1
|
Ruiz TFR, Ferrato LJ, de Souza LG, Brito-Filho GE, Leonel ECR, Taboga SR. The elastic system: A review of elastin-related techniques and hematoxylin-eosin/phloxine applicability for normal and pathological tissue description. Acta Histochem 2024; 126:152209. [PMID: 39442433 DOI: 10.1016/j.acthis.2024.152209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 09/24/2024] [Accepted: 10/15/2024] [Indexed: 10/25/2024]
Abstract
The elastic system is one of the most developed interstitial elements in connective tissue. With diverse functions, pre-elastic and elastic fibers contribute to the distensibility and malleability of several organs. Also, microanalyses of the elastic system were obtained by different histological techniques that were employed over years to describe normal and pathological conditions. Compared to conventional stains, hematoxylin-eosin/phloxine (HE/P) under fluorescence and confocal microscopy presented a highly detailed observation of the elastic system in different organs and scenarios. This technique provides a better demarcation of the elastic fibers, favoring their description in relation to their deposition and aggregation in different organs. Also, fibrils with low aggregation or loss of this characteristic are observed in an optimal view in the skin, heart valves, and large-caliber blood vessels. Degradation, fragmentation, and rupture were also well described by the HE/P technique. Several organs, such as the mammary gland, prostate, skin, aorta, and lung, could be described with precision under this technique. In association with non-linear microscopy, the results of the research presented in this paper improved and detailed characteristics of precise pathogenesis. Thus, the HE/P technique presented an interesting efficiency to demonstrate alterations and structures in which the elastic system showed a relevant role, and when compared to other techniques it demonstrated a similar or better result. In addition, it is expected that future studies can reveal more information about the elastin and interactions with specific dyes, thus allowing a greater understanding of the great efficiency of this technique.
Collapse
Affiliation(s)
- Thalles Fernando Rocha Ruiz
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas - UNICAMP, SP, Brazil; Microscopy and Microanalysis Center, Department of Biological Sciences, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University - UNESP, SP, Brazil.
| | - Luara Jesus Ferrato
- Microscopy and Microanalysis Center, Department of Biological Sciences, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University - UNESP, SP, Brazil
| | - Lorena Gabriela de Souza
- Microscopy and Microanalysis Center, Department of Biological Sciences, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University - UNESP, SP, Brazil
| | - Gervásio Evangelista Brito-Filho
- Microscopy and Microanalysis Center, Department of Biological Sciences, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University - UNESP, SP, Brazil
| | - Ellen Cristina Rivas Leonel
- Animal Molecular and Cellular Biology Group (AMCB), Louvain Institute of Biomolecular Science and Technology (LIBST), Université catholique de Louvain, Place Croix du Sud 4-5, Louvain la Neuve 1348, Belgium
| | - Sebastião Roberto Taboga
- Microscopy and Microanalysis Center, Department of Biological Sciences, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University - UNESP, SP, Brazil.
| |
Collapse
|
2
|
Nazir F, John Kombe Kombe A, Khalid Z, Bibi S, Zhang H, Wu S, Jin T. SARS-CoV-2 replication and drug discovery. Mol Cell Probes 2024; 77:101973. [PMID: 39025272 DOI: 10.1016/j.mcp.2024.101973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 07/14/2024] [Accepted: 07/15/2024] [Indexed: 07/20/2024]
Abstract
The coronavirus disease 2019 (COVID-19) caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has killed millions of people and continues to wreak havoc across the globe. This sudden and deadly pandemic emphasizes the necessity for anti-viral drug development that can be rapidly administered to reduce morbidity, mortality, and virus propagation. Thus, lacking efficient anti-COVID-19 treatment, and especially given the lengthy drug development process as well as the critical death tool that has been associated with SARS-CoV-2 since its outbreak, drug repurposing (or repositioning) constitutes so far, the ideal and ready-to-go best approach in mitigating viral spread, containing the infection, and reducing the COVID-19-associated death rate. Indeed, based on the molecular similarity approach of SARS-CoV-2 with previous coronaviruses (CoVs), repurposed drugs have been reported to hamper SARS-CoV-2 replication. Therefore, understanding the inhibition mechanisms of viral replication by repurposed anti-viral drugs and chemicals known to block CoV and SARS-CoV-2 multiplication is crucial, and it opens the way for particular treatment options and COVID-19 therapeutics. In this review, we highlighted molecular basics underlying drug-repurposing strategies against SARS-CoV-2. Notably, we discussed inhibition mechanisms of viral replication, involving and including inhibition of SARS-CoV-2 proteases (3C-like protease, 3CLpro or Papain-like protease, PLpro) by protease inhibitors such as Carmofur, Ebselen, and GRL017, polymerases (RNA-dependent RNA-polymerase, RdRp) by drugs like Suramin, Remdesivir, or Favipiravir, and proteins/peptides inhibiting virus-cell fusion and host cell replication pathways, such as Disulfiram, GC376, and Molnupiravir. When applicable, comparisons with SARS-CoV inhibitors approved for clinical use were made to provide further insights to understand molecular basics in inhibiting SARS-CoV-2 replication and draw conclusions for future drug discovery research.
