1
|
Pan Y, Xu Y, Fan C, Miao X, Shen Y, Wang Q, Wu J, Hu H, Wang H, Xiang M, Ye B. The role of neck adipose tissue in lymph node metastasis of head and neck cancer. Front Oncol 2024; 14:1390824. [PMID: 38800384 PMCID: PMC11116645 DOI: 10.3389/fonc.2024.1390824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 04/22/2024] [Indexed: 05/29/2024] Open
Abstract
Previous studies indicated that adipose tissue significantly influences cancer invasion and lymphatic metastasis. However, the impact of neck adipose tissue (NAT) on lymph node metastasis associated with head and neck cancer remains ambiguous. Here, we systematically assess the classification and measurement criteria of NAT and evaluate the association of adipose tissue and cancer-associated adipocytes with head and neck cancer. We delve into the potential mechanisms by which NAT facilitate cervical lymph node metastasis in head and neck cancer, particularly through the secretion of adipokines such as leptin, adiponectin, and Interleukin-6. Our aim is to elucidate the role of NAT in the progression and metastasis of head and neck cancer, offering new insights into prevention and treatment.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Mingliang Xiang
- Department of Otolaryngology & Head and Neck Surgery, Ruijin Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Bin Ye
- Department of Otolaryngology & Head and Neck Surgery, Ruijin Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
2
|
Alvarez-Artime A, Garcia-Soler B, Gonzalez-Menendez P, Fernandez-Vega S, Cernuda-Cernuda R, Hevia D, Mayo JC, Sainz RM. Castration promotes the browning of the prostate tumor microenvironment. Cell Commun Signal 2023; 21:267. [PMID: 37770940 PMCID: PMC10536697 DOI: 10.1186/s12964-023-01294-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 08/23/2023] [Indexed: 09/30/2023] Open
Abstract
BACKGROUND Adipose tissue has gained attention due to its potential paracrine role. Periprostatic adipose tissue surrounds the prostate and the prostatic urethra, and it is an essential player in prostate cancer progression. Since obesity is directly related to human tumor progression, and adipose tissue depots are one of the significant components of the tumor microenvironment, the molecular mediators of the communication between adipocytes and epithelial cells are in the spotlight. Although periprostatic white adipose tissue contributes to prostate cancer progression, brown adipose tissue (BAT), which has beneficial effects in metabolic pathologies, has been scarcely investigated concerning cancer progression. Given that adipose tissue is a target of androgen signaling, the actual role of androgen removal on the periprostatic adipose tissue was the aim of this work. METHODS Surgical castration of the transgenic adenocarcinoma of the mouse prostate (TRAMP) was employed. By histology examination and software analysis, WAT and BAT tissue was quantified. 3T3-like adipocytes were used to study the role of Casodex® in modifying adipocyte differentiation and to investigate the function of the secretome of adipocytes on the proliferation of androgen-dependent and independent prostate cancer cells. Finally, the role of cell communication was assayed by TRAMP-C1 xenograft implanted in the presence of 3T3-like adipocytes. RESULTS Androgen removal increases brown/beige adipose tissue in the fat immediately surrounding the prostate glands of TRAMP mice, concomitant with an adjustment of the metabolism. Castration increases body temperature, respiratory exchange rate, and energy expenditure. Also, in vitro, it is described that blocking androgen signaling by Casodex® increases the uncoupling protein 1 (UCP1) marker in 3T3-like adipocytes. Finally, the effect of brown/beige adipocyte secretome was studied on the proliferation of prostate cancer cells in vivo and in vitro. The secretome of brown/beige adipocytes reduces the proliferation of prostate cancer cells mediated partly by the secretion of extracellular vesicles. CONCLUSIONS Consequently, we concluded that hampering androgen signaling plays a crucial role in the browning of the periprostatic adipose tissue. Also, the presence of brown adipocytes exhibits the opposite effect to that of white adipocytes in vitro regulating processes that govern the mechanisms of cell proliferation of prostate cancer cells. And finally, promoting the browning of adipose tissue in the periprostatic adipose tissue might be a way to handle prostate cancer cell progression. Video Abstract.
