1
|
Mohapatra B, Lavudi K, Kokkanti RR, Patnaik S. Regulation of NLRP3/TRIM family signaling in gut inflammation and colorectal cancer. Biochim Biophys Acta Rev Cancer 2025; 1880:189271. [PMID: 39864469 DOI: 10.1016/j.bbcan.2025.189271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 01/13/2025] [Accepted: 01/16/2025] [Indexed: 01/28/2025]
Abstract
CRC (Colorectal cancer) ranks among the most prevalent tumors in humans and remains a leading cause of cancer-related mortality worldwide. Numerous studies have highlighted the connection between inflammasome over-activation and the initiation and progression of CRC. The activation of the NLRP3 (NOD-like receptor family, pyrin domain containing 3) inflammasome is dependent on the nuclear NF-kβ (Nuclear Factor kappa-light-chain-enhancer of activated B cells) pathway, leading to the maturation and release of inflammatory cytokines such as IL-1ß (Interleukin 1 beta) and IL-18 (Interleukin 18). While inflammation is crucial for defense mechanisms and tissue repair, excessive information can pose significant risks. Mounting evidence suggests that overactivation of the inflammasome contributes to the pathogenesis of inflammatory diseases. Consequently, there is a concerted effort to tightly regulate inflammasome activity and mitigate excessive inflammatory responses, particularly in conditions such as IBD (Inflammatory Bowel Disease), which includes Ulcerative Colitis and Crohn's Disease. The tripartite motif (TRIM) protein family, characterized by a conserved structure and rapid evolutionary diversification, includes members with critical roles in ubiquitination and other regulatory functions. Their importance in modulating inflammatory responses is widely acknowledged. This article aims to investigate the interplay between TRIM proteins and the NLRP3 Inflammasome in CRC and gut inflammation, offering insights for future research endeavors and potential therapeutic strategies.
Collapse
Affiliation(s)
- Bibhashee Mohapatra
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT) Deemed to be University, Bhubaneswar, Odisha 751024, India
| | - Kousalya Lavudi
- Department of Radiation Oncology, College of Medicine, The Ohio State University, Columbus, OH 43210, United States; Comprehensive cancer center, The Ohio State University, Columbus, OH, United States
| | - Rekha Rani Kokkanti
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT) Deemed to be University, Bhubaneswar, Odisha 751024, India
| | - Srinivas Patnaik
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT) Deemed to be University, Bhubaneswar, Odisha 751024, India.
| |
Collapse
|
2
|
Ziehr BK, MacDonald JA. Regulation of NLRPs by reactive oxygen species: A story of crosstalk. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119823. [PMID: 39173681 DOI: 10.1016/j.bbamcr.2024.119823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 06/28/2024] [Accepted: 08/14/2024] [Indexed: 08/24/2024]
Abstract
The nucleotide oligomerization domain (NOD)-like receptors containing pyrin (NLRP) family of cytosolic pattern-recognition receptors play an integral role in host defense following exposure to a diverse set of pathogenic and sterile threats. The canonical event following ligand recognition is the formation of a heterooligomeric signaling complex termed the inflammasome that produces pro-inflammatory cytokines. Dysregulation of this process is associated with many autoimmune, cardiovascular, metabolic, and neurodegenerative diseases. Despite the range of activating stimuli which affect varied cell types, recent literature makes evident that reactive oxygen species (ROS) are integral to the initiation and propagation of inflammasome signaling. Notably, ROS production and inflammasome activation act in a positive feedback loop to promote this potent immune response. While NLRP3 is by far the most extensively studied NLRP, there is also sufficient literature to make these conclusions for other NLRPs family members. In all cases, a knowledge gap exists regarding the molecular targets and effects of ROS. Future research to define these targets and to parse the order and timing of ROS-mediated NLRP activation will provide meaningful insights into inflammasome biology. This will create novel therapeutic opportunities for the numerous illnesses that are impacted by inflammasome activity.
Collapse
Affiliation(s)
- Bjoern K Ziehr
- Department of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Alberta T2N 4Z6, Canada
| | - Justin A MacDonald
- Department of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Alberta T2N 4Z6, Canada.
| |
Collapse
|
3
|
Chen H, Xie S, Zhou Y, Chen L, Xu J, Cai J. MEK1/2 promote ROS production and deubiquitinate NLRP3 independent of ERK1/2 during NLRP3 inflammasome activation. Biochem Pharmacol 2024; 230:116572. [PMID: 39396647 DOI: 10.1016/j.bcp.2024.116572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 08/22/2024] [Accepted: 10/10/2024] [Indexed: 10/15/2024]
Abstract
Inflammasomes are cytosolic supramolecular complexes that play a key role in the innate immune response. Overactivation of NLR family pyrin domain containing 3 (NLRP3) inflammasome leads to multiple diseases. Post-translational modifications (PTMs) are essential modulators of inflammasomes especially in activation phase. Here we found that MEK1/2 kinase activity was indispensable in NLRP3 inflammasome activation both in vitro and in vivo. Inhibition of MEK1/2 resulted in reactive oxygen species (ROS) scavenging and ubiquitination of NLRP3, which further blocked NLRP3 inflammasome activation. These effects were independent of ERK1/2, which were classic downstream of MEK1/2. These investigations proposed a mechanism that MEK1/2 regulated inflammation via non-transcriptional regulation of NLRP3 inflammasome and might help better understanding the effects and side-effects of MEK inhibitors in clinical use.
