1
|
Sato K, Toh S, Murakami T, Nakano T, Hongo T, Matsuo M, Hashimoto K, Sugasawa M, Yamazaki K, Ueki Y, Nakashima T, Uryu H, Ono T, Umeno H, Ueda T, Kano S, Tsukahara K, Watanabe A, Ota I, Monden N, Iwae S, Maruo T, Asada Y, Hanai N, Sano D, Ozawa H, Asakage T, Fukusumi T, Masuda M. Nationwide multi-centric prospective study for the identification of biomarkers to predict the treatment responses of nivolumab through comprehensive analyses of pretreatment plasma exosome mRNAs from head and neck cancer patients (BIONEXT study). Front Immunol 2025; 15:1464419. [PMID: 39867897 PMCID: PMC11758179 DOI: 10.3389/fimmu.2024.1464419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 12/13/2024] [Indexed: 01/28/2025] Open
Abstract
Background Nivolumab paved a new way in the treatment of patients with recurrent or metastatic (RM) head and neck squamous cell carcinoma (RM-HNSCC). However, the limited rates of long-term survivors (< 20%) demand a robust prognostic biomarker. This nationwide multi-centric prospective study aimed to identify a plasma exosome (PEX) mRNA signature, which serves as a companion diagnostic of nivolumab and provides a biological clue to develop effective therapies for a majority of non-survivors. Methods Pre-treatment plasmas (N = 104) of RM-HNSCC patients were subjected to comprehensive PEX mRNA analyses for prognostic marker discovery and validation. In parallel, paired treatment-naïve tumor and plasma samples (N = 20) were assayed to elucidate biological implications of the PEX mRNA signature. Results Assays for pre-treatment blood samples (N = 104) demonstrated that a combination of 6 candidate PEX mRNAs plus neutrophil-to-lymphocyte ratio precisely distinguished non-survivors from >2-year survivors (2-year OS; 0% vs 57.7%; P = 0.000124) with a high hazard ratio of 2.878 (95% CI 1.639-5.055; P = 0.0002348). Parallel biological assays demonstrated that in the paired treatment-naïve HNSCC tumor and plasma samples (N = 20), PEX HLA-E mRNA (a non-survivor-predicting marker) was positively corelated with overexpression of HLA-E protein (P = 0.0191) and the dense population of tumor-infiltrating NK cells (P = 0.024) in the corresponding tumor, suggesting that the HLA-E-NKG2A immune checkpoint may inhibit the antitumor effect of PD-1blockade. Conclusion The PEX mRNA signature could be useful as a companion diagnostic of nivolumab. The combination of an anti-NKG2A antibody (i.e., monalizumab) and nivolumab may serve as a treatment option for non-survivors predicted by a RT-qPCR-based pre-treatment measurement of PEX mRNAs.
Collapse
Affiliation(s)
- Kuniaki Sato
- Department of Head and Neck Surgery, National Hospital Organization Kyushu Cancer Center, Fukuoka, Fukuoka, Japan
| | - Satoshi Toh
- Department of Head and Neck Surgery, National Hospital Organization Kyushu Cancer Center, Fukuoka, Fukuoka, Japan
| | - Taku Murakami
- Showa Denko Materials America, R&D Center, Irvine, CA, United States
| | - Takafumi Nakano
- Department of Head and Neck Surgery, National Hospital Organization Kyushu Cancer Center, Fukuoka, Fukuoka, Japan
| | - Takahiro Hongo
- Department of Head and Neck Surgery, National Hospital Organization Kyushu Cancer Center, Fukuoka, Fukuoka, Japan
| | - Mioko Matsuo
- Department of Otolaryngology, Head and Neck Surgery, Graduate School of Medical Science, Kyushu University, Fukuoka, Fukuoka, Japan
| | - Kazuki Hashimoto
- Department of Otolaryngology, Head and Neck Surgery, Graduate School of Medical Science, Kyushu University, Fukuoka, Fukuoka, Japan
| | - Masashi Sugasawa
- Department of Head & Neck Surgery, International Medical Center, Saitama Medical University, Hidaka, Saitama, Japan
| | - Keisuke Yamazaki
- Department of Otolaryngology, Head and Neck Surgery, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Niigata, Japan
| | - Yushi Ueki
- Department of Otolaryngology, Head and Neck Surgery, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Niigata, Japan
| | - Torahiko Nakashima
- Department of Otorhinolaryngology, National Hospital Organization Kyushu Medical Center, Fukuoka, Fukuoka, Japan
| | - Hideoki Uryu
- Department of Otorhinolaryngology, National Hospital Organization Kyushu Medical Center, Fukuoka, Fukuoka, Japan
| | - Takeharu Ono
- Department of Otolaryngology, Head and Neck Surgery, Kurume University School of Medicine, Kurume, Fukuoka, Japan
| | - Hirohito Umeno
- Department of Otolaryngology, Head and Neck Surgery, Kurume University School of Medicine, Kurume, Fukuoka, Japan
| | - Tsutomu Ueda
- Department of Otorhinolaryngology, Head and Neck Surgery Graduate School of Biomedical and Health Sciences Hiroshima University, Hiroshima, Hiroshima, Japan
| | - Satoshi Kano
- Department of Otolaryngology, Head and Neck Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Kiyoaki Tsukahara
- Department of Otorhinolaryngology, Head and Neck Surgery, Tokyo Medical University, Tokyo, Japan
| | - Akihito Watanabe
- Department of Otolaryngology, Head and Neck Surgery, Keiyukai Sapporo Hospital, Sapporo, Hokkaido, Japan
| | - Ichiro Ota
- Department of Otolaryngology-Head and Neck Surgery, Nara Medical University, Kashiwara, Nara, Japan
| | - Nobuya Monden
- Department of Head and Neck Surgery, National Hospital Organization Shikoku Cancer Center, Matsuyama, Ehime, Japan
| | - Shigemichi Iwae
- Department of Head and Neck Surgery, Hyogo Cancer Center, Akashi, Hyogo, Japan
| | - Takashi Maruo
- Department of Otorhinolaryngology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Yukinori Asada
- Department of Head and Neck Surgery, Miyagi Cancer Center, Natori, Miyagi, Japan
| | - Nobuhiro Hanai
- Department of Head and Neck Surgery, Aichi Cancer Center Hospital, Nagoya, Aichi, Japan
| | - Daisuke Sano
- Department of Otorhinolaryngology-Head and Neck Surgery, School of Medicine, Yokohama City University, Yokohama, Kanagawa, Japan
| | - Hiroyuki Ozawa
- Keio University School of Medicine, Otolaryngology, Head and Neck Surgery, Tokyo, Japan
| | - Takahiro Asakage
- Department of Head and Neck Surgery, Tokyo Medical and Dental University, Tokyo, Japan
| | - Takahito Fukusumi
- Department of Otorhinolaryngology-Head and Neck Surgery, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Muneyuki Masuda
- Department of Head and Neck Surgery, National Hospital Organization Kyushu Cancer Center, Fukuoka, Fukuoka, Japan
| |
Collapse
|
2
|
Wang Y, Xiao B, Li J, Zhang M, Zhang L, Chen L, Zhang J, Chen G, Zhang W. Hypoxia regulates small extracellular vesicle biogenesis and cargo sorting through HIF-1α/HRS signaling pathway in head and neck squamous cell carcinoma. Cell Signal 2024; 127:111546. [PMID: 39631619 DOI: 10.1016/j.cellsig.2024.111546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 10/28/2024] [Accepted: 11/27/2024] [Indexed: 12/07/2024]
Abstract
Small extracellular vesicles (sEVs) act as crucial messengers that transmit biological signals in hypoxic tumor microenvironment (TME), significantly impacting cancer progression. However, the precise mechanism by which hypoxia influences sEV biogenesis remains poorly understood. In this study, we observed increased sEV secretion and alterations in cargo composition in head and neck squamous cell carcinoma (HNSCC) cells under hypoxic conditions. We found that hepatocyte growth factor-regulated tyrosine kinase substrate (HRS), a key component of the endosomal sorting complexes required for transport (ESCRT), was upregulated during hypoxia. This upregulation activated the endosomal system and reduced degradation of multivesicular bodies (MVBs). HRS depletion altered the packaging of protein cargoes such as mitochondria-related proteins into sEVs under hypoxia, and these cargoes promoted a pro-tumorigenic phenotype of macrophages. Importantly, we demonstrated that HRS is transcriptionally activated by hypoxia inducible factor-1α (HIF-1α). Spatial transcriptomics and immunohistochemistry revealed a positive correlation between HRS and HIF-1α. These findings establish a link between the hypoxic response, sEV biogenesis, and cargo packaging, enhancing our understanding of how the hypoxic TME influences sEV biogenesis in HNSCC cells.
Collapse
Affiliation(s)
- Yiman Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Bolin Xiao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Jinbang Li
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Mengyao Zhang
- Department of Thyroid and Breast Surgery, Medical Research Institute, Frontier Science Center for Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Linzhou Zhang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Liguo Chen
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Jing Zhang
- Department of Thyroid and Breast Surgery, Medical Research Institute, Frontier Science Center for Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China; Cancer Precision Diagnosis and Treatment and Translational Medicine Hubei Engineering Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China; Wuhan Research Center for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan, China
| | - Gang Chen
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China; Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China; TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan 430071, China; Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430071, China
| | - Wei Zhang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China; Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China.
| |
Collapse
|
3
|
Peng Z, Zhao T, Gao P, Zhang G, Wu X, Tian H, Qu M, Tan X, Zhang Y, Zhao X, Qi X. Tumor-Derived Extracellular Vesicles Enable Tumor Tropism Chemo-Genetherapy for Local Immune Activation in Triple-Negative Breast Cancer. ACS NANO 2024; 18:30943-30956. [PMID: 39474658 PMCID: PMC11562804 DOI: 10.1021/acsnano.3c12967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 10/11/2024] [Accepted: 10/22/2024] [Indexed: 11/13/2024]
Abstract
Triple-negative breast cancer (TNBC) is highly heterogeneous, lacks accessible therapeutic targets, and features an immunosuppressive tumor microenvironment (TME). Anthracycline-based chemotherapy remains the primary treatment method for TNBC, while the current popular immune checkpoint inhibitors persistently encounter therapeutic resistance. Therefore, there is an urgent need to explore combined therapeutic strategies to remodel the TME and improve the treatment response. Considering the highly specific homing ability of tumor cell-derived vesicles and the key role of the signal transduction and activation of the transcription factor 3 (STAT3) pathway in TNBC, we propose a synergistic therapeutic strategy that integrates gene therapy, chemotherapy, and immunotherapy based on STAT3 short interfering RNA (siSTAT3) and doxorubicin (DOX)-functionalized tumor-derived extracellular vesicles (TEVs) (siSTAT3-DOX@TEV). The in vitro and in vivo results demonstrate that siSTAT3-DOX@TEV target tumor tissues precisely, downregulate STAT3 expression, and synergistically and efficiently induce immunogenic death, thereby reversing the immunosuppressive TME. Moreover, mass cytometry and immunohistochemistry reveal the local immune activation effect of siSTAT3-DOX@TEV, with a significant increase in M1 macrophages, CD4+ T cells, and CD8+ T cells in tumor tissues. These results provide strong hints for the development of TEV-based chemo-gene therapeutic agents for TNBC treatment at the clinical level.