Collapse
Affiliation(s)
- Alejandro Alvarez-Artime
- Departamento de Morfologia y Biologia Celular, Facultad de Medicina, University of Oviedo, Julian Claveria 6, 33006, Oviedo, Spain
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA), 33006, Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Avda. Hospital Universitario, 33011, Oviedo, Spain
| | - Belen Garcia-Soler
- Departamento de Morfologia y Biologia Celular, Facultad de Medicina, University of Oviedo, Julian Claveria 6, 33006, Oviedo, Spain
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA), 33006, Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Avda. Hospital Universitario, 33011, Oviedo, Spain
| | - Pedro Gonzalez-Menendez
- Departamento de Morfologia y Biologia Celular, Facultad de Medicina, University of Oviedo, Julian Claveria 6, 33006, Oviedo, Spain
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA), 33006, Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Avda. Hospital Universitario, 33011, Oviedo, Spain
| | - Sheila Fernandez-Vega
- Departamento de Morfologia y Biologia Celular, Facultad de Medicina, University of Oviedo, Julian Claveria 6, 33006, Oviedo, Spain
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA), 33006, Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Avda. Hospital Universitario, 33011, Oviedo, Spain
| | - Rafael Cernuda-Cernuda
- Departamento de Morfologia y Biologia Celular, Facultad de Medicina, University of Oviedo, Julian Claveria 6, 33006, Oviedo, Spain
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA), 33006, Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Avda. Hospital Universitario, 33011, Oviedo, Spain
| | - David Hevia
- Departamento de Morfologia y Biologia Celular, Facultad de Medicina, University of Oviedo, Julian Claveria 6, 33006, Oviedo, Spain
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA), 33006, Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Avda. Hospital Universitario, 33011, Oviedo, Spain
| | - Juan C Mayo
- Departamento de Morfologia y Biologia Celular, Facultad de Medicina, University of Oviedo, Julian Claveria 6, 33006, Oviedo, Spain.
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA), 33006, Oviedo, Spain.
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Avda. Hospital Universitario, 33011, Oviedo, Spain.
| | - Rosa M Sainz
- Departamento de Morfologia y Biologia Celular, Facultad de Medicina, University of Oviedo, Julian Claveria 6, 33006, Oviedo, Spain.
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA), 33006, Oviedo, Spain.
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Avda. Hospital Universitario, 33011, Oviedo, Spain.
| |
Collapse
|
3
|
Lee-Rueckert M, Canyelles M, Tondo M, Rotllan N, Kovanen PT, Llorente-Cortes V, Escolà-Gil JC. Obesity-induced changes in cancer cells and their microenvironment: Mechanisms and therapeutic perspectives to manage dysregulated lipid metabolism. Semin Cancer Biol 2023; 93:36-51. [PMID: 37156344 DOI: 10.1016/j.semcancer.2023.05.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 04/05/2023] [Accepted: 05/05/2023] [Indexed: 05/10/2023]
Abstract
Obesity has been closely related to cancer progression, recurrence, metastasis, and treatment resistance. We aim to review recent progress in the knowledge on the obese macroenvironment and the generated adipose tumor microenvironment (TME) inducing lipid metabolic dysregulation and their influence on carcinogenic processes. Visceral white adipose tissue expansion during obesity exerts systemic or macroenvironmental effects on tumor initiation, growth, and invasion by promoting inflammation, hyperinsulinemia, growth-factor release, and dyslipidemia. The dynamic relationship between cancer and stromal cells of the obese adipose TME is critical for cancer cell survival and proliferation as well. Experimental evidence shows that secreted paracrine signals from cancer cells can induce lipolysis in cancer-associated adipocytes, causing them to release free fatty acids and acquire a fibroblast-like phenotype. Such adipocyte delipidation and phenotypic change is accompanied by an increased secretion of cytokines by cancer-associated adipocytes and tumor-associated macrophages in the TME. Mechanistically, the availability of adipose TME free fatty acids and tumorigenic cytokines concomitant with the activation of angiogenic processes creates an environment that favors a shift in the cancer cells toward an aggressive phenotype associated with increased invasiveness. We conclude that restoring the aberrant metabolic alterations in the host macroenvironment and in adipose TME of obese subjects would be a therapeutic option to prevent cancer development. Several dietary, lipid-based, and oral antidiabetic pharmacological therapies could potentially prevent tumorigenic processes associated with the dysregulated lipid metabolism closely linked to obesity.
Collapse
Affiliation(s)
| | - Marina Canyelles
- Institut d'Investigacions Biomèdiques (IIB) Sant Pau, Barcelona, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| | - Mireia Tondo
- Institut d'Investigacions Biomèdiques (IIB) Sant Pau, Barcelona, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| | - Noemi Rotllan
- Institut d'Investigacions Biomèdiques (IIB) Sant Pau, Barcelona, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| | | | - Vicenta Llorente-Cortes
- Wihuri Research Institute, Helsinki, Finland; Institute of Biomedical Research of Barcelona (IIBB)-Spanish National Research Council (CSIC), Barcelona, Spain; CIBERCV, Institute of Health Carlos III, 28029 Madrid, Spain.