Collapse
Affiliation(s)
- Hanwen Chen
- Department of Gastroenterology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, PR China
| | - Shujun Xie
- Department of Translational Medicine Research Center, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, Zhejiang, 310006, PR China
| | - Yichen Zhou
- MOA Key Laboratory of Animal Virology, Center for Veterinary Sciences, Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, PR China
| | - Lin Chen
- Department of General Practice, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310016, PR China
| | - Jian Xu
- Department of Central Laboratory, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, 310006, PR China
| | - Jianting Cai
- Department of Gastroenterology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, PR China.
| |
Collapse
|
4
|
Khanra S, Singh S, Singh TG. Mechanistic exploration of ubiquitination-mediated pathways in cerebral ischemic injury. Mol Biol Rep 2024; 52:22. [PMID: 39607439 DOI: 10.1007/s11033-024-10123-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 11/19/2024] [Indexed: 11/29/2024]
Abstract
The ubiquitin-proteasome system (UPS) plays a pivotal role in regulating protein homeostasis and cellular processes, including protein degradation, trafficking, DNA repair, and cell signaling. During cerebral ischemia, ischemic conditions profoundly disrupt UPS activity, leading to proteasomal dysfunction and the accumulation of abnormal proteins. This imbalance contributes to neuronal injury and cell death observed in ischemic stroke. The UPS is intricately linked to various signaling pathways crucial for neuronal survival, inflammation, and cellular stress response, such as NF-κB, TRIM, TRIP, JAK-STAT, PI3K/Akt, and ERK1/2. Alterations in the ubiquitination process can significantly impact the activation and regulation of these pathways, exacerbating ischemic brain injury. Therapeutic approaches targeting the UPS in cerebral ischemia aim to rebalance protein levels, reduce proteotoxic stress, and mitigate neuronal injury. Strategies include proteasome inhibition, targeting specific ubiquitin ligases and deubiquitinating enzymes, and modulating ubiquitination-mediated regulation of key signaling pathways implicated in ischemia-induced pathophysiology. Therefore, the present review discusses the molecular mechanisms underlying UPS dysfunction in ischemic stroke is crucial for developing effective therapeutic interventions. Modulating ubiquitination-mediated pathways through therapeutic interventions targeting specific UPS components holds significant promise for mitigating ischemic brain injury and promoting neuroprotection and functional recovery in patients with cerebral ischemia.
Collapse
Affiliation(s)
- Supriya Khanra
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India
| | - Shareen Singh
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India.
| | - Thakur Gurjeet Singh
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India
| |
Collapse
|
5
|
Zhang N, Yang Y, Xu D. Emerging roles of palmitoylation in pyroptosis. Trends Cell Biol 2024:S0962-8924(24)00211-3. [PMID: 39521664 DOI: 10.1016/j.tcb.2024.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 10/09/2024] [Accepted: 10/16/2024] [Indexed: 11/16/2024]
Abstract
Pyroptosis is a lytic, proinflammatory type of programmed cell death crucial for the immune response to pathogen infections and internal danger signals. Gasdermin D (GSDMD) acts as the pore-forming protein in pyroptosis following inflammasome activation. While recent research has improved our understanding of pyroptosis activation and execution, many aspects regarding the molecular mechanisms controlling inflammasome and GSDMD activation remain to be elucidated. A growing body of literature has shown that S-palmitoylation, a reversible post-translational modification (PTM) that attaches palmitate to cysteine residues, contributes to multi-layered regulation of pyroptosis. This review summarizes the emerging roles of S-palmitoylation in pyroptosis research with a focus on mechanisms that regulate NLRP3 inflammasome and GSDMD activation.
Collapse
Affiliation(s)
- Na Zhang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 201210, China
| | - Yuanxin Yang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 201210, China
| | - Daichao Xu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 201210, China; State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, China; Shanghai Key Laboratory of Aging Studies, Shanghai, 201210, China.
| |
Collapse
|
6
|
Li Y, Chen YT, Liu JS, Liang KF, Song YK, Cao Y, Chen CY, Jian YP, Liu XJ, Xu YQ, Yuan HX, Ou ZJ, Ou JS. Oncoprotein-induced transcript 3 protein-enriched extracellular vesicles promotes NLRP3 ubiquitination to alleviate acute lung injury after cardiac surgery. J Mol Cell Cardiol 2024; 195:55-67. [PMID: 39089571 DOI: 10.1016/j.yjmcc.2024.07.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/16/2024] [Accepted: 07/29/2024] [Indexed: 08/04/2024]
Abstract
Acute lung injury (ALI) including acute respiratory distress syndrome (ARDS) is a major complication and increase the mortality of patients with cardiac surgery. We previously found that the protein cargoes enriched in circulating extracellular vesicles (EVs) are closely associated with cardiopulmonary disease. We aimed to evaluate the implication of EVs on cardiac surgery-associated ALI/ARDS. The correlations between "oncoprotein-induced transcript 3 protein (OIT3) positive" circulating EVs and postoperative ARDS were assessed. The effects of OIT3-overexpressed EVs on the cardiopulmonary bypass (CPB) -induced ALI in vivo and inflammation of human bronchial epithelial cells (BEAS-2B) were detected. OIT3 enriched in circulating EVs is reduced after cardiac surgery with CPB, especially with postoperative ARDS. The "OIT3 positive" EVs negatively correlate with lung edema, hypoxemia and CPB time. The OIT3-overexpressed EVs can be absorbed by pulmonary epithelial cells and OIT3 transferred by EVs triggered K48- and K63-linked polyubiquitination to inactivate NOD-like receptor protein 3 (NLRP3) inflammasome, and restrains pro-inflammatory cytokines releasing and immune cells infiltration in lung tissues, contributing to the alleviation of CPB-induced ALI. Overexpression of OIT3 in human bronchial epithelial cells have similar results. OIT3 promotes the E3 ligase Cbl proto-oncogene B associated with NLRP3 to induce the ubiquitination of NLRP3. Immunofluorescence tests reveal that OIT3 is reduced in the generation from the liver sinusoids endothelial cells (LSECs) and secretion in liver-derived EVs after CPB. In conclusion, OIT3 enriched in EVs is a promising biomarker of postoperative ARDS and a therapeutic target for ALI after cardiac surgery.
