1
|
Balsa LM, Santa Maria de la Parra L, Ferretti V, León IE. Deciphering the Effect of a Cu(II)-hydrazone Complex on Intracellular Cell Signalling Pathways in a Human Osteosarcoma 2D and 3D Models. Chembiochem 2024; 25:e202400373. [PMID: 39121373 DOI: 10.1002/cbic.202400373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 08/07/2024] [Accepted: 08/07/2024] [Indexed: 08/11/2024]
Abstract
New therapeutic strategies for osteosarcoma (OS) have demonstrated the potential efficacy of copper compounds as anticancer drugs and as a substitute for the often used platinum compounds. OS is a type of bone cancer, primarily affecting young adults and children.The main objective of this work is to discover the molecular targets and cellular pathways related to the antitumor properties of a Cu(II)-hydrazone toward human OS 2D and 3D systems. Cell viability study using MG-63 cells was evaluated in OS monolayer and spheroids. CuHL significantly reduced cell viability in OS models (IC50 2D: 2.6±0.3 μM; IC50 3D: 9.9±1.4 μM) (p<0.001). Also, CuHL inhibits cell proliferation and it induces cells to apoptosis. The main mechanism of action found for CuHL are the interaction with DNA, genotoxicity, the ROS generation and the proteasome activity inhibition. Besides, 67 differentially expressed proteins were found using proteomic approaches. Of those 67 proteins, 40 were found overexpressed and 27 underexpressed. The response to stress and to unfolded protein, as well as ATP synthesis were the most affected biological process among upregulated proteins, whilst proteins related to DNA replication and redox homeostasis were downregulated.
Collapse
Affiliation(s)
- Lucía M Balsa
- CEQUINOR (UNLP, CCT-CONICET La Plata, asociado a CIC), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Blvd. 120 N° 1465, La Plata, (1900), Argentina
| | - Lucía Santa Maria de la Parra
- CEQUINOR (UNLP, CCT-CONICET La Plata, asociado a CIC), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Blvd. 120 N° 1465, La Plata, (1900), Argentina
| | - Valeria Ferretti
- CEQUINOR (UNLP, CCT-CONICET La Plata, asociado a CIC), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Blvd. 120 N° 1465, La Plata, (1900), Argentina
| | - Ignacio E León
- CEQUINOR (UNLP, CCT-CONICET La Plata, asociado a CIC), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Blvd. 120 N° 1465, La Plata, (1900), Argentina
- Cátedra de Fisiopatología, Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, 47 y 115, La Plata, 1900), Argentina
| |
Collapse
|
2
|
Vančo J, Trávníček Z, Malina T, Hošek J, Dvořák Z. Cellular Effects of Cationic Copper(II) Schiff Base Complexes: Anti-Inflammatory and Antiproliferative Properties. ChemMedChem 2024; 19:e202400214. [PMID: 39031727 DOI: 10.1002/cmdc.202400214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/12/2024] [Accepted: 06/20/2024] [Indexed: 07/22/2024]
Abstract
A series of potassium isothiocyanato-(N-salicylidene-aminoacidato) cuprates (1-5) with the general formula of the monomeric unit K[Cu(sal-aa)(NCS)] ⋅ xH2O (x=0 or 2), containing a Schiff-base ligand (H2sal-aa) derived from natural amino acids such as glycine, DL-α-alanine, DL-valine, DL-phenylalanine and β-alanine, and salicylaldehyde, was screened for in vitro antiradical and major cellular effects against selected cancerous and normal cells. The complexes exhibited strong antioxidant properties against superoxide in vitro and a protective effect on DNA under Fenton-like reaction conditions. Screening of their cellular effects revealed moderate in vitro cytotoxicity against human cancer cell lines (A2780, A2780R and MCF-7), with IC50 values of 25-35 μM, and relatively low toxicity to normal fibroblast MRC-5 cells (with IC50 values>50 μM). Additional experiments performed on A2780 cells revealed that the most potent complex 5 significantly increased the number of A2780 cells arrested in the G2/M phase of the cell cycle and triggered intracellular oxidative stress. The selected flow cytometry experiments (detection of apoptosis/autophagy and activation of caspases 3/7 and depletion of mitochondrial membrane potential) did not reveal the dominant mechanism underlying the cytotoxicity of the complexes but clearly differentiated their molecular effects from those of the reference drug cisplatin. All the complexes exerted anti-inflammatory effects by modulating the levels of the proinflammatory cytokines TNF-α and IL-1β in LPS-activated THP-1 macrophage-like cells. Complex 5 also slightly influenced the activity of the upstream NF-κB transcription factor, while no effect on PPARγ activation was detected.
Collapse
Affiliation(s)
- Ján Vančo
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacký University in Olomouc, Šlechtitelů 27, CZ-779 00, Olomouc, Czech Republic
| | - Zdeněk Trávníček
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacký University in Olomouc, Šlechtitelů 27, CZ-779 00, Olomouc, Czech Republic
| | - Tomáš Malina
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacký University in Olomouc, Šlechtitelů 27, CZ-779 00, Olomouc, Czech Republic
| | - Jan Hošek
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacký University in Olomouc, Šlechtitelů 27, CZ-779 00, Olomouc, Czech Republic
| | - Zdeněk Dvořák
- Department of Cell Biology and Genetics, Faculty of Science, Palacký University in Olomouc, Šlechtitelů 27, CZ-779 00, Olomouc, Czech Republic
| |
Collapse
|
3
|
Stocchetti S, Vančo J, Belza J, Dvořák Z, Trávníček Z. Strong in vitro anticancer activity of copper(ii) and zinc(ii) complexes containing naturally occurring lapachol: cellular effects in ovarian A2780 cells. RSC Med Chem 2024:d4md00543k. [PMID: 39371430 PMCID: PMC11451940 DOI: 10.1039/d4md00543k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 08/29/2024] [Indexed: 10/08/2024] Open
Abstract
Copper(ii) and zinc(ii) complexes with lapachol (HLap) of the composition [M(Lap)2(N-N)] and [Cu(Lap)(H2O)(terpy)]NO3 (4), where M = Cu (1-3) or Zn (for 5-7), and N-N stands for bathophenanthroline (1 and 5), 5-methyl-1,10-phenanthroline (2 and 6), 2,2'-bipyridine (3), 2,2';6',2''-terpyridine (terpy, 4) and 1,10-phenanthroline (7), were synthesised and characterised. Complexes 1-5 revealed strong in vitro antiproliferative effects against A2780, A2780R, MCF-7, PC-3, A549 and HOS human cancer lines and MRC-5 normal cells, with IC50 values above 0.5 μM, and reasonable selectivity index (SI), with SI > 3.8 for IC50(MRC-5)/IC50(A2780). Considerable time-dependent cytotoxicity in A2780 cells was observed for complexes 6 and 7, with IC50 > 50 μM (24 h) to ca. 4 μM (48 h). Cellular effects of complexes 1, 5 and 7 in A2780 cells were investigated by flow cytometry revealing that the most cytotoxic complexes (1 and 5) significantly perturbed the mitochondrial membrane potential and the interaction with mitochondrial metabolism followed by the triggering of the intracellular pathway of apoptosis.