Collapse
Affiliation(s)
- Farah Nazir
- Center of Disease Immunity and Investigation, College of Medicine, Lishui University, Lishui, 323000, China
| | - Arnaud John Kombe Kombe
- Laboratory of Structural Immunology, Key Laboratory of Immune Response and Immunotherapy, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China
| | - Zunera Khalid
- Laboratory of Structural Immunology, Key Laboratory of Immune Response and Immunotherapy, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China
| | - Shaheen Bibi
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, University of Science and Technology of China, Anhui, China
| | - Hongliang Zhang
- Center of Disease Immunity and Investigation, College of Medicine, Lishui University, Lishui, 323000, China
| | - Songquan Wu
- Center of Disease Immunity and Investigation, College of Medicine, Lishui University, Lishui, 323000, China.
| | - Tengchuan Jin
- Center of Disease Immunity and Investigation, College of Medicine, Lishui University, Lishui, 323000, China; Laboratory of Structural Immunology, Key Laboratory of Immune Response and Immunotherapy, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China; Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, University of Science and Technology of China, Anhui, China; Institute of Health and Medicine, Hefei Comprehensive National Science Center, Hefei, Anhui, China; Biomedical Sciences and Health Laboratory of Anhui Province, University of Science & Technology of China, Hefei, 230027, China; Clinical Research Hospital of Chinese Academy of Sciences (Hefei), University of Science and Technology of China, Hefei, 230001, China.
| |
Collapse
|
3
|
Máthé D, Szalay G, Cseri L, Kis Z, Pályi B, Földes G, Kovács N, Fülöp A, Szepesi Á, Hajdrik P, Csomos A, Zsembery Á, Kádár K, Katona G, Mucsi Z, Rózsa BJ, Kovács E. Monitoring correlates of SARS-CoV-2 infection in cell culture using a two-photon-active calcium-sensitive dye. Cell Mol Biol Lett 2024; 29:105. [PMID: 39030477 PMCID: PMC11264913 DOI: 10.1186/s11658-024-00619-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 06/26/2024] [Indexed: 07/21/2024] Open
Abstract
BACKGROUND The organism-wide effects of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) viral infection are well studied, but little is known about the dynamics of how the infection spreads in time among or within cells due to the scarcity of suitable high-resolution experimental systems. It has been reported that SARS-CoV-2 infection pathways converge at calcium influx and subcellular calcium distribution changes. Imaging combined with a proper staining technique is an effective tool for studying subcellular calcium-related infection and replication mechanisms at such resolutions. METHODS Using two-photon (2P) fluorescence imaging with our novel Ca-selective dye, automated image analysis and clustering analysis were applied to reveal titer and variant effects on SARS-CoV-2-infected Vero E6 cells. RESULTS The application of a new calcium sensor molecule is shown, combined with a high-end 2P technique for imaging and identifying the patterns associated with cellular infection damage within cells. Vero E6 cells infected with SARS-CoV-2 variants, D614G or B.1.1.7, exhibit elevated cytosolic calcium levels, allowing infection monitoring by tracking the cellular changes in calcium level by the internalized calcium sensor. The imaging provides valuable information on how the level and intracellular distribution of calcium are perturbed during the infection. Moreover, two-photon calcium sensing allowed the distinction of infections by two studied viral variants via cluster analysis of the image parameters. This approach will facilitate the study of cellular correlates of infection and their quantification depending on viral variants and viral load. CONCLUSIONS We propose a new two-photon microscopy-based method combined with a cell-internalized sensor to quantify the level of SARS-CoV-2 infection. We optimized the applied dye concentrations to not interfere with viral fusion and viral replication events. The presented method ensured the proper monitoring of viral infection, replication, and cell fate. It also enabled distinguishing intracellular details of cell damage, such as vacuole and apoptotic body formation. Using clustering analysis, 2P microscopy calcium fluorescence images were suitable to distinguish two different viral variants in cell cultures. Cellular harm levels read out by calcium imaging were quantitatively related to the initial viral multiplicity of infection numbers. Thus, 2P quantitative calcium imaging might be used as a correlate of infection or a correlate of activity in cellular antiviral studies.
Collapse
Affiliation(s)
- Domokos Máthé
- Department of Biophysics and Radiation Biology, Semmelweis University, Tűzoltó utca 37-47, 1094, Budapest, Hungary.
- In Vivo Imaging Advanced Core Facility, Hungarian Centre of Excellence for Molecular Medicine, Tűzoltó utca 37-47, 1094, Budapest, Hungary.
- HUN-REN Physical Virology Research Group, Semmelweis University, Tűzoltó utca 37-47, 1094, Budapest, Hungary.
| | - Gergely Szalay
- Laboratory of 3D Functional Network and Dendritic Imaging, HUN-REN Institute of Experimental Medicine, Szigony utca 43, 1083, Budapest, Hungary
- BrainVisionCenter, Liliom utca 43-45, 1094, Budapest, Hungary
| | - Levente Cseri
- BrainVisionCenter, Liliom utca 43-45, 1094, Budapest, Hungary
- Femtonics Ltd., Tűzoltó utca 59, 1094, Budapest, Hungary
| | - Zoltán Kis
- National Center for Public Health, Albert Flórián út 2-6, 1097, Budapest, Hungary
| | - Bernadett Pályi
- National Center for Public Health, Albert Flórián út 2-6, 1097, Budapest, Hungary
| | - Gábor Földes
- National Heart and Lung Institute, Imperial College London, Du Cane Road, London, W12 0NN, UK
- Heart and Vascular Center, Semmelweis University, Városmajor utca. 68, 1122, Budapest, Hungary
| | - Noémi Kovács
- In Vivo Imaging Advanced Core Facility, Hungarian Centre of Excellence for Molecular Medicine, Tűzoltó utca 37-47, 1094, Budapest, Hungary
| | - Anna Fülöp
- Femtonics Ltd., Tűzoltó utca 59, 1094, Budapest, Hungary
| | - Áron Szepesi
- Laboratory of 3D Functional Network and Dendritic Imaging, HUN-REN Institute of Experimental Medicine, Szigony utca 43, 1083, Budapest, Hungary
- BrainVisionCenter, Liliom utca 43-45, 1094, Budapest, Hungary
| | - Polett Hajdrik
- Department of Biophysics and Radiation Biology, Semmelweis University, Tűzoltó utca 37-47, 1094, Budapest, Hungary
| | - Attila Csomos
- Femtonics Ltd., Tűzoltó utca 59, 1094, Budapest, Hungary
- Hevesy György PhD School of Chemistry, Eötvös Loránd University, Pázmány Péter sétány 1/A, 1117, Budapest, Hungary
| | - Ákos Zsembery
- Department of Oral Biology, Faculty of Dentistry, Semmelweis University, Nagyvárad tér 4, 1089, Budapest, Hungary
| | - Kristóf Kádár
- Department of Oral Biology, Faculty of Dentistry, Semmelweis University, Nagyvárad tér 4, 1089, Budapest, Hungary
| | - Gergely Katona
- Two-Photon Measurement Technology Group, The Faculty of Information Technology, Pázmány Péter Catholic University, Szigony utca 50/A, 1083, Budapest, Hungary
| | - Zoltán Mucsi
- BrainVisionCenter, Liliom utca 43-45, 1094, Budapest, Hungary.