Collapse
Affiliation(s)
- Yan Li
- Division of Cardiac Surgery, Cardiovascular Diseases Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, PR China; National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, NHC key Laboratory of Assisted Circulation (Sun Yat-sen University), Key Laboratory of Assisted Circulation and Vascular Diseases, Chinese Academy of Medical Sciences, Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou 510080, PR China
| | - Ya-Ting Chen
- Division of Cardiac Surgery, Cardiovascular Diseases Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, PR China; National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, NHC key Laboratory of Assisted Circulation (Sun Yat-sen University), Key Laboratory of Assisted Circulation and Vascular Diseases, Chinese Academy of Medical Sciences, Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou 510080, PR China
| | - Jia-Sheng Liu
- Division of Cardiac Surgery, Cardiovascular Diseases Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, PR China; National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, NHC key Laboratory of Assisted Circulation (Sun Yat-sen University), Key Laboratory of Assisted Circulation and Vascular Diseases, Chinese Academy of Medical Sciences, Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou 510080, PR China
| | - Kai-Feng Liang
- Division of Cardiac Surgery, Cardiovascular Diseases Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, PR China; National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, NHC key Laboratory of Assisted Circulation (Sun Yat-sen University), Key Laboratory of Assisted Circulation and Vascular Diseases, Chinese Academy of Medical Sciences, Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou 510080, PR China
| | - Yuan-Kai Song
- Division of Cardiac Surgery, Cardiovascular Diseases Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, PR China; National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, NHC key Laboratory of Assisted Circulation (Sun Yat-sen University), Key Laboratory of Assisted Circulation and Vascular Diseases, Chinese Academy of Medical Sciences, Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou 510080, PR China
| | - Yang Cao
- Division of Cardiac Surgery, Cardiovascular Diseases Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, PR China; National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, NHC key Laboratory of Assisted Circulation (Sun Yat-sen University), Key Laboratory of Assisted Circulation and Vascular Diseases, Chinese Academy of Medical Sciences, Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou 510080, PR China
| | - Cai-Yun Chen
- Department of Anesthesiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, PR China
| | - Yu-Peng Jian
- Division of Cardiac Surgery, Cardiovascular Diseases Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, PR China; National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, NHC key Laboratory of Assisted Circulation (Sun Yat-sen University), Key Laboratory of Assisted Circulation and Vascular Diseases, Chinese Academy of Medical Sciences, Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou 510080, PR China
| | - Xiao-Jun Liu
- Division of Cardiac Surgery, Cardiovascular Diseases Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, PR China; National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, NHC key Laboratory of Assisted Circulation (Sun Yat-sen University), Key Laboratory of Assisted Circulation and Vascular Diseases, Chinese Academy of Medical Sciences, Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou 510080, PR China
| | - Ying-Qi Xu
- Division of Cardiac Surgery, Cardiovascular Diseases Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, PR China; National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, NHC key Laboratory of Assisted Circulation (Sun Yat-sen University), Key Laboratory of Assisted Circulation and Vascular Diseases, Chinese Academy of Medical Sciences, Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou 510080, PR China
| | - Hao-Xiang Yuan
- Division of Cardiac Surgery, Cardiovascular Diseases Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, PR China; National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, NHC key Laboratory of Assisted Circulation (Sun Yat-sen University), Key Laboratory of Assisted Circulation and Vascular Diseases, Chinese Academy of Medical Sciences, Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou 510080, PR China.
| | - Zhi-Jun Ou
- Division of Cardiac Surgery, Cardiovascular Diseases Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, PR China; National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, NHC key Laboratory of Assisted Circulation (Sun Yat-sen University), Key Laboratory of Assisted Circulation and Vascular Diseases, Chinese Academy of Medical Sciences, Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou 510080, PR China; Division of Hypertension and Vascular Diseases, Cardiovascular Diseases Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, PR China.
| | - Jing-Song Ou
- Division of Cardiac Surgery, Cardiovascular Diseases Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, PR China; National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, NHC key Laboratory of Assisted Circulation (Sun Yat-sen University), Key Laboratory of Assisted Circulation and Vascular Diseases, Chinese Academy of Medical Sciences, Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou 510080, PR China; Guangdong Provincial Key Laboratory of Brain Function and Disease, Guangzhou 510080, PR China.
| |
Collapse
|
7
|
Yue C, Li J, Zhang S, Ma R, Suo M, Chen Y, Jin H, Zeng Y, Chen Y. Activation of the NLRP3-CASP-1 inflammasome is restrained by controlling autophagy during Glaesserella parasuis infection. Vet Microbiol 2024; 295:110160. [PMID: 38964034 DOI: 10.1016/j.vetmic.2024.110160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/16/2024] [Accepted: 06/19/2024] [Indexed: 07/06/2024]
Abstract
Infection with Glaesserella parasuis, the primary pathogen behind Glässer's disease, is often associated with diverse clinical symptoms, including serofibrinous polyserositis, arthritis, and meningitis. Autophagy plays a dual role in bacterial infections, exerting either antagonistic or synergistic effects depending on the nature of the pathogen. Our previous studies have demonstrated that autophagy serves as a defense mechanism, combating inflammation and invasion caused by infection of highly virulent G. parasuis. However, the precise mechanisms remain to be elucidated. Pathogens exhibit distinct interactions with inflammasomes and autophagy processes. Herein, we explored the effect of autophagy on inflammasomes during G. parasuis infection. We found that G. parasuis infection triggers NLRP3-dependent pro-CASP-1-IL-18/IL-1β processing and maturation pathway, resulting in increased release of IL-1β and IL-18. Inhibition of autophagy enhances NLRP3 inflammasome activity, whereas stimulation of autophagy restricts it during G. parasuis infection. Furthermore, assembled NLRP3 inflammasomes undergo ubiquitination and recruit the autophagic adaptor, p62, facilitating their sequestration into autophagosomes during G. parasuis infection. These results suggest that the induction of autophagy mitigates inflammation by eliminating overactive NLRP3 inflammasomes during G. parasuis infection. Our research uncovers a mechanism whereby G. parasuis infection initiates inflammatory responses by promoting the assembly of the NLRP3 inflammasomes and activating NLRP3-CASP-1, both of which processes are downregulated by autophagy. This suggests that pharmacological manipulation of autophagy could be a promising approach to modulate G. parasuis-induced inflammatory responses.
