1
|
Michaud ME, Mota L, Bakhtiari M, Thomas BE, Tomeo J, Pilcher W, Contreras M, Ferran C, Bhasin SS, Pradhan-Nabzdyk L, LoGerfo FW, Liang P, Bhasin MK. Early Injury Landscape in Vein Harvest by Single-Cell and Spatial Transcriptomics. Circ Res 2024; 135:110-134. [PMID: 38808504 PMCID: PMC11189745 DOI: 10.1161/circresaha.123.323939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 05/03/2024] [Accepted: 05/09/2024] [Indexed: 05/30/2024]
Abstract
BACKGROUND Vein graft failure following cardiovascular bypass surgery results in significant patient morbidity and cost to the healthcare system. Vein graft injury can occur during autogenous vein harvest and preparation, as well as after implantation into the arterial system, leading to the development of intimal hyperplasia, vein graft stenosis, and, ultimately, bypass graft failure. Although previous studies have identified maladaptive pathways that occur shortly after implantation, the specific signaling pathways that occur during vein graft preparation are not well defined and may result in a cumulative impact on vein graft failure. We, therefore, aimed to elucidate the response of the vein conduit wall during harvest and following implantation, probing the key maladaptive pathways driving graft failure with the overarching goal of identifying therapeutic targets for biologic intervention to minimize these natural responses to surgical vein graft injury. METHODS Employing a novel approach to investigating vascular pathologies, we harnessed both single-nuclei RNA-sequencing and spatial transcriptomics analyses to profile the genomic effects of vein grafts after harvest and distension, then compared these findings to vein grafts obtained 24 hours after carotid-carotid vein bypass implantation in a canine model (n=4). RESULTS Spatial transcriptomic analysis of canine cephalic vein after initial conduit harvest and distention revealed significant enrichment of pathways (P<0.05) involved in the activation of endothelial cells (ECs), fibroblasts, and vascular smooth muscle cells, namely pathways responsible for cellular proliferation and migration and platelet activation across the intimal and medial layers, cytokine signaling within the adventitial layer, and ECM (extracellular matrix) remodeling throughout the vein wall. Subsequent single-nuclei RNA-sequencing analysis supported these findings and further unveiled distinct EC and fibroblast subpopulations with significant upregulation (P<0.05) of markers related to endothelial injury response and cellular activation of ECs, fibroblasts, and vascular smooth muscle cells. Similarly, in vein grafts obtained 24 hours after arterial bypass, there was an increase in myeloid cell, protomyofibroblast, injury response EC, and mesenchymal-transitioning EC subpopulations with a concomitant decrease in homeostatic ECs and fibroblasts. Among these markers were genes previously implicated in vein graft injury, including VCAN, FBN1, and VEGFC, in addition to novel genes of interest, such as GLIS3 and EPHA3. These genes were further noted to be driving the expression of genes implicated in vascular remodeling and graft failure, such as IL-6, TGFBR1, SMAD4, and ADAMTS9. By integrating the spatial transcriptomics and single-nuclei RNA-sequencing data sets, we highlighted the spatial architecture of the vein graft following distension, wherein activated and mesenchymal-transitioning ECs, myeloid cells, and fibroblasts were notably enriched in the intima and media of distended veins. Finally, intercellular communication network analysis unveiled the critical roles of activated ECs, mesenchymal-transitioning ECs, protomyofibroblasts, and vascular smooth muscle cells in upregulating signaling pathways associated with cellular proliferation (MDK [midkine], PDGF [platelet-derived growth factor], VEGF [vascular endothelial growth factor]), transdifferentiation (Notch), migration (ephrin, semaphorin), ECM remodeling (collagen, laminin, fibronectin), and inflammation (thrombospondin), following distension. CONCLUSIONS Vein conduit harvest and distension elicit a prompt genomic response facilitated by distinct cellular subpopulations heterogeneously distributed throughout the vein wall. This response was found to be further exacerbated following vein graft implantation, resulting in a cascade of maladaptive gene regulatory networks. Together, these results suggest that distension initiates the upregulation of pathological pathways that may ultimately contribute to bypass graft failure and presents potential early targets warranting investigation for targeted therapies. This work highlights the first applications of single-nuclei and spatial transcriptomic analyses to investigate venous pathologies, underscoring the utility of these methodologies and providing a foundation for future investigations.
Collapse
Affiliation(s)
- Marina E. Michaud
- Department of Pediatrics, Emory School of Medicine, Atlanta, GA (M.E.M., M.B., B.E.T., S.S.B., M.K.B.)
| | - Lucas Mota
- Department of Surgery, Division of Vascular and Endovascular Surgery, Beth Israel Deaconess Medical Center (L.M., J.T., M.C., C.F., L.P.-N., F.W.L., P.L.), Harvard Medical School, Boston, MA
| | - Mojtaba Bakhtiari
- Department of Pediatrics, Emory School of Medicine, Atlanta, GA (M.E.M., M.B., B.E.T., S.S.B., M.K.B.)
| | - Beena E. Thomas
- Department of Pediatrics, Emory School of Medicine, Atlanta, GA (M.E.M., M.B., B.E.T., S.S.B., M.K.B.)
| | - John Tomeo
- Department of Surgery, Division of Vascular and Endovascular Surgery, Beth Israel Deaconess Medical Center (L.M., J.T., M.C., C.F., L.P.-N., F.W.L., P.L.), Harvard Medical School, Boston, MA
| | - William Pilcher
- Department of Biomedical Engineering, Emory University, Atlanta, GA (W.P., M.K.B.)
| | - Mauricio Contreras
- Department of Surgery, Division of Vascular and Endovascular Surgery, Beth Israel Deaconess Medical Center (L.M., J.T., M.C., C.F., L.P.-N., F.W.L., P.L.), Harvard Medical School, Boston, MA
| | - Christiane Ferran
- Department of Surgery, Division of Vascular and Endovascular Surgery, Beth Israel Deaconess Medical Center (L.M., J.T., M.C., C.F., L.P.-N., F.W.L., P.L.), Harvard Medical School, Boston, MA
- Department of Medicine, Beth Israel Deaconess Medical Center, Center for Vascular Biology Research and the Division of Nephrology (C.F.), Harvard Medical School, Boston, MA
| | - Swati S. Bhasin
- Department of Pediatrics, Emory School of Medicine, Atlanta, GA (M.E.M., M.B., B.E.T., S.S.B., M.K.B.)
- Aflac Cancer and Blood Disorders Center, Children Healthcare of Atlanta, GA (S.S.B., M.K.B.)
| | - Leena Pradhan-Nabzdyk
- Department of Surgery, Division of Vascular and Endovascular Surgery, Beth Israel Deaconess Medical Center (L.M., J.T., M.C., C.F., L.P.-N., F.W.L., P.L.), Harvard Medical School, Boston, MA
| | - Frank W. LoGerfo
- Department of Surgery, Division of Vascular and Endovascular Surgery, Beth Israel Deaconess Medical Center (L.M., J.T., M.C., C.F., L.P.-N., F.W.L., P.L.), Harvard Medical School, Boston, MA
| | - Patric Liang
- Department of Surgery, Division of Vascular and Endovascular Surgery, Beth Israel Deaconess Medical Center (L.M., J.T., M.C., C.F., L.P.-N., F.W.L., P.L.), Harvard Medical School, Boston, MA
| | - Manoj K. Bhasin
- Department of Pediatrics, Emory School of Medicine, Atlanta, GA (M.E.M., M.B., B.E.T., S.S.B., M.K.B.)
- Aflac Cancer and Blood Disorders Center, Children Healthcare of Atlanta, GA (S.S.B., M.K.B.)
- Department of Biomedical Engineering, Emory University, Atlanta, GA (W.P., M.K.B.)
| |
Collapse
|
2
|
Amiri Roudbar M, Rosengren MK, Mousavi SF, Fegraeus K, Naboulsi R, Meadows JRS, Lindgren G. Effect of an endothelial regulatory module on plasma proteomics in exercising horses. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2024; 52:101265. [PMID: 38906044 DOI: 10.1016/j.cbd.2024.101265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 06/04/2024] [Accepted: 06/04/2024] [Indexed: 06/23/2024]
Abstract
Elite performing exercise requires an intricate modulation of the blood pressure to support the working muscles with oxygen. We have previously identified a genomic regulatory module that associates with differences in blood pressures of importance for elite performance in racehorses. This study aimed to determine the effect of the regulatory module on the protein repertoire. We sampled plasma from 12 Coldblooded trotters divided into two endothelial regulatory module haplotype groups, a sub-elite performing haplotype (SPH) and an elite performing haplotype (EPH), each at rest and exercise. The haplotype groups and their interaction were interrogated in two analyses, i) individual paired ratio analysis for identifying differentially abundant proteins of exercise (DAPE) and interaction (DAPI) between haplotype and exercise, and ii) unpaired ratio analysis for identifying differentially abundant protein of haplotype (DAPH). The proteomics analyses revealed a widespread change in plasma protein content during exercise, with a decreased tendency in protein abundance that is mainly related to lung function, tissue fluids, metabolism, calcium ion pathway and cellular energy metabolism. Furthermore, we provide the first investigation of the proteome variation due to the interaction between exercise and related blood pressure haplotypes, which this difference was related to a faster switch to the lipoprotein and lipid metabolism during exercise for EPH. The molecular signatures identified in the present study contribute to an improved understanding of exercise-related blood pressure regulation.
Collapse
Affiliation(s)
- Mahmoud Amiri Roudbar
- Department of Animal Science, Safiabad-Dezful Agricultural and Natural Resources Research and Education Center, Agricultural Research, Education and Extension Organization (AREEO), Dezful 333, Iran.
| | - Maria K Rosengren
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Uppsala, Sweden.
| | - Seyedeh Fatemeh Mousavi
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Uppsala, Sweden.
| | - Kim Fegraeus
- Department of Medical Sciences, Science for Life Laboratory, Uppsala University, Sweden.
| | - Rakan Naboulsi
- Department of Women's and Children's Health, Karolinska Institute, Tomtebodavägen 18A, Stockholm 17177, Sweden.
| | - Jennifer R S Meadows
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, 75132 Uppsala, Sweden.
| | - Gabriella Lindgren
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Uppsala, Sweden; Center for Animal Breeding and Genetics, Department of Biosystems, KU Leuven, 3001 Leuven, Belgium.
| |
Collapse
|
3
|
Tu X, Yin S, Zang J, Zhang T, Lv C, Zhao G. Understanding the Role of Filamentous Actin in Food Quality: From Structure to Application. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:11885-11899. [PMID: 38747409 DOI: 10.1021/acs.jafc.4c01877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
Actin, a multifunctional protein highly expressed in eukaryotes, is widely distributed throughout cells and serves as a crucial component of the cytoskeleton. Its presence is integral to maintaining cell morphology and participating in various biological processes. As an irreplaceable component of myofibrillar proteins, actin, including G-actin and F-actin, is highly related to food quality. Up to now, purification of actin at a moderate level remains to be overcome. In this paper, we have reviewed the structures and functions of actin, the methods to obtain actin, and the relationships between actin and food texture, color, and flavor. Moreover, actin finds applications in diverse fields such as food safety, bioengineering, and nanomaterials. Developing an actin preparation method at the industrial level will help promote its further applications in food science, nutrition, and safety.