Collapse
Affiliation(s)
- Sara Stocchetti
- Czech Advanced Technology and Research Institute, Regional Centre of Advanced Technologies and Materials, Palacký University Šlechtitelů 27 CZ-779 00 Olomouc Czech Republic +420 585 634 545
- Dipartimento di Chimica e Chimica Industriale, University of Pisa Via G. Moruzzi 13 I-56124 Pisa Italy
| | - Ján Vančo
- Czech Advanced Technology and Research Institute, Regional Centre of Advanced Technologies and Materials, Palacký University Šlechtitelů 27 CZ-779 00 Olomouc Czech Republic +420 585 634 545
| | - Jan Belza
- Czech Advanced Technology and Research Institute, Regional Centre of Advanced Technologies and Materials, Palacký University Šlechtitelů 27 CZ-779 00 Olomouc Czech Republic +420 585 634 545
| | - Zdeněk Dvořák
- Department of Cell Biology and Genetics, Faculty of Science, Palacký University Šlechtitelů 27 CZ-779 00 Olomouc Czech Republic
| | - Zdeněk Trávníček
- Czech Advanced Technology and Research Institute, Regional Centre of Advanced Technologies and Materials, Palacký University Šlechtitelů 27 CZ-779 00 Olomouc Czech Republic +420 585 634 545
| |
Collapse
|
4
|
Santa Maria de la Parra L, Balsa LM, León IE. Metallocompounds as anticancer agents against osteosarcoma. Drug Discov Today 2024; 29:104100. [PMID: 39019429 DOI: 10.1016/j.drudis.2024.104100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 06/20/2024] [Accepted: 07/10/2024] [Indexed: 07/19/2024]
Abstract
Metallocompounds are a class of anticancer compounds largely used in the treatment of several types of solid tumors, including bone cancer. Osteosarcoma (OS) is a primary malignant bone tumor that frequently affects children, adolescents and young adults. It is a very invasive type of tumor, so ∼40% of patients develop distant metastases, showing elevated mortality rates. In this review, we present an outline of the chemistry and antitumor properties of metal-based compounds in preclinical (in vitro and in vivo) and clinical OS models, focusing on the relationship between structure-activity, molecular targets and the study of the mechanism of action involved in metallocompound anticancer activity.
Collapse
Affiliation(s)
- Lucía Santa Maria de la Parra
- CEQUINOR (UNLP, CCT-CONICET La Plata, asociado a CIC), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Blvd. 120 N° 1465, La Plata 1900, Argentina
| | - Lucía M Balsa
- CEQUINOR (UNLP, CCT-CONICET La Plata, asociado a CIC), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Blvd. 120 N° 1465, La Plata 1900, Argentina
| | - Ignacio E León
- CEQUINOR (UNLP, CCT-CONICET La Plata, asociado a CIC), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Blvd. 120 N° 1465, La Plata 1900, Argentina; Cátedra de Fisiopatología, Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, 47 y 115, La Plata 1900, Argentina.
| |
Collapse
|
5
|
Trávníček Z, Vančo J, Belza J, Zoppellaro G, Dvořák Z, Beláková B, Schmid JA, Molčanová L, Šmejkal K. C-Geranylated flavanone diplacone enhances in vitro antiproliferative and anti-inflammatory effects in its copper(II) complexes. J Inorg Biochem 2024; 258:112639. [PMID: 38880070 DOI: 10.1016/j.jinorgbio.2024.112639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 06/11/2024] [Accepted: 06/11/2024] [Indexed: 06/18/2024]
Abstract
Two copper(II) complexes containing diplacone (H4dipl), a naturally occurring C-geranylated flavanone derivative, in combination with bathophenanthroline (bphen) or 1,10-phenanthroline (phen) with the composition [Cu3(bphen)3(Hdipl)2]⋅2H2O (1) and {[Cu(phen)(H2dipl)2]⋅1.25H2O}n (2) were prepared and characterized. As compared to diplacone, the complexes enhanced in vitro cytotoxicity against A2780 and A2780R human ovarian cancer cells (IC50 ≈ 0.4-1.2 μM), human lung carcinoma (A549, with IC50 ≈ 2 μM) and osteosarcoma (HOS, with IC50 ≈ 3 μM). Cellular effects of the complexes in A2780 cells were studied using flow cytometry, covering studies concerning cell-cycle arrest, induction of cell death and autophagy and induction of intracellular ROS/superoxide production. These results uncovered a possible mechanism of action characterized by the G2/M cell cycle arrest. The studies on human endothelial cells revealed that complexes 1 and 2, as well as their parental compound diplacone, do possess anti-inflammatory activity in terms of NF-κB inhibition. As for the effects on PPARα and/or PPARγ, complex 2 reduced the expression of leukocyte adhesion molecules VCAM-1 and E-selectin suggesting its dual anti-inflammatory capacity. A wide variety of Cu-containing coordination species and free diplacone ligand were proved by mass spectrometry studies in water-containing media, which might be responsible for multimodal effect of the complexes.
Collapse
Affiliation(s)
- Zdeněk Trávníček
- Regional Centre of Advanced Technologies and Materials (RCPTM), Czech Advanced Technology and Research Institute (CATRIN), Palacký University, Šlechtitelů 27, 772 00 Olomouc, Czech Republic.
| | - Ján Vančo
- Regional Centre of Advanced Technologies and Materials (RCPTM), Czech Advanced Technology and Research Institute (CATRIN), Palacký University, Šlechtitelů 27, 772 00 Olomouc, Czech Republic
| | - Jan Belza
- Regional Centre of Advanced Technologies and Materials (RCPTM), Czech Advanced Technology and Research Institute (CATRIN), Palacký University, Šlechtitelů 27, 772 00 Olomouc, Czech Republic
| | - Giorgio Zoppellaro
- Regional Centre of Advanced Technologies and Materials (RCPTM), Czech Advanced Technology and Research Institute (CATRIN), Palacký University, Šlechtitelů 27, 772 00 Olomouc, Czech Republic
| | - Zdeněk Dvořák
- Department of Cell Biology and Genetics, Faculty of Science, Palacký University, Šlechtitelů 27, 772 00 Olomouc, Czech Republic
| | - Barbora Beláková
- Institute of Vascular Biology and Thrombosis Research, Medical University of Vienna, Center for Physiology and Pharmacology, Schwarzspanierstraße 17, A1090 Vienna, Austria
| | - Johannes A Schmid
- Institute of Vascular Biology and Thrombosis Research, Medical University of Vienna, Center for Physiology and Pharmacology, Schwarzspanierstraße 17, A1090 Vienna, Austria
| | - Lenka Molčanová
- Department of Natural Drugs, Faculty of Pharmacy, Masaryk University, Palackého 1946/1, 612 00 Brno, Czech Republic
| | - Karel Šmejkal
- Department of Natural Drugs, Faculty of Pharmacy, Masaryk University, Palackého 1946/1, 612 00 Brno, Czech Republic
| |
Collapse
|
6
|
Bailly C. Pharmacological properties of extracts and prenylated isoflavonoids from the fruits of Osage orange (Maclura pomifera (Raf.) C.K.Schneid.). Fitoterapia 2024; 177:106112. [PMID: 38971332 DOI: 10.1016/j.fitote.2024.106112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/02/2024] [Accepted: 07/03/2024] [Indexed: 07/08/2024]
Abstract
Osage orange trees (Maclura pomifera (Raf.) C.K.Schneid.) are distributed worldwide, particularly in south-east states of the USA. They produce large quantities of strong yellow fruits, bigger than oranges, but these fruits are inedible, with an acid milky juice which is little consumed by birds and insects. Extracts prepared from Osage orange fruits (hedge apple) have revealed a range of pharmacological properties of interest in human and veterinary medicine. In addition, Osage orange extracts can be used in agriculture and aquaculture, and as dyeing agent for the textile industry. Extracts contain potent antioxidant compounds, notably the isoflavonoids pomiferin and auriculasin, together with other terpenoids and flavonoids. The structural characteristics and pharmacological properties of the major prenylated isoflavones isolated from M. pomifera are discussed here, with a focus on the two phenolic compounds osajin and warangalone, and the two catechol analogues pomiferin and auriculasin. The mechanisms at the origin of their potent antioxidant and anti-inflammatory effects are presented, notably inhibition of xanthine oxidase, phosphodiesterase 5A and kinases such as RKS2 and kRAS. Osajin and auriculasin display marked anticancer properties, owing to their ability to inhibit tumor cell proliferation, migration and tumor angiogenesis. Different molecular mechanisms are discussed, including osajin‑copper complexation and binding to quadruplex DNA. An overview of the mechanism of action of the prenylated isoflavones from Osage orange is presented, with the objective to promote their knowledge and to raise opportunities to better exploit the fruits of Osage orange, abundant but largely neglected at present.