Collapse
Affiliation(s)
- Chaoxiong Yue
- Brain Science and Advanced Technology Institute, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan, China; State Key Laboratory of Virology and National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Jinquan Li
- Brain Science and Advanced Technology Institute, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan, China
| | - Siming Zhang
- Brain Science and Advanced Technology Institute, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan, China
| | - Ruyi Ma
- Brain Science and Advanced Technology Institute, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan, China
| | - Mingjiao Suo
- Brain Science and Advanced Technology Institute, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan, China
| | - Yiwen Chen
- Brain Science and Advanced Technology Institute, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan, China
| | - Hui Jin
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Yan Zeng
- Brain Science and Advanced Technology Institute, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan, China.
| | - Yushan Chen
- Brain Science and Advanced Technology Institute, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan, China.
| |
Collapse
|
8
|
Dahiya R, Sutariya VB, Gupta SV, Pant K, Ali H, Alhadrawi M, Kaur K, Sharma A, Rajput P, Gupta G, Almujri SS, Chinni SV. Harnessing pyroptosis for lung cancer therapy: The impact of NLRP3 inflammasome activation. Pathol Res Pract 2024; 260:155444. [PMID: 38986361 DOI: 10.1016/j.prp.2024.155444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/22/2024] [Accepted: 06/28/2024] [Indexed: 07/12/2024]
Abstract
Lung cancer is still a global health challenge in terms of high incidence, morbidity, and mortality. Recent scientific studies have determined that pyroptosis, a highly inflammatory form of programmed cell death, can be identified as a potential lung cancer therapeutic target. The NLRP3 inflammasome acts as a critical mediator in this process and, upon activation, activates multiprotein complex formation as well as caspase-1 activation. This process, triggered by a release of pro-inflammatory cytokines, results in pyroptotic cell death. Also, the relationship between the NLRP3 inflammasome and lung cancer was justified by its influence on tumour growth or metastasis. The molecular pathways produce progenitive mediators and remake the tissue. Finally, targeting NLRP3 inflammasome for pyroptosis induction and inhibition of its activation appears to be a promising lung cancer treatment approach. This technique makes cancer treatment more promising and personalized. This review explores the role of NLRP3 inflammasome activation and its possibilities in lung cancer treatment.
Collapse
Affiliation(s)
- Rajiv Dahiya
- School of Pharmacy, Faculty of Medical Sciences, The University of the West Indies, St. Augustine, Trinidad & Tobago, West Indies
| | - Vijaykumar B Sutariya
- USF Health Taneja College of Pharmacy, University of South Florida, Tampa, FL 33612, USA
| | - Sheeba Varghese Gupta
- USF Health Taneja College of Pharmacy, University of South Florida, Tampa, FL 33612, USA
| | - Kumud Pant
- Graphic Era (Deemed to be University) Clement Town Dehradun, 248002, India; Graphic Era Hill University Clement Town Dehradun, 248002, India.
| | - Haider Ali
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, India; Department of Pharmacology, Kyrgyz State Medical College, Bishkek, Kyrgyzstan
| | - Merwa Alhadrawi
- College of Technical Engineering, The Islamic University, Najaf, Iraq; College of Technical Engineering, The Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
| | - Kiranjeet Kaur
- Chandigarh Pharmacy College, Chandigarh Group of Colleges, Jhanjeri, Mohali, Punjab 140307, India
| | - Abhishek Sharma
- Department of Medicine, National Institute of Medical Sciences, NIMS University Rajasthan, Jaipur, India
| | - Pranchal Rajput
- School of Applied and Life Sciences, Division of Research and Innovation, Uttaranchal University, Dehradun, India
| | - Gaurav Gupta
- Centre for Research Impact & Outcome-Chitkara College of Pharmacy, Chitkara University, Punjab
| | - Salem Salman Almujri
- Department of Pharmacology, College of Pharmacy, King Khalid University, Abha, Asir 61421, Saudi Arabia
| | - Suresh V Chinni
- Department of Biochemistry, Faculty of Medicine, Bioscience, and Nursing, MAHSA University, Jenjarom, Selangor 42610, Malaysia
| |
Collapse
|
9
|
Brint A, Greene S, Fennig-Victor AR, Wang S. Multiple sclerosis: the NLRP3 inflammasome, gasdermin D, and therapeutics. ANNALS OF TRANSLATIONAL MEDICINE 2024; 12:62. [PMID: 39118955 PMCID: PMC11304424 DOI: 10.21037/atm-23-1960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 04/26/2024] [Indexed: 08/10/2024]
Abstract
Multiple sclerosis (MS) stands as a chronic inflammatory disease characterized by its neurodegenerative impacts on the central nervous system. The complexity of MS and the significant challenges it poses to patients have made the exploration of effective treatments a crucial area of research. Among the various mechanisms under investigation, the role of inflammation in MS progression is of particular interest. Inflammatory responses within the body are regulated by various cellular mechanisms, one of which involves the nucleotide-binding oligomerization domain (NOD)-, leucine-rich repeat (LRR)-, and pyrin domains (PYD)-containing protein 3 (NLRP3). NLRP3 acts as a sensor within cells, playing a pivotal role in controlling the inflammatory response. Its activation is a critical step leading to the assembly of the NLRP3 inflammasome complex, a process that has profound implications for inflammatory diseases like MS. The NLRP3 inflammasome's activation is intricately linked to the subsequent activation of caspase 1 and gasdermin D (GsdmD), signaling pathways that are central to the inflammatory process. GsdmD, a prominent member of the Gasdermin protein family, is particularly noteworthy for its role in pyroptotic cell death, a form of programmed cell death that is distinct from apoptosis and is characterized by its inflammatory nature. This pathway's activation contributes significantly to the pathology of MS by exacerbating inflammatory responses within the nervous system. Given the detrimental effects of unregulated inflammation in MS, therapeutics targeting these inflammatory processes offer a promising avenue for alleviating the symptoms experienced by patients. This review delves into the intricacies of the pyroptotic pathways, highlighting how the formation of the NLRP3 inflammasome induces such pathways and the potential intervention points for therapeutic agents. By inhibiting key steps within these pathways, it is possible to mitigate the inflammatory response, thereby offering relief to those suffering from MS. Understanding these mechanisms not only sheds light on the pathophysiology of MS but also paves the way for the development of novel therapeutic strategies aimed at controlling the disease's progression through the modulation of the body's inflammatory response.