Collapse
Affiliation(s)
- Xinyi Tu
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing Key Laboratory of Functional Food from Plant Resources, Beijing 100083, People's Republic of China
| | - Shuhua Yin
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing Key Laboratory of Functional Food from Plant Resources, Beijing 100083, People's Republic of China
| | - Jiachen Zang
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing Key Laboratory of Functional Food from Plant Resources, Beijing 100083, People's Republic of China
| | - Tuo Zhang
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing Key Laboratory of Functional Food from Plant Resources, Beijing 100083, People's Republic of China
| | - Chenyan Lv
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing Key Laboratory of Functional Food from Plant Resources, Beijing 100083, People's Republic of China
| | - Guanghua Zhao
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing Key Laboratory of Functional Food from Plant Resources, Beijing 100083, People's Republic of China
| |
Collapse
|
4
|
Heissler SM, Chinthalapudi K. Structural and functional mechanisms of actin isoforms. FEBS J 2024. [PMID: 38779987 DOI: 10.1111/febs.17153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 04/01/2024] [Accepted: 04/23/2024] [Indexed: 05/25/2024]
Abstract
Actin is a highly conserved and fundamental protein in eukaryotes and participates in a broad spectrum of cellular functions. Cells maintain a conserved ratio of actin isoforms, with muscle and non-muscle actins representing the main actin isoforms in muscle and non-muscle cells, respectively. Actin isoforms have specific and redundant functional roles and display different biochemistries, cellular localization, and interactions with myosins and actin-binding proteins. Understanding the specific roles of actin isoforms from the structural and functional perspective is crucial for elucidating the intricacies of cytoskeletal dynamics and regulation and their implications in health and disease. Here, we review how the structure contributes to the functional mechanisms of actin isoforms with a special emphasis on the questions of how post-translational modifications and disease-linked mutations affect actin isoforms biochemistry, function, and interaction with actin-binding proteins and myosin motors.
Collapse
Affiliation(s)
- Sarah M Heissler
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart & Lung Research Institute, The Ohio State University, Columbus, OH, USA
| | - Krishna Chinthalapudi
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart & Lung Research Institute, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
5
|
Allen-Gondringer A, Gau D, Dutta P, Roy P. Haplo-insufficiency of Profilin1 in vascular endothelial cells is beneficial but not sufficient to confer protection against experimentally induced atherosclerosis. Cytoskeleton (Hoboken) 2024:10.1002/cm.21859. [PMID: 38623956 PMCID: PMC11480255 DOI: 10.1002/cm.21859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 03/12/2024] [Accepted: 04/05/2024] [Indexed: 04/17/2024]
Abstract
Actin cytoskeleton plays an important role in various aspects of atherosclerosis, a key driver of ischemic heart disease. Actin-binding protein Profilin1 (Pfn1) is overexpressed in atherosclerotic plaques in human disease, and Pfn1, when partially depleted globally in all cell types, confers atheroprotection in vivo. This study investigates the impact of endothelial cell (EC)-specific partial loss of Pfn1 expression in atherosclerosis development. We utilized mice engineered for conditional heterozygous knockout of the Pfn1 gene in ECs, with atherosclerosis induced by depletion of hepatic LDL receptor by gene delivery of PCSK9 combined with high-cholesterol diet. Our studies show that partial depletion of EC Pfn1 has certain beneficial effects marked by dampening of select pro-atherogenic cytokines (CXCL10 and IL7) with concomitant reduction in cytotoxic T cell abundance but is not sufficient to reduce hyperlipidemia and confer atheroprotection in vivo. In light of these findings, we conclude that atheroprotective phenotype conferred by global Pfn1 haplo-insufficiency requires contributions of additional cell types that are relevant for atherosclerosis progression.
Collapse
Affiliation(s)
| | - David Gau
- Bioengineering, University of Pittsburgh, Pittsburgh, PA
| | - Partha Dutta
- Bioengineering, University of Pittsburgh, Pittsburgh, PA
- Medicine, University of Pittsburgh, Pittsburgh, PA
| | - Partha Roy
- Bioengineering, University of Pittsburgh, Pittsburgh, PA
- Pathology, University of Pittsburgh, Pittsburgh, PA
| |
Collapse
|
6
|
Michaud ME, Mota L, Bakhtiari M, Thomas BE, Tomeo J, Pilcher W, Contreras M, Ferran C, Bhasin S, Pradhan-Nabzdyk L, LoGerfo FW, Liang P, Bhasin MK. Integrated single-nuclei and spatial transcriptomic analysis reveals propagation of early acute vein harvest and distension injury signaling pathways following arterial implantation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.31.564995. [PMID: 37961724 PMCID: PMC10635041 DOI: 10.1101/2023.10.31.564995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Background Vein graft failure (VGF) following cardiovascular bypass surgery results in significant patient morbidity and cost to the healthcare system. Vein graft injury can occur during autogenous vein harvest and preparation, as well as after implantation into the arterial system, leading to the development of intimal hyperplasia, vein graft stenosis, and, ultimately, bypass graft failure. While previous studies have identified maladaptive pathways that occur shortly after implantation, the specific signaling pathways that occur during vein graft preparation are not well defined and may result in a cumulative impact on VGF. We, therefore, aimed to elucidate the response of the vein conduit wall during harvest and following implantation, probing the key maladaptive pathways driving graft failure with the overarching goal of identifying therapeutic targets for biologic intervention to minimize these natural responses to surgical vein graft injury. Methods Employing a novel approach to investigating vascular pathologies, we harnessed both single-nuclei RNA-sequencing (snRNA-seq) and spatial transcriptomics (ST) analyses to profile the genomic effects of vein grafts after harvest and distension, then compared these findings to vein grafts obtained 24 hours after carotid-cartoid vein bypass implantation in a canine model (n=4). Results Spatial transcriptomic analysis of canine cephalic vein after initial conduit harvest and distention revealed significant enrichment of pathways (P < 0.05) involved in the activation of endothelial cells (ECs), fibroblasts (FBs), and vascular smooth muscle cells (VSMCs), namely pathways responsible for cellular proliferation and migration and platelet activation across the intimal and medial layers, cytokine signaling within the adventitial layer, and extracellular matrix (ECM) remodeling throughout the vein wall. Subsequent snRNA-seq analysis supported these findings and further unveiled distinct EC and FB subpopulations with significant upregulation (P < 0.00001) of markers related to endothelial injury response and cellular activation of ECs, FBs, and VSMCs. Similarly, in vein grafts obtained 24 hours after arterial bypass, there was an increase in myeloid cell, protomyofibroblast, injury-response EC, and mesenchymal-transitioning EC subpopulations with a concomitant decrease in homeostatic ECs and fibroblasts. Among these markers were genes previously implicated in vein graft injury, including VCAN (versican), FBN1 (fibrillin-1), and VEGFC (vascular endothelial growth factor C), in addition to novel genes of interest such as GLIS3 (GLIS family zinc finger 3) and EPHA3 (ephrin-A3). These genes were further noted to be driving the expression of genes implicated in vascular remodeling and graft failure, such as IL-6, TGFBR1, SMAD4, and ADAMTS9. By integrating the ST and snRNA-seq datasets, we highlighted the spatial architecture of the vein graft following distension, wherein activated and mesenchymal-transitioning ECs, myeloid cells, and FBs were notably enriched in the intima and media of distended veins. Lastly, intercellular communication network analysis unveiled the critical roles of activated ECs, mesenchymal transitioning ECs, protomyofibroblasts, and VSMCs in upregulating signaling pathways associated with cellular proliferation (MDK, PDGF, VEGF), transdifferentiation (Notch), migration (ephrin, semaphorin), ECM remodeling (collagen, laminin, fibronectin), and inflammation (thrombospondin), following distension. Conclusions Vein conduit harvest and distension elicit a prompt genomic response facilitated by distinct cellular subpopulations heterogeneously distributed throughout the vein wall. This response was found to be further exacerbated following vein graft implantation, resulting in a cascade of maladaptive gene regulatory networks. Together, these results suggest that distension initiates the upregulation of pathological pathways that may ultimately contribute to bypass graft failure and presents potential early targets warranting investigation for targeted therapies. This work highlights the first applications of single-nuclei and spatial transcriptomic analyses to investigate venous pathologies, underscoring the utility of these methodologies and providing a foundation for future investigations.