Collapse
Affiliation(s)
- Christian Bailly
- CNRS, Inserm, CHU Lille, UMR9020-U1277-CANTHER-Cancer Heterogeneity Plasticity and Resistance to Therapies, OncoLille Institut, University of Lille, F-59000 Lille, France; Institute of Pharmaceutical Chemistry Albert Lespagnol (ICPAL), Faculty of Pharmacy, University of Lille, F-59006 Lille, France; OncoWitan, Scientific Consulting Office, F-59290 Lille, France.
| |
Collapse
|
7
|
Guang D, Xiaofei Z, Yu M, Hui N, Min S, Xiaonan S. Pomiferin targeting SLC9A9 based on histone acetylation modification pattern is a potential therapeutical option for gastric cancer with high malignancy. Biochem Pharmacol 2024; 226:116333. [PMID: 38824966 DOI: 10.1016/j.bcp.2024.116333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 05/30/2024] [Accepted: 05/30/2024] [Indexed: 06/04/2024]
Abstract
Changes in histone acetylation status are associated with gastric cancer (GC) progression. Pomiferin is a natural flavonoid, however, the specific role of pomiferin in the treatment of GC is still unclear, and its targets are not well clarified. In this work, the prognostic genes related with histone acetylation in GC were screened by univariate Cox analysis. Next, a risk model of was constructed using least absolute shrinkage and selection operator-Cox regression analyses, and multivariate Cox analysis was used for identifying the independent risk factor. Molecular docking was performed using AutoDock Vina to validate the interaction between solute carrier family 9 member A9 (SLC9A9) and pomiferin. In vitro and in vivo models were applied to investigate the tumor-suppressive role of pomiferin against GC. The inhibitory effects of pomiferin on EGFR/PI3K/AKT signaling were valdiated by Western blotting, immunofluorescence staining and qPCR. Here, a prognostic risk model based on histone acetylation regulators was established, and SLC9A9 was identified as a risk factor associated with histone acetylation status in GC. SLC9A9 expression was associated with abnormal immune microenvironment of tumor. Pomiferin had a high binding affinity with SLC9A9, and both pomiferin treatment and depletion of SLC9A9 repressed the malignant phenotypes of GC cells. Mechanistically, pomiferin inactivates EGFR/PI3K/AKT signaling in GC cells. In summary, SLC9A9, as a indicator of abnormal histone acetylation status of GC, functions as an oncogenic factor. Pomiferin binds with SLC9A9 to inactivate EGFR/PI3K/AKT pathway, to block GC progression, suggesting it is a promising drug for the patients with highly malignant GC.
Collapse
Affiliation(s)
- Deng Guang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Zhang Xiaofei
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Meng Yu
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Niu Hui
- Department of Respiratory, Zhoukou City Central Hospital, Zhoukou 466000, Henan, China
| | - Song Min
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China.
| | - Shi Xiaonan
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China.
| |
Collapse
|
8
|
Santa Maria de la Parra L, Romo AIB, Rodríguez-López J, Nascimento OR, Echeverría GA, Piro OE, León IE. Promising Dual Anticancer and Antimetastatic Action by a Cu(II) Complex Derived from Acylhydrazone on Human Osteosarcoma Models. Inorg Chem 2024; 63:4925-4938. [PMID: 38442008 DOI: 10.1021/acs.inorgchem.3c04085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
Osteosarcoma cancers are becoming more common in children and young adults, and existing treatments have low efficacy and a very high mortality rate, making it pressing to search for new chemotherapies with high efficacy and high selectivity index. Copper complexes have shown promise in the treatment of osteosarcoma. Here, we report the synthesis, characterization, and anticancer activity of [Cu(N-N-Fur)(NO3)(H2O)] complex where N-N-Fur is (E)-N'-(2-hydroxy-3-methoxybenzylidene)furan-2-carbohydrazide. The [Cu(N-N-Fur)(NO3)(H2O)] complex was characterized via X-ray diffraction and electron spin resonance (ESR), displaying a copper center in a nearly squared pyramid environment with the nitrate ligand acting as a fifth ligand in the coordination sphere. We observed that [Cu(N-N-Fur)(NO3)(H2O)] binds to DNA in an intercalative manner. Anticancer activity on the MG-63 cell line was evaluated in osteosarcoma monolayer (IC50 2D: 1.1 ± 0.1 μM) and spheroids (IC50 3D: 16.3 ± 3.1 μM). Selectivity assays using nontumoral fibroblast (L929 cell line) showed that [Cu(N-N-Fur)(NO3)(H2O)] has selectivity index value of 2.3 compared to cis-diamminedichloroplatinum(II) (CDDP) (SI = 0.3). Additionally, flow cytometry studies demonstrated that [Cu(N-N-Fur)(NO3)(H2O)] inhibits cell proliferation and conveys cells to apoptosis. Cell viability studies of MG-63 spheroids (IC50 = 16.3 ± 3.1 μM) showed that its IC50 value is 4 times lower than for CDDP (IC50 = 65 ± 6 μM). Besides, we found that cell death events mainly occurred in the center region of the spheroids, indicating efficient transport to the microtumor. Lastly, the complex showed dose-dependent reductions in spheroid cell migration from 7.5 to 20 μM, indicating both anticancer and antimetastatic effects.
Collapse
Affiliation(s)
- Lucía Santa Maria de la Parra
- CEQUINOR (UNLP, CCT-CONICET La Plata, asociado a CIC), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Blvd. 120 N° 1465, 1900 La Plata, Argentina
| | - Adolfo I B Romo
- Department of Chemistry and Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Champaign 61801, Illinois, United States
| | - Joaquín Rodríguez-López
- Department of Chemistry and Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Champaign 61801, Illinois, United States
| | - Otaciro R Nascimento
- Departamento de Física Interdiciplinar, Instituto de Física de São Carlos, Universidade de São Paulo, CP 369 , CEP 13560-970 São Carlos, SP, Brazil
| | - Gustavo A Echeverría
- Departamento de Física, Facultad de Ciencias Exactas, Universidad Nacional de La Plata and Instituto IFLP (CONICET, CCT-La Plata), C.C. 67, 1900 La Plata, Argentina
| | - Oscar E Piro
- Departamento de Física, Facultad de Ciencias Exactas, Universidad Nacional de La Plata and Instituto IFLP (CONICET, CCT-La Plata), C.C. 67, 1900 La Plata, Argentina
| | - Ignacio E León
- CEQUINOR (UNLP, CCT-CONICET La Plata, asociado a CIC), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Blvd. 120 N° 1465, 1900 La Plata, Argentina
- Cátedra de Fisiopatología, Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata. 47 y 115, La Plata 1900, Argentina
| |
Collapse
|
9
|
Chen GQ, Guo HY, Quan ZS, Shen QK, Li X, Luan T. Natural Products-Pyrazine Hybrids: A Review of Developments in Medicinal Chemistry. Molecules 2023; 28:7440. [PMID: 37959859 PMCID: PMC10649211 DOI: 10.3390/molecules28217440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/02/2023] [Accepted: 11/03/2023] [Indexed: 11/15/2023] Open
Abstract
Pyrazine is a six-membered heterocyclic ring containing nitrogen, and many of its derivatives are biologically active compounds. References have been downloaded through Web of Science, PubMed, Science Direct, and SciFinder Scholar. The structure, biological activity, and mechanism of natural product derivatives containing pyrazine fragments reported from 2000 to September 2023 were reviewed. Publications reporting only the chemistry of pyrazine derivatives are beyond the scope of this review and have not been included. The results of research work show that pyrazine-modified natural product derivatives have a wide range of biological activities, including anti-inflammatory, anticancer, antibacterial, antiparasitic, and antioxidant activities. Many of these derivatives exhibit stronger pharmacodynamic activity and less toxicity than their parent compounds. This review has a certain reference value for the development of heterocyclic compounds, especially pyrazine natural product derivatives.