Collapse
Affiliation(s)
- Zaihui Peng
- Department
of Breast and Thyroid Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Tingting Zhao
- Department
of Breast and Thyroid Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Pingping Gao
- Department
of Breast and Thyroid Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Guozhi Zhang
- Department
of Breast and Thyroid Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Xiujuan Wu
- Department
of Breast and Thyroid Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Hao Tian
- Department
of Breast and Thyroid Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Man Qu
- Department
of Breast and Thyroid Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Xuanni Tan
- Department
of Breast and Thyroid Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Yi Zhang
- Department
of Breast and Thyroid Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Xiang Zhao
- Department
of Oncology, Southwest Hospital, Third Military
Medical University (Army Medical University), Chongqing 400038, China
| | - Xiaowei Qi
- Department
of Breast and Thyroid Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| |
Collapse
|
4
|
Zhang SH, Peng LL, Chen YF, Xu Y, Moradi V. Focusing on exosomes to overcome the existing bottlenecks of CAR-T cell therapy. Inflamm Regen 2024; 44:45. [PMID: 39490997 PMCID: PMC11533312 DOI: 10.1186/s41232-024-00358-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 10/22/2024] [Indexed: 11/05/2024] Open
Abstract
Since chimeric antigen receptor T (CAR-T) cells were introduced three decades ago, the treatment using these cells has led to outstanding outcomes, and at the moment, CAR-T cell therapy is a well-established mainstay for treating CD19 + malignancies and multiple myeloma. Despite the astonishing results of CAR-T cell therapy in B-cell-derived malignancies, several bottlenecks must be overcome to promote its safety and efficacy and broaden its applicability. These bottlenecks include cumbersome production process, safety concerns of viral vectors, poor efficacy in treating solid tumors, life-threatening side effects, and dysfunctionality of infused CAR-T cells over time. Exosomes are nano-sized vesicles that are secreted by all living cells and play an essential role in cellular crosstalk by bridging between cells. In this review, we discuss how the existing bottlenecks of CAR-T cell therapy can be overcome by focusing on exosomes. First, we delve into the effect of tumor-derived exosomes on the CAR-T cell function and discuss how inhibiting their secretion can enhance the efficacy of CAR-T cell therapy. Afterward, the application of exosomes to the manufacturing of CAR-T cells in a non-viral approach is discussed. We also review the latest advancements in ex vivo activation and cultivation of CAR-T cells using exosomes, as well as the potential of engineered exosomes to in vivo induction or boost the in vivo proliferation of CAR-T cells. Finally, we discuss how CAR-engineered exosomes can be used as a versatile tool for the direct killing of tumor cells or delivering intended therapeutic payloads in a targeted manner.
Collapse
Affiliation(s)
- Si-Heng Zhang
- Faculty of Medicine, Macau University of Science and Technology, Taipa, Macao SAR, 999078, China
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, Zhejiang, 310000, China
| | - Ling-Long Peng
- Wuhu Hospital, East China Normal University (The Second People's Hospital of Wuhu), Wuhu, 241000, China
| | - Yi-Fei Chen
- Faculty of Medicine, Macau University of Science and Technology, Taipa, Macao SAR, 999078, China
| | - Yan Xu
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, Zhejiang, 310000, China.
| | - Vahid Moradi
- Hematology and Bood Transfusion Science Department, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
5
|
Zhang Y, Zhang C, Wu N, Feng Y, Wang J, Ma L, Chen Y. The role of exosomes in liver cancer: comprehensive insights from biological function to therapeutic applications. Front Immunol 2024; 15:1473030. [PMID: 39497820 PMCID: PMC11532175 DOI: 10.3389/fimmu.2024.1473030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 09/24/2024] [Indexed: 11/07/2024] Open
Abstract
In recent years, cancer, especially primary liver cancer (including hepatocellular carcinoma and intrahepatic cholangiocarcinoma), has posed a serious threat to human health. In the field of liver cancer, exosomes play an important role in liver cancer initiation, metastasis and interaction with the tumor microenvironment. Exosomes are a class of nanoscale extracellular vesicles (EVs)secreted by most cells and rich in bioactive molecules, including RNA, proteins and lipids, that mediate intercellular communication during physiological and pathological processes. This review reviews the multiple roles of exosomes in liver cancer, including the initiation, progression, and metastasis of liver cancer, as well as their effects on angiogenesis, epithelial-mesenchymal transformation (EMT), immune evasion, and drug resistance. Exosomes have great potential as biomarkers for liver cancer diagnosis and prognosis because they carry specific molecular markers that facilitate early detection and evaluation of treatment outcomes. In addition, exosomes, as a new type of drug delivery vector, have unique advantages in the targeted therapy of liver cancer and provide a new strategy for the treatment of liver cancer. The challenges and prospects of exosome-based immunotherapy in the treatment of liver cancer were also discussed. However, challenges such as the standardization of isolation techniques and the scalability of therapeutic applications remain significant hurdles.
Collapse
Affiliation(s)
- Yinghui Zhang
- College of Rehabilitation Medicine, Henan University of Traditional Chinese Medicine, Zhengzhou, Henan, China
| | - Congcong Zhang
- College of Rehabilitation Medicine, Henan University of Traditional Chinese Medicine, Zhengzhou, Henan, China
| | - Nan Wu
- College of Rehabilitation Medicine, Henan University of Traditional Chinese Medicine, Zhengzhou, Henan, China
| | - Yuan Feng
- College of Rehabilitation Medicine, Henan University of Traditional Chinese Medicine, Zhengzhou, Henan, China
| | - Jiayi Wang
- College of Rehabilitation Medicine, Henan University of Traditional Chinese Medicine, Zhengzhou, Henan, China
| | - Liangliang Ma
- Rehabilitation Center, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Yulong Chen
- College of Rehabilitation Medicine, Henan University of Traditional Chinese Medicine, Zhengzhou, Henan, China
| |
Collapse
|
6
|
Tang C, Zhang Y. Potential alternatives to αβ-T cells to prevent graft-versus-host disease (GvHD) in allogeneic chimeric antigen receptor (CAR)-based cancer immunotherapy: A comprehensive review. Pathol Res Pract 2024; 262:155518. [PMID: 39146830 DOI: 10.1016/j.prp.2024.155518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 07/28/2024] [Accepted: 08/06/2024] [Indexed: 08/17/2024]
Abstract
Currently, CAR-T cell therapy relies on an individualized manufacturing process in which patient's own T cells are infused back into patients after being engineered and expanded ex vivo. Despite the astonishing outcomes of autologous CAR-T cell therapy, this approach is endowed with several limitations and drawbacks, such as high cost and time-consuming manufacturing process. Switching the armature of CAR-T cell therapy from autologous settings to allogeneic can overcome several bottlenecks of the current approach. Nevertheless, the use of allogeneic CAR-T cells is limited by the risk of life-threatening GvHD. Thus, in recent years, developing a method to move CAR-T cell therapy to allogeneic settings without the risk of GvHD has become a hot research topic in this field. Since the alloreactivity of αβ T-cell receptor (TCR) accounts for developing GvHD, several efforts have been made to disrupt endogenous TCR of allogeneic CAR-T cells using gene editing tools to prevent GvHD. Nonetheless, the off-target activity of gene editing tools and their associated genotoxicities, as well as the negative consequences of endogenous TCR disruption, are the main concerns of using this approach. As an alternative, CAR αβ-T cells can be replaced with other types of CAR-engineered cells that are capable of recognizing and killing malignant cells through CAR while avoiding the induction of GvHD. These alternatives include T cell subsets with restricted TCR repertoire (γδ-T, iNKT, virus-specific T, double negative T cells, and MAIT cells), killer cells (NK and CIK cells), non-lymphocytic cells (neutrophils and macrophages), stem/progenitor cells, and cell-free extracellular vesicles. In this review, we discuss how these alternatives can move CAR-based immunotherapy to allogeneic settings to overcome the bottlenecks of autologous manner without the risk of GvHD. We comprehensively discuss the pros and cons of these alternatives over the traditional CAR αβ-T cells in light of their preclinical studies and clinical trials.
Collapse
MESH Headings
- Humans
- Graft vs Host Disease/immunology
- Graft vs Host Disease/prevention & control
- Graft vs Host Disease/therapy
- Receptors, Chimeric Antigen/immunology
- Receptors, Chimeric Antigen/genetics
- Immunotherapy, Adoptive/methods
- Neoplasms/therapy
- Neoplasms/immunology
- Receptors, Antigen, T-Cell, alpha-beta/immunology
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- T-Lymphocytes/immunology
- Animals
- Gene Editing/methods
- Transplantation, Homologous/methods
Collapse
Affiliation(s)
- Chaozhi Tang
- College of Life Science, Henan Normal University, Xinxiang, Henan 453007, China; Department of Neurology, Xinxiang First Peoples Hospital, Xinxiang 453100, China
| | - Yuling Zhang
- College of Life Science, Henan Normal University, Xinxiang, Henan 453007, China.
| |
Collapse
|
7
|
Whiteside TL. Tumor-derived Exosomes and Antitumor Immunity. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 213:923-931. [PMID: 39284119 DOI: 10.4049/jimmunol.2400335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 08/01/2024] [Indexed: 11/13/2024]
Abstract
Cancer immunotherapy, including immune checkpoint blockade, has been approved for treatment of patients with many cancer types. However, some patients fail to respond to immunotherapy, and emerging evidence indicates that tumor-derived exosomes (TEX) play a major role in reprogramming the host immune cells by inducing their dysfunction. Focusing on effector T cells, this review illustrates mechanisms of suppression that TEX use, thus promoting tumor escape from the host immune system. TEX carry multiple suppressive signals that drive T cell dysfunction and convert the tumor microenvironment into "an immune desert" in which activated T cells either die or are reprogrammed to mediate protumor functions. The reprogrammed T cells produce a new crop of CD3+ immunoinhibitory exosomes that further amplify suppression mediated by TEX. The result is a profound depletion of antitumor immune effector cells that reflects the defective immune competence of the cancer patient and partly explains why TEX are a significant barrier for cancer immunotherapy.
Collapse
Affiliation(s)
- Theresa L Whiteside
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA; Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA; and UPMC Hillman Cancer Center, Pittsburgh, PA
| |
Collapse
|
8
|
Erwied P, Gu Y, Simon L, Schneider M, Helm D, Michel MS, Nuhn P, Nitschke K, Worst TS. Optimized workflow of EV enrichment from human plasma samples for downstream mass spectrometry analysis. Discov Oncol 2024; 15:374. [PMID: 39190201 DOI: 10.1007/s12672-024-01248-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 08/16/2024] [Indexed: 08/28/2024] Open
Abstract
To improve the prognosis of bladder and prostate cancer, highly specific and sensitive biomarkers are needed for early detection, prognosis prediction, and therapeutic stratification. Extracellular vesicles (EV) from plasma could fill this gap due to their potential to serve as cancer biomarkers. However, the enrichment of EV is a major challenge, because the highly abundant plasma proteins are interfering with analytical downstream applications like mass spectrometry (MS). Therefore, the purity requirements of the EV samples must be carefully considered when selecting or developing a suitable EV enrichment method. The aim of this study was to compare a self-designed EV enrichment method based on density cushion centrifugation (DCC) combined with size exclusion chromatography (SEC) and concentration (method 1) with the exoRNeasy midi kit from Qiagen (method 2) and with unprocessed plasma. Furthermore, the single steps of method 1 were evaluated for their effectiveness to enrich EV from plasma. The results showed that the EV samples enriched with method 1 contained the highest levels of EV and exosome markers with simultaneously low levels of highly abundant plasma proteins. In summary, the combination of DCC, SEC and concentration proved to be a promising approach to discover EV-based biomarkers from plasma of cancer patients.
Collapse
Affiliation(s)
- Patrick Erwied
- Department of Urology and Urosurgery, Medical Faculty Mannheim of the University of Heidelberg, Mannheim, Germany
| | - Yi Gu
- Department of Urology and Urosurgery, Medical Faculty Mannheim of the University of Heidelberg, Mannheim, Germany
| | - Lena Simon
- Department of Urology and Urosurgery, Medical Faculty Mannheim of the University of Heidelberg, Mannheim, Germany
| | - Martin Schneider
- Proteomics Core Facility, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Dominic Helm
- Proteomics Core Facility, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Maurice Stefan Michel
- Department of Urology and Urosurgery, Medical Faculty Mannheim of the University of Heidelberg, Mannheim, Germany
| | - Philipp Nuhn
- Department of Urology, Universitätsklinikum Schleswig-Holstein (UKSH), Campus Kiel, Kiel, Germany
| | - Katja Nitschke
- Department of Urology and Urosurgery, Medical Faculty Mannheim of the University of Heidelberg, Mannheim, Germany
| | - Thomas Stefan Worst
- Department of Urology and Urosurgery, Medical Faculty Mannheim of the University of Heidelberg, Mannheim, Germany.
| |
Collapse
|
9
|
Desai N, Chavda V, Singh TRR, Thorat ND, Vora LK. Cancer Nanovaccines: Nanomaterials and Clinical Perspectives. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401631. [PMID: 38693099 DOI: 10.1002/smll.202401631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 03/30/2024] [Indexed: 05/03/2024]
Abstract
Cancer nanovaccines represent a promising frontier in cancer immunotherapy, utilizing nanotechnology to augment traditional vaccine efficacy. This review comprehensively examines the current state-of-the-art in cancer nanovaccine development, elucidating innovative strategies and technologies employed in their design. It explores both preclinical and clinical advancements, emphasizing key studies demonstrating their potential to elicit robust anti-tumor immune responses. The study encompasses various facets, including integrating biomaterial-based nanocarriers for antigen delivery, adjuvant selection, and the impact of nanoscale properties on vaccine performance. Detailed insights into the complex interplay between the tumor microenvironment and nanovaccine responses are provided, highlighting challenges and opportunities in optimizing therapeutic outcomes. Additionally, the study presents a thorough analysis of ongoing clinical trials, presenting a snapshot of the current clinical landscape. By curating the latest scientific findings and clinical developments, this study aims to serve as a comprehensive resource for researchers and clinicians engaged in advancing cancer immunotherapy. Integrating nanotechnology into vaccine design holds immense promise for revolutionizing cancer treatment paradigms, and this review provides a timely update on the evolving landscape of cancer nanovaccines.