Collapse
Affiliation(s)
- Marina E. Michaud
- Department of Pediatrics, Emory School of Medicine, Atlanta, GA 30322, USA
| | - Lucas Mota
- Department of Surgery, Division of Vascular and Endovascular Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Mojtaba Bakhtiari
- Department of Pediatrics, Emory School of Medicine, Atlanta, GA 30322, USA
| | - Beena E. Thomas
- Department of Pediatrics, Emory School of Medicine, Atlanta, GA 30322, USA
| | - John Tomeo
- Department of Surgery, Division of Vascular and Endovascular Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - William Pilcher
- Department of Biomedical Engineering, Emory University, Atlanta, GA 30322, USA
| | - Mauricio Contreras
- Department of Surgery, Division of Vascular and Endovascular Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Christiane Ferran
- Department of Surgery, Division of Vascular and Endovascular Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
- Center for Vascular Biology Research and the Division of Nephrology Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Swati Bhasin
- Department of Pediatrics, Emory School of Medicine, Atlanta, GA 30322, USA
- Aflac Cancer and Blood Disorders Center, Children Healthcare of Atlanta, Atlanta, GA
| | - Leena Pradhan-Nabzdyk
- Department of Surgery, Division of Vascular and Endovascular Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Frank W. LoGerfo
- Department of Surgery, Division of Vascular and Endovascular Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Patric Liang
- Department of Surgery, Division of Vascular and Endovascular Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Manoj K. Bhasin
- Department of Pediatrics, Emory School of Medicine, Atlanta, GA 30322, USA
- Aflac Cancer and Blood Disorders Center, Children Healthcare of Atlanta, Atlanta, GA
- Department of Biomedical Engineering, Emory University, Atlanta, GA 30322, USA
| |
Collapse
|
7
|
Saemann L, Wächter K, Gharpure N, Pohl S, Hoorn F, Korkmaz-Icöz S, Karck M, Veres G, Simm A, Szabó G. HTK vs. HTK-N for Coronary Endothelial Protection during Hypothermic, Oxygenated Perfusion of Hearts Donated after Circulatory Death. Int J Mol Sci 2024; 25:2262. [PMID: 38396938 PMCID: PMC10889240 DOI: 10.3390/ijms25042262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/07/2024] [Accepted: 02/12/2024] [Indexed: 02/25/2024] Open
Abstract
Protection of the coronary arteries during donor heart maintenance is pivotal to improve results and prevent the development of coronary allograft vasculopathy. The effect of hypothermic, oxygenated perfusion (HOP) with the traditional HTK and the novel HTK-N solution on the coronary microvasculature of donation-after-circulatory-death (DCD) hearts is known. However, the effect on the coronary macrovasculature is unknown. Thus, we maintained porcine DCD hearts by HOP with HTK or HTK-N for 4 h, followed by transplantation-equivalent reperfusion with blood for 2 h. Then, we removed the left anterior descending coronary artery (LAD) and compared the endothelial-dependent and -independent vasomotor function of both groups using bradykinin and sodium-nitroprusside (SNP). We also determined the transcriptome of LAD samples using microarrays. The endothelial-dependent relaxation was significantly better after HOP with HTK-N. The endothelial-independent relaxation was comparable between both groups. In total, 257 genes were expressed higher, and 668 genes were expressed lower in the HTK-N group. Upregulated genes/pathways were involved in endothelial and vascular smooth muscle cell preservation and heart development. Downregulated genes were related to ischemia/reperfusion injury, oxidative stress, mitochondrion organization, and immune reaction. The novel HTK-N solution preserves the endothelial function of DCD heart coronary arteries more effectively than traditional HTK.
Collapse
Affiliation(s)
- Lars Saemann
- Department of Cardiac Surgery, University Hospital Halle (Saale), University of Halle, 06120 Halle (Saale), Germany
- Department of Cardiac Surgery, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Kristin Wächter
- Department of Cardiac Surgery, University Hospital Halle (Saale), University of Halle, 06120 Halle (Saale), Germany
| | - Nitin Gharpure
- Department of Cardiac Surgery, University Hospital Halle (Saale), University of Halle, 06120 Halle (Saale), Germany
| | - Sabine Pohl
- Department of Cardiac Surgery, University Hospital Halle (Saale), University of Halle, 06120 Halle (Saale), Germany
| | - Fabio Hoorn
- Department of Cardiac Surgery, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Sevil Korkmaz-Icöz
- Department of Cardiac Surgery, University Hospital Halle (Saale), University of Halle, 06120 Halle (Saale), Germany
- Department of Cardiac Surgery, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Matthias Karck
- Department of Cardiac Surgery, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Gábor Veres
- Department of Cardiac Surgery, University Hospital Halle (Saale), University of Halle, 06120 Halle (Saale), Germany
- Department of Cardiac Surgery, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Andreas Simm
- Department of Cardiac Surgery, University Hospital Halle (Saale), University of Halle, 06120 Halle (Saale), Germany
| | - Gábor Szabó
- Department of Cardiac Surgery, University Hospital Halle (Saale), University of Halle, 06120 Halle (Saale), Germany
- Department of Cardiac Surgery, University Hospital Heidelberg, 69120 Heidelberg, Germany
| |
Collapse
|
8
|
Moztarzadeh S, Sepic S, Hamad I, Waschke J, Radeva MY, García-Ponce A. Cortactin is in a complex with VE-cadherin and is required for endothelial adherens junction stability through Rap1/Rac1 activation. Sci Rep 2024; 14:1218. [PMID: 38216638 PMCID: PMC10786853 DOI: 10.1038/s41598-024-51269-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 01/03/2024] [Indexed: 01/14/2024] Open
Abstract
Vascular permeability is mediated by Cortactin (Cttn) and regulated by several molecules including cyclic-adenosine-monophosphate, small Rho family GTPases and the actin cytoskeleton. However, it is unclear whether Cttn directly interacts with any of the junctional components or if Cttn intervenes with signaling pathways affecting the intercellular contacts and the cytoskeleton. To address these questions, we employed immortalized microvascular myocardial endothelial cells derived from wild-type and Cttn-knock-out mice. We found that lack of Cttn compromised barrier integrity due to fragmented membrane distribution of different junctional proteins. Moreover, immunoprecipitations revealed that Cttn is within the VE-cadherin-based adherens junction complex. In addition, lack of Cttn slowed-down barrier recovery after Ca2+ repletion. The role of Cttn for cAMP-mediated endothelial barrier regulation was analyzed using Forskolin/Rolipram. In contrast to Cttn-KO, WT cells reacted with increased transendothelial electrical resistance. Absence of Cttn disturbed Rap1 and Rac1 activation in Cttn-depleted cells. Surprisingly, despite the absence of Cttn, direct activation of Rac1/Cdc42/RhoA by CN04 increased barrier resistance and induced well-defined cortical actin and intracellular actin bundles. In summary, our data show that Cttn is required for basal barrier integrity by allowing proper membrane distribution of junctional proteins and for cAMP-mediated activation of the Rap1/Rac1 signaling pathway.
Collapse
Affiliation(s)
- Sina Moztarzadeh
- Chair of Vegetative Anatomy, Faculty of Medicine, Ludwig-Maximilians-University (LMU) Munich, Pettenkoferstraße 11, 80336, Munich, Germany
| | - Sara Sepic
- Chair of Vegetative Anatomy, Faculty of Medicine, Ludwig-Maximilians-University (LMU) Munich, Pettenkoferstraße 11, 80336, Munich, Germany
| | - Ibrahim Hamad
- Chair of Vegetative Anatomy, Faculty of Medicine, Ludwig-Maximilians-University (LMU) Munich, Pettenkoferstraße 11, 80336, Munich, Germany
| | - Jens Waschke
- Chair of Vegetative Anatomy, Faculty of Medicine, Ludwig-Maximilians-University (LMU) Munich, Pettenkoferstraße 11, 80336, Munich, Germany
| | - Mariya Y Radeva
- Chair of Vegetative Anatomy, Faculty of Medicine, Ludwig-Maximilians-University (LMU) Munich, Pettenkoferstraße 11, 80336, Munich, Germany
| | - Alexander García-Ponce
- Chair of Vegetative Anatomy, Faculty of Medicine, Ludwig-Maximilians-University (LMU) Munich, Pettenkoferstraße 11, 80336, Munich, Germany.
| |
Collapse
|
9
|
Li Y, Liu Z, Han X, Liang F, Zhang Q, Huang X, Shi X, Huo H, Han M, Liu X, Zhu H, He L, Shen L, Hu X, Wang J, Wang QD, Smart N, Zhou B, He B. Dynamics of Endothelial Cell Generation and Turnover in Arteries During Homeostasis and Diseases. Circulation 2024; 149:135-154. [PMID: 38084582 DOI: 10.1161/circulationaha.123.064301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 10/06/2023] [Indexed: 01/10/2024]
Abstract
BACKGROUND Endothelial cell (EC) generation and turnover by self-proliferation contributes to vascular repair and regeneration. The ability to accurately measure the dynamics of EC generation would advance our understanding of cellular mechanisms of vascular homeostasis and diseases. However, it is currently challenging to evaluate the dynamics of EC generation in large vessels such as arteries because of their infrequent proliferation. METHODS By using dual recombination systems based on Cre-loxP and Dre-rox, we developed a genetic system for temporally seamless recording of EC proliferation in vivo. We combined genetic recording of EC proliferation with single-cell RNA sequencing and gene knockout to uncover cellular and molecular mechanisms underlying EC generation in arteries during homeostasis and disease. RESULTS Genetic proliferation tracing reveals that ≈3% of aortic ECs undergo proliferation per month in adult mice during homeostasis. The orientation of aortic EC division is generally parallel to blood flow in the aorta, which is regulated by the mechanosensing protein Piezo1. Single-cell RNA sequencing analysis reveals 4 heterogeneous aortic EC subpopulations with distinct proliferative activity. EC cluster 1 exhibits transit-amplifying cell features with preferential proliferative capacity and enriched expression of stem cell markers such as Sca1 and Sox18. EC proliferation increases in hypertension but decreases in type 2 diabetes, coinciding with changes in the extent of EC cluster 1 proliferation. Combined gene knockout and proliferation tracing reveals that Hippo/vascular endothelial growth factor receptor 2 signaling pathways regulate EC proliferation in large vessels. CONCLUSIONS Genetic proliferation tracing quantitatively delineates the dynamics of EC generation and turnover, as well as EC division orientation, in large vessels during homeostasis and disease. An EC subpopulation in the aorta exhibits more robust cell proliferation during homeostasis and type 2 diabetes, identifying it as a potential therapeutic target for vascular repair and regeneration.
Collapse
Affiliation(s)
- Yi Li
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiaotong University School of Medicine, China (Y.L., X. Han, F.L., X.S., H.H., L.S., B.Z., B.H.)
- New Cornerstone Investigator Institute, State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai, China (Y.L., Z.L., X. Han, X. Huang, M.H., X.L., H.Z., B.Z.)
| | - Zixin Liu
- New Cornerstone Investigator Institute, State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai, China (Y.L., Z.L., X. Han, X. Huang, M.H., X.L., H.Z., B.Z.)
| | - Ximeng Han
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiaotong University School of Medicine, China (Y.L., X. Han, F.L., X.S., H.H., L.S., B.Z., B.H.)