Collapse
Affiliation(s)
- Guo-Qing Chen
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji 133002, China; (G.-Q.C.); (H.-Y.G.); (Z.-S.Q.); (Q.-K.S.)
| | - Hong-Yan Guo
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji 133002, China; (G.-Q.C.); (H.-Y.G.); (Z.-S.Q.); (Q.-K.S.)
| | - Zhe-Shan Quan
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji 133002, China; (G.-Q.C.); (H.-Y.G.); (Z.-S.Q.); (Q.-K.S.)
| | - Qing-Kun Shen
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji 133002, China; (G.-Q.C.); (H.-Y.G.); (Z.-S.Q.); (Q.-K.S.)
| | - Xiaoting Li
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji 133002, China; (G.-Q.C.); (H.-Y.G.); (Z.-S.Q.); (Q.-K.S.)
| | - Tian Luan
- Department of Pharmacy, Shenyang Medical College, Shenyang 110034, China
| |
Collapse
|
10
|
Balsa LM, Solernó LM, Rodriguez MR, Parajón-Costa BS, Gonzalez-Baró AC, Alonso DF, Garona J, León IE. Cu(II)-acylhydrazone complex, a potent and selective antitumor agent against human osteosarcoma: Mechanism of action studies over in vitro and in vivo models. Chem Biol Interact 2023; 384:110685. [PMID: 37666443 DOI: 10.1016/j.cbi.2023.110685] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 08/05/2023] [Accepted: 08/26/2023] [Indexed: 09/06/2023]
Abstract
Osteosarcoma (OS) is a frequent bone cancer, affecting largely children and young adults. Cisplatin (CDDP) has been efficacious in the treatment of different cancer such us OS but the development of chemoresistance and important side effects leading to therapeutic failure. Novel therapies including copper compounds have shown to be potentially effective as anticancer drugs and one alternative to usually employed platinum compounds. The goal of this work is the evaluation of the in vitro and in vivo antitumoral activity and dilucidate the molecular target of a Cu(II) cationic complex containing a tridentate hydrazone ligand, CuHL for short, H2L=N'-'-(2-hydroxy-3-methoxybenzylidene)thiophene-2-carbohydrazide, against human OS MG-63 cells. Anticancer activity on MG-63 cell line was evaluated in OS monolayer and spheroids. CuHL significantly impaired cell viability in both models (IC50 2D: 2.1 ± 0.3 μM; 3D: 9.1 ± 1.0 μM) (p < 0.001). Additional cell studies demonstrated the copper compound inhibits cell proliferation and conveys cells to apoptosis, determined by flow cytometry. CuHL showed a great genotoxicity, evaluated by comet assay. Proteomic analysis by Orbitrap Mass Spectometry identified 27 differentially expressed proteins: 17 proteins were found overexpressed and 10 underexpressed in MG-63 cells after the CuHL treatment. The response to unfolded protein was the most affected biological process. In addition, in vivo antitumor effects of the compound were evaluated on human OS tumors xenografted in nude mice. CuHL treatment, at a dose of 2 mg/kg i.p., given three times/week for one month, significantly inhibited the progression of OS xenografts and was associated to a reduction in mitotic index and to an increment of tumor necrosis (p < 0.01). Administration of standard-of-care cytotoxic agent CDDP, following the same treatment schedule as CuHL, failed to impair OS growth and progression.
Collapse
Affiliation(s)
- Lucia M Balsa
- CEQUINOR (UNLP, CCT-CONICET La Plata, Asociado a CIC), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Blvd. 120 N° 1465, La Plata, 1900, Argentina
| | - Luisina M Solernó
- Centro de Oncología Molecular y Traslacional (COMTra), Universidad Nacional de Quilmes, Argentina; Centro de Medicina Traslacional (Unidad 6), Hospital de Alta Complejidad en Red El Cruce "Dr. Néstor Carlos Kirchner" S.A.M.I.C, Argentina
| | - Maria R Rodriguez
- CEQUINOR (UNLP, CCT-CONICET La Plata, Asociado a CIC), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Blvd. 120 N° 1465, La Plata, 1900, Argentina
| | - Beatriz S Parajón-Costa
- CEQUINOR (UNLP, CCT-CONICET La Plata, Asociado a CIC), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Blvd. 120 N° 1465, La Plata, 1900, Argentina
| | - Ana C Gonzalez-Baró
- CEQUINOR (UNLP, CCT-CONICET La Plata, Asociado a CIC), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Blvd. 120 N° 1465, La Plata, 1900, Argentina
| | - Daniel F Alonso
- Centro de Oncología Molecular y Traslacional (COMTra), Universidad Nacional de Quilmes, Argentina
| | - Juan Garona
- Centro de Oncología Molecular y Traslacional (COMTra), Universidad Nacional de Quilmes, Argentina; Centro de Medicina Traslacional (Unidad 6), Hospital de Alta Complejidad en Red El Cruce "Dr. Néstor Carlos Kirchner" S.A.M.I.C, Argentina
| | - Ignacio E León
- CEQUINOR (UNLP, CCT-CONICET La Plata, Asociado a CIC), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Blvd. 120 N° 1465, La Plata, 1900, Argentina; Cátedra de Fisiopatología, Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, 47 y 115, La Plata, 1900, Argentina.
| |
Collapse
|
11
|
Dimitrijević JD, Solovjova N, Bukonjić AM, Tomović DL, Milinkovic M, Caković A, Bogojeski J, Ratković ZR, Janjić GV, Rakić AA, Arsenijevic NN, Milovanovic MZ, Milovanovic JZ, Radić GP, Jevtić VV. Docking Studies, Cytotoxicity Evaluation and Interactions of Binuclear Copper(II) Complexes with S-Isoalkyl Derivatives of Thiosalicylic Acid with Some Relevant Biomolecules. Int J Mol Sci 2023; 24:12504. [PMID: 37569878 PMCID: PMC10420076 DOI: 10.3390/ijms241512504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 07/29/2023] [Accepted: 08/01/2023] [Indexed: 08/13/2023] Open
Abstract
The numerous side effects of platinum based chemotherapy has led to the design of new therapeutics with platinum replaced by another transition metal. Here, we investigated the interactions of previously reported copper(II) complexes containing S-isoalkyl derivatives, the salicylic acid with guanosine-5'-monophosphate and calf thymus DNA (CT-DNA) and their antitumor effects, in a colon carcinoma model. All three copper(II) complexes exhibited an affinity for binding to CT-DNA, but there was no indication of intercalation or the displacement of ethidium bromide. Molecular docking studies revealed a significant affinity of the complexes for binding to the minor groove of B-form DNA, which coincided with DNA elongation, and a higher affinity for binding to Z-form DNA, supporting the hypothesis that the complex binding to CT-DNA induces a local transition from B-form to Z-form DNA. These complexes show a moderate, but selective cytotoxic effect toward colon cancer cells in vitro. Binuclear complex of copper(II) with S-isoamyl derivative of thiosalicylic acid showed the highest cytotoxic effect, arrested tumor cells in the G2/M phase of the cell cycle, and significantly reduced the expression of inflammatory molecules pro-IL-1β, TNF-α, ICAM-1, and VCAM-1 in the tissue of primary heterotopic murine colon cancer, which was accompanied by a significantly reduced tumor growth and metastases in the lung and liver.