| | - Joan Carles Escolà-Gil
- Institut d'Investigacions Biomèdiques (IIB) Sant Pau, Barcelona, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain.
| |
Collapse
|
4
|
Armani A, Feraco A, Camajani E, Gorini S, Lombardo M, Caprio M. Nutraceuticals in Brown Adipose Tissue Activation. Cells 2022; 11:cells11243996. [PMID: 36552762 PMCID: PMC9776638 DOI: 10.3390/cells11243996] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 12/03/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022] Open
Abstract
Obesity and its associated comorbidities have become pandemic, and challenge the global healthcare system. Lifestyle changes, nutritional interventions and phamaceuticals should be differently combined in a personalized strategy to tackle such a public health burden. Altered brown adipose tissue (BAT) function contributes to the pathophysiology of obesity and glucose metabolism dysfunctions. BAT thermogenic activity burns glucose and fatty acids to produce heat through uncoupled respiration, and can dissipate the excessive calorie intake, reduce glycemia and circulate fatty acids released from white adipose tissue. Thus, BAT activity is expected to contribute to whole body energy homeostasis and protect against obesity, diabetes and alterations in lipid profile. To date, pharmacological therapies aimed at activating brown fat have failed in clinical trials, due to cardiovascular side effects or scarce efficacy. On the other hand, several studies have identified plant-derived chemical compounds capable of stimulating BAT thermogenesis in animal models, suggesting the translational applications of dietary supplements to fight adipose tissue dysfunctions. This review describes several nutraceuticals with thermogenic properties and provides indications, at a molecular level, of the regulation of the adipocyte thermogenesis by the mentioned phytochemicals.
Collapse
Affiliation(s)
- Andrea Armani
- Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, 00166 Rome, Italy
- Laboratory of Cardiovascular Endocrinology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele, 00166 Rome, Italy
- Correspondence:
| | - Alessandra Feraco
- Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, 00166 Rome, Italy
- Laboratory of Cardiovascular Endocrinology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele, 00166 Rome, Italy
| | - Elisabetta Camajani
- Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, 00166 Rome, Italy
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy
| | - Stefania Gorini
- Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, 00166 Rome, Italy
- Laboratory of Cardiovascular Endocrinology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele, 00166 Rome, Italy
| | - Mauro Lombardo
- Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, 00166 Rome, Italy
| | - Massimiliano Caprio
- Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, 00166 Rome, Italy
- Laboratory of Cardiovascular Endocrinology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele, 00166 Rome, Italy
| |
Collapse
|
5
|
Saha A, Hamilton-Reeves J, DiGiovanni J. White adipose tissue-derived factors and prostate cancer progression: mechanisms and targets for interventions. Cancer Metastasis Rev 2022; 41:649-671. [PMID: 35927363 PMCID: PMC9474694 DOI: 10.1007/s10555-022-10056-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 07/27/2022] [Indexed: 12/01/2022]
Abstract
Obesity represents an important risk factor for prostate cancer, driving more aggressive disease, chemoresistance, and increased mortality. White adipose tissue (WAT) overgrowth in obesity is central to the mechanisms that lead to these clinical observations. Adipose stromal cells (ASCs), the progenitors to mature adipocytes and other cell types in WAT, play a vital role in driving PCa aggressiveness. ASCs produce numerous factors, especially chemokines, including the chemokine CXCL12, which is involved in driving EMT and chemoresistance in PCa. A greater understanding of the impact of WAT in obesity-induced progression of PCa and the underlying mechanisms has begun to provide opportunities for developing interventional strategies for preventing or offsetting these critical events. These include weight loss regimens, therapeutic targeting of ASCs, use of calorie restriction mimetic compounds, and combinations of compounds as well as specific receptor targeting strategies.
Collapse
Affiliation(s)
- Achinto Saha
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, TX, 78723, USA
- Center for Molecular Carcinogenesis and Toxicology, The University of Texas at Austin, Austin, TX, 78723, USA
- Livestrong Cancer Institutes, Dell Medical School, The University of Texas at Austin, Austin, TX, 78723, USA
| | - Jill Hamilton-Reeves
- Departments of Urology and Dietetics & Nutrition, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - John DiGiovanni
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, TX, 78723, USA.
- Center for Molecular Carcinogenesis and Toxicology, The University of Texas at Austin, Austin, TX, 78723, USA.
- Livestrong Cancer Institutes, Dell Medical School, The University of Texas at Austin, Austin, TX, 78723, USA.