Collapse
Affiliation(s)
- Amie Brint
- Chemistry Department, University of Arkansas at Little Rock, Little Rock, AR, USA
- College of Medicine and Graduate School, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Seth Greene
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, Queens, NY, USA
| | - Alyssa R. Fennig-Victor
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, Queens, NY, USA
| | - Shanzhi Wang
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, Queens, NY, USA
| |
Collapse
|
10
|
Marulanda-Gomez AM, Ribes M, Franzenburg S, Hentschel U, Pita L. Transcriptomic responses of Mediterranean sponges upon encounter with symbiont microbial consortia. BMC Genomics 2024; 25:674. [PMID: 38972970 PMCID: PMC11229196 DOI: 10.1186/s12864-024-10548-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 06/21/2024] [Indexed: 07/09/2024] Open
Abstract
BACKGROUND Sponges (phylum Porifera) constantly interact with microbes. They graze on microbes from the water column by filter-feeding and they harbor symbiotic partners within their bodies. In experimental setups, sponges take up symbionts at lower rates compared with seawater microbes. This suggests that sponges have the capacity to differentiate between microbes and preferentially graze in non-symbiotic microbes, although the underlying mechanisms of discrimination are still poorly understood. Genomic studies showed that, compared to other animal groups, sponges present an extended repertoire of immune receptors, in particular NLRs, SRCRs, and GPCRs, and a handful of experiments showed that sponges regulate the expression of these receptors upon encounter with microbial elicitors. We hypothesize that sponges may rely on differential expression of their diverse repertoire of poriferan immune receptors to sense different microbial consortia while filter-feeding. To test this, we characterized the transcriptomic response of two sponge species, Aplysina aerophoba and Dysidea avara, upon incubation with microbial consortia extracted from A. aerophoba in comparison with incubation with seawater microbes. The sponges were sampled after 1 h, 3 h, and 5 h for RNA-Seq differential gene expression analysis. RESULTS D. avara incubated with A. aerophoba-symbionts regulated the expression of genes related to immunity, ubiquitination, and signaling. Within the set of differentially-expressed immune genes we identified different families of Nucleotide Oligomerization Domain (NOD)-Like Receptors (NLRs). These results represent the first experimental evidence that different types of NLRs are involved in microbial discrimination in a sponge. In contrast, the transcriptomic response of A. aerophoba to its own symbionts involved comparatively fewer genes and lacked genes encoding for immune receptors. CONCLUSION Our work suggests that: (i) the transcriptomic response of sponges upon microbial exposure may imply "fine-tuning" of baseline gene expression as a result of their interaction with microbes, (ii) the differential response of sponges to microbial encounters varied between the species, probably due to species-specific characteristics or related to host's traits, and (iii) immune receptors belonging to different families of NLR-like genes played a role in the differential response to microbes, whether symbionts or food bacteria. The regulation of these receptors in sponges provides further evidence of the potential role of NLRs in invertebrate host-microbe interactions. The study of sponge responses to microbes exemplifies how investigating different animal groups broadens our knowledge of the evolution of immune specificity and symbiosis.
Collapse
Affiliation(s)
| | - Marta Ribes
- Institut de Ciències del Mar, ICM - CSIC, Barcelona, Spain
| | - Sören Franzenburg
- Research Group Genetics and Bioinformatics/Systems Immunology, Institute of Clinical Molecular Biology, Christian-Albrechts-Universität Kiel, Kiel, Germany
| | - Ute Hentschel
- RD3 Marine Ecology, RU Marine Symbioses, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
- Christian-Albrechts-Universität Kiel, Kiel, Germany
| | - Lucia Pita
- Institut de Ciències del Mar, ICM - CSIC, Barcelona, Spain.
| |
Collapse
|
11
|
Zhang L, Tang Y, Huang P, Luo S, She Z, Peng H, Chen Y, Luo J, Duan W, Xiong J, Liu L, Liu L. Role of NLRP3 inflammasome in central nervous system diseases. Cell Biosci 2024; 14:75. [PMID: 38849934 PMCID: PMC11162045 DOI: 10.1186/s13578-024-01256-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 05/28/2024] [Indexed: 06/09/2024] Open
Abstract
The central nervous system (CNS) is the most delicate system in human body, with the most complex structure and function. It is vulnerable to trauma, infection, neurodegeneration and autoimmune diseases, and activates the immune system. An appropriate inflammatory response contributes to defence against invading microbes, whereas an excessive inflammatory response can aggravate tissue damage. The NLRP3 inflammasome was the first one studied in the brain. Once primed and activated, it completes the assembly of inflammasome (sensor NLRP3, adaptor ASC, and effector caspase-1), leading to caspase-1 activation and increased release of downstream inflammatory cytokines, as well as to pyroptosis. Cumulative studies have confirmed that NLRP3 plays an important role in regulating innate immunity and autoimmune diseases, and its inhibitors have shown good efficacy in animal models of various inflammatory diseases. In this review, we will briefly discuss the biological characteristics of NLRP3 inflammasome, summarize the recent advances and clinical impact of the NLRP3 inflammasome in infectious, inflammatory, immune, degenerative, genetic, and vascular diseases of CNS, and discuss the potential and challenges of NLRP3 as a therapeutic target for CNS diseases.