Collapse
Affiliation(s)
- Jelena D. Dimitrijević
- Center for Harm Reduction of Biological and Chemical Hazards, Faculty of Medical Sciences, University of Kragujevac, Serbia, Svetozara Markovića 69, 34000 Kragujevac, Serbia; (J.D.D.); (M.M.); (M.Z.M.); (J.Z.M.)
| | - Natalija Solovjova
- Academy of Applied Studies Belgrade, The College of Health Science, Cara Dušana 254, 11080 Belgrade, Serbia;
| | - Andriana M. Bukonjić
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovica 69, 34000 Kragujevac, Serbia; (A.M.B.); (D.L.T.)
| | - Dušan Lj. Tomović
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovica 69, 34000 Kragujevac, Serbia; (A.M.B.); (D.L.T.)
| | - Mirjana Milinkovic
- Center for Harm Reduction of Biological and Chemical Hazards, Faculty of Medical Sciences, University of Kragujevac, Serbia, Svetozara Markovića 69, 34000 Kragujevac, Serbia; (J.D.D.); (M.M.); (M.Z.M.); (J.Z.M.)
| | - Angelina Caković
- Department of Chemistry, Faculty of Science, University of Kragujevac, Radoja Domanovic 12, 34000 Kragujevac, Serbia; (A.C.); (J.B.); (Z.R.R.)
| | - Jovana Bogojeski
- Department of Chemistry, Faculty of Science, University of Kragujevac, Radoja Domanovic 12, 34000 Kragujevac, Serbia; (A.C.); (J.B.); (Z.R.R.)
| | - Zoran R. Ratković
- Department of Chemistry, Faculty of Science, University of Kragujevac, Radoja Domanovic 12, 34000 Kragujevac, Serbia; (A.C.); (J.B.); (Z.R.R.)
| | - Goran V. Janjić
- National Institute of the Republic of Serbia, Department of Chemistry, Technology and Metallurgy, University of Belgrade-Institute of Chemistry, Njegoševa 12, 11000 Belgrade, Serbia;
| | - Aleksandra A. Rakić
- Faculty of Physical Chemistry, University of Belgrade, Studentski trg 12-16, 11158 Belgrade, Serbia;
| | - Nebojsa N. Arsenijevic
- Faculty of Medical Sciences, Department of Microbiology and Immunology, University of Kragujevac, Svetozara Markovića 69, 34000 Kragujevac, Serbia;
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovića 69, 34000 Kragujevac, Serbia
| | - Marija Z. Milovanovic
- Center for Harm Reduction of Biological and Chemical Hazards, Faculty of Medical Sciences, University of Kragujevac, Serbia, Svetozara Markovića 69, 34000 Kragujevac, Serbia; (J.D.D.); (M.M.); (M.Z.M.); (J.Z.M.)
- Faculty of Medical Sciences, Department of Microbiology and Immunology, University of Kragujevac, Svetozara Markovića 69, 34000 Kragujevac, Serbia;
| | - Jelena Z. Milovanovic
- Center for Harm Reduction of Biological and Chemical Hazards, Faculty of Medical Sciences, University of Kragujevac, Serbia, Svetozara Markovića 69, 34000 Kragujevac, Serbia; (J.D.D.); (M.M.); (M.Z.M.); (J.Z.M.)
- Faculty of Medical Sciences, Department of Histology and Embryology, University of Kragujevac, Svetozara Markovića 69, 34000 Kragujevac, Serbia
| | - Gordana P. Radić
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovica 69, 34000 Kragujevac, Serbia; (A.M.B.); (D.L.T.)
| | - Verica V. Jevtić
- Department of Chemistry, Faculty of Science, University of Kragujevac, Radoja Domanovic 12, 34000 Kragujevac, Serbia; (A.C.); (J.B.); (Z.R.R.)
| |
Collapse
|
12
|
Medvedíková M, Ranc V, Vančo J, Trávníček Z, Anzenbacher P. Highly Cytotoxic Copper(II) Mixed-Ligand Quinolinonato Complexes: Pharmacokinetic Properties and Interactions with Drug Metabolizing Cytochromes P450. Pharmaceutics 2023; 15:pharmaceutics15041314. [PMID: 37111801 PMCID: PMC10146558 DOI: 10.3390/pharmaceutics15041314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/13/2023] [Accepted: 04/18/2023] [Indexed: 04/29/2023] Open
Abstract
The effects of two anticancer active copper(II) mixed-ligand complexes of the type [Cu(qui)(mphen)]Y·H2O, where Hqui = 2-phenyl-3-hydroxy- 1H-quinolin-4-one, mphen = bathophenanthroline, and Y = NO3 (complex 1) or BF4 (complex 2) on the activities of different isoenzymes of cytochrome P450 (CYP) have been evaluated. The screening revealed significant inhibitory effects of the complexes on CYP3A4/5 (IC50 values were 2.46 and 4.88 μM), CYP2C9 (IC50 values were 16.34 and 37.25 μM), and CYP2C19 (IC50 values were 61.21 and 77.07 μM). Further, the analysis of mechanisms of action uncovered a non-competitive type of inhibition for both the studied compounds. Consequent studies of pharmacokinetic properties proved good stability of both the complexes in phosphate buffer saline (>96% stability) and human plasma (>91% stability) after 2 h of incubation. Both compounds are moderately metabolised by human liver microsomes (<30% after 1 h of incubation), and over 90% of the complexes bind to plasma proteins. The obtained results showed the potential of complexes 1 and 2 to interact with major metabolic pathways of drugs and, as a consequence of this finding, their apparent incompatibility in combination therapy with most chemotherapeutic agents.
Collapse
Affiliation(s)
- Martina Medvedíková
- Department of Pharmacology, Faculty of Medicine and Dentistry, Palacký University in Olomouc, Hněvotínská 3, 779 00 Olomouc, Czech Republic
- Institute of Molecular and Translation Medicine, Faculty of Medicine and Dentistry, Palacký University in Olomouc, Hněvotínská 5, 779 00 Olomouc, Czech Republic
| | - Václav Ranc
- Institute of Molecular and Translation Medicine, Faculty of Medicine and Dentistry, Palacký University in Olomouc, Hněvotínská 5, 779 00 Olomouc, Czech Republic
| | - Ján Vančo
- Regional Centre of Advanced Technologies and Materials (RCPTM), Czech Advanced Technology and Research Institute (CATRIN), Palacký University in Olomouc, Šlechtitelů 27, 779 00 Olomouc, Czech Republic
| | - Zdeněk Trávníček
- Regional Centre of Advanced Technologies and Materials (RCPTM), Czech Advanced Technology and Research Institute (CATRIN), Palacký University in Olomouc, Šlechtitelů 27, 779 00 Olomouc, Czech Republic
| | - Pavel Anzenbacher
- Department of Pharmacology, Faculty of Medicine and Dentistry, Palacký University in Olomouc, Hněvotínská 3, 779 00 Olomouc, Czech Republic
- Institute of Molecular and Translation Medicine, Faculty of Medicine and Dentistry, Palacký University in Olomouc, Hněvotínská 5, 779 00 Olomouc, Czech Republic
| |
Collapse
|
13
|
Qu YQ, Song LL, Xu SW, Yu MSY, Kadioglu O, Michelangeli F, Law BYK, Efferth T, Lam CWK, Wong VKW. Pomiferin targets SERCA, mTOR, and P-gp to induce autophagic cell death in apoptosis-resistant cancer cells, and reverses the MDR phenotype in cisplatin-resistant tumors in vivo. Pharmacol Res 2023; 191:106769. [PMID: 37061145 DOI: 10.1016/j.phrs.2023.106769] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 03/23/2023] [Accepted: 04/12/2023] [Indexed: 04/17/2023]
Abstract
Drug resistance in cancer has been classified as innate resistance or acquired resistance, which were characterized by apoptotic defects and ABC transporters overexpression respectively. Therefore, to preclude or reverse these resistance mechanisms could be a promising strategy to improve chemotherapeutic outcomes. In this study, a natural product from Osage Orange, pomiferin, was identified as a novel autophagy activator that circumvents innate resistance by triggering autophagic cell death via SERCA inhibition and activation of the CaMKKβ-AMPK-mTOR signaling cascade. In addition, pomiferin also directly inhibited the P-gp (MDR1/ABCB1) efflux and reversed acquired resistance by potentiating the accumulation and efficacy of the chemotherapeutic agent, cisplatin. In vivo study demonstrated that pomiferin triggered calcium-mediated tumor suppression and exhibited an anti-metastatic effect in the LLC-1 lung cancer-bearing mouse model. Moreover, as an adjuvant, pomiferin potentiated the anti-tumor effect of the chemotherapeutic agent, cisplatin, in RM-1 drug-resistant prostate cancer-bearing mouse model by specially attenuating ABCB1-mediated drug efflux, but not ABCC5, thereby promoting the accumulation of cisplatin in tumors. Collectively, pomiferin may serve as a novel effective agent for circumventing drug resistance in clinical applications.