- New Cornerstone Investigator Institute, State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai, China (Y.L., Z.L., X. Han, X. Huang, M.H., X.L., H.Z., B.Z.)
| | - Feng Liang
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiaotong University School of Medicine, China (Y.L., X. Han, F.L., X.S., H.H., L.S., B.Z., B.H.)
| | - Qianyu Zhang
- School of Life Science and Technology, ShanghaiTech University, China (Q.Z., M.H., B.Z.)
| | - Xiuzhen Huang
- New Cornerstone Investigator Institute, State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai, China (Y.L., Z.L., X. Han, X. Huang, M.H., X.L., H.Z., B.Z.)
| | - Xin Shi
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiaotong University School of Medicine, China (Y.L., X. Han, F.L., X.S., H.H., L.S., B.Z., B.H.)
| | - Huanhuan Huo
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiaotong University School of Medicine, China (Y.L., X. Han, F.L., X.S., H.H., L.S., B.Z., B.H.)
| | - Maoying Han
- New Cornerstone Investigator Institute, State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai, China (Y.L., Z.L., X. Han, X. Huang, M.H., X.L., H.Z., B.Z.)
- School of Life Science and Technology, ShanghaiTech University, China (Q.Z., M.H., B.Z.)
| | - Xiuxiu Liu
- New Cornerstone Investigator Institute, State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai, China (Y.L., Z.L., X. Han, X. Huang, M.H., X.L., H.Z., B.Z.)
| | - Huan Zhu
- New Cornerstone Investigator Institute, State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai, China (Y.L., Z.L., X. Han, X. Huang, M.H., X.L., H.Z., B.Z.)
| | - Lingjuan He
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China (L.H.)
| | - Linghong Shen
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiaotong University School of Medicine, China (Y.L., X. Han, F.L., X.S., H.H., L.S., B.Z., B.H.)
| | - Xinyang Hu
- Department of Cardiology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China (X.H., J.W.)
| | - Jian'an Wang
- Department of Cardiology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China (X.H., J.W.)
| | - Qing-Dong Wang
- Bioscience Cardiovascular, Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden (Q.D.W.)
| | - Nicola Smart
- Institute of Developmental and Regenerative Medicine, Department of Physiology, Anatomy and Genetics, University of Oxford, UK (N.S.)
| | - Bin Zhou
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiaotong University School of Medicine, China (Y.L., X. Han, F.L., X.S., H.H., L.S., B.Z., B.H.)
- New Cornerstone Investigator Institute, State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai, China (Y.L., Z.L., X. Han, X. Huang, M.H., X.L., H.Z., B.Z.)
- School of Life Science and Technology, ShanghaiTech University, China (Q.Z., M.H., B.Z.)
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, China (B.Z.)
| | - Ben He
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiaotong University School of Medicine, China (Y.L., X. Han, F.L., X.S., H.H., L.S., B.Z., B.H.)
| |
Collapse
|
10
|
Dong HQ, Hu XY, Liang SJ, Wang RS, Cheng P. Selection of reference genes in liproxstatin-1-treated K562 Leukemia cells via RT-qPCR and RNA sequencing. Mol Biol Rep 2024; 51:55. [PMID: 38165476 DOI: 10.1007/s11033-023-08912-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 11/14/2023] [Indexed: 01/03/2024]
Abstract
BACKGROUND Reverse transcription quantitative polymerase chain reaction (RT-qPCR) can accurately detect relative gene expression levels in biological samples. However, widely used reference genes exhibit unstable expression under certain conditions. METHODS AND RESULTS Here, we compared the expression stability of eight reference genes (RPLP0, RPS18, RPL13, EEF1A1, β-actin, GAPDH, HPRT1, and TUBB) commonly used in liproxstatin-1 (Lip-1)-treated K562 cells using RNA-sequencing and RT-qPCR. The expression of EEF1A1, ACTB, GAPDH, HPRT1, and TUBB was considerably lower in cells treated with 20 μM Lip-1 than in the control, and GAPDH also showed significant downregulation in the 10 μM Lip-1 group. Meanwhile, when we used geNorm, NormFinder, and BestKeeper to compare expression stability, we found that GAPDH and HPRT1 were the most unstable reference genes among all those tested. Stability analysis yielded very similar results when geNorm or BestKeeper was used but not when NormFinder was used. Specifically, geNorm and BestKeeper identified RPL13 and RPLP0 as the most stable genes under 20 μM Lip-1 treatment, whereas RPL13, EEF1A1, and TUBB were the most stable under 10 μM Lip-1 treatment. TUBB and EEF1A1 were the most stable genes in both treatment groups according to the results obtained using NormFinder. An assumed most stable gene was incorporated into each software to validate the accuracy. The results suggest that NormFinder is not an appropriate algorithm for this study. CONCLUSIONS Stable reference genes were recognized using geNorm and BestKeeper but not NormFinder. Overall, RPL13 and RPLP0 were the most stable reference genes under 20 μM Lip-1 treatment, whereas RPL13, EEF1A1, and TUBB were the most stable genes under 10 μM Lip-1 treatment.
Collapse
Affiliation(s)
- Hai-Qun Dong
- Department of Radiation Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Xue-Ying Hu
- Department of Radiation Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Shi-Jing Liang
- Department of Hematology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
- Key Laboratory of Hematology, Guangxi Medical University, Education Department of Guangxi Zhuang Autonomous Region, Nanning, 530021, China
| | - Ren-Sheng Wang
- Department of Radiation Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China.
| | - Peng Cheng
- Department of Hematology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China.
- Key Laboratory of Hematology, Guangxi Medical University, Education Department of Guangxi Zhuang Autonomous Region, Nanning, 530021, China.
| |
Collapse
|
11
|
Angelakakis G, Varkhedi M, Dabkowski TR, Diaz MJ, Yeagley M, Blanck G. B-cell ALL with SOX11 gene amplification associates with a worse outcome. Cell Cycle 2024; 23:36-42. [PMID: 38350028 PMCID: PMC11005798 DOI: 10.1080/15384101.2024.2306756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 01/12/2024] [Indexed: 02/15/2024] Open
Abstract
Copy number variation (CNV) of certain genes in pediatric Acute Lymphoblastic Leukemia (ALL) impacts gene expression levels. Here, we aimed to investigate the potential prognostic utility of CNVs in pediatric B-ALL and T-ALL. Using genomics files representing cases from the TARGET-ALL-P2 dataset, genes commonly involved in ALL development were analyzed for CNVs. Case IDs representing increased copy numbers for SOX11, PDGFRB, and MDK represented a worse overall survival probability specifically for B-ALL (logrank p=0.021, p=0.0052, p=0.019, respectively). These data support the continued investigation of using CNVs for clinical prognostic biomarkers for pediatric B-ALL.
Collapse
Affiliation(s)
- George Angelakakis
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Mallika Varkhedi
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Toriana R. Dabkowski
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Michael J. Diaz
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | | | - George Blanck
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| |
Collapse
|
12
|
Olejárová S, Horváth D, Huntošová V. The Remodulation of Actin Bundles during the Stimulation of Mitochondria in Adult Human Fibroblasts in Response to Light. Pharmaceutics 2023; 16:20. [PMID: 38258031 PMCID: PMC10818370 DOI: 10.3390/pharmaceutics16010020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/12/2023] [Accepted: 12/15/2023] [Indexed: 01/24/2024] Open
Abstract
β-actin belongs to cytoskeletal structures that change dynamically in cells according to various stimuli. Human skin can be considered as an organ that is very frequently exposed to various stress factors, of which light plays an important role. The present study focuses on adult human fibroblasts exposed to two types of light stress. Orange light with a wavelength of 590 nm was used here to stimulate the photosensitizer localized in the cells as a residual dose of photodynamic therapy (PDT). On the other hand, near-infrared light with a wavelength of 808 nm was considered for photobiomodulation (PBM), which is often used in healing processes. Confocal fluorescence microscopy was used to observe changes in intercellular communication, mitochondrial structures, and cytoskeletal dynamics defined by the remodulation of β-actin of fibroblasts. The number of β-actin bundles forming spherical structures was detected after light exposure. These structures as β-actin oligomers were confirmed with super-resolution microscopy. While PDT led to the disintegration of actin oligomers, PBM increased their number. The interaction of β-actin with mitochondria was observed. The combination of PDT and PBM treatments is important to minimize the side effects of cancer treatment with PDT on healthy cells, as shown by the cell metabolism assay in this work. In this work, β-actin is presented as an important parameter that changes and is involved in the response of cells to PDT and PBM.
Collapse
Affiliation(s)
- Soňa Olejárová
- Department of Biophysics, Institute of Physics, Faculty of Science, P.J. Šafárik University in Košice, Jesenná 5, 041 54 Kosice, Slovakia;
| | - Denis Horváth
- Center for Interdisciplinary Biosciences, Technology and Innovation Park, P.J. Šafárik University in Košice, Jesenná 5, 041 54 Košice, Slovakia;
| | - Veronika Huntošová
- Center for Interdisciplinary Biosciences, Technology and Innovation Park, P.J. Šafárik University in Košice, Jesenná 5, 041 54 Košice, Slovakia;
| |
Collapse
|
13
|
Johannsen EB, Skakkebæk A, Kalucka JM, Fedder J, Gravholt CH, Just J. The testicular microvasculature in Klinefelter syndrome is immature with compromised integrity and characterized by excessive inflammatory cross-talk. Hum Reprod 2023; 38:2339-2349. [PMID: 37910660 PMCID: PMC10694403 DOI: 10.1093/humrep/dead224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 10/11/2023] [Indexed: 11/03/2023] Open
Abstract
STUDY QUESTION Does Klinefelter syndrome (KS) lead to a distinct gene expression pattern at single-cell level in the testes that could provide insight into the reported microvascular dysfunction in the testes? SUMMARY ANSWER A distinct gene expression pattern within microvascular-associated cells of males with KS suggests excessive endothelial cell (EC) activation, disorganized vessel formation, and the presence of immature vessels with compromised integrity. WHAT IS KNOWN ALREADY Recent studies show that males with KS exhibit microvascular dysfunction in their testes, which affects blood flow and is associated with lower circulating levels of testosterone. STUDY DESIGN, SIZE, DURATION A comparative cross-sectional study of males with KS (n = 6), non-obstructive azoospermia (NOA) (n = 5), cryptozoospermia (n = 3), and controls (n = 15) was carried out. PARTICIPANTS/MATERIALS, SETTING, METHODS We analyzed publicly available single-cell RNA sequencing data of testicular cells from males with KS, males with NOA, males with cryptozoospermia, and controls. The integration of these datasets allowed us to analyze gene expression profiles and communication patterns among the cell types within the testis and to identify capillary ECs to investigate changes at the microvascular level. MAIN RESULTS AND THE ROLE OF CHANCE Rooted in changes at the single-cell level, our study demonstrates a shift in gene expression forming the foundation for altered cellular communication, microvascular remodeling, and pro-inflammatory responses within the testes of males with KS. We identified genes that were dysregulated in capillary ECs from males with KS (Padj < 0.05). Specifically, the unique microvascular gene expression in males with KS indicated enhanced capillary EC activation and increased inflammatory cross-talk, leading to impaired vessel maturation and increased EC barrier permeability. LIMITATIONS, REASONS FOR CAUTION Our study is constrained by an unbalanced design, with varying sample sizes and number of cells within each group. We acknowledge the restricted access to clinical information. In addition, our findings were deduced from changes in gene expression, which limits us to infer potential biological consequences arising from these alterations. Furthermore, the absence of a pre-pubertal age group limits the generalizability of our findings and warrants further investigation. WIDER IMPLICATIONS OF THE FINDINGS This study offers novel insights into the testicular pathophysiology in KS and underscores the potential contribution of microvascular dysfunction to the hypogonadism and infertility observed in males with KS. While this study aims to better understand the microvascular dysfunction in KS, the precise connections to testosterone deficiency and testicular atrophy remain to be fully elucidated. STUDY FUNDING/COMPETING INTEREST(S) A.S. was supported by the Independent Research Fund Denmark (0134-00130B). C.H.G. was supported by Novo Nordisk Foundation (NNF15OC0016474, NNF20OC0060610), 'Fonden til lægevidenskabens fremme', the Familien Hede Nielsen foundation and the Independent Research Fund Denmark (0134-00406A). E.B.J. was supported by Aarhus University and E.B.J. and C.H.G by the Independent Research Fund Denmark (2096-00165A). J.M.K. was supported by Lundbeckfonden (R307-2018-3667), Carlsberg Fonden (CF19-0687), Novo Nordisk Fonden (0073440) and Steno Diabetes Center Aarhus (SDCA). The authors declare no conflicts of interest. TRIAL REGISTRATION NUMBER N/A.