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Dell Pediatric Research Institute, 1400 Barbara Jordan Blvd, Austin, TX, 78723, USA.
| |
Collapse
|
6
|
Ngono Ayissi K, Gorwood J, Le Pelletier L, Bourgeois C, Beaupère C, Auclair M, Foresti R, Motterlini R, Atlan M, Barrail-Tran A, Le Grand R, Desjardins D, Fève B, Lambotte O, Capeau J, Béréziat V, Lagathu C. Inhibition of Adipose Tissue Beiging by HIV Integrase Inhibitors, Dolutegravir and Bictegravir, Is Associated with Adipocyte Hypertrophy, Hypoxia, Elevated Fibrosis, and Insulin Resistance in Simian Adipose Tissue and Human Adipocytes. Cells 2022; 11:cells11111841. [PMID: 35681536 PMCID: PMC9180037 DOI: 10.3390/cells11111841] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/23/2022] [Accepted: 06/02/2022] [Indexed: 01/13/2023] Open
Abstract
For people living with HIV, treatment with integrase-strand-transfer-inhibitors (INSTIs) can promote adipose tissue (AT) gain. We previously demonstrated that INSTIs can induce hypertrophy and fibrosis in AT of macaques and humans. By promoting energy expenditure, the emergence of beige adipocytes in white AT (beiging) could play an important role by limiting excess lipid storage and associated adipocyte dysfunction. We hypothesized that INSTIs could alter AT via beiging inhibition. Fibrosis and gene expression were measured in subcutaneous (SCAT) and visceral AT (VAT) from SIV-infected, dolutegravir-treated (SIVART) macaques. Beiging capacity was assessed in human adipose stromal cells (ASCs) undergoing differentiation and being exposed to dolutegravir, bictegravir, or raltegravir. Expression of beige markers, such as positive-regulatory-domain-containing-16 (PRDM16), were lower in AT of SIVART as compared to control macaques, whereas fibrosis-related genes were higher. Dolutegravir and bictegravir inhibited beige differentiation in ASCs, as shown by lower expression of beige markers and lower cell respiration. INSTIs also induced a hypertrophic insulin-resistant state associated with a pro-fibrotic phenotype. Our results indicate that adipocyte hypertrophy induced by INSTIs is involved via hypoxia (revealed by a greater hypoxia-inducible-factor-1-alpha gene expression) in fat fibrosis, beiging inhibition, and thus (via positive feedback), probably, further hypertrophy and associated insulin resistance.
Collapse
Affiliation(s)
- Kenza Ngono Ayissi
- Inserm UMR_S938, Centre de Recherche Saint-Antoine, Institut Hospitalo-Universitaire de Cardio-Métabolisme et Nutrition (ICAN), Sorbonne Université, 75012 Paris, France; (K.N.A.); (J.G.); (L.L.P.); (C.B.); (M.A.); (M.A.); (B.F.); (J.C.)
| | - Jennifer Gorwood
- Inserm UMR_S938, Centre de Recherche Saint-Antoine, Institut Hospitalo-Universitaire de Cardio-Métabolisme et Nutrition (ICAN), Sorbonne Université, 75012 Paris, France; (K.N.A.); (J.G.); (L.L.P.); (C.B.); (M.A.); (M.A.); (B.F.); (J.C.)
| | - Laura Le Pelletier
- Inserm UMR_S938, Centre de Recherche Saint-Antoine, Institut Hospitalo-Universitaire de Cardio-Métabolisme et Nutrition (ICAN), Sorbonne Université, 75012 Paris, France; (K.N.A.); (J.G.); (L.L.P.); (C.B.); (M.A.); (M.A.); (B.F.); (J.C.)
| | - Christine Bourgeois
- UMR1184 Inserm, Center for Immunology of Viral Infections and Autoimmune Diseases, IDMIT Department, IBFJ, CEA, Université Paris Saclay, 92032 Fontenay-aux-Roses, France; (C.B.); (A.B.-T.); (R.L.G.); (D.D.); (O.L.)
| | - Carine Beaupère
- Inserm UMR_S938, Centre de Recherche Saint-Antoine, Institut Hospitalo-Universitaire de Cardio-Métabolisme et Nutrition (ICAN), Sorbonne Université, 75012 Paris, France; (K.N.A.); (J.G.); (L.L.P.); (C.B.); (M.A.); (M.A.); (B.F.); (J.C.)
| | - Martine Auclair
- Inserm UMR_S938, Centre de Recherche Saint-Antoine, Institut Hospitalo-Universitaire de Cardio-Métabolisme et Nutrition (ICAN), Sorbonne Université, 75012 Paris, France; (K.N.A.); (J.G.); (L.L.P.); (C.B.); (M.A.); (M.A.); (B.F.); (J.C.)
| | - Roberta Foresti
- INSERM UMR_S955, IMRB, Université Paris-Est Créteil, 94000 Créteil, France; (R.F.); (R.M.)
| | - Roberto Motterlini
- INSERM UMR_S955, IMRB, Université Paris-Est Créteil, 94000 Créteil, France; (R.F.); (R.M.)
| | - Michael Atlan
- Inserm UMR_S938, Centre de Recherche Saint-Antoine, Institut Hospitalo-Universitaire de Cardio-Métabolisme et Nutrition (ICAN), Sorbonne Université, 75012 Paris, France; (K.N.A.); (J.G.); (L.L.P.); (C.B.); (M.A.); (M.A.); (B.F.); (J.C.)