Collapse
Affiliation(s)
- Yuan-Qing Qu
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China; Faculty of Medicine, Macau University of Science and Technology, Macau, China
| | - Lin-Lin Song
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Su-Wei Xu
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China; Department of Basic Medicine of Zhuhai Health School, Zhuhai, China
| | - Margaret Sum Yee Yu
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Onat Kadioglu
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, Mainz 55128, Germany
| | | | - Betty Yuen Kwan Law
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, Mainz 55128, Germany
| | | | - Vincent Kam Wai Wong
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China.
| |
Collapse
|
14
|
Lim YY, Zaidi AMA, Miskon A. Combining Copper and Zinc into a Biosensor for Anti-Chemoresistance and Achieving Osteosarcoma Therapeutic Efficacy. Molecules 2023; 28:2920. [PMID: 37049685 PMCID: PMC10096333 DOI: 10.3390/molecules28072920] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/09/2023] [Accepted: 03/10/2023] [Indexed: 04/14/2023] Open
Abstract
Due to its built-up chemoresistance after prolonged usage, the demand for replacing platinum in metal-based drugs (MBD) is rising. The first MBD approved by the FDA for cancer therapy was cisplatin in 1978. Even after nearly four and a half decades of trials, there has been no significant improvement in osteosarcoma (OS) therapy. In fact, many MBD have been developed, but the chemoresistance problem raised by platinum remains unresolved. This motivates us to elucidate the possibilities of the copper and zinc (CuZn) combination to replace platinum in MBD. Thus, the anti-chemoresistance properties of CuZn and their physiological functions for OS therapy are highlighted. Herein, we summarise their chelators, main organic solvents, and ligand functions in their structures that are involved in anti-chemoresistance properties. Through this review, it is rational to discuss their ligands' roles as biosensors in drug delivery systems. Hereafter, an in-depth understanding of their redox and photoactive function relationships is provided. The disadvantage is that the other functions of biosensors cannot be elaborated on here. As a result, this review is being developed, which is expected to intensify OS drugs with higher cure rates. Nonetheless, this advancement intends to solve the major chemoresistance obstacle towards clinical efficacy.
Collapse
Affiliation(s)
- Yan Yik Lim
- Faculty of Defence Science and Technology, National Defence University of Malaysia, Sungai Besi Camp, Kuala Lumpur 57000, Malaysia
| | - Ahmad Mujahid Ahmad Zaidi
- Faculty of Defence Science and Technology, National Defence University of Malaysia, Sungai Besi Camp, Kuala Lumpur 57000, Malaysia
| | - Azizi Miskon
- Faculty of Engineering, National Defence University of Malaysia, Sungai Besi Camp, Kuala Lumpur 57000, Malaysia
| |
Collapse
|
15
|
Heteroleptic Copper(II) Complexes Containing 2'-Hydroxy-4-(Dimethylamino)Chalcone Show Strong Antiproliferative Activity. Pharmaceutics 2023; 15:pharmaceutics15020307. [PMID: 36839630 PMCID: PMC9967299 DOI: 10.3390/pharmaceutics15020307] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/13/2023] [Accepted: 01/14/2023] [Indexed: 01/19/2023] Open
Abstract
A series of six heteroleptic copper(II) complexes with 2'-hydroxy-4-(dimethylamino)chalcone (HL) with the composition [Cu(N-N)(L)]NO3 (1-6), where N-N stands for dmbpy = 5,5'-dimethyl-2,2'-bipyridine (1), bphen = 4,7-diphenyl-1,10-phenanthroline (2), dbbpy = 4,4'-di-tert-butyl-2,2'-bipyridine (3), nphen = 5-nitro-1,10-phenanthroline (4), bpy = 2,2'-bipyridine, (5), and dpa = 2,2'-dipyridylamine (6), was prepared and thoroughly characterized. The in vitro cytotoxicity screening on eight human cancer cell lines identified complex 2, containing the bulkiest N-donor ligands (bphen) as highly cytotoxic against cancer cells, with IC50 values ranking from 1.0 to 2.3 μM, with good selectivity and low toxicity against healthy human fetal lung fibroblasts MRC-5. The cell-based assays, involving the most effective complex 2 in A2780 cancer cells, revealed its strong pro-apoptotic effects based on the effective activation of caspases 3/7, ROS overproduction, and autophagy in the A2780 cells while not impeding the cell cycle and mitochondrial membrane functions. The cellular uptake studies in A2780 and 22Rv1 cells uncovered no intracellular transport of the cationic complex 2, supporting the hypothesis that the in vitro anticancer effects of complex 2 are based on the combined extrinsic activation of apoptosis and autophagy induction.
Collapse
|
16
|
Ma YL, Yang YF, Wang HC, Yang CC, Yan LJ, Ding ZN, Tian BW, Liu H, Xue JS, Han CL, Tan SY, Hong JG, Yan YC, Mao XC, Wang DX, Li T. A novel prognostic scoring model based on copper homeostasis and cuproptosis which indicates changes in tumor microenvironment and affects treatment response. Front Pharmacol 2023; 14:1101749. [PMID: 36909185 PMCID: PMC9998499 DOI: 10.3389/fphar.2023.1101749] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 02/13/2023] [Indexed: 03/14/2023] Open
Abstract
Background: Intracellular copper homeostasis requires a complex system. It has shown considerable prospects for intervening in the tumor microenvironment (TME) by regulating copper homeostasis and provoking cuproptosis. Their relationship with hepatocellular carcinoma (HCC) remains elusive. Methods: In TCGA and ICGC datasets, LASSO and multivariate Cox regression were applied to obtain the signature on the basis of genes associated with copper homeostasis and cuproptosis. Bioinformatic tools were utilized to reveal if the signature was correlated with HCC characteristics. Single-cell RNA sequencing data analysis identified differences in tumor and T cells' pathway activity and intercellular communication of immune-related cells. Real-time qPCR analysis was conducted to measure the genes' expression in HCC and adjacent normal tissue from 21 patients. CCK8 assay, scratch assay, transwell, and colony formation were conducted to reveal the effect of genes on in vitro cell proliferation, invasion, migration, and colony formation. Results: We constructed a five-gene scoring system in relation to copper homeostasis and cuproptosis. The high-risk score indicated poor clinical prognosis, enhanced tumor malignancy, and immune-suppressive tumor microenvironment. The T cell activity was markedly reduced in high-risk single-cell samples. The high-risk HCC patients had a better expectation of ICB response and reactivity to anti-PD-1 therapy. A total of 156 drugs were identified as potential signature-related drugs for HCC treatment, and most were sensitive to high-risk patients. Novel ligand-receptor pairs such as FASLG, CCL, CD40, IL2, and IFN-Ⅱ signaling pathways were revealed as cellular communication bridges, which may cause differences in TME and immune function. All crucial genes were differentially expressed between HCC and paired adjacent normal tissue. Model-constructed genes affected the phosphorylation of mTOR and AKT in both Huh7 and Hep3B cells. Knockdown of ZCRB1 impaired the proliferation, invasion, migration, and colony formation in HCC cell lines. Conclusion: We obtained a prognostic scoring system to forecast the TME changes and assist in choosing therapy strategies for HCC patients. In this study, we combined copper homeostasis and cuproptosis to show the overall potential risk of copper-related biological processes in HCC for the first time.
