1
|
Lipka A, Paukszto Ł, Kennedy VC, Tanner AR, Majewska M, Anthony RV. The Impact of SLC2A8 RNA Interference on Glucose Uptake and the Transcriptome of Human Trophoblast Cells. Cells 2024; 13:391. [PMID: 38474355 PMCID: PMC10930455 DOI: 10.3390/cells13050391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/14/2024] [Accepted: 02/22/2024] [Indexed: 03/14/2024] Open
Abstract
While glucose is the primary fuel for fetal growth, the placenta utilizes the majority of glucose taken up from the maternal circulation. Of the facilitative glucose transporters in the placenta, SLC2A8 (GLUT8) is thought to primarily function as an intracellular glucose transporter; however, its function in trophoblast cells has not been determined. To gain insight into the function of SLC2A8 in the placenta, lentiviral-mediated RNA interference (RNAi) was performed in the human first-trimester trophoblast cell line ACH-3P. Non-targeting sequence controls (NTS RNAi; n = 4) and SLC2A8 RNAi (n = 4) infected ACH-3P cells were compared. A 79% reduction in SLC2A8 mRNA concentration was associated with an 11% reduction (p ≤ 0.05) in ACH-3P glucose uptake. NTS RNAi and SLC2A8 RNAi ACH-3P mRNA were subjected to RNAseq, identifying 1525 transcripts that were differentially expressed (|log2FC| > 1 and adjusted p-value < 0.05), with 273 transcripts derived from protein-coding genes, and the change in 10 of these mRNAs was validated by real-time qPCR. Additionally, there were 147 differentially expressed long non-coding RNAs. Functional analyses revealed differentially expressed genes involved in various metabolic pathways associated with cellular respiration, oxidative phosphorylation, and ATP synthesis. Collectively, these data indicate that SLC2A8 deficiency may impact placental uptake of glucose, but that its likely primary function in trophoblast cells is to support cellular respiration. Since the placenta oxidizes the majority of the glucose it takes up to support its own metabolic needs, impairment of SLC2A8 function could set the stage for functional placental insufficiency.
Collapse
Affiliation(s)
- Aleksandra Lipka
- Department of Gynecology and Obstetrics, School of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, 10-045 Olsztyn, Poland
| | - Łukasz Paukszto
- Department of Botany and Nature Protection, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-727 Olsztyn, Poland;
| | - Victoria C. Kennedy
- College of Veterinary Medicine, Colorado State University, Fort Collins, CO 80523, USA; (V.C.K.); (A.R.T.)
| | - Amelia R. Tanner
- College of Veterinary Medicine, Colorado State University, Fort Collins, CO 80523, USA; (V.C.K.); (A.R.T.)
| | - Marta Majewska
- Department of Human Physiology and Pathophysiology, School of Medicine, University of Warmia and Mazury in Olsztyn, 10-082 Olsztyn, Poland;
| | - Russell V. Anthony
- College of Veterinary Medicine, Colorado State University, Fort Collins, CO 80523, USA; (V.C.K.); (A.R.T.)
| |
Collapse
|
2
|
Ciampa EJ, Flahardy P, Srinivasan H, Jacobs C, Tsai L, Karumanchi SA, Parikh SM. Hypoxia-inducible factor 1 signaling drives placental aging and can provoke preterm labor. eLife 2023; 12:RP85597. [PMID: 37610425 PMCID: PMC10446824 DOI: 10.7554/elife.85597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2023] Open
Abstract
Most cases of preterm labor have unknown cause, and the burden of preterm birth is immense. Placental aging has been proposed to promote labor onset, but specific mechanisms remain elusive. We report findings stemming from unbiased transcriptomic analysis of mouse placenta, which revealed that hypoxia-inducible factor 1 (HIF-1) stabilization is a hallmark of advanced gestational timepoints, accompanied by mitochondrial dysregulation and cellular senescence; we detected similar effects in aging human placenta. In parallel in primary mouse trophoblasts and human choriocarcinoma cells, we modeled HIF-1 induction and demonstrated resultant mitochondrial dysfunction and cellular senescence. Transcriptomic analysis revealed that HIF-1 stabilization recapitulated gene signatures observed in aged placenta. Further, conditioned media from trophoblasts following HIF-1 induction promoted contractility in immortalized uterine myocytes, suggesting a mechanism by which the aging placenta may drive the transition from uterine quiescence to contractility at the onset of labor. Finally, pharmacological induction of HIF-1 via intraperitoneal administration of dimethyloxalyl glycine (DMOG) to pregnant mice caused preterm labor. These results provide clear evidence for placental aging in normal pregnancy, and demonstrate how HIF-1 signaling in late gestation may be a causal determinant of the mitochondrial dysfunction and senescence observed within the trophoblast as well as a trigger for uterine contraction.