- Femtonics Ltd., Tűzoltó utca 59, 1094, Budapest, Hungary.
- Institute of Chemistry, Faculty of Materials Science and Engineering, University of Miskolc, Egyetem tér 1, 3515, Miskolc, Hungary.
| | - Balázs József Rózsa
- Laboratory of 3D Functional Network and Dendritic Imaging, HUN-REN Institute of Experimental Medicine, Szigony utca 43, 1083, Budapest, Hungary.
- BrainVisionCenter, Liliom utca 43-45, 1094, Budapest, Hungary.
- Two-Photon Measurement Technology Group, The Faculty of Information Technology, Pázmány Péter Catholic University, Szigony utca 50/A, 1083, Budapest, Hungary.
| | - Ervin Kovács
- Two-Photon Measurement Technology Group, The Faculty of Information Technology, Pázmány Péter Catholic University, Szigony utca 50/A, 1083, Budapest, Hungary.
- Institute of Materials and Environmental Chemistry, HUN-REN Research Centre for Natural Sciences, Magyar Tudósok körútja 2, 1117, Budapest, Hungary.
| |
Collapse
|
4
|
Kohantorabi M, Ugolotti A, Sochor B, Roessler J, Wagstaffe M, Meinhardt A, Beck EE, Dolling DS, Garcia MB, Creutzburg M, Keller TF, Schwartzkopf M, Vayalil SK, Thuenauer R, Guédez G, Löw C, Ebert G, Protzer U, Hammerschmidt W, Zeidler R, Roth SV, Di Valentin C, Stierle A, Noei H. Light-Induced Transformation of Virus-Like Particles on TiO 2. ACS APPLIED MATERIALS & INTERFACES 2024; 16:37275-37287. [PMID: 38959130 PMCID: PMC11261565 DOI: 10.1021/acsami.4c07151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/14/2024] [Accepted: 06/17/2024] [Indexed: 07/05/2024]
Abstract
Titanium dioxide (TiO2) shows significant potential as a self-cleaning material to inactivate severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and prevent virus transmission. This study provides insights into the impact of UV-A light on the photocatalytic inactivation of adsorbed SARS-CoV-2 virus-like particles (VLPs) on a TiO2 surface at the molecular and atomic levels. X-ray photoelectron spectroscopy, combined with density functional theory calculations, reveals that spike proteins can adsorb on TiO2 predominantly via their amine and amide functional groups in their amino acids blocks. We employ atomic force microscopy and grazing-incidence small-angle X-ray scattering (GISAXS) to investigate the molecular-scale morphological changes during the inactivation of VLPs on TiO2 under light irradiation. Notably, in situ measurements reveal photoinduced morphological changes of VLPs, resulting in increased particle diameters. These results suggest that the denaturation of structural proteins induced by UV irradiation and oxidation of the virus structure through photocatalytic reactions can take place on the TiO2 surface. The in situ GISAXS measurements under an N2 atmosphere reveal that the virus morphology remains intact under UV light. This provides evidence that the presence of both oxygen and UV light is necessary to initiate photocatalytic reactions on the surface and subsequently inactivate the adsorbed viruses. The chemical insights into the virus inactivation process obtained in this study contribute significantly to the development of solid materials for the inactivation of enveloped viruses.
Collapse
Affiliation(s)
- Mona Kohantorabi
- Centre
for X-ray and Nano Science CXNS, Deutsches
Elektronen-Synchrotron DESY, 22607 Hamburg, Germany
| | - Aldo Ugolotti
- Dipartimento
di Scienza dei Materiali, Università
degli Studi di Milano-Bicocca, Via Cozzi 55, 20125 Milano, Italy
| | - Benedikt Sochor
- Deutsches
Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
- Advanced
Light Source, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| | - Johannes Roessler
- Helmholtz
Zentrum München, German Research
Center for Environmental Health, 81377 Munich, Germany
- German Center
for Infection Research (DZIF), Partner Site Munich, 81377 Munich, Germany
| | - Michael Wagstaffe
- Centre
for X-ray and Nano Science CXNS, Deutsches
Elektronen-Synchrotron DESY, 22607 Hamburg, Germany
| | - Alexander Meinhardt
- Centre
for X-ray and Nano Science CXNS, Deutsches
Elektronen-Synchrotron DESY, 22607 Hamburg, Germany
- University
of Hamburg, Notkestraße
9-11, 22607 Hamburg, Germany
| | - E. Erik Beck
- Centre
for X-ray and Nano Science CXNS, Deutsches
Elektronen-Synchrotron DESY, 22607 Hamburg, Germany
- University
of Hamburg, Notkestraße
9-11, 22607 Hamburg, Germany
| | - Daniel Silvan Dolling
- Centre
for X-ray and Nano Science CXNS, Deutsches
Elektronen-Synchrotron DESY, 22607 Hamburg, Germany
- University
of Hamburg, Notkestraße
9-11, 22607 Hamburg, Germany
| | - Miguel Blanco Garcia
- Centre
for X-ray and Nano Science CXNS, Deutsches
Elektronen-Synchrotron DESY, 22607 Hamburg, Germany
- University
of Hamburg, Notkestraße
9-11, 22607 Hamburg, Germany
| | - Marcus Creutzburg
- Centre
for X-ray and Nano Science CXNS, Deutsches
Elektronen-Synchrotron DESY, 22607 Hamburg, Germany
| | - Thomas F. Keller
- Centre
for X-ray and Nano Science CXNS, Deutsches
Elektronen-Synchrotron DESY, 22607 Hamburg, Germany
- Department
of Physics, University of Hamburg, Notkestraße 9-11, 22607 Hamburg, Germany
| | | | - Sarathlal Koyiloth Vayalil
- Deutsches
Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
- Applied
Science Cluster, UPES, 248007 Dehradun, India
| | - Roland Thuenauer
- Technology
Platform Light Microscopy (TPLM), Universität
Hamburg (UHH), 22607 Hamburg, Germany
- Centre for Structural Systems Biology (CSSB), 22607 Hamburg, Germany
- Technology
Platform Light Microscopy and Image Analysis (TP MIA), Leibniz Institute of Virology (LIV), 20251 Hamburg, Germany
| | - Gabriela Guédez
- Centre for Structural Systems Biology (CSSB), 22607 Hamburg, Germany
| | - Christian Löw
- Centre for Structural Systems Biology (CSSB), 22607 Hamburg, Germany
| | - Gregor Ebert