Collapse
Affiliation(s)
- Yun-Long Ma
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, China
| | - Ya-Fei Yang
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, China
| | - Han-Chao Wang
- Institute for Financial Studies, Shandong University, Jinan, China
| | - Chun-Cheng Yang
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, China
| | - Lun-Jie Yan
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, China
| | - Zi-Niu Ding
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, China
| | - Bao-Wen Tian
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, China
| | - Hui Liu
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, China
| | - Jun-Shuai Xue
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, China
| | - Cheng-Long Han
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, China
| | - Si-Yu Tan
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, China
| | - Jian-Guo Hong
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, China
| | - Yu-Chuan Yan
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, China
| | - Xin-Cheng Mao
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, China
| | - Dong-Xu Wang
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, China
| | - Tao Li
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, China.,Department of hepatobiliary surgery, The Second Hospital of Shandong University, Jinan, China
| |
Collapse
|
17
|
Synthesis, Structure and Cytotoxic Properties of Copper(II) Complexes of 2-Iminocoumarins Bearing a 1,3,5-Triazine or Benzoxazole/Benzothiazole Moiety. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27217155. [PMID: 36363982 PMCID: PMC9659224 DOI: 10.3390/molecules27217155] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/19/2022] [Accepted: 10/20/2022] [Indexed: 12/05/2022]
Abstract
A series of copper(II) complexes of 2-imino-2H-chromen-3-yl-1,3,5-triazines 2a-h, 3-(benzoxazol-2-yl)-2H-chromen-2-imines 4a-b, and 3-(benzothiazol-2-yl)-2H-chromen-2-imines 6a-c were obtained by reacting of appropriate 2-iminocoumarin ligands L1a-h, L3a-b, and L5a-c with 3-fold molar excess of copper(II) chloride. The structure of these compounds was confirmed by IR spectroscopy, elemental analysis, and single-crystal X-ray diffraction data (2f, 2g, 2h, and 6c). All the synthesized complexes were screened for their activity against five human cancer cell lines: DAN-G, A-427, LCLC-103H, SISO, and RT-4 by using a crystal violet microtiter plate assay and relationships between structure and in vitro cytotoxic activity are discussed. The coordination of 2-iminocoumarins with copper(II) ions resulted in complexes 2a-h, 4a-b, and 6a-c with significant inhibitory properties toward tested tumor cell lines with IC50 values ranging from 0.04 μM to 15.66 μM. In comparison to the free ligands L1a-h, L3a-b, and L5a-c, the newly prepared Cu(II) complexes often displayed increased activity. In the series of copper(II) complexes of 2-imino-2H-chromen-3-yl-1,3,5-triazines 2a-h the most potent compound 2g contained a 4-phenylpiperazine moiety at position 6 of the 1,3,5-triazine ring and an electron-donating diethylamino group at position 7' of the 2-iminocoumarin scaffold. Among the Cu(II) complexes of 3-(benzoxazol-2-yl)-2H-chromen-2-imines 4a-b and 3-(benzothiazol-2-yl)-2H-chromen-2-imines 6a-c the most active was benzoxazole-2-iminocoumarin 4b that also possessed a diethylamino group at position 7' of the 2-iminocoumarin moiety. Moreover, compound 4b was found to be the most prominent agent and displayed the higher potency than cisplatin against tested cell lines.
Collapse
|
18
|
Constantinescu T, Mihis AG. Two Important Anticancer Mechanisms of Natural and Synthetic Chalcones. Int J Mol Sci 2022; 23:11595. [PMID: 36232899 PMCID: PMC9570335 DOI: 10.3390/ijms231911595] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/25/2022] [Accepted: 09/27/2022] [Indexed: 11/16/2022] Open
Abstract
ATP-binding cassette subfamily G and tubulin pharmacological mechanisms decrease the effectiveness of anticancer drugs by modulating drug absorption and by creating tubulin assembly through polymerization. A series of natural and synthetic chalcones have been reported to have very good anticancer activity, with a half-maximal inhibitory concentration lower than 1 µM. By modulation, it is observed in case of the first mechanism that methoxy substituents on the aromatic cycle of acetophenone residue and substitution of phenyl nucleus by a heterocycle and by methoxy or hydroxyl groups have a positive impact. To inhibit tubulin, compounds bind to colchicine binding site. Presence of methoxy groups, amino groups or heterocyclic substituents increase activity.
Collapse
Affiliation(s)
- Teodora Constantinescu
- Department of Chemistry, Faculty of Pharmacy, Iuliu Hatieganu University, 400012 Cluj-Napoca, Romania
| | - Alin Grig Mihis
- Advanced Materials and Applied Technologies Laboratory, Institute of Research-Development-Innovation in Applied Natural Sciences, “Babes-Bolyai” University, Fantanele Str. 30, 400294 Cluj-Napoca, Romania
| |
Collapse
|
19
|
Caro-Ramírez JY, Rivas MG, Gonzalez PJ, Williams PAM, Naso LG, Ferrer EG. Copper(II) cation and bathophenanthroline coordination enhance therapeutic effects of naringenin against lung tumor cells. Biometals 2022; 35:1059-1076. [PMID: 35931942 DOI: 10.1007/s10534-022-00422-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 07/18/2022] [Indexed: 11/02/2022]
Abstract
The development of new anticancer compounds is one of the challenges of bioinorganic and medicinal chemistry. Naringenin and its metal complexes have been recognized as promising inhibitors of cell proliferation, having enormous potential to act as an antioxidant and antitumorigenic agent. Lung cancer is the second most commonly diagnosed type of cancer. Therefore, this study is devoted to investigate the effects of Cu(II), naringenin (Nar), binary Cu(II)-naringenin complex (CuNar), and the Cu(II)-naringenin containing bathophenanthroline as an auxiliary ligand (CuNarBatho) on adenocarcinoma human alveolar basal epithelial cells (A549 cells) that are used as models for the study of drug therapies against lung cancer. The ternary complex shows selectivity being high cytotoxic against malignant cells. The cell death generated by CuNarBatho involves ROS production, loss of mitochondrial membrane potential, and depletion of GSH level and GSH/GSSG ratio. The structure-relationship activity was assessed by comparison with the reported Cu(II)-naringenin-phenanthroline complex. The CuNarBatho complex was synthesized and characterized by elemental analysis, molar conductivity, mass spectrometry, thermogravimetric measurements and UV-VIS, FT-IR, EPR, Raman and 1H-NMR spectroscopies. In addition, the binding to bovine serum albumin (BSA) was studied at the physiological conditions (pH = 7.4) by fluorescence spectroscopy.