- Service de Chirurgie Plastique et Esthétique, Hôpital Tenon, AP-HP, 75020 Paris, France
| | - Aurélie Barrail-Tran
- UMR1184 Inserm, Center for Immunology of Viral Infections and Autoimmune Diseases, IDMIT Department, IBFJ, CEA, Université Paris Saclay, 92032 Fontenay-aux-Roses, France; (C.B.); (A.B.-T.); (R.L.G.); (D.D.); (O.L.)
| | - Roger Le Grand
- UMR1184 Inserm, Center for Immunology of Viral Infections and Autoimmune Diseases, IDMIT Department, IBFJ, CEA, Université Paris Saclay, 92032 Fontenay-aux-Roses, France; (C.B.); (A.B.-T.); (R.L.G.); (D.D.); (O.L.)
| | - Delphine Desjardins
- UMR1184 Inserm, Center for Immunology of Viral Infections and Autoimmune Diseases, IDMIT Department, IBFJ, CEA, Université Paris Saclay, 92032 Fontenay-aux-Roses, France; (C.B.); (A.B.-T.); (R.L.G.); (D.D.); (O.L.)
| | - Bruno Fève
- Inserm UMR_S938, Centre de Recherche Saint-Antoine, Institut Hospitalo-Universitaire de Cardio-Métabolisme et Nutrition (ICAN), Sorbonne Université, 75012 Paris, France; (K.N.A.); (J.G.); (L.L.P.); (C.B.); (M.A.); (M.A.); (B.F.); (J.C.)
- Service d’Endocrinologie, Diabétologie et Reproduction, Hôpital Saint-Antoine, CRMR, PRISIS, AP-HP, 75012 Paris, France
| | - Olivier Lambotte
- UMR1184 Inserm, Center for Immunology of Viral Infections and Autoimmune Diseases, IDMIT Department, IBFJ, CEA, Université Paris Saclay, 92032 Fontenay-aux-Roses, France; (C.B.); (A.B.-T.); (R.L.G.); (D.D.); (O.L.)
- Service de Médecine Interne et Immunologie Clinique, Hôpital Bicêtre, AP-HP, 94270 Kremlin-Bicêtre, France
| | - Jacqueline Capeau
- Inserm UMR_S938, Centre de Recherche Saint-Antoine, Institut Hospitalo-Universitaire de Cardio-Métabolisme et Nutrition (ICAN), Sorbonne Université, 75012 Paris, France; (K.N.A.); (J.G.); (L.L.P.); (C.B.); (M.A.); (M.A.); (B.F.); (J.C.)
| | - Véronique Béréziat
- Inserm UMR_S938, Centre de Recherche Saint-Antoine, Institut Hospitalo-Universitaire de Cardio-Métabolisme et Nutrition (ICAN), Sorbonne Université, 75012 Paris, France; (K.N.A.); (J.G.); (L.L.P.); (C.B.); (M.A.); (M.A.); (B.F.); (J.C.)
- Correspondence: (V.B.); (C.L.)
| | - Claire Lagathu
- Inserm UMR_S938, Centre de Recherche Saint-Antoine, Institut Hospitalo-Universitaire de Cardio-Métabolisme et Nutrition (ICAN), Sorbonne Université, 75012 Paris, France; (K.N.A.); (J.G.); (L.L.P.); (C.B.); (M.A.); (M.A.); (B.F.); (J.C.)