Collapse
Affiliation(s)
- Lu Zhang
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, 410011, China
- Department of Pediatric Neurology, Children's Medical Center, The Second Xiangya Hospital of Central South University, Changsha, HuChina, 410011, China
| | - Yufen Tang
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, 410011, China
- Department of Pediatric Neurology, Children's Medical Center, The Second Xiangya Hospital of Central South University, Changsha, HuChina, 410011, China
| | - Peng Huang
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, 410011, China
- Department of Pediatric Neurology, Children's Medical Center, The Second Xiangya Hospital of Central South University, Changsha, HuChina, 410011, China
| | - Senlin Luo
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, 410011, China
- Department of Pediatric Neurology, Children's Medical Center, The Second Xiangya Hospital of Central South University, Changsha, HuChina, 410011, China
| | - Zhou She
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, 410011, China
- Department of Pediatric Neurology, Children's Medical Center, The Second Xiangya Hospital of Central South University, Changsha, HuChina, 410011, China
| | - Hong Peng
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, 410011, China
- Department of Pediatric Neurology, Children's Medical Center, The Second Xiangya Hospital of Central South University, Changsha, HuChina, 410011, China
| | - Yuqiong Chen
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, 410011, China
- Department of Pediatric Neurology, Children's Medical Center, The Second Xiangya Hospital of Central South University, Changsha, HuChina, 410011, China
| | - Jinwen Luo
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, 410011, China
- Department of Pediatric Neurology, Children's Medical Center, The Second Xiangya Hospital of Central South University, Changsha, HuChina, 410011, China
| | - Wangxin Duan
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, 410011, China
| | - Jie Xiong
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, 410011, China
- Department of Pediatric Neurology, Children's Medical Center, The Second Xiangya Hospital of Central South University, Changsha, HuChina, 410011, China
| | - Lingjuan Liu
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, 410011, China
- Department of Pediatric Neurology, Children's Medical Center, The Second Xiangya Hospital of Central South University, Changsha, HuChina, 410011, China
| | - Liqun Liu
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, 410011, China.
- Department of Pediatric Neurology, Children's Medical Center, The Second Xiangya Hospital of Central South University, Changsha, HuChina, 410011, China.
| |
Collapse
|
12
|
Di C, Ji M, Li W, Liu X, Gurung R, Qin B, Ye S, Qi R. Pyroptosis of Vascular Smooth Muscle Cells as a Potential New Target for Preventing Vascular Diseases. Cardiovasc Drugs Ther 2024:10.1007/s10557-024-07578-w. [PMID: 38822974 DOI: 10.1007/s10557-024-07578-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/14/2024] [Indexed: 06/03/2024]
Abstract
Vascular remodeling is the adaptive response of the vessel wall to physiological and pathophysiological changes, closely linked to vascular diseases. Vascular smooth muscle cells (VSMCs) play a crucial role in this process. Pyroptosis, a form of programmed cell death characterized by excessive release of inflammatory factors, can cause phenotypic transformation of VSMCs, leading to their proliferation, migration, and calcification-all of which accelerate vascular remodeling. Inhibition of VSMC pyroptosis can delay this process. This review summarizes the impact of pyroptosis on VSMCs and the pathogenic role of VSMC pyroptosis in vascular remodeling. We also discuss inhibitors of key proteins in pyroptosis pathways and their effects on VSMC pyroptosis. These findings enhance our understanding of the pathogenesis of vascular remodeling and provide a foundation for the development of novel medications that target the control of VSMC pyroptosis as a potential treatment strategy for vascular diseases.
Collapse
Affiliation(s)
- Chang Di
- Department of Pharmacology, School of Basic Medical Sciences, Peking University Health Science Center, 38 Xueyuan Road, Beijing, 100191, Haidian District, China.
- State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, 100191, China.
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100191, China.
- NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Peking University, Beijing, 100191, China.
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, Peking University, Beijing, 100191, China.
| | - Meng Ji
- Department of Pharmacology, School of Basic Medical Sciences, Peking University Health Science Center, 38 Xueyuan Road, Beijing, 100191, Haidian District, China
- State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, 100191, China
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100191, China
- NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Peking University, Beijing, 100191, China
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, Peking University, Beijing, 100191, China
| | - Wenjin Li
- Department of Pharmacology, School of Basic Medical Sciences, Peking University Health Science Center, 38 Xueyuan Road, Beijing, 100191, Haidian District, China
- State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, 100191, China
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100191, China
- NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Peking University, Beijing, 100191, China
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, Peking University, Beijing, 100191, China
| | - Xiaoyi Liu
- Department of Pharmacology, School of Basic Medical Sciences, Peking University Health Science Center, 38 Xueyuan Road, Beijing, 100191, Haidian District, China
- State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, 100191, China
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100191, China
- NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Peking University, Beijing, 100191, China
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, Peking University, Beijing, 100191, China
| | - Rijan Gurung
- Cardiovascular Disease Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore
| | - Boyang Qin
- Department of Pharmacology, School of Basic Medical Sciences, Peking University Health Science Center, 38 Xueyuan Road, Beijing, 100191, Haidian District, China
- State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, 100191, China
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100191, China
- NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Peking University, Beijing, 100191, China
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, Peking University, Beijing, 100191, China
| | - Shu Ye
- Cardiovascular Disease Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore
| | - Rong Qi
- Department of Pharmacology, School of Basic Medical Sciences, Peking University Health Science Center, 38 Xueyuan Road, Beijing, 100191, Haidian District, China.
- State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, 100191, China.
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100191, China.
- NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Peking University, Beijing, 100191, China.
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, Peking University, Beijing, 100191, China.
- Cardiovascular Disease Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore.
| |
Collapse
|
13
|
Su L, Lu H, Zhang D, Zhu X, Li J, Zong Y, Zhao Y, He Z, Chen W, Du R. Total paeony glycoside relieves neuroinflammation to exert antidepressant effect via the interplay between NLRP3 inflammasome, pyroptosis and autophagy. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 128:155519. [PMID: 38492365 DOI: 10.1016/j.phymed.2024.155519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 02/07/2024] [Accepted: 03/07/2024] [Indexed: 03/18/2024]
Abstract
BACKGROUND Depression is a common mental illness characterised by abnormal and depressed emotions. Total paeony glycoside (TPG) is a naturally active saponin extracted from the traditional Chinese medicine Radix Paeoniae rubra. However, the antidepressant and neuroinflammatory effects of TPG have not been thoroughly studied. PURPOSE To study the therapeutic potential of TGP in depression caused by neuronal injury and neuroinflammation and to explore the mechanism of TGP and the relationship between the NLRP3 inflammasome, pyroptosis, and autophagy. STUDY DESIGN A chronic unpredictable mild stress (CUMS)-induced depression model and a cell model of corticosterone (CORT)-induced hippocampal neuron injury were established to evaluate the therapeutic effects of TPG. METHODS The composition of TPG was analysed using high-performance liquid chromatography and mass spectrometry. The effects of TPG and fluoxetine on depression-like behaviour, neuronal injury, neuroinflammation, pyroptosis, and mitochondrial autophagy in the mice models were evaluated. RESULTS TGP alleviated depression-like behaviours in mice and inhibited hippocampal neuronal apoptosis. The secretion of inflammatory cytokines was significantly reduced in CORT-induced hippocampal neuron cells and in the serum of a mouse model of CUMS-induced depression. In addition, TGP treatment reduced the levels of NLRP3 family pyrin structural domains, including NLRP3, pro-caspase-1, caspase-1, and IL-1β, and the pyroptosis related proteins such as GSDMD-N. Importantly, TPG attenuated mitochondrial dysfunction, promoted the clearance of damaged mitochondria, and the activation of mitochondrial autophagy, which reduced ROS accumulation and NLRP3 inflammasome activation. An in-depth study observed that the regulatory effect of TPG on autophagy was attenuated by the autophagy inhibitor 3-methyladenine (3-MA) in vitro and in vivo. However, administration of the caspase-1 inhibitor Belnacasan (VX-765) successfully inhibited pyroptosis and showed a synergistic therapeutic effect with TPG. CONCLUSION These results indicate that TPG can repair neuronal damage by activating autophagy, restoring mitochondrial function, and reducing inflammation-mediated pyroptosis, thereby playing an important role in the alleviation of neuroinflammation and depression. This study suggests new potential drugs and treatment strategies for neuroinflammation-related diseases and depression.