Collapse
Affiliation(s)
- Nimeet Desai
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Telangana, 502285, India
| | - Vivek Chavda
- Department of Pharmaceutics and Pharmaceutical Technology, L M College of Pharmacy, Ahmedabad, 380009, India
| | | | - Nanasaheb D Thorat
- Limerick Digital Cancer Research Centre (LDCRC), University of Limerick, Castletroy, Limerick, V94T9PX, Ireland
- Department of Physics, Bernal Institute, Castletroy, Limerick, V94T9PX, Ireland
- Nuffield Department of Women's & Reproductive Health, Medical Science Division, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DU, UK
| | - Lalitkumar K Vora
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, UK
| |
Collapse
|
10
|
Hong CS, Menshikova EV, Whiteside TL, Jackson EK. Assessment of ATP metabolism to adenosine by ecto-nucleotidases carried by tumor-derived small extracellular vesicles. Purinergic Signal 2024:10.1007/s11302-024-10038-7. [PMID: 39066830 DOI: 10.1007/s11302-024-10038-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 07/04/2024] [Indexed: 07/30/2024] Open
Abstract
Immunosuppression is a hallmark of cancer progression. Tumor-derived small extracellular vesicles (sEV), also known as TEX, produce adenosine (ADO) and can mediate tumor-induced immunosuppression.Here, the ATP pathway of ADO production (ATP → ADP → AMP → ADO) by ecto-nucleotidases carried on the sEV surface was evaluated by a method using N6-etheno-ATP (eATP) and N6-etheno-AMP (eAMP) as substrates for enzymatic activity. The "downstream" N6-etheno-purines (ePurines) were measured by high performance liquid chromatography with fluorescence detection (HPLC-FL).Human melanoma cell-derived TEX (MTEX) metabolized eATP to N6-etheno-ADP (eADP), eAMP and N6-etheno-Adenosine (eADO) more robustly than control keratinocyte cell-derived sEV (CEX); due to accelerated conversion of eATP to eADP and eADP to eAMP. MTEX and CEX similarly metabolized eAMP to eADO. Blocking of the ATP pathway with the selective CD39 inhibitor ARL67156 or pan ecto-nucleotidase inhibitor POM-1 normalized the ATP pathway but neither inhibitor completely abolished it. In contrast, inhibition of CD73 by PSB12379 or AMPCP abolished eADO formation by both MTEX and CEX, suggesting that targeting CD73 is the preferred approach to eliminating ADO produced by ecto-nucleotidases located on the sEV surface.The noninvasive, sensitive, and specific assay assessing ePurine metabolism ± ecto-nucleotidase inhibitors in TEX enables the personalized identification of ecto-nucleotidase activity primarily involved in ADO production in patients with cancer. The assay could guide precision medicine by determining which purine is the preferred target for inhibitory therapeutic interventions.
Collapse
Affiliation(s)
- Chang-Sook Hong
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
- UPMC Hillman Cancer Center, UPCI Research Pavilion, Suite 1.27, 5117 Centre Avenue, Pittsburgh, PA, 15213, USA
| | - Elizabeth V Menshikova
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Theresa L Whiteside
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA.
- UPMC Hillman Cancer Center, UPCI Research Pavilion, Suite 1.27, 5117 Centre Avenue, Pittsburgh, PA, 15213, USA.
- Departments of Immunology and Otolaryngology, Pittsburgh, PA, 15213, USA.
| | - Edwin K Jackson
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
11
|
Jin X, Zhang J, Zhang Y, He J, Wang M, Hei Y, Guo S, Xu X, Liu Y. Different origin-derived exosomes and their clinical advantages in cancer therapy. Front Immunol 2024; 15:1401852. [PMID: 38994350 PMCID: PMC11236555 DOI: 10.3389/fimmu.2024.1401852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 06/13/2024] [Indexed: 07/13/2024] Open
Abstract
Exosomes, as a class of small extracellular vesicles closely related to the biological behavior of various types of tumors, are currently attracting research attention in cancer diagnosis and treatment. Regarding cancer diagnosis, the stability of their membrane structure and their wide distribution in body fluids render exosomes promising biomarkers. It is expected that exosome-based liquid biopsy will become an important tool for tumor diagnosis in the future. For cancer treatment, exosomes, as the "golden communicators" between cells, can be designed to deliver different drugs, aiming to achieve low-toxicity and low-immunogenicity targeted delivery. Signaling pathways related to exosome contents can also be used for safer and more effective immunotherapy against tumors. Exosomes are derived from a wide range of sources, and exhibit different biological characteristics as well as clinical application advantages in different cancer therapies. In this review, we analyzed the main sources of exosomes that have great potential and broad prospects in cancer diagnosis and therapy. Moreover, we compared their therapeutic advantages, providing new ideas for the clinical application of exosomes.
Collapse
Affiliation(s)
- Xiaoyan Jin
- Department of Cell Biology and Genetics, Medical College of Yan’an University, Yan’an, Shaanxi, China
| | - Jing Zhang
- Department of Cell Biology and Genetics, Medical College of Yan’an University, Yan’an, Shaanxi, China
- The Second Affiliated Hospital of Xi‘an Medical University, Xi’an, Shaanxi, China
| | - Yufu Zhang
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Yan’an University, Yan’an, Shaanxi, China
| | - Jing He
- Laboratory of Obstetrics and Gynecology, The Affiliated Hospital of Yan’an University, Yan’an, Shaanxi, China
| | - Mingming Wang
- Department of Cell Biology and Genetics, Medical College of Yan’an University, Yan’an, Shaanxi, China
| | - Yu Hei
- Department of Cell Biology and Genetics, Medical College of Yan’an University, Yan’an, Shaanxi, China
| | - Shutong Guo
- Department of Cell Biology and Genetics, Medical College of Yan’an University, Yan’an, Shaanxi, China
| | - Xiangrong Xu
- Department of Cell Biology and Genetics, Medical College of Yan’an University, Yan’an, Shaanxi, China
| | - Yusi Liu
- Department of Cell Biology and Genetics, Medical College of Yan’an University, Yan’an, Shaanxi, China
| |
Collapse
|
12
|
Wang H, Liu S, Zhan J, Liang Y, Zeng X. Shaping the immune-suppressive microenvironment on tumor-associated myeloid cells through tumor-derived exosomes. Int J Cancer 2024; 154:2031-2042. [PMID: 38500385 DOI: 10.1002/ijc.34921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 02/07/2024] [Accepted: 02/23/2024] [Indexed: 03/20/2024]
Abstract
Tumor-associated myeloid cells (TAMCs) play a crucial role in orchestrating the dynamics of the tumor immune microenvironment. This heterogeneous population encompasses myeloid-derived suppressor cells, tumor-associated macrophages and dendritic cells, all of which contribute to the establishment of an immunosuppressive milieu that fosters tumor progression. Tumor-derived exosomes (TEXs), small extracellular vesicles secreted by tumor cells, have emerged as central mediators in intercellular communication within the tumor microenvironment. In this comprehensive review, we explore the intricate mechanisms through which TEXs modulate immune-suppressive effects on TAMCs and their profound implications in cancer progression. We delve into the multifaceted ways in which TEXs influence TAMC functions, subsequently affecting tumor immune evasion. Furthermore, we elucidate various therapeutic strategies aimed at targeting TEX-mediated immune suppression, with the ultimate goal of bolstering antitumor immunity.
Collapse
Affiliation(s)
- Hongmei Wang
- Department of Pathology, Medical College, Jinhua Polytechnic, Jinhua, China
- Department of Pathophysiology, School of Basic Medical Sciences, Nanchang University, Nanchang, China
| | - Shanshan Liu
- Department of Pathophysiology, School of Basic Medical Sciences, Nanchang University, Nanchang, China
| | - Jianhao Zhan
- Department of Pathophysiology, School of Basic Medical Sciences, Nanchang University, Nanchang, China
- Department of Clinical Medcine, HuanKui Academy, Nanchang University, Nanchang, China
| | - Yuqing Liang
- Department of Pathophysiology, School of Basic Medical Sciences, Nanchang University, Nanchang, China
| | - Xiaoping Zeng
- Department of Pathology, Medical College, Jinhua Polytechnic, Jinhua, China
| |
Collapse
|
13
|
Skoczylas Ł, Gawin M, Fochtman D, Widłak P, Whiteside TL, Pietrowska M. Immune capture and protein profiling of small extracellular vesicles from human plasma. Proteomics 2024; 24:e2300180. [PMID: 37713108 PMCID: PMC11046486 DOI: 10.1002/pmic.202300180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 08/11/2023] [Accepted: 08/14/2023] [Indexed: 09/16/2023]
Abstract
Extracellular vesicles (EVs), the key players in inter-cellular communication, are produced by all cell types and are present in all body fluids. Analysis of the proteome content is an important approach in structural and functional studies of these vesicles. EVs circulating in human plasma are heterogeneous in size, cellular origin, and functions. This heterogeneity and the potential presence of contamination with plasma components such as lipoprotein particles and soluble plasma proteins represent a challenge in profiling the proteome of EV subsets by mass spectrometry. An immunocapture strategy prior to mass spectrometry may be used to isolate a homogeneous subpopulation of small EVs (sEV) with a specific endocytic origin from plasma or other biofluids. Immunocapture selectively separates EV subpopulations in biofluids based on the presence of a unique protein carried on the vesicle surface. The advantages and disadvantages of EV immune capture as a preparative step for mass spectrometry are discussed.
Collapse
Affiliation(s)
- Łukasz Skoczylas
- Maria Sklodowska-Curie National Research Institute of Oncology, 44-102 Gliwice, Poland
| | - Marta Gawin
- Maria Sklodowska-Curie National Research Institute of Oncology, 44-102 Gliwice, Poland
| | - Daniel Fochtman
- Maria Sklodowska-Curie National Research Institute of Oncology, 44-102 Gliwice, Poland
- Silesian University of Technology, 44-100 Gliwice, Poland
| | - Piotr Widłak
- Medical University of Gdańsk, 80-210 Gdańsk, Poland
| | - Theresa L. Whiteside
- UPMC Hillman Cancer Center, University of Pittsburgh Cancer Institute, Pittsburgh, PA 15232, USA
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Monika Pietrowska
- Maria Sklodowska-Curie National Research Institute of Oncology, 44-102 Gliwice, Poland
| |
Collapse
|
14
|
Khoushab S, Aghmiuni MH, Esfandiari N, Sarvandani MRR, Rashidi M, Taheriazam A, Entezari M, Hashemi M. Unlocking the potential of exosomes in cancer research: A paradigm shift in diagnosis, treatment, and prevention. Pathol Res Pract 2024; 255:155214. [PMID: 38430814 DOI: 10.1016/j.prp.2024.155214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 02/11/2024] [Accepted: 02/15/2024] [Indexed: 03/05/2024]
Abstract
Exosomes, which are tiny particles released by cells, have the ability to transport various molecules, including proteins, lipids, and genetic material containing non-coding RNAs (ncRNAs). They are associated with processes like cancer metastasis, immunity, and tissue repair. Clinical trials have shown exosomes to be effective in treating cancer, inflammation, and chronic diseases. Mesenchymal stem cells (MSCs) and dendritic cells (DCs) are common sources of exosome production. Exosomes have therapeutic potential due to their ability to deliver cargo, modulate the immune system, and promote tissue regeneration. Bioengineered exosomes could revolutionize disease treatment. However, more research is needed to understand exosomes in tumor growth and develop new therapies. This paper provides an overview of exosome research, focusing on cancer and exosome-based therapies including chemotherapy, radiotherapy, and vaccines. It explores exosomes as a drug delivery system for cancer therapy, highlighting their advantages. The article discusses using exosomes for various therapeutic agents, including drugs, antigens, and RNAs. It also examines challenges with engineered exosomes. Analyzing exosomes for clinical purposes faces limitations in sensitivity, specificity, and purification. On the other hand, Nanotechnology offers solutions to overcome these challenges and unlock exosome potential in healthcare. Overall, the article emphasizes the potential of exosomes for personalized and targeted cancer therapy, while acknowledging the need for further research.