- Correspondence: (V.B.); (C.L.)
| |
Collapse
|
7
|
Ferrando M, Bruna FA, Romeo LR, Contador D, Moya-Morales DL, Santiano F, Zyla L, Gomez S, Lopez-Fontana CM, Calvo JC, Carón RW, Toneatto J, Pistone-Creydt V. Renal peritumoral adipose tissue undergoes a browning process and stimulates the expression of epithelial-mesenchymal transition markers in human renal cells. Sci Rep 2022; 12:8687. [PMID: 35606546 PMCID: PMC9127098 DOI: 10.1038/s41598-022-12746-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 05/16/2022] [Indexed: 12/04/2022] Open
Abstract
Tumor cells can interact with neighboring adipose cells and adipocyte dedifferentiation appears to be an important aspect of tumorigenesis. We evaluated the size of adipocytes in human adipose explants from normal (hRAN) and kidney cancer (hRAT); changes in the expression of WAT and BAT/beige markers in hRAN and hRAT; the expression of epithelial-mesenchymal transition (EMT) cell markers in human kidney tumor (786-O, ACHN and Caki-1); and non-tumor (HK-2) epithelial cell lines incubated with the conditioned media (CMs) of hRAN and hRAT. We observed that hRAT adipocytes showed a significantly minor size compared to hRAN adipocytes. Also, we observed that both Prdm16 and Tbx1 mRNA and the expression of UCP1, TBX1, PPARγ, PCG1α, c/EBPα LAP and c/EBPα LIP was significantly higher in hRAT than hRAN. Finally, we found an increase in vimentin and N-cadherin expression in HK-2 cells incubated for 24 h with hRAT-CMs compared to hRAN- and control-CMs. Furthermore, desmin and N-cadherin expression also increased significantly in 786-O when these cells were incubated with hRAT-CMs compared to the value observed with hRAN- and control-CMs. We observed a significant decrease in E-cadherin expression in the ACHN cell line incubated with hRAT-CMs versus hRAN- and control-CMs. However, we did not observe changes in E-cadherin expression in HK-2, 786-O or Caki-1. The results obtained, together with the results previously published by our group, allow us to conclude that perirenal white adipose tissue browning contributes to tumor development in kidney cancer. In addition, hRAT-CMs increases the expression of mesenchymal markers in renal epithelial cells, which could indicate a regulation of EMT due to this adipose tissue.
Collapse
Affiliation(s)
- Matías Ferrando
- Laboratory of Hormones and Cancer Biology, Centro Científico y Tecnológico Mendoza, Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Cuyo, Av. Ruiz Leal w/n, General San Martin Park, CP5500, Mendoza, Argentina
| | - Flavia Alejandra Bruna
- Laboratory of Hormones and Cancer Biology, Centro Científico y Tecnológico Mendoza, Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Cuyo, Av. Ruiz Leal w/n, General San Martin Park, CP5500, Mendoza, Argentina.,Facultad de Odontología, Centro de Investigaciones Odontológicas (CIO), Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Leonardo Rafael Romeo
- Laboratory of Hormones and Cancer Biology, Centro Científico y Tecnológico Mendoza, Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Cuyo, Av. Ruiz Leal w/n, General San Martin Park, CP5500, Mendoza, Argentina.,Departamento de Urología y Trasplante Renal, Hospital Español de Mendoza, Mendoza, Argentina
| | - David Contador
- Facultad de Medicina-Clínica Alemana, Centro de Medicina Regenerativa (CMR), Universidad del Desarrollo, Concepción, Chile
| | - Daiana Lorena Moya-Morales
- Laboratory of Hormones and Cancer Biology, Centro Científico y Tecnológico Mendoza, Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Cuyo, Av. Ruiz Leal w/n, General San Martin Park, CP5500, Mendoza, Argentina
| | - Flavia Santiano
- Laboratory of Hormones and Cancer Biology, Centro Científico y Tecnológico Mendoza, Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Cuyo, Av. Ruiz Leal w/n, General San Martin Park, CP5500, Mendoza, Argentina
| | - Leila Zyla
- Laboratory of Hormones and Cancer Biology, Centro Científico y Tecnológico Mendoza, Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Cuyo, Av. Ruiz Leal w/n, General San Martin Park, CP5500, Mendoza, Argentina
| | - Silvina Gomez
- Laboratory of Hormones and Cancer Biology, Centro Científico y Tecnológico Mendoza, Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Cuyo, Av. Ruiz Leal w/n, General San Martin Park, CP5500, Mendoza, Argentina
| | - Constanza Matilde Lopez-Fontana
- Laboratory of Hormones and Cancer Biology, Centro Científico y Tecnológico Mendoza, Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Cuyo, Av. Ruiz Leal w/n, General San Martin Park, CP5500, Mendoza, Argentina
| | - Juan Carlos Calvo
- Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Mendoza, Argentina.,Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Rubén Walter Carón
- Laboratory of Hormones and Cancer Biology, Centro Científico y Tecnológico Mendoza, Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Cuyo, Av. Ruiz Leal w/n, General San Martin Park, CP5500, Mendoza, Argentina
| | - Judith Toneatto
- Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Mendoza, Argentina
| | - Virginia Pistone-Creydt
- Laboratory of Hormones and Cancer Biology, Centro Científico y Tecnológico Mendoza, Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Cuyo, Av. Ruiz Leal w/n, General San Martin Park, CP5500, Mendoza, Argentina. .,Departamento de Fisiología, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina.