- Institute
of Virology, Technical University of Munich/Helmholtz
Munich, 81675 Munich, Germany
| | - Ulrike Protzer
- Institute
of Virology, Technical University of Munich/Helmholtz
Munich, 81675 Munich, Germany
| | - Wolfgang Hammerschmidt
- Helmholtz
Zentrum München, German Research
Center for Environmental Health, 81377 Munich, Germany
- German Center
for Infection Research (DZIF), Partner Site Munich, 81377 Munich, Germany
| | - Reinhard Zeidler
- Helmholtz
Zentrum München, German Research
Center for Environmental Health, 81377 Munich, Germany
- German Center
for Infection Research (DZIF), Partner Site Munich, 81377 Munich, Germany
- Department
of Otorhinolaryngology, LMU University Hospital, LMU München, 81377 Munich, Germany
| | - Stephan V. Roth
- Deutsches
Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
- KTH
Royal Institute of Technology, Teknikringen 56-58, 10044 Stockholm, Sweden
| | - Cristiana Di Valentin
- Dipartimento
di Scienza dei Materiali, Università
degli Studi di Milano-Bicocca, Via Cozzi 55, 20125 Milano, Italy
| | - Andreas Stierle
- Centre
for X-ray and Nano Science CXNS, Deutsches
Elektronen-Synchrotron DESY, 22607 Hamburg, Germany
- Department
of Physics, University of Hamburg, Notkestraße 9-11, 22607 Hamburg, Germany
| | - Heshmat Noei
- Centre
for X-ray and Nano Science CXNS, Deutsches
Elektronen-Synchrotron DESY, 22607 Hamburg, Germany
- The
Hamburg Centre for Ultrafast Imaging, Universität
Hamburg, Luruper Chaussee
149, 22761 Hamburg, Germany
| |
Collapse
|
5
|
Lee S, Bi L, Chen H, Lin D, Mei R, Wu Y, Chen L, Joo SW, Choo J. Recent advances in point-of-care testing of COVID-19. Chem Soc Rev 2023; 52:8500-8530. [PMID: 37999922 DOI: 10.1039/d3cs00709j] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2023]
Abstract
Advances in microfluidic device miniaturization and system integration contribute to the development of portable, handheld, and smartphone-compatible devices. These advancements in diagnostics have the potential to revolutionize the approach to detect and respond to future pandemics. Accordingly, herein, recent advances in point-of-care testing (POCT) of coronavirus disease 2019 (COVID-19) using various microdevices, including lateral flow assay strips, vertical flow assay strips, microfluidic channels, and paper-based microfluidic devices, are reviewed. However, visual determination of the diagnostic results using only microdevices leads to many false-negative results due to the limited detection sensitivities of these devices. Several POCT systems comprising microdevices integrated with portable optical readers have been developed to address this issue. Since the outbreak of COVID-19, effective POCT strategies for COVID-19 based on optical detection methods have been established. They can be categorized into fluorescence, surface-enhanced Raman scattering, surface plasmon resonance spectroscopy, and wearable sensing. We introduced next-generation pandemic sensing methods incorporating artificial intelligence that can be used to meet global health needs in the future. Additionally, we have discussed appropriate responses of various testing devices to emerging infectious diseases and prospective preventive measures for the post-pandemic era. We believe that this review will be helpful for preparing for future infectious disease outbreaks.
Collapse
Affiliation(s)
- Sungwoon Lee
- Department of Chemistry, Chung-Ang University, Seoul 06974, South Korea.
| | - Liyan Bi
- School of Special Education and Rehabilitation, Binzhou Medical University, Yantai, 264003, China
| | - Hao Chen
- School of Environmental and Material Engineering, Yantai University, Yantai 264005, China
| | - Dong Lin
- School of Pharmacy, Bianzhou Medical University, Yantai, 264003, China
| | - Rongchao Mei
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Yantai 264003, China
| | - Yixuan Wu
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Yantai 264003, China
| | - Lingxin Chen
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Yantai 264003, China
- School of Pharmacy, Bianzhou Medical University, Yantai, 264003, China
| | - Sang-Woo Joo
- Department of Information Communication, Materials, and Chemistry Convergence Technology, Soongsil University, Seoul 06978, South Korea
| | - Jaebum Choo
- Department of Chemistry, Chung-Ang University, Seoul 06974, South Korea.
| |
Collapse
|
6
|
Li Z, Hasson A, Daggumati L, Zhang H, Thorek DLJ. Molecular Imaging of ACE2 Expression in Infectious Disease and Cancer. Viruses 2023; 15:1982. [PMID: 37896761 PMCID: PMC10610869 DOI: 10.3390/v15101982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/18/2023] [Accepted: 09/20/2023] [Indexed: 10/29/2023] Open
Abstract
Angiotensin-converting enzyme 2 (ACE2) is a cell-surface receptor that plays a critical role in the pathogenesis of SARS-CoV-2 infection. Through the use of ligands engineered for the receptor, ACE2 imaging has emerged as a valuable tool for preclinical and clinical research. These can be used to visualize the expression and distribution of ACE2 in tissues and cells. A variety of techniques including optical, magnetic resonance, and nuclear medicine contrast agents have been developed and employed in the preclinical setting. Positron-emitting radiotracers for highly sensitive and quantitative tomography have also been translated in the context of SARS-CoV-2-infected and control patients. Together this information can be used to better understand the mechanisms of SARS-CoV-2 infection, the potential roles of ACE2 in homeostasis and disease, and to identify potential therapeutic modulators in infectious disease and cancer. This review summarizes the tools and techniques to detect and delineate ACE2 in this rapidly expanding field.