Collapse
Affiliation(s)
- Saloomeh Khoushab
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mina Hobabi Aghmiuni
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Negin Esfandiari
- Department of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | | | - Mohsen Rashidi
- The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, Iran; Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Afshin Taheriazam
- Department of Orthopedics, Faculty of Medicine, Tehran medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Maliheh Entezari
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Mehrdad Hashemi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
15
|
Hong CS, Menshikova EV, Whiteside TL, Jackson EK. Assessment of ATP Metabolism to Adenosine by Ecto-Nucleotidases Carried by Tumor-Derived Small Extracellular Vesicles. RESEARCH SQUARE 2024:rs.3.rs-3876953. [PMID: 38343828 PMCID: PMC10854312 DOI: 10.21203/rs.3.rs-3876953/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
Background Immunosuppression is a hallmark of cancer progression. Tumor-derived small extracellular vesicles (sEV), also known as TEX, produce adenosine (ADO) and can mediate tumor-induced immunosuppression. Methods Here, the ATP pathway of ADO production (ATP◊ADP◊AMP◊ADO) by ecto-nucleotidases carried in sEV was evaluated by a novel method using N6-etheno-ATP (eATP) and N6-etheno-AMP (eAMP) as substrates. The "downstream" N6-etheno-purines (ePurines) were measured by high performance liquid chromatography with fluorescence detection (HPLC-FL). Results Human melanoma cell-derived TEX (MTEX) metabolized eATP to N6-etheno-ADP (eADP), eAMP and N6-etheno-Adenosine (eADO) more robustly than control keratinocyte cell-derived sEV (CEX); due to accelerated conversion of eATP to eADP and eADP to eAMP MTEX and CEX similarly metabolized eAMP to eADO. Blocking of the ATP pathway with the selective CD39 inhibitor ARL67156 or pan ecto-nucleotidase inhibitor POM-1 normalized the ATP pathway but neither inhibitor completely abolished it. In contrast, inhibition of CD73 by PSB12379 or AMPCP abolished eADO formation in both MTEX and CEX, suggesting that targeting CD73 is the preferred approach to eliminating ADO produced by sEV. Conclusions The noninvasive, sensitive, and specific assay assessing ePurine metabolism ± ecto-nucleotidase inhibitors in TEX enables the personalized identification of the ecto-nucleotidase primarily involved in ADO production in patients with cancer. The assay could guide precision medicine by determining which purine is the preferred target for inhibitory therapeutic interventions.
Collapse
|
16
|
Xiao Y, Wu M, Xue C, Wang Y. Recent Advances in the Development of Membrane-derived Vesicles for Cancer Immunotherapy. Curr Drug Deliv 2024; 21:403-420. [PMID: 37143265 DOI: 10.2174/1567201820666230504120841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 03/01/2023] [Accepted: 03/13/2023] [Indexed: 05/06/2023]
Abstract
The surface proteins on cell membranes enable the cells to have different properties, such as high biocompatibility, surface modifiability, and homologous targeting ability. Cell-membrane-derived vesicles have features identical to those of their parental cells, which makes them one of the most promising materials for drug delivery. Recently, as a result of the impressive effects of immunotherapy in cancer treatment, an increasing number of researchers have used cell-membrane-derived vesicles to enhance immune responses. To be more specific, the membrane vesicles derived from immune cells, tumor cells, bacteria, or engineered cells have the antigen presentation capacity and can trigger strong anti-tumor effects of the immune system. In this review, we first indicated a brief description of the vesicles and then introduced the detection technology and drug-loading methods for them. Secondly, we concluded the characteristics and applications of vesicles derived from different sources in cancer immunotherapy.
Collapse
Affiliation(s)
- Yuai Xiao
- Department of Plastic Surgery, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Minliang Wu
- Department of Plastic Surgery, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Chunyu Xue
- Department of Plastic Surgery, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Yuchong Wang
- Department of Plastic Surgery, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
- School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| |
Collapse
|
17
|
Abyadeh M, Alikhani M, Mirzaei M, Gupta V, Shekari F, Salekdeh GH. Proteomics provides insights into the theranostic potential of extracellular vesicles. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2023; 138:101-133. [PMID: 38220422 DOI: 10.1016/bs.apcsb.2023.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2024]
Abstract
Extracellular vesicles (EVs) encompass a diverse range of membranous structures derived from cells, including exosomes and microvesicles. These vesicles are present in biological fluids and play vital roles in various physiological and pathological processes. They facilitate intercellular communication by enabling the exchange of proteins, lipids, and genetic material between cells. Understanding the cellular processes that govern EV biology is essential for unraveling their physiological and pathological functions and their potential clinical applications. Despite significant advancements in EV research in recent years, there is still much to learn about these vesicles. The advent of improved mass spectrometry (MS)-based techniques has allowed for a deeper characterization of EV protein composition, providing valuable insights into their roles in different physiological and pathological conditions. In this chapter, we provide an overview of proteomics studies conducted to identify the protein contents of EVs, which contribute to their therapeutic and pathological features. We also provided evidence on the potential of EV proteome contents as biomarkers for early disease diagnosis, progression, and treatment response, as well as factors that influence their composition. Additionally, we discuss the available databases containing information on EV proteome contents, and finally, we highlight the need for further research to pave the way toward their utilization in clinical settings.
Collapse
Affiliation(s)
- Morteza Abyadeh
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Mehdi Alikhani
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Mehdi Mirzaei
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, North Ryde, Sydney, NSW, Australia
| | - Vivek Gupta
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, North Ryde, Sydney, NSW, Australia
| | - Faezeh Shekari
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | | |
Collapse
|
18
|
E VIGNESHBALAJI, RAMESH DIVYA, SHAJU MANISHACHUNGAN, KUMAR AKSHARA, PANDEY SAMYAK, NAYAK RAKSHA, ALKA V, MUNJAL SRISHTI, SALIMI AMIR, PAI KSREEDHARARANGANATH, BAKKANNAVAR SHANKARM. Biological, pathological, and multifaceted therapeutic functions of exosomes to target cancer. Oncol Res 2023; 32:73-94. [PMID: 38188673 PMCID: PMC10767237 DOI: 10.32604/or.2023.030401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 07/25/2023] [Indexed: 01/09/2024] Open
Abstract
Exosomes, small tiny vesicle contains a large number of intracellular particles that employ to cause various diseases and prevent several pathological events as well in the human body. It is considered a "double-edged sword", and depending on its biological source, the action of exosomes varies under physiological conditions. Also, the isolation and characterization of the exosomes should be performed accurately and the methodology also will vary depending on the exosome source. Moreover, the uptake of exosomes from the recipients' cells is a vital and initial step for all the physiological actions. There are different mechanisms present in the exosomes' cellular uptake to deliver their cargo to acceptor cells. Once the exosomal uptake takes place, it releases the intracellular particles that leads to activate the physiological response. Even though exosomes have lavish functions, there are some challenges associated with every step of their preparation to bring potential therapeutic efficacy. So, overcoming the pitfalls would give a desired quantity of exosomes with high purity.
Collapse
Affiliation(s)
- VIGNESH BALAJI E
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - DIVYA RAMESH
- Department of Forensic Medicine and Toxicology, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - MANISHA CHUNGAN SHAJU
- School of Health and Community Services, Durham College, Oshawa, Ontario, L1G2G5, Canada
| | - AKSHARA KUMAR
- Department of Pharmaceutical Regulatory Affairs and Management, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - SAMYAK PANDEY
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - RAKSHA NAYAK
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - V. ALKA
- Department of Clinical Psychology, Manipal College of Health Professions, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - SRISHTI MUNJAL
- Department of Speech and Hearing, Manipal College of Health Professions, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - AMIR SALIMI
- Department of Pharmacy Practice, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - K. SREEDHARA RANGANATH PAI
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - SHANKAR M. BAKKANNAVAR
- Department of Forensic Medicine and Toxicology, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| |
Collapse
|
19
|
Kumar S, Dhar R, Kumar LBSS, Shivji GG, Jayaraj R, Devi A. Theranostic signature of tumor-derived exosomes in cancer. Med Oncol 2023; 40:321. [PMID: 37798480 DOI: 10.1007/s12032-023-02176-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 08/29/2023] [Indexed: 10/07/2023]
Abstract
Cancer is the most challenging global health crisis. In the recent times, studies on extracellular vesicles (EVs) are adding a new chapter to cancer research and reports on EVs explores cancer in a new dimension. Exosomes are a group of subpopulations of EVs. It originates from the endosomes and carries biologically active molecules to the neighboring cells which in turn transforms the recipient cell activity. In general, it plays a role in cellular communication. The correlation between exosomes and cancer is fascinating. Tumor-derived exosomes (TEXs) play a dynamic role in cancer progression and are associated with uncontrolled cell growth, angiogenesis, immune suppression, and metastasis. Its molecular cargo is an excellent source of cancer biomarkers. Several advanced molecular profiling approaches assist in exploring the TEXs in depth. This paves the way for a strong foundation for identifying and detecting more specific and efficient biomarkers. TEXs are also gaining importance in scientific society for its role in cancer therapy and several clinical trials based on TEXs is a proof of its significance. In this review, we have highlighted the role of TEXs in mediating immune cell reprogramming, cancer development, metastasis, EMT, organ-specific metastasis, and its clinical significance in cancer theranostics. TEXs profiling is an effective method to understand the complications associated with cancer leading to good health and well-being of the individual and society as a whole.
Collapse
Affiliation(s)
- Samruti Kumar
- Cancer and Stem Cell Biology Laboratory, Department of Genetic Engineering, SRM Institute of Science and Technology, Chengalpattu District, Kattankulathur, Tamil Nadu, 603203, India
| | - Rajib Dhar
- Cancer and Stem Cell Biology Laboratory, Department of Genetic Engineering, SRM Institute of Science and Technology, Chengalpattu District, Kattankulathur, Tamil Nadu, 603203, India
| | - Lokesh Babu Sirkali Suresh Kumar
- Cancer and Stem Cell Biology Laboratory, Department of Genetic Engineering, SRM Institute of Science and Technology, Chengalpattu District, Kattankulathur, Tamil Nadu, 603203, India
| | - Gauresh Gurudas Shivji
- Cancer and Stem Cell Biology Laboratory, Department of Genetic Engineering, SRM Institute of Science and Technology, Chengalpattu District, Kattankulathur, Tamil Nadu, 603203, India
| | - Rama Jayaraj
- Jindal Institute of Behavioral Sciences (JIBS), Jindal Global Institution of Eminence Deemed to Be University, 28, Sonipat, 131001, India
- Director of Clinical Sciences, Northern Territory Institute of Research and Training, Darwin, NT, 0909, Australia
| | - Arikketh Devi
- Cancer and Stem Cell Biology Laboratory, Department of Genetic Engineering, SRM Institute of Science and Technology, Chengalpattu District, Kattankulathur, Tamil Nadu, 603203, India.
| |
Collapse
|
20
|
Wong SWK, Tey SK, Mao X, Fung HL, Xiao Z, Wong DKH, Mak L, Yuen M, Ng IO, Yun JP, Gao Y, Yam JWP. Small Extracellular Vesicle-Derived vWF Induces a Positive Feedback Loop between Tumor and Endothelial Cells to Promote Angiogenesis and Metastasis in Hepatocellular Carcinoma. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2302677. [PMID: 37387563 PMCID: PMC10502836 DOI: 10.1002/advs.202302677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/07/2023] [Indexed: 07/01/2023]
Abstract
Hepatocellular carcinoma (HCC) is a hypervascular malignancy by which its growth and dissemination are largely driven by the modulation of tumor-derived small extracellular vesicles (sEVs). Proteomic profiling of circulating sEVs of control individuals and HCC patients identifies von Willibrand factor (vWF) to be upregulated progressively along HCC stages. Elevated sEV-vWF levels are found in a larger cohort of HCC-sEV samples and metastatic HCC cell lines compared to their respective normal counterparts. Circulating sEVs of late-stage HCC patients markedly augment angiogenesis, tumor-endothelial adhesion, pulmonary vascular leakiness, and metastasis, which are significantly compromised by anti-vWF antibody. The role of vWF is further corroborated by the enhanced promoting effect of sEVs collected from vWF-overexpressing cells. sEV-vWF modulates endothelial cells through an elevated level of vascular endothelial growth factor A (VEGF-A) and fibroblast growth factor 2 (FGF2). Mechanistically, secreted FGF2 elicits a positive feedback response in HCC via the FGFR4/ERK1 signaling pathway. The co-administration of anti-vWF antibody or FGFR inhibitor significantly improves the treatment outcome of sorafenib in a patient-derived xenograft mouse model. This study reveals mutual stimulation between HCC and endothelial cells by tumor-derived sEVs and endothelial angiogenic factors, facilitating angiogenesis and metastasis. It also provides insights into a new therapeutic strategy involving blocking tumor-endothelial intercellular communication.