Collapse
Affiliation(s)
- Lili Su
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Haoyu Lu
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Dongxue Zhang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Xiaoying Zhu
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Jianming Li
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China; Jilin Provincial Engineering Research Center for Efficient Breeding and Product Development of Sika Deer, Changchun 130118, China; Key Laboratory of Animal Production and Product Quality and Security, Ministry of Education, Ministry of National Education, Changchun 130118, China
| | - Ying Zong
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China; Jilin Provincial Engineering Research Center for Efficient Breeding and Product Development of Sika Deer, Changchun 130118, China; Key Laboratory of Animal Production and Product Quality and Security, Ministry of Education, Ministry of National Education, Changchun 130118, China
| | - Yan Zhao
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China; Jilin Provincial Engineering Research Center for Efficient Breeding and Product Development of Sika Deer, Changchun 130118, China; Key Laboratory of Animal Production and Product Quality and Security, Ministry of Education, Ministry of National Education, Changchun 130118, China
| | - Zhongmei He
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China; Jilin Provincial Engineering Research Center for Efficient Breeding and Product Development of Sika Deer, Changchun 130118, China; Key Laboratory of Animal Production and Product Quality and Security, Ministry of Education, Ministry of National Education, Changchun 130118, China
| | - Weijia Chen
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China; Jilin Provincial Engineering Research Center for Efficient Breeding and Product Development of Sika Deer, Changchun 130118, China; Key Laboratory of Animal Production and Product Quality and Security, Ministry of Education, Ministry of National Education, Changchun 130118, China.
| | - Rui Du
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China; Jilin Provincial Engineering Research Center for Efficient Breeding and Product Development of Sika Deer, Changchun 130118, China; Key Laboratory of Animal Production and Product Quality and Security, Ministry of Education, Ministry of National Education, Changchun 130118, China.
| |
Collapse
|
14
|
Liang Z, Damianou A, Vendrell I, Jenkins E, Lassen FH, Washer SJ, Grigoriou A, Liu G, Yi G, Lou H, Cao F, Zheng X, Fernandes RA, Dong T, Tate EW, Di Daniel E, Kessler BM. Proximity proteomics reveals UCH-L1 as an essential regulator of NLRP3-mediated IL-1β production in human macrophages and microglia. Cell Rep 2024; 43:114152. [PMID: 38669140 DOI: 10.1016/j.celrep.2024.114152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 02/28/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024] Open
Abstract
Activation of the NACHT, LRR, and PYD domains-containing protein 3 (NLRP3) inflammasome complex is an essential innate immune signaling mechanism. To reveal how human NLRP3 inflammasome assembly and activation are controlled, in particular by components of the ubiquitin system, proximity labeling, affinity purification, and RNAi screening approaches were performed. Our study provides an intricate time-resolved molecular map of different phases of NLRP3 inflammasome activation. Also, we show that ubiquitin C-terminal hydrolase 1 (UCH-L1) interacts with the NACHT domain of NLRP3. Downregulation of UCH-L1 decreases pro-interleukin-1β (IL-1β) levels. UCH-L1 chemical inhibition with small molecules interfered with NLRP3 puncta formation and ASC oligomerization, leading to altered IL-1β cleavage and secretion, particularly in microglia cells, which exhibited elevated UCH-L1 expression as compared to monocytes/macrophages. Altogether, we profiled NLRP3 inflammasome activation dynamics and highlight UCH-L1 as an important modulator of NLRP3-mediated IL-1β production, suggesting that a pharmacological inhibitor of UCH-L1 may decrease inflammation-associated pathologies.
Collapse
Affiliation(s)
- Zhu Liang
- Chinese Academy for Medical Sciences Oxford Institute, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford OX3 7FZ, UK; Target Discovery Institute, Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford OX3 7FZ, UK.