Collapse
Affiliation(s)
- Zhiyao Li
- Mallinckrodt Institute of Radiology, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA; (Z.L.); (A.H.); (H.Z.)
- Program in Quantitative Molecular Therapeutics, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA;
| | - Abbie Hasson
- Mallinckrodt Institute of Radiology, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA; (Z.L.); (A.H.); (H.Z.)
- Program in Quantitative Molecular Therapeutics, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA;
- Department of Biomedical Engineering, Washington University, St. Louis, MO 63110, USA
| | - Lasya Daggumati
- Program in Quantitative Molecular Therapeutics, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA;
- School of Medicine Missouri, University of Missouri-Kansas City, Kansas, MO 64108, USA
| | - Hanwen Zhang
- Mallinckrodt Institute of Radiology, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA; (Z.L.); (A.H.); (H.Z.)
- Program in Quantitative Molecular Therapeutics, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA;
- Siteman Cancer Center, St. Louis, MO 63110, USA
| | - Daniel L. J. Thorek
- Mallinckrodt Institute of Radiology, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA; (Z.L.); (A.H.); (H.Z.)
- Program in Quantitative Molecular Therapeutics, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA;
- Department of Biomedical Engineering, Washington University, St. Louis, MO 63110, USA
- Siteman Cancer Center, St. Louis, MO 63110, USA
| |
Collapse
|
7
|
Bhalla N, Payam AF. Addressing the Silent Spread of Monkeypox Disease with Advanced Analytical Tools. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206633. [PMID: 36517107 DOI: 10.1002/smll.202206633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Indexed: 06/17/2023]
Abstract
Monkeypox disease is caused by a virus which belongs to the orthopoxvirus genus of the poxviridae family. This disease has recently spread out to several non-endemic countries. While some cases have been linked to travel from endemic regions, more recent infections are thought to have spread in the community without any travel links, raising the risks of a wider outbreak. This state of public health represents a highly unusual event which requires urgent surveillance. In this context, the opportunities and technological challenges of current bio/chemical sensors, nanomaterials, nanomaterial characterization instruments, and artificially intelligent biosystems collectively called "advanced analytical tools" are reviewed here, which will allow early detection, characterization, and inhibition of the monkeypox virus (MPXV) in the community and limit its expansion from endemic to pandemic. A summary of background information is also provided from biological and epidemiological perspective of monkeypox to support the scientific case for its holistic management using advanced analytical tools.
Collapse
Affiliation(s)
- Nikhil Bhalla
- Nanotechnology and Integrated Bioengineering Centre (NIBEC), School of Engineering, Ulster University, York St., BT15 1ED Belfast, Northern Ireland, UK
- Healthcare Technology Hub, Ulster University, York St., BT15 1ED Belfast, Northern Ireland, UK
| | - Amir Farokh Payam
- Nanotechnology and Integrated Bioengineering Centre (NIBEC), School of Engineering, Ulster University, York St., BT15 1ED Belfast, Northern Ireland, UK
- Healthcare Technology Hub, Ulster University, York St., BT15 1ED Belfast, Northern Ireland, UK
| |
Collapse
|
8
|
Brogna C, Costanzo V, Brogna B, Bisaccia DR, Brogna G, Giuliano M, Montano L, Viduto V, Cristoni S, Fabrowski M, Piscopo M. Analysis of Bacteriophage Behavior of a Human RNA Virus, SARS-CoV-2, through the Integrated Approach of Immunofluorescence Microscopy, Proteomics and D-Amino Acid Quantification. Int J Mol Sci 2023; 24:3929. [PMID: 36835341 PMCID: PMC9965620 DOI: 10.3390/ijms24043929] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 02/08/2023] [Accepted: 02/11/2023] [Indexed: 02/18/2023] Open
Abstract
SARS-CoV-2, one of the human RNA viruses, is widely studied around the world. Significant efforts have been made to understand its molecular mechanisms of action and how it interacts with epithelial cells and the human microbiome since it has also been observed in gut microbiome bacteria. Many studies emphasize the importance of surface immunity and also that the mucosal system is critical in the interaction of the pathogen with the cells of the oral, nasal, pharyngeal, and intestinal epithelium. Recent studies have shown how bacteria in the human gut microbiome produce toxins capable of altering the classical mechanisms of interaction of viruses with surface cells. This paper presents a simple approach to highlight the initial behavior of a novel pathogen, SARS-CoV-2, on the human microbiome. The immunofluorescence microscopy technique can be combined with spectral counting performed at mass spectrometry of viral peptides in bacterial cultures, along with identification of the presence of D-amino acids within viral peptides in bacterial cultures and in patients' blood. This approach makes it possible to establish the possible expression or increase of viral RNA viruses in general and SARS-CoV-2, as discussed in this study, and to determine whether or not the microbiome is involved in the pathogenetic mechanisms of the viruses. This novel combined approach can provide information more rapidly, avoiding the biases of virological diagnosis and identifying whether a virus can interact with, bind to, and infect bacteria and epithelial cells. Understanding whether some viruses have bacteriophagic behavior allows vaccine therapies to be focused either toward certain toxins produced by bacteria in the microbiome or toward finding inert or symbiotic viral mutations with the human microbiome. This new knowledge opens a scenario on a possible future vaccine: the probiotics vaccine, engineered with the right resistance to viruses that attach to both the epithelium human surface and gut microbiome bacteria.