Collapse
Affiliation(s)
- Samuel Wan Ki Wong
- Department of PathologySchool of Clinical MedicineLi Ka Shing Faculty of MedicineThe University of Hong KongHong Kong
| | - Sze Keong Tey
- Department of PathologySchool of Clinical MedicineLi Ka Shing Faculty of MedicineThe University of Hong KongHong Kong
- Department of SurgerySchool of Clinical MedicineLi Ka Shing Faculty of MedicineThe University of Hong KongHong Kong
| | - Xiaowen Mao
- Department of PathologySchool of Clinical MedicineLi Ka Shing Faculty of MedicineThe University of Hong KongHong Kong
- State Key Laboratory of Liver Research, The University of Hong KongHong Kong
| | - Hiu Ling Fung
- Department of PathologySchool of Clinical MedicineLi Ka Shing Faculty of MedicineThe University of Hong KongHong Kong
| | - Zhi‐Jie Xiao
- Research CentreThe Seventh Affiliated HospitalSun Yat‐sen University518107ShenzhenP. R. China
| | - Danny Ka Ho Wong
- Department of MedicineSchool of Clinical MedicineLi Ka Shing Faculty of MedicineThe University of Hong KongHong Kong
| | - Lung‐Yi Mak
- Department of MedicineSchool of Clinical MedicineLi Ka Shing Faculty of MedicineThe University of Hong KongHong Kong
| | - Man‐Fung Yuen
- Department of MedicineSchool of Clinical MedicineLi Ka Shing Faculty of MedicineThe University of Hong KongHong Kong
| | - Irene Oi‐Lin Ng
- State Key Laboratory of Liver Research, The University of Hong KongHong Kong
| | - Jing Ping Yun
- Department of PathologySun Yat‐sen University Cancer CenterGuangzhouGuangdong510060P. R. China
| | - Yi Gao
- Department of Hepatobiliary Surgery IIZhuJiang HospitalSouthern Medical UniversityGuangzhouGuangdong510280P. R. China
| | - Judy Wai Ping Yam
- Department of PathologySchool of Clinical MedicineLi Ka Shing Faculty of MedicineThe University of Hong KongHong Kong
- State Key Laboratory of Liver Research, The University of Hong KongHong Kong
| |
Collapse
|
21
|
Wang L, Hu Z, Chen C, Chen T, Yao Z, Li W, Yang Z. Low-dose aspirin can inhibit exosomal release induced by radiotherapy in breast cancer and attenuate its inhibitory effect on NK cell proliferation. Cancer Med 2023; 12:16386-16404. [PMID: 37392173 PMCID: PMC10469664 DOI: 10.1002/cam4.6274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 05/26/2023] [Accepted: 06/02/2023] [Indexed: 07/03/2023] Open
Abstract
BACKGROUND Breast cancer (BC) seriously threatens women's health. Aspirin plays a key role in the treatment and prognosis of BC. OBJECTIVE To explore the effect of low-dose aspirin on BC radiotherapy through the mechanism of exosomes and natural killer (NK) cells. METHODS BC cells were injected into the left chest wall to establish a BC model in nude mice. Tumor morphology and size were observed. Immunohistochemical staining for Ki-67 was used to observe the proliferation of tumor cells. TUNEL was used to detect the apoptosis of cancer cells. Protein levels of exosomal biogenesis- and secretion-related genes (Rab 11, Rab27a, Rab27b, CD63, and Alix) were detected by Western blot. Flow cytometry was used to detect apoptosis. Transwell assays were used to detect cell migration. A clonogenic assay was used to detect cell proliferation. Exosomes of BT549 and 4T1-Luc cells were extracted and observed by electron microscopy. After the coculture of exosomes and NK cells, the activity of NK cells was detected by CCK-8. RESULTS The protein expression of genes related to exosomal genesis and secretion (Rab 11, Rab27a, Rab27b, CD63, and Alix) in BT549 and 4T1-Luc cells was upregulated under radiotherapy treatment. Low doses of aspirin inhibited exosome release from BT549 and 4T1-Luc cells and alleviated the inhibitory effect of BC cell exosomes on NK cell proliferation. In addition, knocking down Rab27a reduced the protein levels of exosome-related and secretion-related genes in BC cells, further enhancing the promotive effect of aspirin on NK cell proliferation, while overexpressing Rab27a had the opposite effect. Aspirin was combined at a radiotherapeutic dose of 10 Gy to enhance the radiotherapy sensitivity of radiotherapy-tolerant BC cells (BT549R and 4T1-LucR). Animal experiments have also verified that aspirin can promote the killing effect of radiotherapy on cancer cells and significantly inhibit tumor growth. CONCLUSION Low doses of aspirin can inhibit the release of BC exosomes induced by radiotherapy and weaken their inhibition of NK cell proliferation, promoting radiotherapy resistance.
Collapse
Affiliation(s)
- Li Wang
- Department of RadiotherapyThird Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital, Yunnan Cancer Center)KunmingChina
| | - Zaoxiu Hu
- Department of PathologyThird Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital, Yunnan Cancer Center)KunmingChina
| | - Ceshi Chen
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences and Yunnan ProvinceKunming Institute of ZoologyKunmingChina
| | - Ting Chen
- Department of Nuclear MedicineThird Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital, Yunnan Cancer Center)KunmingChina
| | - Zhihong Yao
- Bone and Soft Tissue Tumors Research CenterThird Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital, Yunnan Cancer Center)KunmingChina
| | - Wenhui Li
- Department of RadiotherapyThird Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital, Yunnan Cancer Center)KunmingChina
| | - Zuozhang Yang
- Bone and Soft Tissue Tumors Research CenterThird Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital, Yunnan Cancer Center)KunmingChina
| |
Collapse
|
22
|
Whiteside TL. The potential of microRNA carried by small extracellular vesicles in cancer plasma to serve as cancer biomarkers. Transl Cancer Res 2023; 12:1359-1362. [PMID: 37304534 PMCID: PMC10248569 DOI: 10.21037/tcr-23-46] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 04/18/2023] [Indexed: 06/13/2023]
Affiliation(s)
- Theresa L. Whiteside
- Department of Pathology, University of Pittsburgh School of Medicine and UPMC Hillman Cancer Center, Pittsburgh, PA, USA
- Departments of Immunology and Otolaryngology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
23
|
Shekari F, Abyadeh M, Meyfour A, Mirzaei M, Chitranshi N, Gupta V, Graham SL, Salekdeh GH. Extracellular Vesicles as reconfigurable therapeutics for eye diseases: Promises and hurdles. Prog Neurobiol 2023; 225:102437. [PMID: 36931589 DOI: 10.1016/j.pneurobio.2023.102437] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 03/14/2023] [Indexed: 03/17/2023]
Abstract
A large number of people worldwide suffer from visual impairment. However, most available therapies rely on impeding the development of a particular eye disorder. Therefore, there is an increasing demand for effective alternative treatments, specifically regenerative therapies. Extracellular vesicles, including exosomes, ectosomes, or microvesicles, are released by cells and play a potential role in regeneration. Following an introduction to EV biogenesis and isolation methods, this integrative review provides an overview of our current knowledge about EVs as a communication paradigm in the eye. Then, we focused on the therapeutic applications of EVs derived from conditioned medium, biological fluid, or tissue and highlighted some recent developments in strategies to boost the innate therapeutic potential of EVs by loading various kinds of drugs or being engineered at the level of producing cells or EVs. Challenges faced in the development of safe and effective translation of EV-based therapy into clinical settings for eye diseases are also discussed to pave the road toward reaching feasible regenerative therapies required for eye-related complications.
Collapse
Affiliation(s)
- Faezeh Shekari
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran; Advanced Therapy Medicinal Product Technology Development Center (ATMP-TDC), Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
| | | | - Anna Meyfour
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehdi Mirzaei
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, North Ryde, Sydney, NSW, Australia
| | - Nitin Chitranshi
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, North Ryde, Sydney, NSW, Australia
| | - Vivek Gupta
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, North Ryde, Sydney, NSW, Australia
| | - Stuart L Graham
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, North Ryde, Sydney, NSW, Australia
| | | |
Collapse
|
24
|
Whiteside TL. Evaluating tumor cell- and T cell-derived extracellular vesicles as potential biomarkers of cancer and immune cell competence. Expert Rev Mol Diagn 2023; 23:109-122. [PMID: 36787282 PMCID: PMC9998373 DOI: 10.1080/14737159.2023.2178902] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 02/07/2023] [Indexed: 02/15/2023]
Abstract
INTRODUCTION Extracellular vesicles (EVs) produced by tumors, also called tumor-derived exosomes (TEX), have been implicated in inducing immune cell suppression in vitro and in vivo. The development of a novel category of noninvasive biomarkers for precision oncology remains an unmet need, and TEX emerge as a promising liquid tumor biopsy component. AREAS COVERED TEX play a critical role in monitoring cancer presence/progression and in reprograming of anti-tumor effector T cells to producers of EVs with pro-tumor activity. TEX are a subset of circulating EVs. Their separation by immune capture from EVs derived from nonmalignant cells allows for TEX phenotypic/functional assessments. TEX cross-talking with CD3(+) T cells induce the release of CD3(+) small EV (sEV), whose cargo of suppressor proteins resembles that of TEX and further contributes to cancer-induced immune suppression. While TEX recapitulate the genetic/molecular phenotype of tumor cells, CD3(+) sEV might serve as 'T cell liquid biopsy.' EXPERT OPINION Preclinical explorations of the role in cancer body fluids of TEX and CD3(+) sEV as cancer biomarkers suggest that these EV subsets may qualify as liquid tumor biopsy noninvasive components in the near future. Their potential to simultaneously serve as noninvasive liquid tumor biopsy and T cell biopsy remains to be validated in future clinical trials.
Collapse
Affiliation(s)
- Theresa L Whiteside
- Departments of Pathology, Immunology and Otolaryngology, University of Pittsburgh School of Medicine, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| |
Collapse
|
25
|
Benito-Martín A, Jasiulionis MG, García-Silva S. Extracellular vesicles and melanoma: New perspectives on tumor microenvironment and metastasis. Front Cell Dev Biol 2023; 10:1061982. [PMID: 36704194 PMCID: PMC9871288 DOI: 10.3389/fcell.2022.1061982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 12/27/2022] [Indexed: 01/11/2023] Open
Abstract
Secreted extracellular vesicles (EVs) are lipid bilayer particles without functional nucleus naturally released from cells which constitute an intercellular communication system. There is a broad spectrum of vesicles shed by cells based on their physical properties such as size (small EVs and large EVs), biogenesis, cargo and functions, which provide an increasingly heterogenous landscape. In addition, they are involved in multiple physiological and pathological processes. In cancer, EV release is opted by tumor cells as a beneficial process for tumor progression. Cutaneous melanoma is a cancer that originates from the melanocyte lineage and shows a favorable prognosis at early stages. However, when melanoma cells acquire invasive capacity, it constitutes the most aggressive and deadly skin cancer. In this context, extracellular vesicles have been shown their relevance in facilitating melanoma progression through the modulation of the microenvironment and metastatic spreading. In agreement with the melanosome secretory capacity of melanocytes, melanoma cells display an enhanced EV shedding activity that has contributed to the utility of melanoma models for unravelling EV cargo and functions within a cancer scenario. In this review, we provide an in-depth overview of the characteristics of melanoma-derived EVs and their role in melanoma progression highlighting key advances and remaining open questions in the field.