Collapse
Affiliation(s)
- Emma B Johannsen
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus N, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus N, Denmark
| | - Anne Skakkebæk
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus N, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus N, Denmark
- Department of Clinical Genetics, Aarhus University Hospital, Aarhus N, Denmark
| | - Joanna M Kalucka
- Department of Biomedicine, Aarhus University, Aarhus C, Denmark
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus N, Denmark
| | - Jens Fedder
- Centre of Andrology and Fertility Clinic, Odense University Hospital, Odense C, Denmark
- Research Unit of Gynaecology and Obstetrics, University of Southern Denmark, Odense C, Denmark
| | - Claus H Gravholt
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus N, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus N, Denmark
- Department of Endocrinology, Aarhus University Hospital, Aarhus N, Denmark
| | - Jesper Just
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus N, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus N, Denmark
| |
Collapse
|
14
|
Nietmann P, Kaub K, Suchenko A, Stenz S, Warnecke C, Balasubramanian MK, Janshoff A. Cytosolic actin isoforms form networks with different rheological properties that indicate specific biological function. Nat Commun 2023; 14:7989. [PMID: 38042893 PMCID: PMC10693642 DOI: 10.1038/s41467-023-43653-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 11/15/2023] [Indexed: 12/04/2023] Open
Abstract
The implications of the existence of different actins expressed in epithelial cells for network mechanics and dynamics is investigated by microrheology and confocal imaging. γ-actin predominately found in the apical cortex forms stiffer networks compared to β-actin, which is preferentially organized in stress fibers. We attribute this to selective interactions with Mg2+-ions interconnecting the filaments' N-termini. Bundling propensity of the isoforms is different in the presence of Mg2+-ions, while crosslinkers such as α-actinin, fascin, and heavy meromyosin alter the mechanical response independent of the isoform. In the presence of myosin, β-actin networks show a large number of small contraction foci, while γ-actin displays larger but fewer foci indicative of a stronger interaction with myosin motors. We infer that subtle changes in the amino acid sequence of actin isoforms lead to alterations of the mechanical properties on the network level with potential implications for specific biological functions.
Collapse
Affiliation(s)
- Peter Nietmann
- Institute of Physical Chemistry, University of Goettingen, Tammannstr. 6, Göttingen, 37077, Germany
| | - Kevin Kaub
- Institute of Physical Chemistry, University of Goettingen, Tammannstr. 6, Göttingen, 37077, Germany
- Max Planck School Matter to Life, Max Planck Institute for Medical Research, Jahnstr. 29, Heidelberg, 69120, Germany
| | - Andrejus Suchenko
- Warwick Medical School, University of Warwick, Coventry, CV4 7AL, UK
| | - Susanne Stenz
- Institute of Physical Chemistry, University of Goettingen, Tammannstr. 6, Göttingen, 37077, Germany
| | - Claas Warnecke
- Institute of Physical Chemistry, University of Goettingen, Tammannstr. 6, Göttingen, 37077, Germany
| | | | - Andreas Janshoff
- Institute of Physical Chemistry, University of Goettingen, Tammannstr. 6, Göttingen, 37077, Germany.
- Max Planck School Matter to Life, Max Planck Institute for Medical Research, Jahnstr. 29, Heidelberg, 69120, Germany.
| |
Collapse
|
15
|
Rohringer S, Grasl C, Ehrmann K, Hager P, Hahn C, Specht SJ, Walter I, Schneider KH, Zopf LM, Baudis S, Liska R, Schima H, Podesser BK, Bergmeister H. Biodegradable, Self-Reinforcing Vascular Grafts for In Situ Tissue Engineering Approaches. Adv Healthc Mater 2023; 12:e2300520. [PMID: 37173073 PMCID: PMC11468867 DOI: 10.1002/adhm.202300520] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/21/2023] [Indexed: 05/15/2023]
Abstract
Clinically available small-diameter synthetic vascular grafts (SDVGs) have unsatisfactory patency rates due to impaired graft healing. Therefore, autologous implants are still the gold standard for small vessel replacement. Bioresorbable SDVGs may be an alternative, but many polymers have inadequate biomechanical properties that lead to graft failure. To overcome these limitations, a new biodegradable SDVG is developed to ensure safe use until adequate new tissue is formed. SDVGs are electrospun using a polymer blend composed of thermoplastic polyurethane (TPU) and a new self-reinforcing TP(U-urea) (TPUU). Biocompatibility is tested in vitro by cell seeding and hemocompatibility tests. In vivo performance is evaluated in rats over a period for up to six months. Autologous rat aortic implants serve as a control group. Scanning electron microscopy, micro-computed tomography (µCT), histology, and gene expression analyses are applied. TPU/TPUU grafts show significant improvement of biomechanical properties after water incubation and exhibit excellent cyto- and hemocompatibility. All grafts remain patent, and biomechanical properties are sufficient despite wall thinning. No inflammation, aneurysms, intimal hyperplasia, or thrombus formation are observed. Evaluation of graft healing shows similar gene expression profiles of TPU/TPUU and autologous conduits. These new biodegradable, self-reinforcing SDVGs may be promising candidates for clinical use in the future.
Collapse
Affiliation(s)
- Sabrina Rohringer
- Center for Biomedical Research and Translational SurgeryMedical University of ViennaWaehringer Gürtel 18‐20Vienna1090Austria
- Austrian Cluster for Tissue RegenerationDonaueschingenstraße 13Vienna1200Austria
- Ludwig Boltzmann Institute for Cardiovascular ResearchWaehringer Gürtel 18‐20Vienna1090Austria
| | - Christian Grasl
- Ludwig Boltzmann Institute for Cardiovascular ResearchWaehringer Gürtel 18‐20Vienna1090Austria
- Center for Medical Physics and Biomedical EngineeringMedical University of ViennaWaehringer Gürtel 18‐20Vienna1090Austria
| | - Katharina Ehrmann
- Center for Biomedical Research and Translational SurgeryMedical University of ViennaWaehringer Gürtel 18‐20Vienna1090Austria
- Austrian Cluster for Tissue RegenerationDonaueschingenstraße 13Vienna1200Austria
- Institute of Applied Synthetic ChemistryTechnical University of ViennaGetreidemarkt 9/163Vienna1060Austria
| | - Pia Hager
- Center for Biomedical Research and Translational SurgeryMedical University of ViennaWaehringer Gürtel 18‐20Vienna1090Austria
- Ludwig Boltzmann Institute for Cardiovascular ResearchWaehringer Gürtel 18‐20Vienna1090Austria
| | - Clemens Hahn
- Center for Biomedical Research and Translational SurgeryMedical University of ViennaWaehringer Gürtel 18‐20Vienna1090Austria
- Ludwig Boltzmann Institute for Cardiovascular ResearchWaehringer Gürtel 18‐20Vienna1090Austria
| | - Sophie J. Specht
- Center for Biomedical Research and Translational SurgeryMedical University of ViennaWaehringer Gürtel 18‐20Vienna1090Austria
- Ludwig Boltzmann Institute for Cardiovascular ResearchWaehringer Gürtel 18‐20Vienna1090Austria
| | - Ingrid Walter
- Department of PathobiologyUniversity of Veterinary MedicineVeterinaerplatz 1Vienna1210Austria
| | - Karl H. Schneider
- Center for Biomedical Research and Translational SurgeryMedical University of ViennaWaehringer Gürtel 18‐20Vienna1090Austria
- Austrian Cluster for Tissue RegenerationDonaueschingenstraße 13Vienna1200Austria
- Ludwig Boltzmann Institute for Cardiovascular ResearchWaehringer Gürtel 18‐20Vienna1090Austria
| | - Lydia M. Zopf
- Austrian Cluster for Tissue RegenerationDonaueschingenstraße 13Vienna1200Austria
- Ludwig Boltzmann Institute for TraumatologyDonaueschingenstraße 13Vienna1200Austria
| | - Stefan Baudis
- Austrian Cluster for Tissue RegenerationDonaueschingenstraße 13Vienna1200Austria
- Institute of Applied Synthetic ChemistryTechnical University of ViennaGetreidemarkt 9/163Vienna1060Austria
| | - Robert Liska
- Austrian Cluster for Tissue RegenerationDonaueschingenstraße 13Vienna1200Austria
- Institute of Applied Synthetic ChemistryTechnical University of ViennaGetreidemarkt 9/163Vienna1060Austria
| | - Heinrich Schima
- Ludwig Boltzmann Institute for Cardiovascular ResearchWaehringer Gürtel 18‐20Vienna1090Austria
- Center for Medical Physics and Biomedical EngineeringMedical University of ViennaWaehringer Gürtel 18‐20Vienna1090Austria
| | - Bruno K. Podesser
- Center for Biomedical Research and Translational SurgeryMedical University of ViennaWaehringer Gürtel 18‐20Vienna1090Austria
- Austrian Cluster for Tissue RegenerationDonaueschingenstraße 13Vienna1200Austria
- Ludwig Boltzmann Institute for Cardiovascular ResearchWaehringer Gürtel 18‐20Vienna1090Austria
| | - Helga Bergmeister
- Center for Biomedical Research and Translational SurgeryMedical University of ViennaWaehringer Gürtel 18‐20Vienna1090Austria
- Austrian Cluster for Tissue RegenerationDonaueschingenstraße 13Vienna1200Austria
- Ludwig Boltzmann Institute for Cardiovascular ResearchWaehringer Gürtel 18‐20Vienna1090Austria
| |
Collapse
|
16
|
Zhao W, Wang L, Wang Y, Yuan H, Zhao M, Lian H, Ma S, Xu K, Li Z, Yu G. Injured Endothelial Cell: A Risk Factor for Pulmonary Fibrosis. Int J Mol Sci 2023; 24:ijms24108749. [PMID: 37240093 DOI: 10.3390/ijms24108749] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/06/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
The pathological features of pulmonary fibrosis (PF) are the abnormal activation and proliferation of myofibroblasts and the extraordinary deposition of the extracellular matrix (ECM). However, the pathogenesis of PF is still indistinct. In recent years, many researchers have realized that endothelial cells had a crucial role in the development of PF. Studies have demonstrated that about 16% of the fibroblasts in the lung tissue of fibrotic mice were derived from endothelial cells. Endothelial cells transdifferentiated into mesenchymal cells via the endothelial-mesenchymal transition (E(nd)MT), leading to the excessive proliferation of endothelial-derived mesenchymal cells and the accumulation of fibroblasts and ECM. This suggested that endothelial cells, a significant component of the vascular barrier, played an essential role in PF. Herein, this review discusses E(nd)MT and its contribution to the activation of other cells in PF, which could provide new ideas for further understanding the source and activation mechanism of fibroblasts and the pathogenesis of PF.