Collapse
Affiliation(s)
- Janetsi Y Caro-Ramírez
- Centro de Química Inorgánica (CEQUINOR, UNLP, CONICET, asociado a CICPBA), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Bv. 120 N° 1465 La Plata, CP 1900, Buenos Aires, Argentina
| | - María G Rivas
- Departamento de Física, Facultad de Bioquímica Y Ciencias Biológicas, Universidad Nacional del Litoral and CONICET, S3000ZAA, Santa Fe, Argentina
| | - Pablo J Gonzalez
- Departamento de Física, Facultad de Bioquímica Y Ciencias Biológicas, Universidad Nacional del Litoral and CONICET, S3000ZAA, Santa Fe, Argentina
| | - Patricia A M Williams
- Centro de Química Inorgánica (CEQUINOR, UNLP, CONICET, asociado a CICPBA), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Bv. 120 N° 1465 La Plata, CP 1900, Buenos Aires, Argentina.
| | - Luciana G Naso
- Centro de Química Inorgánica (CEQUINOR, UNLP, CONICET, asociado a CICPBA), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Bv. 120 N° 1465 La Plata, CP 1900, Buenos Aires, Argentina
| | - Evelina G Ferrer
- Centro de Química Inorgánica (CEQUINOR, UNLP, CONICET, asociado a CICPBA), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Bv. 120 N° 1465 La Plata, CP 1900, Buenos Aires, Argentina.
| |
Collapse
|
20
|
Kashapova NE, Kashapov RR, Ziganshina AY, Amerhanova SK, Lyubina AP, Voloshina AD, Salnikov VV, Zakharova LY. Complexation-induced nanoarchitectonics of sulfonate cailx[4]resorcinol substituted at the upper rim by N-methyl-d-glucamine fragments: Morphological transition and in vitro anticancer activity. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
21
|
Pomiferin Exerts Antineuroinflammatory Effects through Activating Akt/Nrf2 Pathway and Inhibiting NF-κB Pathway. Mediators Inflamm 2022; 2022:5824657. [PMID: 35418806 PMCID: PMC9001093 DOI: 10.1155/2022/5824657] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 03/19/2022] [Indexed: 12/29/2022] Open
Abstract
Background Neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, and Huntington's disease, are mainly characterized by progressive motor, sensory, or cognitive dysfunction in patients. Such diseases mostly occur in middle-aged and elderly people, and there is no effective cure. Studies have shown that neurodegenerative diseases are accompanied by neuroinflammation. The proinflammatory mediators produced neuroinflammation further damage neurons and aggravate the process of neurodegenerative diseases. Therefore, inhibiting neuroinflammation might be an effective way to alleviate neurodegenerative diseases. Pomiferin extracted from the fruit of the orange mulberry has a wide range of antioxidation and anti-inflammatory effects in peripheral tissues. However, it is not clear whether it plays a role on neuroinflammation. Methods In our experiment, we studied the effect of Pomiferin on BV2 cell inflammation and its mechanism with cck-8, LDH, quantitative PCR, and ELISA and methods. We then investigated the effect of Pomiferin on the classical inflammatory pathway by Western blot methods. Results The results showed that Pomiferin inhibited the production of ROS, NO, and proinflammatory mediators (IL-6, TNF-α, iNOS, and COX2) in BV2 cells. Further mechanism studies showed that Pomiferin activated the Akt/Nrf2 pathway and inhibited the NF-κB pathway. Conclusion Our study demonstrated that Pomiferin exerts antineuroinflammatory effects through activating Akt/Nrf2 pathway and inhibiting NF-κB pathway.
Collapse
|
22
|
Copper in tumors and the use of copper-based compounds in cancer treatment. J Inorg Biochem 2021; 226:111634. [PMID: 34740035 DOI: 10.1016/j.jinorgbio.2021.111634] [Citation(s) in RCA: 120] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 10/05/2021] [Accepted: 10/12/2021] [Indexed: 12/12/2022]
Abstract
Copper homeostasis is strictly regulated by protein transporters and chaperones, to allow its correct distribution and avoid uncontrolled redox reactions. Several studies address copper as involved in cancer development and spreading (epithelial to mesenchymal transition, angiogenesis). However, being endogenous and displaying a tremendous potential to generate free radicals, copper is a perfect candidate, once opportunely complexed, to be used as a drug in cancer therapy with low adverse effects. Copper ions can be modulated by the organic counterpart, after complexed to their metalcore, either in redox potential or geometry and consequently reactivity. During the last four decades, many copper complexes were studied regarding their reactivity toward cancer cells, and many of them could be a drug choice for phase II and III in cancer therapy. Also, there is promising evidence of using 64Cu in nanoparticles as radiopharmaceuticals for both positron emission tomography (PET) imaging and treatment of hypoxic tumors. However, few compounds have gone beyond testing in animal models, and none of them got the status of a drug for cancer chemotherapy. The main challenge is their solubility in physiological buffers and their different and non-predictable mechanism of action. Moreover, it is difficult to rationalize a structure-based activity for drug design and delivery. In this review, we describe the role of copper in cancer, the effects of copper-complexes on tumor cell death mechanisms, and point to the new copper complexes applicable as drugs, suggesting that they may represent at least one component of a multi-action combination in cancer therapy.
Collapse
|
23
|
Heteroleptic copper(II) complexes of prenylated flavonoid osajin behave as selective and effective antiproliferative and anti-inflammatory agents. J Inorg Biochem 2021; 226:111639. [PMID: 34717252 DOI: 10.1016/j.jinorgbio.2021.111639] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 10/05/2021] [Accepted: 10/13/2021] [Indexed: 11/23/2022]
Abstract
Heteroleptic copper(II) complexes, containing prenylated flavonoid osajin isolated from the fruits of Maclura pomifera Schneid., were prepared and thoroughly characterized, including single crystal X-ray analysis. Some of the following complexes of the general composition [Cu(L)(bpy)]NO3 (1), [Cu(L)(dimebpy)]NO3·2MeOH (2) [Cu(L)(phen)]NO3·H2O (3), [Cu(L)(bphen)]NO3 (4) and [Cu(L)(dppz)]NO3 (5), where HL stands for 3-(4-hydroxyphenyl)-5-hydroxy-8,8-dimethyl-6-(3-methylbut-2-ene-1-yl)-4H,8H-benzo[1,2-b:3,4-b']dipyran-4-one (osajin), bpy = 2,2'-bipyridine, dimebpy = 4,4'-dimethyl-2,2'-bipyridine, phen = 1,10-phenanthroline, bphen = 4,7-diphenyl-1,10-phenanthroline and dppz = dipyrido[3,2-a:2',3'-c]phenazine, were also monitored for their solution stability and interactions with cysteine and glutathione by mass spectrometry. The in vitro cytotoxicity of the complexes was evaluated against a panel of eight human cancer cell lines: (MCF-7, HOS, A549, PC-3, A2780, A2780R, Caco-2, and THP-1). The results revealed high antiproliferative activity of the complexes with the best IC50 values of 0.5-3.4 μM for complexes (4) and (5), containing the bulkier N,N'-donor ligands (bphen, and dppz, respectively). The complexes also revealed a relatively low toxicity towards human hepatocytes (IC50 values are higher than 100 μM in some cases), and thus proved to be highly selective towards the cancer cells. On the other hand, the complexes showed a strong in vitro nuclease effect using the model pUC-19 plasmid. In the model of lipopolysaccharide-stimulated (LPS) THP-1 monocytes, the complexes revealed ability to lower the activity of nuclear factor kappa-B/activator protein 1 (NF-κB /AP-1) system and decrease the secretion of tumor necrosis factor alpha (TNF-α). Thus, the complexes have been identified as strong antiproliferative and anti-inflammatory compounds.
Collapse
|