Collapse
Affiliation(s)
- Alberto Benito-Martín
- Facultad de Medicina, Unidad de Investigación Biomédica, Universidad Alfonso X El Sabio (UAX), Villanueva de la Cañada, Spain,*Correspondence: Alberto Benito-Martín, ; Miriam Galvonas Jasiulionis, ; Susana García-Silva,
| | - Miriam Galvonas Jasiulionis
- Departamento de Farmacologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil,*Correspondence: Alberto Benito-Martín, ; Miriam Galvonas Jasiulionis, ; Susana García-Silva,
| | - Susana García-Silva
- Microenvironment and Metastasis Laboratory, Molecular Oncology Programme, Spanish National Cancer Research Center (CNIO), Madrid, Spain,*Correspondence: Alberto Benito-Martín, ; Miriam Galvonas Jasiulionis, ; Susana García-Silva,
| |
Collapse
|
26
|
Mirza S, Penny C, Jain NK, Rawal RM. Curcumin mediated dendritic cell maturation by modulating cancer associated fibroblasts-derived exosomal miRNA-146a. J Cancer Res Ther 2023; 19:S649-S657. [PMID: 38384034 DOI: 10.4103/jcrt.jcrt_1286_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 07/20/2022] [Indexed: 02/23/2024]
Abstract
BACKGROUND Though cancer associated fibroblasts (CAFs), being a main component of tumor microenvironment (TME), are known to modulate immune response through secretion of various growth hormones, exosomes carrying miRNAs and cytokines; their effect on dendritic cells (DCs) are yet to be elucidated. Thus, aim of this study was to assess the effect of miRNAs and cytokines released by lung-CAFs and to evaluate immunomodulatory potential of curcumin on DC maturation through modulating their TME. MATERIAL AND METHODS To check the effect of CAFs derived exosomes on DC maturation, we cultured imDCs in the presence of CAFs derived conditioned media (CAFs-CM) and characterized by the presence of maturation markers CD80, CD83, CD86 and CTLA4 using qRT-PCR. Additionally, expression of miR-221, miR-222, miR-155, miR-142-3p and miR-146a was assessed to evaluate the role of epigenetic regulators on DC maturation. Likewise, cytokine profiling of CAFs-CM as well as CAFs-CM treated with curcumin was also conducted using ELISA. RESULTS Results revealed the generation of regulatory DCs which were characterized by decreased expression of maturation markers in the presence of CAFs-CM. In addition, such DCs showed higher expression of epigenetic regulator miR-146a which was positively correlated with increased expression of anti-inflammatory cytokines like IL-6, IL-10, TGF-β and decreased expression of TNF-α (pro-inflammatory). Moreover, curcumin had the potential to convert regulatory DCs generated by CAFs into mDCs, which were characterized by high expression of co-stimulatory molecules, low expression of CTLA4, lower levels of immune suppressive cytokines production and lower levels of miR-146a. CONCLUSION Collectively, these findings provide insight into understanding the immunomodulatory role of curcumin in targeting CAFs and modulating TME, thus enhancing antitumor immune response in DC based therapy.
Collapse
Affiliation(s)
- Sheefa Mirza
- Department of Internal Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Department of Life Science, School of Sciences, Gujarat University, Ahmedabad, Gujarat, India
- Division of Medicinal Chemistry and Pharmacogenomics, Department of Cancer Biology, The Gujarat Cancer and Research Institute, Ahmedabad, Gujarat, India
| | - Clement Penny
- Department of Internal Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Nayan K Jain
- Department of Life Science, School of Sciences, Gujarat University, Ahmedabad, Gujarat, India
| | - Rakesh M Rawal
- Department of Life Science, School of Sciences, Gujarat University, Ahmedabad, Gujarat, India
- Division of Medicinal Chemistry and Pharmacogenomics, Department of Cancer Biology, The Gujarat Cancer and Research Institute, Ahmedabad, Gujarat, India
| |
Collapse
|
27
|
Alptekin A, Parvin M, Chowdhury HI, Rashid MH, Arbab AS. Engineered exosomes for studies in tumor immunology. Immunol Rev 2022; 312:76-102. [PMID: 35808839 DOI: 10.1111/imr.13107] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 05/27/2022] [Indexed: 12/14/2022]
Abstract
Exosomes are a type of extracellular vesicle (EV) with diameters of 30-150 nm secreted by most of the cells into the extracellular spaces and can alter the microenvironment through cell-to-cell interactions by fusion with the plasma membrane and subsequent endocytosis and release of the cargo. Because of their biocompatibility, low toxicity and immunogenicity, permeability (even through the blood-brain barrier (BBB)), stability in biological fluids, and ability to accumulate in the lesions with higher specificity, investigators have started making designer's exosomes or engineered exosomes to carry biologically active protein on the surface or inside the exosomes as well as using exosomes to carry drugs, micro RNA, and other products to the site of interest. In this review, we have discussed biogenesis, markers, and contents of various exosomes including exosomes of immune cells. We have also discussed the current methods of making engineered and designer's exosomes as well as the use of engineered exosomes targeting different immune cells in the tumors, stroke, as well as at peripheral blood. Genetic engineering and customizing exosomes create an unlimited opportunity to use in diagnosis and treatment. Very little use has been discovered, and we are far away to reach its limits.
Collapse
Affiliation(s)
- Ahmet Alptekin
- Georgia Cancer Center, Augusta University, Augusta, Georgia, USA
| | - Mahrima Parvin
- Georgia Cancer Center, Augusta University, Augusta, Georgia, USA
| | | | | | - Ali S Arbab
- Georgia Cancer Center, Augusta University, Augusta, Georgia, USA
| |
Collapse
|
28
|
Molecular Docking and Intracellular Translocation of Extracellular Vesicles for Efficient Drug Delivery. Int J Mol Sci 2022; 23:ijms232112971. [PMID: 36361760 PMCID: PMC9659046 DOI: 10.3390/ijms232112971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 10/07/2022] [Accepted: 10/21/2022] [Indexed: 12/12/2022] Open
Abstract
Extracellular vesicles (EVs), including exosomes, mediate intercellular communication by delivering their contents, such as nucleic acids, proteins, and lipids, to distant target cells. EVs play a role in the progression of several diseases. In particular, programmed death-ligand 1 (PD-L1) levels in exosomes are associated with cancer progression. Furthermore, exosomes are being used for new drug-delivery systems by modifying their membrane peptides to promote their intracellular transduction via micropinocytosis. In this review, we aim to show that an efficient drug-delivery system and a useful therapeutic strategy can be established by controlling the molecular docking and intracellular translocation of exosomes. We summarise the mechanisms of molecular docking of exosomes, the biological effects of exosomes transmitted into target cells, and the current state of exosomes as drug delivery systems.
Collapse
|
29
|
Gao X, Gao B, Li S. Extracellular vesicles: A new diagnostic biomarker and targeted drug in osteosarcoma. Front Immunol 2022; 13:1002742. [PMID: 36211364 PMCID: PMC9539319 DOI: 10.3389/fimmu.2022.1002742] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 09/12/2022] [Indexed: 11/25/2022] Open
Abstract
Osteosarcoma (OS) is a primary bone cancer that is highly prevalent among adolescents and adults below the age of 20 years. The prognostic outcome of metastatic OS or relapse is extremely poor; thus, developing new diagnostic and therapeutic strategies for treating OS is necessary. Extracellular vesicles (EVs) ranging from 30–150 nm in diameter are commonly produced in different cells and are found in various types of body fluids. EVs are rich in biologically active components like proteins, lipids, and nucleic acids. They also strongly affect pathophysiological processes by modulating the intercellular signaling pathways and the exchange of biomolecules. Many studies have found that EVs influence the occurrence, development, and metastasis of osteosarcoma. The regulation of inflammatory communication pathways by EVs affects OS and other bone-related pathological conditions, such as osteoarthritis and rheumatoid arthritis. In this study, we reviewed the latest findings related to diagnosis, prognosis prediction, and the development of treatment strategies for OS from the perspective of EVs.
Collapse
Affiliation(s)
- Xiaozhuo Gao
- Department of Pathology, Liaoning Cancer Hospital & Institute, Cancer Hospital of Dalian University of Technology, Cancer Hospital of China Medical University, Shenyang, China
| | - Bo Gao
- Department of Pathology, Liaoning Cancer Hospital & Institute, Cancer Hospital of Dalian University of Technology, Cancer Hospital of China Medical University, Shenyang, China
| | - Shenglong Li
- Department of Bone and Soft Tissue Tumor Surgery, Liaoning Cancer Hospital & Institute, Cancer Hospital of Dalian University of Technology, Cancer Hospital of China Medical University, Shenyang, China
- *Correspondence: Shenglong Li, ;
| |
Collapse
|
30
|
Targeted inhibition of tumor-derived exosomes as a novel therapeutic option for cancer. Exp Mol Med 2022; 54:1379-1389. [PMID: 36117219 PMCID: PMC9534887 DOI: 10.1038/s12276-022-00856-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 07/07/2022] [Accepted: 07/21/2022] [Indexed: 11/25/2022] Open
Abstract
Mounting evidence indicates that tumor-derived exosomes (TDEs) play critical roles in tumor development and progression by regulating components in the tumor microenvironment (TME) in an autocrine or paracrine manner. Moreover, due to their delivery of critical molecules that react to chemotherapy and immunotherapy, TDEs also contribute to tumor drug resistance and impede the effective response of antitumor immunotherapy, thereby leading to poor clinical outcomes. There is a pressing need for the inhibition or removal of TDEs to facilitate the treatment and prognosis of cancer patients. Here, in the present review, we systematically overviewed the current strategies for TDE inhibition and clearance, providing novel insights for future tumor interventions in translational medicine. Moreover, existing challenges and potential prospects for TDE-targeted cancer therapy are also discussed to bridge the gaps between progress and promising applications. Inhibiting or removing tumor-derived exosomes (TDEs), tiny membrane-bound packets of DNA, RNA, and proteins secreted by tumors, may improve cancer therapies. TDEs can suppress the body’s immune response, promote tumor progression and spread, and reduce efficacy of cancer drugs and immunotherapy. Gang Chen at Wuhan University, China, and co-workers have reviewed ways to remove or inhibit production of TDEs. They report that disruption of the genes for production of TDEs, drugs that inhibit TDE secretion, and removal of TDEs via plasma exchange or dialysis are all being investigated and show promise for reducing patient TDE load, thereby increasing the efficacy of anti-cancer drugs and immunotherapy. Future challenges include reducing side effects and finding less invasive ways to filter out TDEs. Gaining a better understanding of TDEs may help to improve therapies for many types of cancer.
Collapse
|
31
|
Hepatitis Viruses Control Host Immune Responses by Modifying the Exosomal Biogenesis Pathway and Cargo. Int J Mol Sci 2022; 23:ijms231810862. [PMID: 36142773 PMCID: PMC9505460 DOI: 10.3390/ijms231810862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/13/2022] [Accepted: 09/15/2022] [Indexed: 11/17/2022] Open
Abstract
The development of smart immune evasion mechanisms is crucial for the establishment of acute and chronic viral hepatitis. Hepatitis is a major health problem worldwide arising from different causes, such as pathogens, metabolic disorders, and xenotoxins, with the five hepatitis viruses A, B, C, D, and E (HAV, HBV, HCV, HDV, and HEV) representing the majority of the cases. Most of the hepatitis viruses are considered enveloped. Recently, it was reported that the non-enveloped HAV and HEV are, in reality, quasi-enveloped viruses exploiting exosomal-like biogenesis mechanisms for budding. Regardless, all hepatitis viruses use exosomes to egress, regulate, and eventually escape from the host immune system, revealing another key function of exosomes apart from their recognised role in intercellular communication. This review will discuss how the hepatitis viruses exploit exosome biogenesis and transport capacity to establish successful infection and spread. Then, we will outline the contribution of exosomes in viral persistence and liver disease progression.