Collapse
Affiliation(s)
- Carlo Brogna
- Department of Research, Craniomed Group Facility Srl., 20091 Bresso, Italy
| | - Vincenzo Costanzo
- Biogem, Institute of Molecular Biology and Genetics, 83031 Ariano Irpino, Italy
| | - Barbara Brogna
- Department of Radiology, Moscati Hospital, Contrada Amoretta, 83100 Avellino, Italy
| | | | - Giancarlo Brogna
- Department of Research, Craniomed Group Facility Srl., 20091 Bresso, Italy
| | - Marino Giuliano
- Marsanconsulting Srl. Public Health Company, Via dei Fiorentini, 80133 Napoli, Italy
| | - Luigi Montano
- Andrology Unit and Service of LifeStyle Medicine in Uro-Andrology, Local Health Authority (ASL), 84124 Salerno, Italy
| | - Valentina Viduto
- Long COVID-19 Foundation, Brookfield Court, Garforth, Leeds LS25 1NB, UK
| | | | - Mark Fabrowski
- Department of Emergency Medicine, Royal Sussex County Hospital, University Hospitals Sussex, Eastern Road, Brighton BN2 5BE, UK
| | - Marina Piscopo
- Department of Biology, University of Naples Federico II, 80126 Napoli, Italy
| |
Collapse
|
9
|
Sokolinskaya EL, Putlyaeva LV, Polinovskaya VS, Lukyanov KA. Genetically Encoded Fluorescent Sensors for SARS-CoV-2 Papain-like Protease PLpro. Int J Mol Sci 2022; 23:ijms23147826. [PMID: 35887174 PMCID: PMC9318946 DOI: 10.3390/ijms23147826] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/07/2022] [Accepted: 07/14/2022] [Indexed: 02/04/2023] Open
Abstract
In the SARS-CoV-2 lifecycle, papain-like protease PLpro cuts off the non-structural proteins nsp1, nsp2, and nsp3 from a large polyprotein. This is the earliest viral enzymatic activity, which is crucial for all downstream steps. Here, we designed two genetically encoded fluorescent sensors for the real-time detection of PLpro activity in live cells. The first sensor was based on the Förster resonance energy transfer (FRET) between the red fluorescent protein mScarlet as a donor and the biliverdin-binding near-infrared fluorescent protein miRFP670 as an acceptor. A linker with the PLpro recognition site LKGG in between made this FRET pair sensitive to PLpro cleavage. Upon the co-expression of mScarlet-LKGG-miRFP670 and PLpro in HeLa cells, we observed a gradual increase in the donor fluorescence intensity of about 1.5-fold. In the second sensor, both PLpro and its target—green mNeonGreen and red mScarletI fluorescent proteins separated by an LKGG-containing linker—were attached to the endoplasmic reticulum (ER) membrane. Upon cleavage by PLpro, mScarletI diffused from the ER throughout the cell. About a two-fold increase in the nucleus/cytoplasm ratio was observed as a result of the PLpro action. We believe that the new PLpro sensors can potentially be used to detect the earliest stages of SARS-CoV-2 propagation in live cells as well as for the screening of PLpro inhibitors.
Collapse
|
10
|
Sokolinskaya EL, Putlyaeva LV, Gorshkova AA, Lukyanov KA. Intermembrane oligomerization of SARS-CoV-2 M-protein: possible role in viral budding. BULLETIN OF RUSSIAN STATE MEDICAL UNIVERSITY 2022. [DOI: 10.24075/brsmu.2022.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Despite the extensive research spurred by the catastrophic effects of COVID-19 pandemic, precise molecular mechanisms of some stages in SARS-CoV-2 life cycle remain elusive. One of such stages is the detachment of viral particles during budding. Using confocal fluorescence microscopy, we observed formation of specific structures by endoplasmic reticulum in human cells expressing SARS-CoV-2 M-protein, implicating oligomerization of M-protein across parallel membranes. In our opinion, such intermembrane oligomerization may provide a driving force for pinching off the viral particles during SARS-CoV-2 budding.
Collapse
Affiliation(s)
- EL Sokolinskaya
- Center for Molecular and Cellular Biology, Skolkovo Institute of Science and Technology, Moscow, Russia
| | - LV Putlyaeva
- Center for Molecular and Cellular Biology, Skolkovo Institute of Science and Technology, Moscow, Russia
| | - AA Gorshkova
- Center for Molecular and Cellular Biology, Skolkovo Institute of Science and Technology, Moscow, Russia
| | - KA Lukyanov
- Center for Molecular and Cellular Biology, Skolkovo Institute of Science and Technology, Moscow, Russia
| |
Collapse
|
11
|
Bajer D, Kaczmarek H. Thermal Stability of Fluorescent Chitosan Modified with Heterocyclic Aromatic Dyes. MATERIALS 2022; 15:ma15103667. [PMID: 35629691 PMCID: PMC9147818 DOI: 10.3390/ma15103667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/17/2022] [Accepted: 05/18/2022] [Indexed: 12/07/2022]
Abstract
Fluorescent biopolymer derivatives are increasingly used in biology and medicine, but their resistance to heat and UV radiation, which are sterilizing agents, is relatively unknown. In this work, chitosan (CS) modified by three different heterocyclic aromatic dyes based on benzimidazole, benzothiazole, and benzoxazole (assigned as IBm, BTh, and BOx) has been studied. The thermal properties of these CS derivatives have been determined using the Thermogravimetric Analysis coupled with the Fourier Transform Infrared spectroscopy of volatile degradation products. The influence of UV radiation on the thermal resistance of modified, fluorescent chitosan samples was also investigated. Based on the temperature onset as well as the decomposition temperatures at a maximal rate, IBm was found to be more thermally stable than BOx and BTh. However, this dye gave off the most volatile products (mainly water, ammonia, carbon oxides, and carbonyl/ether compounds). The substitution of dyes for chitosan changes its thermal stability slightly. Characteristic decomposition temperatures in modified CS vary by a few degrees (<10 °C) from the virgin sample. Considering the temperatures of the main decomposition stage, CS-BOx turned out to be the most stable. The UV irradiation of chitosan derivatives leads to minor changes in the thermal parameters and a decrease in the number of volatile degradation products. It was concluded that the obtained CS derivatives are characterized by good resistance to heat and UV irradiation, which extends the possibilities of using these innovative materials.
