qujing, P.R. China
| | - Weijin Sheng
- Department of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Suzhou, P.R. China
| | - Xiujun Liu
- Department of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Suzhou, P.R. China
| |
Collapse
|