| |
Collapse
|
8
|
Kozlov AP. Mammalian tumor-like organs. 2. Mammalian adipose has many tumor features and obesity is a tumor-like process. Infect Agent Cancer 2022; 17:15. [PMID: 35395810 PMCID: PMC8994355 DOI: 10.1186/s13027-022-00423-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 03/03/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND In previous publications, the author developed the theory of carcino-evo-devo, which predicts that evolutionarily novel organs should recapitulate some features of tumors in their development. MAIN TEXT Mammalian adipose is currently recognized as a multi-depot metabolic and endocrine organ consisting of several adipose tissues. Although lipid-storing cells and proteins are ancient, the adipose organ as a whole is evolutionarily novel to mammals. The adipose expansion has remarkable similarities with the growth of solid tumors. These similarities are the following: (1) The capability to unlimited expansion; (2) Reversible plasticity; (3) Induction of angiogenesis; (4) Chronic inflammation; (5) Remodeling and disfunction; (6) Systemic influence on the organism; (7) Hormone production; (8) Production of miRNAs that influence other tissues; (9) Immunosuppression; (10) DNA damage and resistance to apoptosis; (11) Destructive infiltration in other organs and tissues. These similarities include the majority of "hallmarks of cancer". In addition, lipomas are the most frequent soft tissue tumors, and similar drugs may be used for the treatment of obesity and cancer by preventing infiltration. This raises the possibility that obesity, at least in part, may represent an oncological problem. The existing similarities between adipose and tumors suggest the possible evolutionary origin of mammalian adipose from some ancestral benign mesenchymal hereditary tumors. Indeed, using a transgenic inducible zebrafish tumor model, we described many genes, which originated in fish and were expressed in fish tumors. Their human orthologs LEP, NOTCH1, SPRY1, PPARG, ID2, and CIDEA acquired functions connected with the adipose organ. They are also involved in tumor development in humans. CONCLUSION If the hypothesis of the evolutionary origin of the adipose organ from the ancestral hereditary tumor is correct, it may open new opportunities to resolve the oncological problem and the problem of the obesity epidemic. New interventions targeting LEP, NOTCH1, SPRY1, PPARG, ID2, and CIDEA gene network, in addition to what already is going on, can be designed for treatment and prevention of both obesity and tumors.
Collapse
Affiliation(s)
- A P Kozlov
- Vavilov Institute of General Genetics, Russian Academy of Sciences, 3, Gubkina Street, Moscow, Russia, 117971.
- Peter the Great St. Petersburg Polytechnic University, 29, Polytekhnicheskaya Street, St. Petersburg, Russia, 195251.
- The Biomedical Center, 8, Viborgskaya Street, St. Petersburg, Russia, 194044.
| |
Collapse
|
9
|
Thromboinflammatory Processes at the Nexus of Metabolic Dysfunction and Prostate Cancer: The Emerging Role of Periprostatic Adipose Tissue. Cancers (Basel) 2022; 14:cancers14071679. [PMID: 35406450 PMCID: PMC8996963 DOI: 10.3390/cancers14071679] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 03/03/2022] [Accepted: 03/04/2022] [Indexed: 02/07/2023] Open
Abstract
Simple Summary As overweight and obesity increase among the population worldwide, a parallel increase in the number of individuals diagnosed with prostate cancer was observed. There appears to be a relationship between both diseases where the increase in the mass of fat tissue can lead to inflammation. Such a state of inflammation could produce many factors that increase the aggressiveness of prostate cancer, especially if this inflammation occurred in the fat stores adjacent to the prostate. Another important observation that links obesity, fat tissue inflammation, and prostate cancer is the increased production of blood clotting factors. In this article, we attempt to explain the role of these latter factors in the effect of increased body weight on the progression of prostate cancer and propose new ways of treatment that act by affecting how these clotting factors work. Abstract The increased global prevalence of metabolic disorders including obesity, insulin resistance, metabolic syndrome and diabetes is mirrored by an increased incidence of prostate cancer (PCa). Ample evidence suggests that these metabolic disorders, being characterized by adipose tissue (AT) expansion and inflammation, not only present as risk factors for the development of PCa, but also drive its increased aggressiveness, enhanced progression, and metastasis. Despite the emerging molecular mechanisms linking AT dysfunction to the various hallmarks of PCa, thromboinflammatory processes implicated in the crosstalk between these diseases have not been thoroughly investigated. This is of particular importance as both diseases present states of hypercoagulability. Accumulating evidence implicates tissue factor, thrombin, and active factor X as well as other players of the coagulation cascade in the pathophysiological processes driving cancer development and progression. In this regard, it becomes pivotal to elucidate the thromboinflammatory processes occurring in the periprostatic adipose tissue (PPAT), a fundamental microenvironmental niche of the prostate. Here, we highlight key findings linking thromboinflammation and the pleiotropic effects of coagulation factors and their inhibitors in metabolic diseases, PCa, and their crosstalk. We also propose several novel therapeutic targets and therapeutic interventions possibly modulating the interaction between these pathological states.