Collapse
Affiliation(s)
- Weiming Zhao
- State Key Laboratory of Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Organ Fibrosis, Institute of Biomedical Science, College of Life Science, Henan Normal University, Xinxiang 453007, China
| | - Lan Wang
- State Key Laboratory of Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Organ Fibrosis, Institute of Biomedical Science, College of Life Science, Henan Normal University, Xinxiang 453007, China
| | - Yaxuan Wang
- State Key Laboratory of Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Organ Fibrosis, Institute of Biomedical Science, College of Life Science, Henan Normal University, Xinxiang 453007, China
| | - Hongmei Yuan
- State Key Laboratory of Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Organ Fibrosis, Institute of Biomedical Science, College of Life Science, Henan Normal University, Xinxiang 453007, China
| | - Mengxia Zhao
- State Key Laboratory of Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Organ Fibrosis, Institute of Biomedical Science, College of Life Science, Henan Normal University, Xinxiang 453007, China
| | - Hui Lian
- State Key Laboratory of Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Organ Fibrosis, Institute of Biomedical Science, College of Life Science, Henan Normal University, Xinxiang 453007, China
| | - Shuaichen Ma
- State Key Laboratory of Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Organ Fibrosis, Institute of Biomedical Science, College of Life Science, Henan Normal University, Xinxiang 453007, China
| | - Kai Xu
- State Key Laboratory of Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Organ Fibrosis, Institute of Biomedical Science, College of Life Science, Henan Normal University, Xinxiang 453007, China
| | - Zhongzheng Li
- State Key Laboratory of Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Organ Fibrosis, Institute of Biomedical Science, College of Life Science, Henan Normal University, Xinxiang 453007, China
| | - Guoying Yu
- State Key Laboratory of Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Organ Fibrosis, Institute of Biomedical Science, College of Life Science, Henan Normal University, Xinxiang 453007, China
| |
Collapse
|
17
|
Jeruzalska E, Mazur AJ. The Role of non-muscle actin paralogs in cell cycle progression and proliferation. Eur J Cell Biol 2023; 102:151315. [PMID: 37099935 DOI: 10.1016/j.ejcb.2023.151315] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 04/14/2023] [Accepted: 04/17/2023] [Indexed: 04/28/2023] Open
Abstract
Uncontrolled cell proliferation leads to several pathologies, including cancer. Thus, this process must be tightly regulated. The cell cycle accounts for cell proliferation, and its progression is coordinated with changes in cell shape, for which cytoskeleton reorganization is responsible. Rearrangement of the cytoskeleton allows for its participation in the precise division of genetic material and cytokinesis. One of the main cytoskeletal components is filamentous actin-based structures. Mammalian cells have at least six actin paralogs, four of which are muscle-specific, while two, named β- and γ-actin, are abundantly present in all types of cells. This review summarizes the findings that establish the role of non-muscle actin paralogs in regulating cell cycle progression and proliferation. We discuss studies showing that the level of a given non-muscle actin paralog in a cell influences the cell's ability to progress through the cell cycle and, thus, proliferation. Moreover, we elaborate on the non-muscle actins' role in regulating gene transcription, interactions of actin paralogs with proteins involved in controlling cell proliferation, and the contribution of non-muscle actins to different structures in a dividing cell. The data cited in this review show that non-muscle actins regulate the cell cycle and proliferation through varying mechanisms. We point to the need for further studies addressing these mechanisms.
Collapse
Affiliation(s)
- Estera Jeruzalska
- Department of Cell Pathology, Faculty of Biotechnology, University of Wroclaw, Poland
| | - Antonina J Mazur
- Department of Cell Pathology, Faculty of Biotechnology, University of Wroclaw, Poland.
| |
Collapse
|
18
|
Yadunandanan Nair N, Samuel V, Ramesh L, Marib A, David DT, Sundararaman A. Actin cytoskeleton in angiogenesis. Biol Open 2022; 11:bio058899. [PMID: 36444960 PMCID: PMC9729668 DOI: 10.1242/bio.058899] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2024] Open
Abstract
Actin, one of the most abundant intracellular proteins in mammalian cells, is a critical regulator of cell shape and polarity, migration, cell division, and transcriptional response. Angiogenesis, or the formation of new blood vessels in the body is a well-coordinated multi-step process. Endothelial cells lining the blood vessels acquire several new properties such as front-rear polarity, invasiveness, rapid proliferation and motility during angiogenesis. This is achieved by changes in the regulation of the actin cytoskeleton. Actin remodelling underlies the switch between the quiescent and angiogenic state of the endothelium. Actin forms endothelium-specific structures that support uniquely endothelial functions. Actin regulators at endothelial cell-cell junctions maintain the integrity of the blood-tissue barrier while permitting trans-endothelial leukocyte migration. This review focuses on endothelial actin structures and less-recognised actin-mediated endothelial functions. Readers are referred to other recent reviews for the well-recognised roles of actin in endothelial motility, barrier functions and leukocyte transmigration. Actin generates forces that are transmitted to the extracellular matrix resulting in vascular matrix remodelling. In this review, we attempt to synthesize our current understanding of the roles of actin in vascular morphogenesis. We speculate on the vascular bed specific differences in endothelial actin regulation and its role in the vast heterogeneity in endothelial morphology and function across the various tissues of our body.
Collapse
Affiliation(s)
- Nidhi Yadunandanan Nair
- Cardiovascular Diseases and Diabetes Biology, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India695014
| | - Victor Samuel
- Cardiovascular Diseases and Diabetes Biology, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India695014
| | - Lariza Ramesh
- Cardiovascular Diseases and Diabetes Biology, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India695014
| | - Areeba Marib
- Cardiovascular Diseases and Diabetes Biology, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India695014
| | - Deena T. David
- Cardiovascular Diseases and Diabetes Biology, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India695014
| | - Ananthalakshmy Sundararaman
- Cardiovascular Diseases and Diabetes Biology, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India695014
| |
Collapse
|
19
|
Shakhov AS, Kovaleva PA, Churkina AS, Kireev II, Alieva IB. Colocalization Analysis of Cytoplasmic Actin Isoforms Distribution in Endothelial Cells. Biomedicines 2022; 10:3194. [PMID: 36551950 PMCID: PMC9775052 DOI: 10.3390/biomedicines10123194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 12/06/2022] [Accepted: 12/07/2022] [Indexed: 12/13/2022] Open
Abstract
Actin cytoskeleton is an essential component of living cells and plays a decisive role in many cellular processes. In mammals, β- and γ-actin are cytoplasmic actin isoforms in non-muscle cells. Despite minor differences in the amino acid sequence, β- and γ-actin localize in different cell structures and perform different functions. While cytoplasmic β-actin is involved in many intracellular processes including cell contraction, γ-actin is responsible for cell mobility and promotes tumor transformation. Numerous studies demonstrate that β- and γ-actin are spatially separated in the cytoplasm of fibroblasts and epithelial cells; this separation is functionally determined. The spatial location of β/γ-actin in endothelial cells is still a subject for discussion. Using super-resolution microscopy, we investigated the β/γ-actin colocalization in endotheliocytes and showed that the β/γ-actin colocalization degree varies widely between different parts of the marginal regions and near the cell nucleus. In the basal cytoplasm, β-actin predominates, while the ratio of isoforms evens out as it moves to the apical cytoplasm. Thus, our colocalization analysis suggests that β- and γ-actin are segregated in the endotheliocyte cytoplasm. The segregation is greatly enhanced during cell lamella activation in the nocodazole-induced endothelial barrier dysfunction, reflecting a different functional role of cytoplasmic actin isoforms in endothelial cells.