Collapse
Affiliation(s)
- Dagmara Bajer
- Correspondence: (D.B.); (H.K.); Tel.: +48-56-611-4505 (D.B.); +48-56-611-4312 (H.K.)
| | - Halina Kaczmarek
- Correspondence: (D.B.); (H.K.); Tel.: +48-56-611-4505 (D.B.); +48-56-611-4312 (H.K.)
| |
Collapse
|
12
|
Robb NC. Virus morphology: Insights from super-resolution fluorescence microscopy. Biochim Biophys Acta Mol Basis Dis 2022; 1868:166347. [PMID: 35032594 PMCID: PMC8755447 DOI: 10.1016/j.bbadis.2022.166347] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 01/05/2022] [Accepted: 01/06/2022] [Indexed: 01/06/2023]
Abstract
As epitomised by the COVID-19 pandemic, diseases caused by viruses are one of the greatest health and economic burdens to human society. Viruses are 'nanostructures', and their small size (typically less than 200 nm in diameter) can make it challenging to obtain images of their morphology and structure. Recent advances in fluorescence microscopy have given rise to super-resolution techniques, which have enabled the structure of viruses to be visualised directly at a resolution in the order of 20 nm. This mini-review discusses how recent state-of-the-art super-resolution imaging technologies are providing new nanoscale insights into virus structure.
Collapse
Affiliation(s)
- Nicole C Robb
- Warwick Medical School, University of Warwick, Coventry CV4 7AL, United Kingdom.
| |
Collapse
|
13
|
Gosavi D, Cheatham B, Sztuba-Solinska J. Label-Free Detection of Human Coronaviruses in Infected Cells Using Enhanced Darkfield Hyperspectral Microscopy (EDHM). J Imaging 2022; 8:24. [PMID: 35200727 PMCID: PMC8874371 DOI: 10.3390/jimaging8020024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/17/2022] [Accepted: 01/21/2022] [Indexed: 02/06/2023] Open
Abstract
Human coronaviruses (HCoV) are causative agents of mild to severe intestinal and respiratory infections in humans. In the last 15 years, we have witnessed the emergence of three zoonotic, highly pathogenic HCoVs. Thus, early and accurate detection of these viral pathogens is essential for preventing transmission and providing timely treatment and monitoring of drug resistance. Herein, we applied enhanced darkfield hyperspectral microscopy (EDHM), a novel non-invasive, label-free diagnostic tool, to rapidly and accurately identify two strains of HCoVs, i.e., OC43 and 229E. The EDHM technology allows collecting the optical image with spectral and spatial details in a single measurement without direct contact between the specimen and the sensor. Thus, it can directly map spectral signatures specific for a given viral strain in a complex biological milieu. Our study demonstrated distinct spectral patterns for HCoV-OC43 and HCoV-229E virions in the solution, serving as distinguishable parameters for their differentiation. Furthermore, spectral signatures obtained for both HCoV strains in the infected cells displayed a considerable peak wavelength shift compared to the uninfected cell, indicating that the EDHM is applicable to detect HCoV infection in mammalian cells.
Collapse
Affiliation(s)
- Devadatta Gosavi
- Department of Biological Sciences, Auburn University, 120 W. Samford Ave, Rouse Life Sciences Building, Auburn, AL 36849, USA;
| | - Byron Cheatham
- Cytoviva, Inc., 570 Devall Drive Suite 301, Auburn, AL 36832, USA;
| | - Joanna Sztuba-Solinska
- Department of Biological Sciences, Auburn University, 120 W. Samford Ave, Rouse Life Sciences Building, Auburn, AL 36849, USA;
| |
Collapse
|
14
|
Ramoji A, Pahlow S, Pistiki A, Rueger J, Shaik TA, Shen H, Wichmann C, Krafft C, Popp J. Understanding Viruses and Viral Infections by Biophotonic Methods. TRANSLATIONAL BIOPHOTONICS 2022. [DOI: 10.1002/tbio.202100008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- Anuradha Ramoji
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University, Helmholtzweg 4 Jena Germany
- Leibniz Institute of Photonic Technology Jena (a member of Leibniz Health Technologies) , Albert‐Einstein Str. 9 Jena Germany
- Center for Sepsis Control and Care Jena University Hospital, Am Klinikum 1, 07747 Jena Germany
| | - Susanne Pahlow
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University, Helmholtzweg 4 Jena Germany
- Leibniz Institute of Photonic Technology Jena (a member of Leibniz Health Technologies) , Albert‐Einstein Str. 9 Jena Germany
- InfectoGnostics Research Campus Jena, Philosophenweg 7, 07743 Jena Germany
| | - Aikaterini Pistiki
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University, Helmholtzweg 4 Jena Germany
- Leibniz Institute of Photonic Technology Jena (a member of Leibniz Health Technologies) , Albert‐Einstein Str. 9 Jena Germany
| | - Jan Rueger
- Leibniz Institute of Photonic Technology Jena (a member of Leibniz Health Technologies) , Albert‐Einstein Str. 9 Jena Germany
| | - Tanveer Ahmed Shaik
- Leibniz Institute of Photonic Technology Jena (a member of Leibniz Health Technologies) , Albert‐Einstein Str. 9 Jena Germany
| | - Haodong Shen
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University, Helmholtzweg 4 Jena Germany
- Leibniz Institute of Photonic Technology Jena (a member of Leibniz Health Technologies) , Albert‐Einstein Str. 9 Jena Germany
- InfectoGnostics Research Campus Jena, Philosophenweg 7, 07743 Jena Germany
| | - Christina Wichmann
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University, Helmholtzweg 4 Jena Germany
- Leibniz Institute of Photonic Technology Jena (a member of Leibniz Health Technologies) , Albert‐Einstein Str. 9 Jena Germany
- InfectoGnostics Research Campus Jena, Philosophenweg 7, 07743 Jena Germany
| | - Christoph Krafft
- Leibniz Institute of Photonic Technology Jena (a member of Leibniz Health Technologies) , Albert‐Einstein Str. 9 Jena Germany