Collapse
|
10
|
La Civita E, Liotti A, Cennamo M, Crocetto F, Ferro M, Liguoro P, Cimmino A, Imbimbo C, Beguinot F, Formisano P, Terracciano D. Peri-Prostatic Adipocyte-Released TGFβ Enhances Prostate Cancer Cell Motility by Upregulation of Connective Tissue Growth Factor. Biomedicines 2021; 9:biomedicines9111692. [PMID: 34829922 PMCID: PMC8615771 DOI: 10.3390/biomedicines9111692] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 11/09/2021] [Accepted: 11/12/2021] [Indexed: 12/14/2022] Open
Abstract
Periprostatic adipose tissue (PPAT) has emerged as a key player in the prostate cancer (PCa) microenvironment. In this study, we evaluated the ability of PPAT to promote PCa cell migration, as well as the molecular mechanisms involved. METHODS We collected conditioned mediums from in vitro differentiated adipocytes isolated from PPAT taken from PCa patients during radical prostatectomy. Migration was studied by scratch assay. RESULTS Culture with CM of human PPAT (AdipoCM) promotes migration in two different human androgen-independent (AI) PCa cell lines (DU145 and PC3) and upregulated the expression of CTGF. SB431542, a well-known TGFβ receptor inhibitor, counteracts the increased migration observed in presence of AdipoCM and decreased CTGF expression, suggesting that a paracrine secretion of TGFβ by PPAT affects motility of PCa cells. CONCLUSIONS Collectively, our study showed that factors secreted by PPAT enhanced migration through CTGF upregulation in AI PCa cell lines. These findings reveal the potential of novel therapeutic strategies targeting adipocyte-released factors and TGFβ/CTGF axis to fight advanced PCa dissemination.
Collapse
Affiliation(s)
- Evelina La Civita
- Department of Translational Medical Sciences, University of Naples “Federico II”, 80131 Naples, Italy; (E.L.C.); (A.L.); (M.C.); (P.L.); (F.B.)
| | - Antonietta Liotti
- Department of Translational Medical Sciences, University of Naples “Federico II”, 80131 Naples, Italy; (E.L.C.); (A.L.); (M.C.); (P.L.); (F.B.)
| | - Michele Cennamo
- Department of Translational Medical Sciences, University of Naples “Federico II”, 80131 Naples, Italy; (E.L.C.); (A.L.); (M.C.); (P.L.); (F.B.)
| | - Felice Crocetto
- Department of Neurosciences, Sciences of Reproduction and Odontostomatology, University of Naples “Federico II”, 80131 Naples, Italy; (F.C.); (C.I.)
| | - Matteo Ferro
- Division of Urology, European Institute of Oncology, 20141 Milan, Italy;
| | - Pasquale Liguoro
- Department of Translational Medical Sciences, University of Naples “Federico II”, 80131 Naples, Italy; (E.L.C.); (A.L.); (M.C.); (P.L.); (F.B.)
| | - Amelia Cimmino
- Institute of Genetics and Biophysic, National Research Council, 80131 Naples, Italy;
| | - Ciro Imbimbo
- Department of Neurosciences, Sciences of Reproduction and Odontostomatology, University of Naples “Federico II”, 80131 Naples, Italy; (F.C.); (C.I.)
| | - Francesco Beguinot
- Department of Translational Medical Sciences, University of Naples “Federico II”, 80131 Naples, Italy; (E.L.C.); (A.L.); (M.C.); (P.L.); (F.B.)
| | - Pietro Formisano
- Department of Translational Medical Sciences, University of Naples “Federico II”, 80131 Naples, Italy; (E.L.C.); (A.L.); (M.C.); (P.L.); (F.B.)
- Correspondence: (P.F.); (D.T.)
| | - Daniela Terracciano
- Department of Translational Medical Sciences, University of Naples “Federico II”, 80131 Naples, Italy; (E.L.C.); (A.L.); (M.C.); (P.L.); (F.B.)
- Correspondence: (P.F.); (D.T.)
| |
Collapse
|