Collapse
Affiliation(s)
- Anton S. Shakhov
- A.N. Belozersky Institute of Physical and Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
| | | | | | | | - Irina B. Alieva
- A.N. Belozersky Institute of Physical and Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
| |
Collapse
|
20
|
Regulation of fenestra formation via actin-dynamin2 interaction in rat pituitary endothelial cells. Cell Tissue Res 2022; 390:441-451. [PMID: 36102975 DOI: 10.1007/s00441-022-03685-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 09/08/2022] [Indexed: 12/14/2022]
Abstract
Endothelial fenestrae are transcellular pores divided by a diaphragm consisting of plasmalemma vesicle-associated protein (PLVAP). They function as a channel for peptide hormones and other substances. Invagination of the plasma membrane is necessary for the fenestra formation. The actin cytoskeleton is essential for scission of endocytic vesicles from the invaginated plasma membrane. Therefore, we examined the involvement of the actin cytoskeleton in fenestra formation in cultured endothelial cells isolated from the anterior lobe (AL) of the rat pituitary, using immunofluorescence and scanning electron microscopy. Inhibition of polymerization and depolymerization of the actin cytoskeleton by latrunculin A and jasplakinolide, respectively, remarkably increased the PLVAP-positive sieve plate area and number of fenestrae. Jasplakinolide significantly affected the arrangement of the fenestra on the cell surface, resulting in parallel serpentine furrows of the fenestra. These results suggest that the actin cytoskeleton not only induces fenestra formation but also regulates cell arrangement. Dynamin is a scission protein of the invaginated plasma membrane and interacts with the actin cytoskeleton. We found that dynamin2 is mainly expressed in the endothelial cells of the rat AL. We then investigated the function of dynamin2 by the treatment with dyngo-4a, a potent inhibitor of dynamin1 and dynamin2, on the fenestra formation. As a result, the PLVAP-positive area is significantly increased by the treatment. These results show that the actin-dynamin2 interaction is essential for the control of the fenestra formation in endothelial cells of rat AL. In conclusion, the actin cytoskeleton and dynamin2 function as regulators of endothelial fenestra formation.
Collapse
|
21
|
Knox EG, Aburto MR, Tessier C, Nagpal J, Clarke G, O’Driscoll CM, Cryan JF. Microbial-derived metabolites induce actin cytoskeletal rearrangement and protect blood-brain barrier function. iScience 2022; 25:105648. [PMID: 36505934 PMCID: PMC9732410 DOI: 10.1016/j.isci.2022.105648] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 10/18/2022] [Accepted: 11/18/2022] [Indexed: 11/24/2022] Open
Abstract
The gut microbiota influences host brain function, but the underlying gut-brain axis connections and molecular processes remain unclear. One pathway along this bidirectional communication system involves circulating microbially derived metabolites, such as short-chain fatty acids (SCFAs), which include butyrate and propionate. Brain endothelium is the main interface of communication between circulating signals and the brain, and it constitutes the main component of the blood-brain barrier (BBB). Here, we used a well-established in vitro BBB model treated with physiologically relevant concentrations of butyrate and propionate with and without lipopolysaccharide (LPS) to examine the effects of SCFAs on the actin cytoskeleton and tight junction protein structure. Both SCFAs induced distinct alterations to filamentous actin directionality. SCFAs also increased tight junction protein spikes and protected from LPS-induced tight-junction mis-localization, improved BBB integrity, and modulated mitochondrial network dynamics. These findings identify the actin cytoskeletal dynamics as another target further illuminating how SCFAs can influence BBB physiology.
Collapse
Affiliation(s)
- Emily G. Knox
- Pharmacodelivery Group, School of Pharmacy, University College Cork, Cork, Ireland,APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Maria R. Aburto
- APC Microbiome Ireland, University College Cork, Cork, Ireland,Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland,Corresponding author
| | - Carmen Tessier
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Jatin Nagpal
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Gerard Clarke
- APC Microbiome Ireland, University College Cork, Cork, Ireland,Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland
| | | | - John F. Cryan
- APC Microbiome Ireland, University College Cork, Cork, Ireland,Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland,Corresponding author
| |
Collapse
|
22
|
Nuthikattu S, Milenkovic D, Norman JE, Rutledge J, Villablanca A. High Glycemia and Soluble Epoxide Hydrolase in Females: Differential Multiomics in Murine Brain Microvasculature. Int J Mol Sci 2022; 23:13044. [PMID: 36361847 PMCID: PMC9655872 DOI: 10.3390/ijms232113044] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/22/2022] [Accepted: 10/25/2022] [Indexed: 12/02/2023] Open
Abstract
The effect of a high glycemic diet (HGD) on brain microvasculature is a crucial, yet understudied research topic, especially in females. This study aimed to determine the transcriptomic changes in female brain hippocampal microvasculature induced by a HGD and characterize the response to a soluble epoxide hydrolase inhibitor (sEHI) as a mechanism for increased epoxyeicosatrienoic acids (EETs) levels shown to be protective in prior models of brain injury. We fed mice a HGD or a low glycemic diet (LGD), with/without the sEHI (t-AUCB), for 12 weeks. Using microarray, we assessed differentially expressed protein-coding and noncoding genes, functional pathways, and transcription factors from laser-captured hippocampal microvessels. We demonstrated for the first time in females that the HGD had an opposite gene expression profile compared to the LGD and differentially expressed 506 genes, primarily downregulated, with functions related to cell signaling, cell adhesion, cellular metabolism, and neurodegenerative diseases. The sEHI modified the transcriptome of female mice consuming the LGD more than the HGD by modulating genes involved in metabolic pathways that synthesize neuroprotective EETs and associated with a higher EETs/dihydroxyeicosatrienoic acids (DHETs) ratio. Our findings have implications for sEHIs as promising therapeutic targets for the microvascular dysfunction that accompanies vascular dementia.
Collapse
Affiliation(s)
| | - Dragan Milenkovic
- Department of Nutrition, University of California, Davis, CA 95616, USA
| | - Jennifer E. Norman
- Division of Cardiovascular Medicine, University of California, Davis, CA 95616, USA
| | - John Rutledge
- Division of Cardiovascular Medicine, University of California, Davis, CA 95616, USA
| | - Amparo Villablanca
- Division of Cardiovascular Medicine, University of California, Davis, CA 95616, USA
| |
Collapse
|
23
|
Ivanov AI, Lechuga S, Marino‐Melendez A, Naydenov NG. Unique and redundant functions of cytoplasmic actins and nonmuscle myosin II isoforms at epithelial junctions. Ann N Y Acad Sci 2022; 1515:61-74. [PMID: 35673768 PMCID: PMC9489603 DOI: 10.1111/nyas.14808] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The integrity and functions of epithelial barriers depend on the formation of adherens junctions (AJs) and tight junctions (TJs). A characteristic feature of AJs and TJs is their association with the cortical cytoskeleton composed of actin filaments and nonmuscle myosin II (NM-II) motors. Mechanical forces generated by the actomyosin cytoskeleton are essential for junctional assembly, stability, and remodeling. Epithelial cells express two different actin proteins and three NM-II isoforms, all known to be associated with AJs and TJs. Despite their structural similarity, different actin and NM-II isoforms have distinct biochemical properties, cellular distribution, and functions. The diversity of epithelial actins and myosin motors could be essential for the regulation of different steps of junctional formation, maturation, and disassembly. This review focuses on the roles of actin and NM-II isoforms in controlling the integrity and barrier properties of various epithelia. We discuss the effects of the depletion of individual actin isoforms and NM-II motors on the assembly and barrier function of AJs and TJs in model epithelial monolayers in vitro. We also describe the functional consequences of either total or tissue-specific gene knockout of different actins and NM-II motors, with a focus on the development and integrity of different epithelia in vivo.
Collapse
Affiliation(s)
- Andrei I. Ivanov
- Department of Inflammation and Immunity, Lerner Research InstituteCleveland ClinicClevelandOhioUSA
| | - Susana Lechuga
- Department of Inflammation and Immunity, Lerner Research InstituteCleveland ClinicClevelandOhioUSA
| | - Armando Marino‐Melendez
- Department of Inflammation and Immunity, Lerner Research InstituteCleveland ClinicClevelandOhioUSA
| | - Nayden G. Naydenov
- Department of Inflammation and Immunity, Lerner Research InstituteCleveland ClinicClevelandOhioUSA
| |
Collapse
|
24
|
van de Velde ME, Uittenboogaard A, Yang W, Bonten E, Cheng C, Pei D, van den Berg MH, van der Sluis IM, van den Bos C, Abbink FCH, van den Heuvel-Eibrink MM, Segers H, Chantrain C, van der Werff ten Bosch J, Willems L, Evans WE, Kaspers GJL. Genetic Polymorphisms Associated with Vincristine Pharmacokinetics and Vincristine-Induced Peripheral Neuropathy in Pediatric Oncology Patients. Cancers (Basel) 2022; 14:cancers14143510. [PMID: 35884569 PMCID: PMC9321338 DOI: 10.3390/cancers14143510] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 07/11/2022] [Accepted: 07/14/2022] [Indexed: 12/04/2022] Open
Abstract
Simple Summary Vincristine is a type of chemotherapy that is often used in the treatment of children with cancer. The main side effect of vincristine is nerve damage. Patients experience symptoms such as tingling, pain or muscle weakness. Some children are more sensitive to vincristine than others, which may depend on variations in genes and in the breakdown of vincristine by the body. In this study, we investigated the effect of variations in genes on nerve damage due to vincristine and breakdown of vincristine by the body. We found that nine variations in seven genes were associated with nerve damage due to vincristine, whereas three variations in three genes were associated with the breakdown of vincristine by the body. It is important that future studies try to replicate these findings. Our findings help us towards the goal of tailoring vincristine treatment to each child, with optimal therapeutic effect while limiting nerve damage. Abstract Vincristine (VCR) is an important component of curative chemotherapy for many childhood cancers. Its main side effect is VCR-induced peripheral neuropathy (VIPN), a dose limiting toxicity. Some children are more susceptible to VIPN, which is at least partially dependent on genetic factors and pharmacokinetics (PK). In this study, we identify and replicate genetic variants associated with VCR PK and VIPN. Patient samples from a randomized clinical trial studying the effect of administration duration of VCR on VIPN in 90 patients were used. PK sampling was conducted on between one and five occasions at multiple time points. A linear two-compartment model with first-order elimination was used, and targeted next-generation DNA sequencing was performed. Genotype–trait associations were analyzed using mixed-effect models or logistic regression analysis for repeated measures, or Poisson regression analysis in which the highest VIPN score per patient was included. Nine single-nucleotide polymorphisms (SNPs) in seven genes (NDRG1, GARS, FIG4, FGD4, SEPTIN9, CEP72, and ETAA1) were associated with VIPN. Furthermore, three SNPs in three genes (MTNR1B, RAB7A and SNU13) were associated with PK of VCR. In conclusion, PK of VCR and VIPN are influenced by SNPs; upfront identification of those that lead to an altered susceptibility to VIPN or VCR exposure could help individualize VCR treatment.