Collapse
|
32
|
Otmani K, Rouas R, Lewalle P. OncomiRs as noncoding RNAs having functions in cancer: Their role in immune suppression and clinical implications. Front Immunol 2022; 13:913951. [PMID: 36189271 PMCID: PMC9523483 DOI: 10.3389/fimmu.2022.913951] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 08/15/2022] [Indexed: 11/13/2022] Open
Abstract
Currently, microRNAs have been established as central players in tumorigenesis, but above all, they have opened an important door for our understanding of immune and tumor cell communication. This dialog is largely due to onco-miR transfer from tumor cells to cells of the tumor microenvironment by exosome. This review outlines recent advances regarding the role of oncomiRs in enhancing cancer and how they modulate the cancer-related immune response in the tumor immune microenvironment.MicroRNAs (miRNAs) are a type of noncoding RNA that are important posttranscriptional regulators of messenger RNA (mRNA) translation into proteins. By regulating gene expression, miRNAs enhance or inhibit cancer development and participate in several cancer biological processes, including proliferation, invasion metastasis, angiogenesis, chemoresistance and immune escape. Consistent with their widespread effects, miRNAs have been categorized as oncogenes (oncomiRs) or tumor suppressor (TS) miRNAs. MiRNAs that promote tumor growth, called oncomiRs, inhibit messenger RNAs of TS genes and are therefore overexpressed in cancer. In contrast, TS miRNAs inhibit oncogene messenger RNAs and are therefore underexpressed in cancer. Endogenous miRNAs regulate different cellular pathways in all cell types. Therefore, they are not only key modulators in cancer cells but also in the cells constituting their microenvironments. Recently, it was shown that miRNAs are also involved in intercellular communication. Indeed, miRNAs can be transferred from one cell type to another where they regulate targeted gene expression. The primary carriers for the transfer of miRNAs from one cell to another are exosomes. Exosomes are currently considered the primary carriers for communication between the tumor and its surrounding stromal cells to support cancer progression and drive immune suppression. Exosome and miRNAs are seen by many as a hope for developing a new class of targeted therapy. This review outlines recent advances in understanding the role of oncomiRs in enhancing cancer and how they promote its aggressive characteristics and deeply discusses the role of oncomiRs in suppressing the anticancer immune response in its microenvironment. Additionally, further understanding the mechanism of oncomiR-related immune suppression will facilitate the use of miRNAs as biomarkers for impaired antitumor immune function, making them ideal immunotherapy targets.
Collapse
Affiliation(s)
- Khalid Otmani
- Experimental Hematology Laboratory, Hematology Department, Jules Bordet Institute, Brussels, Belgium
- Hematology Department, Université libre de Bruxelles, Brussels, Belgium
- *Correspondence: Khalid Otmani,
| | - Redouane Rouas
- Hematology Department, Université libre de Bruxelles, Brussels, Belgium
- Hematological Cell Therapy Unit, Hematology Department, Jules Bordet Institute, Brussels, Belgium
| | - Philippe Lewalle
- Experimental Hematology Laboratory, Hematology Department, Jules Bordet Institute, Brussels, Belgium
- Hematology Department, Université libre de Bruxelles, Brussels, Belgium
- Hematological Cell Therapy Unit, Hematology Department, Jules Bordet Institute, Brussels, Belgium
| |
Collapse
|
33
|
Guo X, Sui R, Piao H. Tumor-derived small extracellular vesicles: potential roles and mechanism in glioma. J Nanobiotechnology 2022; 20:383. [PMID: 35999601 PMCID: PMC9400220 DOI: 10.1186/s12951-022-01584-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 08/02/2022] [Indexed: 12/05/2022] Open
Abstract
Small extracellular vesicles (SEVs) are extracellular vesicles containing DNA, RNA, and proteins and are involved in intercellular communication and function, playing an essential role in the growth and metastasis of tumors. SEVs are present in various body fluids and can be isolated and extracted from blood, urine, and cerebrospinal fluid. Under both physiological and pathological conditions, SEVs can be released by some cells, such as immune, stem, and tumor cells, in a cytosolic manner. SEVs secreted by tumor cells are called tumor-derived exosomes (TEXs) because of their origin in the corresponding parent cells. Glioma is the most common intracranial tumor, accounting for approximately half of the primary intracranial tumors, and is characterized by insidious onset, high morbidity, and high mortality rate. Complete removal of tumor tissues by surgery is difficult. Chemotherapy can improve the survival quality of patients to a certain extent; however, gliomas are prone to chemoresistance, which seriously affects the prognosis of patients. In recent years, TEXs have played a vital role in the occurrence, development, associated immune response, chemotherapy resistance, radiation therapy resistance, and metastasis of glioma. This article reviews the role of TEXs in glioma progression, drug resistance, and clinical diagnosis.
Collapse
Affiliation(s)
- Xu Guo
- Department of Neurosurgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, No. 44 Xiaoheyan Road, Shenyang, 110042, Liaoning, China
| | - Rui Sui
- Department of Neurosurgery, Cancer Hospital of Dalian University of Technology (Liaoning Cancer Hospital & Institute), No. 44 Xiaoheyan Road, Shenyang, 110042, Liaoning, China
| | - Haozhe Piao
- Department of Neurosurgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, No. 44 Xiaoheyan Road, Shenyang, 110042, Liaoning, China.
| |
Collapse
|
34
|
Paskeh MDA, Entezari M, Mirzaei S, Zabolian A, Saleki H, Naghdi MJ, Sabet S, Khoshbakht MA, Hashemi M, Hushmandi K, Sethi G, Zarrabi A, Kumar AP, Tan SC, Papadakis M, Alexiou A, Islam MA, Mostafavi E, Ashrafizadeh M. Emerging role of exosomes in cancer progression and tumor microenvironment remodeling. J Hematol Oncol 2022; 15:83. [PMID: 35765040 PMCID: PMC9238168 DOI: 10.1186/s13045-022-01305-4] [Citation(s) in RCA: 262] [Impact Index Per Article: 87.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 06/13/2022] [Indexed: 12/14/2022] Open
Abstract
Cancer is one of the leading causes of death worldwide, and the factors responsible for its progression need to be elucidated. Exosomes are structures with an average size of 100 nm that can transport proteins, lipids, and nucleic acids. This review focuses on the role of exosomes in cancer progression and therapy. We discuss how exosomes are able to modulate components of the tumor microenvironment and influence proliferation and migration rates of cancer cells. We also highlight that, depending on their cargo, exosomes can suppress or promote tumor cell progression and can enhance or reduce cancer cell response to radio- and chemo-therapies. In addition, we describe how exosomes can trigger chronic inflammation and lead to immune evasion and tumor progression by focusing on their ability to transfer non-coding RNAs between cells and modulate other molecular signaling pathways such as PTEN and PI3K/Akt in cancer. Subsequently, we discuss the use of exosomes as carriers of anti-tumor agents and genetic tools to control cancer progression. We then discuss the role of tumor-derived exosomes in carcinogenesis. Finally, we devote a section to the study of exosomes as diagnostic and prognostic tools in clinical courses that is important for the treatment of cancer patients. This review provides a comprehensive understanding of the role of exosomes in cancer therapy, focusing on their therapeutic value in cancer progression and remodeling of the tumor microenvironment.
Collapse
Affiliation(s)
- Mahshid Deldar Abad Paskeh
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.,Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Maliheh Entezari
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.,Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Sepideh Mirzaei
- Department of Biology, Faculty of Science, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Amirhossein Zabolian
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Hossein Saleki
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mohamad Javad Naghdi
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Sina Sabet
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mohammad Amin Khoshbakht
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mehrdad Hashemi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.,Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Kiavash Hushmandi
- Division of Epidemiology, Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore.,NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, 34396, Istanbul, Turkey
| | - Alan Prem Kumar
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore.,NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
| | - Shing Cheng Tan
- UKM Medical Molecular Biology Institute, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia.
| | - Marios Papadakis
- Department of Surgery II, University Hospital Witten-Herdecke, University of Witten-Herdecke, Heusnerstrasse 40, 42283, Wuppertal, Germany.
| | - Athanasios Alexiou
- Department of Science and Engineering, Novel Global Community Educational Foundation, Hebersham, Australia.,AFNP Med Austria, Vienna, Austria
| | - Md Asiful Islam
- Department of Haematology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia.,Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, B15 2TT, UK
| | - Ebrahim Mostafavi
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, 94305, USA.,Department of Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Milad Ashrafizadeh
- Faculty of Engineering and Natural Sciences, Sabanci University, Orta Mahalle, Üniversite Caddesi No. 27, Orhanlı, Tuzla, Istanbul, Turkey.
| |
Collapse
|
35
|
Zebrowska A, Jelonek K, Mondal S, Gawin M, Mrowiec K, Widłak P, Whiteside T, Pietrowska M. Proteomic and Metabolomic Profiles of T Cell-Derived Exosomes Isolated from Human Plasma. Cells 2022; 11:1965. [PMID: 35741093 PMCID: PMC9222142 DOI: 10.3390/cells11121965] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/13/2022] [Accepted: 06/17/2022] [Indexed: 02/04/2023] Open
Abstract
Exosomes that are released by T cells are key messengers involved in immune regulation. However, the molecular profiling of these vesicles, which is necessary for understanding their functions, requires their isolation from a very heterogeneous mixture of extracellular vesicles that are present in the human plasma. It has been shown that exosomes that are produced by T cells could be isolated from plasma by immune capture using antibodies that target the CD3 antigen, which is a key component of the TCR complex that is present in all T lymphocytes. Here, we demonstrate that CD3(+) exosomes that are isolated from plasma can be used for high-throughput molecular profiling using proteomics and metabolomics tools. This profiling allowed for the identification of proteins and metabolites that differentiated the CD3(+) from the CD3(-) exosome fractions that were present in the plasma of healthy donors. Importantly, the proteins and metabolites that accumulated in the CD3(+) vesicles reflected the known molecular features of T lymphocytes. Hence, CD3(+) exosomes that are isolated from human plasma by immune capture could serve as a "T cell biopsy".
Collapse
Affiliation(s)
- Aneta Zebrowska
- Maria Sklodowska-Curie National Research Institute of Oncology, 44-102 Gliwice, Poland; (A.Z.); (K.J.); (M.G.); (K.M.)
| | - Karol Jelonek
- Maria Sklodowska-Curie National Research Institute of Oncology, 44-102 Gliwice, Poland; (A.Z.); (K.J.); (M.G.); (K.M.)
| | - Sujan Mondal
- UPMC Hillman Cancer Center, University of Pittsburgh Cancer Institute, Pittsburgh, PA 15232, USA;
| | - Marta Gawin
- Maria Sklodowska-Curie National Research Institute of Oncology, 44-102 Gliwice, Poland; (A.Z.); (K.J.); (M.G.); (K.M.)
| | - Katarzyna Mrowiec
- Maria Sklodowska-Curie National Research Institute of Oncology, 44-102 Gliwice, Poland; (A.Z.); (K.J.); (M.G.); (K.M.)
| | - Piotr Widłak
- Clinical Research Support Centre, Medical University of Gdańsk, 80-210 Gdańsk, Poland
| | - Theresa Whiteside
- UPMC Hillman Cancer Center, University of Pittsburgh Cancer Institute, Pittsburgh, PA 15232, USA;
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Monika Pietrowska
- Maria Sklodowska-Curie National Research Institute of Oncology, 44-102 Gliwice, Poland; (A.Z.); (K.J.); (M.G.); (K.M.)
| |
Collapse
|
36
|
Extracellular Vesicles as Novel Drug-Delivery Systems through Intracellular Communications. MEMBRANES 2022; 12:membranes12060550. [PMID: 35736256 PMCID: PMC9230693 DOI: 10.3390/membranes12060550] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 05/17/2022] [Accepted: 05/20/2022] [Indexed: 02/07/2023]
Abstract
Since it has been reported that extracellular vesicles (EVs) carry cargo using cell-to-cell comminication according to various in vivo situations, they are exprected to be applied as new drug-delivery systems (DDSs). In addition, non-coding RNAs, such as microRNAs (miRNAs), have attracted much attention as potential biomarkers in the encapsulated extracellular-vesicle (EV) form. EVs are bilayer-based lipids with heterogeneous populations of varying sizes and compositions. The EV-mediated transport of contents, which includes proteins, lipids, and nucleic acids, has attracted attention as a DDS through intracellular communication. Many reports have been made on the development of methods for introducing molecules into EVs and efficient methods for introducing them into target vesicles. In this review, we outline the possible molecular mechanisms by which miRNAs in exosomes participate in the post-transcriptional regulation of signaling pathways via cell–cell communication as novel DDSs, especially small EVs.