Collapse
Affiliation(s)
- Erin J Ciampa
- Department of Anesthesia, Critical Care, and Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical SchoolBostonUnited States
| | - Padraich Flahardy
- Department of Anesthesia, Critical Care, and Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical SchoolBostonUnited States
| | - Harini Srinivasan
- Division of Endocrinology, Beth Israel Deaconess Medical Center, Harvard Medical SchoolBostonUnited States
| | - Christopher Jacobs
- Division of Endocrinology, Beth Israel Deaconess Medical Center, Harvard Medical SchoolBostonUnited States
| | - Linus Tsai
- Division of Endocrinology, Beth Israel Deaconess Medical Center, Harvard Medical SchoolBostonUnited States
| | | | - Samir M Parikh
- Division of Nephrology, Departments of Internal Medicine and Pharmacology, University of Texas Southwestern Medical SchoolDallasUnited States
| |
Collapse
|
3
|
Sánchez-Ramos R, Trujano-Chavez MZ, Gallegos-Sánchez J, Becerril-Pérez CM, Cadena-Villegas S, Cortez-Romero C. Detection of Candidate Genes Associated with Fecundity through Genome-Wide Selection Signatures of Katahdin Ewes. Animals (Basel) 2023; 13:ani13020272. [PMID: 36670812 PMCID: PMC9854690 DOI: 10.3390/ani13020272] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/26/2022] [Accepted: 12/28/2022] [Indexed: 01/15/2023] Open
Abstract
One of the strategies to genetically improve reproductive traits, despite their low inheritability, has been the identification of candidate genes. Therefore, the objective of this study was to detect candidate genes associated with fecundity through the fixation index (FST) and runs of homozygosity (ROH) of selection signatures in Katahdin ewes. Productive and reproductive records from three years were used and the genotypes (OvineSNP50K) of 48 Katahdin ewes. Two groups of ewes were identified to carry out the genetic comparison: with high fecundity (1.3 ± 0.03) and with low fecundity (1.1 ± 0.06). This study shows for the first time evidence of the influence of the CNOT11, GLUD1, GRID1, MAPK8, and CCL28 genes in the fecundity of Katahdin ewes; in addition, new candidate genes were detected for fecundity that were not reported previously in ewes but that were detected for other species: ANK2 (sow), ARHGAP22 (cow and buffalo cow), GHITM (cow), HERC6 (cow), DPF2 (cow), and TRNAC-GCA (buffalo cow, bull). These new candidate genes in ewes seem to have a high expression in reproduction. Therefore, future studies are needed focused on describing the physiological basis of changes in the reproductive behavior influenced by these genes.
Collapse
Affiliation(s)
- Reyna Sánchez-Ramos
- Recursos Genéticos y Productividad-Ganadería, Colegio de Postgraduados, Campus Montecillo, Carretera Federal México-Texcoco Km. 36.5, Texcoco 56264, Mexico
| | | | - Jaime Gallegos-Sánchez
- Recursos Genéticos y Productividad-Ganadería, Colegio de Postgraduados, Campus Montecillo, Carretera Federal México-Texcoco Km. 36.5, Texcoco 56264, Mexico
| | - Carlos Miguel Becerril-Pérez
- Recursos Genéticos y Productividad-Ganadería, Colegio de Postgraduados, Campus Montecillo, Carretera Federal México-Texcoco Km. 36.5, Texcoco 56264, Mexico
- Agroecosistemas Tropicales, Colegio de Postgraduados, Campus Veracruz, Carretera Xalapa-Veracruz Km. 88.5, Manlio Favio Altamirano, Veracruz 91690, Mexico
| | - Said Cadena-Villegas
- Producción Agroalimentaria en Trópico, Colegio de Postgraduados, Campus Tabasco, Periférico Carlos A. Molina, Ranchería Rio Seco y Montaña, Heroica Cárdenas 86500, Mexico
| | - César Cortez-Romero
- Recursos Genéticos y Productividad-Ganadería, Colegio de Postgraduados, Campus Montecillo, Carretera Federal México-Texcoco Km. 36.5, Texcoco 56264, Mexico
- Innovación en Manejo de Recursos Naturales, Colegio de Postgraduados, Campus San Luis Potosí, Agustín de Iturbide No. 73, Salinas de Hidalgo, San Luis Potosí 78622, Mexico
- Correspondence: ; Tel.: +52-5959-520-200 (ext. 4000)
| |
Collapse
|
4
|
Lee ED, Mistry HD. Placental Related Disorders of Pregnancy. Int J Mol Sci 2022; 23:ijms23073519. [PMID: 35408880 PMCID: PMC8998756 DOI: 10.3390/ijms23073519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 03/22/2022] [Indexed: 11/16/2022] Open
Abstract
We are pleased to present this Special Issue of International Journal of Molecular Sciences, entitled 'Placental Related Disorders of Pregnancy' [...].
Collapse
Affiliation(s)
- Eun D. Lee
- Department of Microbiology and Immunology, School of Medicine, Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23298, USA;
| | - Hiten D. Mistry
- Department of Women and Children’s Health, School of Life Course Sciences, King’s College London, London SE5 9NU, UK
- Correspondence:
| |
Collapse
|