Collapse
Affiliation(s)
- Mirjam E. van de Velde
- Emma Children’s Hospital, Amsterdam UMC, University of Amsterdam, 1081 HV Amsterdam, The Netherlands; (A.U.); (M.H.v.d.B.); (G.J.L.K.)
- Department of Pharmaceutical Sciences, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA; (W.Y.); (E.B.); (W.E.E.)
- Correspondence:
| | - Aniek Uittenboogaard
- Emma Children’s Hospital, Amsterdam UMC, University of Amsterdam, 1081 HV Amsterdam, The Netherlands; (A.U.); (M.H.v.d.B.); (G.J.L.K.)
- Princess Máxima Center for Pediatric Oncology, 3584 CS Utrecht, The Netherlands; (I.M.v.d.S.); (C.v.d.B.); (M.M.v.d.H.-E.)
| | - Wenjian Yang
- Department of Pharmaceutical Sciences, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA; (W.Y.); (E.B.); (W.E.E.)
| | - Erik Bonten
- Department of Pharmaceutical Sciences, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA; (W.Y.); (E.B.); (W.E.E.)
| | - Cheng Cheng
- Department of Biostatistics, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA; (C.C.); (D.P.)
| | - Deqing Pei
- Department of Biostatistics, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA; (C.C.); (D.P.)
| | - Marleen H. van den Berg
- Emma Children’s Hospital, Amsterdam UMC, University of Amsterdam, 1081 HV Amsterdam, The Netherlands; (A.U.); (M.H.v.d.B.); (G.J.L.K.)
| | - Inge M. van der Sluis
- Princess Máxima Center for Pediatric Oncology, 3584 CS Utrecht, The Netherlands; (I.M.v.d.S.); (C.v.d.B.); (M.M.v.d.H.-E.)
| | - Cor van den Bos
- Princess Máxima Center for Pediatric Oncology, 3584 CS Utrecht, The Netherlands; (I.M.v.d.S.); (C.v.d.B.); (M.M.v.d.H.-E.)
- Emma Children’s Hospital, Amsterdam UMC, Amsterdam Medical Center, Pediatric Oncology, 1105 Amsterdam, The Netherlands;
| | - Floor C. H. Abbink
- Emma Children’s Hospital, Amsterdam UMC, Amsterdam Medical Center, Pediatric Oncology, 1105 Amsterdam, The Netherlands;
| | | | - Heidi Segers
- Department of Pediatric Hemato-Oncology, University Hospitals Leuven and Catholic University Leuven, 3000 Leuven, Belgium;
| | | | | | - Leen Willems
- Department of Paediatric Haematology-Oncology and Stem Cell Transplantation, Ghent University Hospital, 9000 Ghent, Belgium;
| | - William E. Evans
- Department of Pharmaceutical Sciences, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA; (W.Y.); (E.B.); (W.E.E.)
| | - Gertjan J. L. Kaspers
- Emma Children’s Hospital, Amsterdam UMC, University of Amsterdam, 1081 HV Amsterdam, The Netherlands; (A.U.); (M.H.v.d.B.); (G.J.L.K.)
- Princess Máxima Center for Pediatric Oncology, 3584 CS Utrecht, The Netherlands; (I.M.v.d.S.); (C.v.d.B.); (M.M.v.d.H.-E.)
| |
Collapse
|
25
|
Advances in Endothelial Cell Biology: From Knowledge to Control. Int J Mol Sci 2022; 23:ijms23126403. [PMID: 35742847 PMCID: PMC9224320 DOI: 10.3390/ijms23126403] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 06/01/2022] [Indexed: 02/04/2023] Open
|
26
|
Shakhov AS, Alieva IB. The "Third Violin" in the Cytoskeleton Orchestra-The Role of Intermediate Filaments in the Endothelial Cell's Life. Biomedicines 2022; 10:828. [PMID: 35453578 PMCID: PMC9027429 DOI: 10.3390/biomedicines10040828] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 03/29/2022] [Accepted: 03/30/2022] [Indexed: 02/01/2023] Open
Abstract
The endothelium plays an important role in the transcytosis of lipoproteins. According to one of the theories, endothelial injury is a triggering factor for the development of atherosclerosis, and intracellular structures, including components of the endotheliocyte cytoskeleton (microtubules, actin, and intermediate filaments), are involved in its development. In contrast to the proteins of tubulin-based microtubules and actin microfilaments, intermediate filaments are comprised of various tissue-specific protein members. Vimentin, the main protein of endothelial intermediate filaments, is one of the most well-studied of these and belongs to type-III intermediate filaments, commonly found in cells of mesenchymal origin. Vimentin filaments are linked mechanically or by signaling molecules to microfilaments and microtubules by which coordinated cell polarisation and migration are carried out, as well as control over several endotheliocyte functions. Moreover, the soluble vimentin acts as an indicator of the state of the cardiovascular system, and the involvement of vimentin in the development and course of atherosclerosis has been demonstrated. Here we discuss current concepts of the participation of vimentin filaments in the vital activity and functioning of endothelial cells, as well as the role of vimentin in the development of inflammatory processes and atherosclerosis.
Collapse
Affiliation(s)
| | - Irina B. Alieva
- A.N. Belozersky Institute of Physical and Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia;
| |
Collapse
|
27
|
Lu D, Zhang H, Zhang Y, Zhao G, Anwar Khan F, Chen Y, Hu C, Yang L, Chen H, Guo A. Secreted MbovP0145 Promotes IL-8 Expression through Its Interactive β-Actin and MAPK Activation and Contributes to Neutrophil Migration. Pathogens 2021; 10:pathogens10121628. [PMID: 34959583 PMCID: PMC8707762 DOI: 10.3390/pathogens10121628] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 12/10/2021] [Accepted: 12/11/2021] [Indexed: 11/16/2022] Open
Abstract
Mycoplasma bovis (M. bovis) is an important pathogen of cattle responsible for huge economic losses in the dairy and beef industries worldwide. The proteins secreted by M. bovis are mainly related to its adhesion, invasion, virulence, and intracellular survival and play a role in mycoplasma-host interactions. In our previous study, we found MbovP0145, a secreted protein present in the M. bovis secretome, but little is known about its function. In this study, we assessed the inflammatory characteristics and underlined mechanism of this inflammation of recombinant MbovP0145 (rMbovP0145). For this, bovine lung epithelial cells (EBL) were stimulated by rMbovP0145 to see the IL-8 production in a time- and dose-dependent manner. We observed that rMbovP0145 increased the production of IL-8 via ERK1/2 and P38 pathway activation. Further, the effect of the M. bovis ΔMbov_0145 mutant and its complementary strain on IL-8 mRNA expression was also confirmed. A pulldown assay of the GST-tagged MbovP0145 protein with mass spectrometry demonstrated that β-actin could specifically interact with rMbovP0145 to mediate the IL-8 signaling. As knockdown of β-actin expression with RNA interference in EBL cells decreased the mRNA expression of IL-8 and the phosphorylated ERK1/2 and P38 proteins, whereas disrupted actin polymerization by cytochalasin D led to a significantly higher IL-8 expression and MAPK phosphorylation in rMbovP0145-stimulated cells. Compared to M. bovis HB0801 and its complementary strain, the culture supernatant of EBL cells infected with the M. bovis ΔMbov_0145 mutant induced less neutrophil migration to the lower chamber in a transwell system. In conclusion, MbovP0145 promoted IL-8 expression by interacting with β-actin through activation of the MAPK pathway, thus contributing to neutrophil migration.
Collapse
Affiliation(s)
- Doukun Lu
- The State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (D.L.); (H.Z.); (Y.Z.); (G.Z.); (Y.C.); (C.H.); (H.C.)
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Hui Zhang
- The State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (D.L.); (H.Z.); (Y.Z.); (G.Z.); (Y.C.); (C.H.); (H.C.)
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Yiqiu Zhang
- The State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (D.L.); (H.Z.); (Y.Z.); (G.Z.); (Y.C.); (C.H.); (H.C.)
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Gang Zhao
- The State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (D.L.); (H.Z.); (Y.Z.); (G.Z.); (Y.C.); (C.H.); (H.C.)
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Farhan Anwar Khan
- Department of Animal Health, The University of Agriculture, Peshawar 25120, Pakistan;
| | - Yingyu Chen
- The State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (D.L.); (H.Z.); (Y.Z.); (G.Z.); (Y.C.); (C.H.); (H.C.)
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Changmin Hu
- The State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (D.L.); (H.Z.); (Y.Z.); (G.Z.); (Y.C.); (C.H.); (H.C.)
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Liguo Yang
- College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China;
| | - Huanchun Chen
- The State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (D.L.); (H.Z.); (Y.Z.); (G.Z.); (Y.C.); (C.H.); (H.C.)
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, China
- Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Wuhan 430070, China
| | - Aizhen Guo
- The State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (D.L.); (H.Z.); (Y.Z.); (G.Z.); (Y.C.); (C.H.); (H.C.)
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, China
- Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Wuhan 430070, China
- Correspondence: ; Tel.: +86-27-87287115
| |
Collapse
|
28
|
Ciszewski WM, Wawro ME, Sacewicz-Hofman I, Sobierajska K. Cytoskeleton Reorganization in EndMT-The Role in Cancer and Fibrotic Diseases. Int J Mol Sci 2021; 22:ijms222111607. [PMID: 34769036 PMCID: PMC8583721 DOI: 10.3390/ijms222111607] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/21/2021] [Accepted: 10/26/2021] [Indexed: 12/11/2022] Open
Abstract
Chronic inflammation promotes endothelial plasticity, leading to the development of several diseases, including fibrosis and cancer in numerous organs. The basis of those processes is a phenomenon called the endothelial–mesenchymal transition (EndMT), which results in the delamination of tightly connected endothelial cells that acquire a mesenchymal phenotype. EndMT-derived cells, known as the myofibroblasts or cancer-associated fibroblasts (CAFs), are characterized by the loss of cell–cell junctions, loss of endothelial markers, and gain in mesenchymal ones. As a result, the endothelium ceases its primary ability to maintain patent and functional capillaries and induce new blood vessels. At the same time, it acquires the migration and invasion potential typical of mesenchymal cells. The observed modulation of cell shape, increasedcell movement, and invasion abilities are connected with cytoskeleton reorganization. This paper focuses on the review of current knowledge about the molecular pathways involved in the modulation of each cytoskeleton element (microfilaments, microtubule, and intermediate filaments) during EndMT and their role as the potential targets for cancer and fibrosis treatment.
Collapse
|