Collapse
|
37
|
Large−Scale Profiling of Extracellular Vesicles Identified miR−625−5p as a Novel Biomarker of Immunotherapy Response in Advanced Non−Small−Cell Lung Cancer Patients. Cancers (Basel) 2022; 14:cancers14102435. [PMID: 35626040 PMCID: PMC9139420 DOI: 10.3390/cancers14102435] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/09/2022] [Accepted: 05/12/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary Immune checkpoint inhibitors (ICIs) have revolutionized the treatment of advanced non-small-cell lung cancer (NSCLC) leading to substantial improvement in survival time and quality of life. Nevertheless, the clinical benefit of treatment is still limited to a minority of patients, reflecting the need to identify novel noninvasive biomarkers to improve patient selection. Currently available markers such as PD-L1 expression have important limitations. In this study, we focused on extracellular vesicles (EV)-associated miRNAs produced by cancer cells and their microenvironment that can be easily detected in blood. In particular, after a large-scale screening of 799 EV-miRNAs, we identified EV-miR-625-5p as a novel independent biomarker of response and survival in ICI-treated NSCLC patients, in particular in patients with PD-L1 expression ≥ 50%. EV-miR-625-5p integrated with PDL-1 test could allow the clinician to identify in advance patients that would benefit from ICIs. Abstract Immune checkpoint inhibitors (ICIs) are largely used in the treatment of patients with advanced non-small-cell lung cancer (NSCLC). Novel biomarkers that provide biological information that could be useful for clinical management are needed. In this respect, extracellular vesicles (EV)-associated microRNAs (miRNAs) that are the principal vehicle of intercellular communication may be important sources of biomarkers. We analyzed the levels of 799 EV-miRNAs in the pretreatment plasma of 88 advanced NSCLC patients who received anti-PD-1 therapy as single agent. After data normalization, we used a two-step approach to identify candidate biomarkers associated to both objective response (OR) by RECIST and longer overall survival (OS). Univariate and multivariate analyses including known clinicopathologic variables and new findings were performed. In our cohort, 24/88 (27.3%) patients showed OR by RECIST. Median OS in the whole cohort was 11.5 months. In total, 196 EV-miRNAs out 799 were selected as expressed above background. After multiplicity adjustment, abundance of EV-miR-625-5p was found to be correlated with PD-L1 expression and significantly associated to OR by RECIST (p = 0.0366) and OS (p = 0.0031). In multivariate analysis, PD-L1 staining and EV-miR-625-5p levels were constantly associated to OR and OS. Finally, we showed that EV-miR-625-5p levels could discriminate patients with longer survival, in particular in the class expressing PD-L1 ≥50%. EV-miRNAs represent a source of relevant biomarkers. EV-miR-625-5p is an independent biomarker of response and survival in ICI-treated NSCLC patients, in particular in patients with PD-L1 expression ≥50%.
Collapse
|
38
|
Behravan N, Zahedipour F, Jaafari MR, Johnston TP, Sahebkar A. Lipid-based nanoparticulate delivery systems for HER2-positive breast cancer immunotherapy. Life Sci 2022; 291:120294. [PMID: 34998838 DOI: 10.1016/j.lfs.2021.120294] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 12/21/2021] [Accepted: 12/29/2021] [Indexed: 12/18/2022]
Abstract
Lipid-based nanoparticulate delivery platforms such as liposomes help overcome cell and tissue barriers and allow prolonged therapeutic plasma drug concentrations, simultaneous targeting of tumor tissue, and increased bioavailability of numerous drugs used for treatment of cancer. The human epidermal growth factor receptor, HER2, is an important player in the pathogenesis of breast cancer and is considered a potential cancer biomarker for the design of immunotherapeutics. HER2-positive breast cancer is found in up to 30% of breast cancer patients. Currently, a variety of lipid nanoparticulate systems are being evaluated in preclinical settings and in clinical trials for targeting HER2-positive breast cancer. Advances in functionalized anti-HER2 lipid nanoparticulates have demonstrated promise and may lead to the development of new nano-immunotherapy protocols against HER2 positive breast cancer. Here we present a review of the most up-to-date literature, including our own research, on the use of lipid nanoparticulate carriers in immunotherapy of HER2-positive breast cancer.
Collapse
Affiliation(s)
- Nima Behravan
- Department of Biochemistry and Biomedical Sciences, Faculty of Health Sciences, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Fatemeh Zahedipour
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahmoud Reza Jaafari
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Thomas P Johnston
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, Kansas City, MO, USA
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; School of Medicine, The University of Western Australia, Perth, Australia; Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
39
|
Hao Q, Wu Y, Wu Y, Wang P, Vadgama JV. Tumor-Derived Exosomes in Tumor-Induced Immune Suppression. Int J Mol Sci 2022; 23:1461. [PMID: 35163380 PMCID: PMC8836190 DOI: 10.3390/ijms23031461] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/19/2022] [Accepted: 01/25/2022] [Indexed: 02/07/2023] Open
Abstract
Exosomes are a class of small membrane-bound extracellular vesicles released by almost all cell types and present in all body fluids. Based on the studies of exosome content and their interactions with recipient cells, exosomes are now thought to mediate "targeted" information transfer. Tumor-derived exosomes (TEX) carry a cargo of molecules different from that of normal cell-derived exosomes. TEX functions to mediate distinct biological effects such as receptor discharge and intercellular cross-talk. The immune system defenses, which may initially restrict tumor progression, are progressively blunted by the broad array of TEX molecules that activate suppressive pathways in different immune cells. Herein, we provide a review of the latest research progress on TEX in the context of tumor-mediated immune suppression and discuss the potential as well as challenges of TEX as a target of immunotherapy.
Collapse
Affiliation(s)
- Qiongyu Hao
- Division of Cancer Research and Training, Charles R. Drew University of Medicine and Science, Los Angeles, CA 90059, USA; (Y.W.); (Y.W.)
| | - Yong Wu
- Division of Cancer Research and Training, Charles R. Drew University of Medicine and Science, Los Angeles, CA 90059, USA; (Y.W.); (Y.W.)
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90095, USA
| | - Yanyuan Wu
- Division of Cancer Research and Training, Charles R. Drew University of Medicine and Science, Los Angeles, CA 90059, USA; (Y.W.); (Y.W.)
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90095, USA
| | - Piwen Wang
- Division of Cancer Research and Training, Charles R. Drew University of Medicine and Science, Los Angeles, CA 90059, USA; (Y.W.); (Y.W.)
| | - Jaydutt V. Vadgama
- Division of Cancer Research and Training, Charles R. Drew University of Medicine and Science, Los Angeles, CA 90059, USA; (Y.W.); (Y.W.)
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
40
|
Serratì S, Guida M, Di Fonte R, De Summa S, Strippoli S, Iacobazzi RM, Quarta A, De Risi I, Guida G, Paradiso A, Porcelli L, Azzariti A. Circulating extracellular vesicles expressing PD1 and PD-L1 predict response and mediate resistance to checkpoint inhibitors immunotherapy in metastatic melanoma. Mol Cancer 2022; 21:20. [PMID: 35042524 PMCID: PMC8764806 DOI: 10.1186/s12943-021-01490-9] [Citation(s) in RCA: 78] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 12/26/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND The immunotherapy with immune checkpoints inhibitors (ICI) has changed the life expectancy in metastatic melanoma (MM) patients. Nevertheless, several patients do not respond hence, the identification and validation of novel biomarkers of response to ICI is of crucial importance. Circulating extracellular vesicles (EVs) such as PD-L1+ EV mediate resistance to anti-PD1, instead the role of PD1+ EV is not fully understood. METHODS We isolated the circulating EVs from the plasma of an observational cohort study of 71 metastatic melanoma patients and correlated the amount of PD-L1+ EVs and PD1+ EVs with the response to ICI. The analysis was performed according to the origin of EVs from the tumor and the immune cells. Subsequently, we analysed the data in a validation cohort of 22 MM patients to assess the reliability of identified EV-based biomarkers. Additionally we assessed the involvement of PD1+ EVs in the seizure of nivolumab and in the perturbation of immune cells-mediated killing of melanoma spheroids. RESULTS The level of PD-L1+ EVs released from melanoma and CD8+ T cells and that of PD1+ EVs irrespective of the cellular origin were higher in non-responders. The Kaplan-Meier curves indicated that higher levels of PD1+ EVs were significantly correlated with poorer progression-free survival (PFS) and overall survival (OS). Significant correlations were found for PD-L1+ EVs only when released from melanoma and T cells. The multivariate analysis showed that high level of PD1+ EVs, from T cells and B cells, and high level of PD-L1+ EVs from melanoma cells, are independent biomarkers of response. The reliability of PD-L1+ EVs from melanoma and PD1+ EVs from T cells in predicting PFS was confirmed in the validation cohort through the univariate Cox-hazard regression analysis. Moreover we discovered that the circulating EVs captured nivolumab and reduced the T cells trafficking and tumor spheroids killing. CONCLUSION Our study identified circulating PD1+ EVs as driver of resistance to anti-PD1, and highlighted that the analysis of single EV population by liquid biopsy is a promising tool to stratify MM patients for immunotherapy.
Collapse
Affiliation(s)
- Simona Serratì
- Laboratory of Nanotechnology, IRCCS Istituto Tumori Giovanni Paolo II, V.le O. Flacco, 65, 70124, Bari, Italy
| | - Michele Guida
- Rare Tumors and Melanoma Unit, IRCCS Istituto Tumori Giovanni Paolo II, V.le O. Flacco, 65, 70124, Bari, Italy
| | - Roberta Di Fonte
- Laboratory of Experimental Pharmacology, IRCCS Istituto Tumori Giovanni Paolo II, V.le O. Flacco, 65, 70124, Bari, Italy
| | - Simona De Summa
- Molecular Diagnostics and Pharmacogenetics Unit, IRCCS Istituto Tumori Giovanni Paolo II, V.le O. Flacco, 65, 70124, Bari, Italy
| | - Sabino Strippoli
- Rare Tumors and Melanoma Unit, IRCCS Istituto Tumori Giovanni Paolo II, V.le O. Flacco, 65, 70124, Bari, Italy
| | - Rosa Maria Iacobazzi
- Laboratory of Experimental Pharmacology, IRCCS Istituto Tumori Giovanni Paolo II, V.le O. Flacco, 65, 70124, Bari, Italy
| | - Alessandra Quarta
- CNR NANOTEC-Istituto di Nanotecnologia, National Research Council (CNR), via Monteroni, 73100, Lecce, Italy
| | - Ivana De Risi
- Rare Tumors and Melanoma Unit, IRCCS Istituto Tumori Giovanni Paolo II, V.le O. Flacco, 65, 70124, Bari, Italy
| | - Gabriella Guida
- Department of Basic Medical Sciences Neurosciences and Sense Organs, University of Bari, Piazza G. Cesare, 11, 70124, Bari, Italy
| | - Angelo Paradiso
- Scientific Directorate, IRCCS Istituto Tumori Giovanni Paolo II, V.le O. Flacco, 65, 70124, Bari, Italy
| | - Letizia Porcelli
- Laboratory of Experimental Pharmacology, IRCCS Istituto Tumori Giovanni Paolo II, V.le O. Flacco, 65, 70124, Bari, Italy
| | - Amalia Azzariti
- Laboratory of Nanotechnology, IRCCS Istituto Tumori Giovanni Paolo II, V.le O. Flacco, 65, 70124, Bari, Italy.
- Laboratory of Experimental Pharmacology, IRCCS Istituto Tumori Giovanni Paolo II, V.le O. Flacco, 65, 70124, Bari, Italy.
| |
Collapse
|
41
|
The Role of Tumor-Derived Exosomes (TEX) in Shaping Anti-Tumor Immune Competence. Cells 2021; 10:cells10113054. [PMID: 34831276 PMCID: PMC8616398 DOI: 10.3390/cells10113054] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/29/2021] [Accepted: 11/01/2021] [Indexed: 02/04/2023] Open
Abstract
Emerging studies suggest that extracellular vesicles (EVs) mediating intercellular communication in the tumor microenvironment (TME) play a key role in driving cancer progression. Tumor-derived small EVs or exosomes (TEX) enriched in immunosuppressive proteins or in microRNAs targeting suppressive pathways in recipient cells contribute to reprogramming the TME into a cancer-promoting milieu. The adenosinergic pathway is an acknowledged major contributor to tumor-induced immune suppression. TEX carry the components of this pathway and utilize ATP to produce adenosine (ADO). TEX-associated ADO emerges as a key factor in the suppression of T cell responses to therapy. Here, the significance of the ADO pathway in TEX is discussed as a highly effective mechanism of cancer-driven immune cell suppression and of resistance to immune therapies.
Collapse
|