| | - Juergen Popp
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University, Helmholtzweg 4 Jena Germany
- Leibniz Institute of Photonic Technology Jena (a member of Leibniz Health Technologies) , Albert‐Einstein Str. 9 Jena Germany
- Center for Sepsis Control and Care Jena University Hospital, Am Klinikum 1, 07747 Jena Germany
- InfectoGnostics Research Campus Jena, Philosophenweg 7, 07743 Jena Germany
| |
Collapse
|
15
|
A spatial multi-scale fluorescence microscopy toolbox discloses entry checkpoints of SARS-CoV-2 variants in Vero E6 cells. Comput Struct Biotechnol J 2021; 19:6140-6156. [PMID: 34745450 PMCID: PMC8562013 DOI: 10.1016/j.csbj.2021.10.038] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 10/29/2021] [Accepted: 10/30/2021] [Indexed: 01/12/2023] Open
Abstract
We exploited a multi-scale microscopy imaging toolbox to address some major issues related to SARS-CoV-2 interactions with host cells. Our approach harnesses both conventional and super-resolution fluorescence microscopy and easily matches the spatial scale of single-virus/cell checkpoints. After its validation through the characterization of infected cells and virus morphology, we leveraged this toolbox to reveal subtle issues related to the entry phase of SARS-CoV-2 variants in Vero E6 cells. Our results show that in Vero E6 cells the B.1.1.7 strain (aka Alpha Variant of Concern) is associated with much faster kinetics of endocytic uptake compared to its ancestor B.1.177. Given the cell-entry scenario dominated by the endosomal “late pathway”, the faster internalization of B.1.1.7 could be directly related to the N501Y mutation in the S protein, which is known to strengthen the binding of Spike receptor binding domain with ACE2. Remarkably, we also directly observed the central role of clathrin as a mediator of endocytosis in the late pathway of entry. In keeping with the clathrin-mediated endocytosis, we highlighted the non-raft membrane localization of ACE2. Overall, we believe that our fluorescence microscopy-based approach represents a fertile strategy to investigate the molecular features of SARS-CoV-2 interactions with cells.
Collapse
|
16
|
Freen-van Heeren JJ. Flow-FISH as a Tool for Studying Bacteria, Fungi and Viruses. BIOTECH 2021; 10:21. [PMID: 35822795 PMCID: PMC9245478 DOI: 10.3390/biotech10040021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 10/03/2021] [Accepted: 10/08/2021] [Indexed: 12/20/2022] Open
Abstract
Many techniques are currently in use to study microbes. These can be aimed at detecting, identifying, and characterizing bacterial, fungal, and viral species. One technique that is suitable for high-throughput analysis is flow cytometry-based fluorescence in situ hybridization, or Flow-FISH. This technique employs (fluorescently labeled) probes directed against DNA or (m)RNA, for instance targeting a gene or microorganism of interest and provides information on a single-cell level. Furthermore, by combining Flow-FISH with antibody-based protein detection, proteins of interest can be measured simultaneously with genetic material. Additionally, depending on the type of Flow-FISH assay, Flow-FISH can also be multiplexed, allowing for the simultaneous measurement of multiple gene targets and/or microorganisms. Together, this allows for, e.g., single-cell gene expression analysis or identification of (sub)strains in mixed cultures. Flow-FISH has been used in mammalian cells but has also been extensively employed to study diverse microbial species. Here, the use of Flow-FISH for studying microorganisms is reviewed. Specifically, the detection of (intracellular) pathogens, studying microorganism biology and disease pathogenesis, and identification of bacterial, fungal, and viral strains in mixed cultures is discussed, with a particular focus on the viruses EBV, HIV-1, and SARS-CoV-2.
Collapse
|
17
|
Postmortem Cardiopulmonary Pathology in Patients with COVID-19 Infection: Single-Center Report of 12 Autopsies from Lausanne, Switzerland. Diagnostics (Basel) 2021; 11:diagnostics11081357. [PMID: 34441292 PMCID: PMC8393761 DOI: 10.3390/diagnostics11081357] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 07/22/2021] [Accepted: 07/22/2021] [Indexed: 12/12/2022] Open
Abstract
We report postmortem cardio-pulmonary findings including detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in formalin-fixed paraffin embedded tissue in 12 patients with COVID-19. The 5 women and 7 men (median age: 73 years; range 35–96) died 6–38 days after onset of symptoms (median: 14.5 days). Eight patients received mechanical ventilation. Ten patients showed diffuse alveolar damage (DAD), 7 as exudative and 3 as proliferative/organizing DAD. One case presented as acute fibrinous and organizing pneumonia. Seven patients (58%) had acute bronchopneumonia, 1/7 without associated DAD and 1/7 with aspergillosis and necrotic bronchitis. Microthrombi were present in 5 patients, only in exudative DAD. Reverse transcriptase quantitative PCR detected high virus amounts in 6 patients (50%) with exudative DAD and symptom-duration ≤14 days, supported by immunohistochemistry and in-situ RNA hybridization (RNAscope). The 6 patients with low viral copy levels were symptomatic for ≥15 days, comprising all cases with organizing DAD, the patient without DAD and one exudative DAD. We show the high prevalence of DAD as a reaction pattern in COVID-19, the high number of overlying acute bronchopneumonia, and high-level pulmonary virus detection limited to patients who died ≤2 weeks after onset of symptoms, correlating with exudative phase of DAD.
Collapse
|