| | - Andreas Damianou
- Chinese Academy for Medical Sciences Oxford Institute, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford OX3 7FZ, UK; Target Discovery Institute, Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford OX3 7FZ, UK
| | - Iolanda Vendrell
- Chinese Academy for Medical Sciences Oxford Institute, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford OX3 7FZ, UK; Target Discovery Institute, Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford OX3 7FZ, UK
| | - Edward Jenkins
- Kennedy Institute of Rheumatology, University of Oxford, Oxford OX3 7FY, UK
| | - Frederik H Lassen
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, Nuffield Department of Medicine, University of Oxford, Old Road Campus, Oxford OX3 7LF, UK
| | - Sam J Washer
- James and Lillian Martin Centre for Stem Cell Research, Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK; Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, UK
| | - Athina Grigoriou
- Chinese Academy for Medical Sciences Oxford Institute, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford OX3 7FZ, UK; Target Discovery Institute, Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford OX3 7FZ, UK
| | - Guihai Liu
- Chinese Academy for Medical Sciences Oxford Institute, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford OX3 7FZ, UK
| | - Gangshun Yi
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - Hantao Lou
- Ludwig Institute for Cancer Research, University of Oxford, Oxford, UK
| | - Fangyuan Cao
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London W12 0BZ, UK
| | - Xiaonan Zheng
- Chinese Academy for Medical Sciences Oxford Institute, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford OX3 7FZ, UK
| | - Ricardo A Fernandes
- Chinese Academy for Medical Sciences Oxford Institute, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford OX3 7FZ, UK
| | - Tao Dong
- Chinese Academy for Medical Sciences Oxford Institute, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford OX3 7FZ, UK
| | - Edward W Tate
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London W12 0BZ, UK
| | - Elena Di Daniel
- Alzheimer's Research UK Oxford Drug Discovery Institute, University of Oxford, Oxford OX3 7FZ, UK
| | - Benedikt M Kessler
- Chinese Academy for Medical Sciences Oxford Institute, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford OX3 7FZ, UK; Target Discovery Institute, Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford OX3 7FZ, UK.
| |
Collapse
|
15
|
Xu D, Jiang J, Liu Y, Pang J, Suo J, Li Y, Peng Z. TIMP2 protects against sepsis-associated acute kidney injury by cAMP/NLRP3 axis-mediated pyroptosis. Am J Physiol Cell Physiol 2024; 326:C1353-C1366. [PMID: 38497110 DOI: 10.1152/ajpcell.00577.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 03/12/2024] [Accepted: 03/13/2024] [Indexed: 03/19/2024]
Abstract
The tissue inhibitor of metalloproteinases 2 (TIMP2) has emerged as a promising biomarker for predicting the risk of sepsis-associated acute kidney injury (SA-AKI). However, its exact role in SA-AKI and the underlying mechanism remains unclear. In this study, we investigated the impact of kidney tubule-specific Timp2 knockout mice on kidney injury and inflammation. Our findings demonstrated that Timp2-knockout mice exhibited more severe kidney injury than wild-type mice, along with elevated levels of pyroptosis markers NOD-like receptor protein 3 (NLRP3), Caspase1, and gasdermin D (GSDMD) in the early stage of SA-AKI. Conversely, the expression of exogenous TIMP2 in TIMP2-knockout mice still protected against kidney damage and inflammation. In in vitro experiments, using recombinant TIMP2 protein, TIMP2 knockdown demonstrated that exogenous TIMP2 inhibited pyroptosis of renal tubular cells stimulated by lipopolysaccharide (LPS). Mechanistically, TIMP2 promoted the ubiquitination and autophagy-dependent degradation of NLRP3 by increasing intracellular cyclic adenosine monophosphate (cAMP), which mediated NLRP3 degradation through recruiting the E3 ligase MARCH7, attenuating downstream pyroptosis, and thus alleviating primary tubular cell damage. These results revealed the renoprotective role of extracellular TIMP2 in SA-AKI by attenuating tubular pyroptosis, and suggested that exogenous administration of TIMP2 could be a promising therapeutic intervention for SA-AKI treatment.NEW & NOTEWORTHY Tissue inhibitor of metalloproteinase 2 (TIMP-2) has been found to be the best biomarker for predicting the risk of sepsis-associated acute kidney injury (SA-AKI). However, its role and the underlying mechanism in SA-AKI remain elusive. The authors demonstrated in this study using kidney tubule-specific knockout mice model of SA-AKI and primary renal tubule cells stimulated with lipopolysaccharide (LPS) that extracellular TIMP-2 promoted NOD-like receptor protein 3 (NLRP3) ubiquitination and autophagy-dependent degradation by increasing intracellular cyclic adenosine monophosphate (cAMP), thus attenuated pyroptosis and alleviated renal damage.
Collapse
Affiliation(s)
- Dongxue Xu
- Department of Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jun Jiang
- Department of Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Ye Liu
- Department of Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jingjing Pang
- Department of Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jinmeng Suo
- Department of Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yiming Li
- Department of Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Zhiyong Peng
- Department of Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
- Clinical Research Center of Hubei Critical Care Medicine, Wuhan, China
- Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
- Intensive Care Unit of the second affiliated Hospital of Hainan Medical College, Haikou, China
| |
Collapse
|
16
|
Xu Z, Kombe Kombe AJ, Deng S, Zhang H, Wu S, Ruan J, Zhou Y, Jin T. NLRP inflammasomes in health and disease. MOLECULAR BIOMEDICINE 2024; 5:14. [PMID: 38644450 PMCID: PMC11033252 DOI: 10.1186/s43556-024-00179-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Accepted: 03/20/2024] [Indexed: 04/23/2024] Open
Abstract
NLRP inflammasomes are a group of cytosolic multiprotein oligomer pattern recognition receptors (PRRs) involved in the recognition of pathogen-associated molecular patterns (PAMPs) and danger-associated molecular patterns (DAMPs) produced by infected cells. They regulate innate immunity by triggering a protective inflammatory response. However, despite their protective role, aberrant NLPR inflammasome activation and gain-of-function mutations in NLRP sensor proteins are involved in occurrence and enhancement of non-communicating autoimmune, auto-inflammatory, and neurodegenerative diseases. In the last few years, significant advances have been achieved in the understanding of the NLRP inflammasome physiological functions and their molecular mechanisms of activation, as well as therapeutics that target NLRP inflammasome activity in inflammatory diseases. Here, we provide the latest research progress on NLRP inflammasomes, including NLRP1, CARD8, NLRP3, NLRP6, NLRP7, NLRP2, NLRP9, NLRP10, and NLRP12 regarding their structural and assembling features, signaling transduction and molecular activation mechanisms. Importantly, we highlight the mechanisms associated with NLRP inflammasome dysregulation involved in numerous human auto-inflammatory, autoimmune, and neurodegenerative diseases. Overall, we summarize the latest discoveries in NLRP biology, their forming inflammasomes, and their role in health and diseases, and provide therapeutic strategies and perspectives for future studies about NLRP inflammasomes.
Collapse
Affiliation(s)
- Zhihao Xu
- Center of Disease Immunity and Intervention, College of Medicine, Lishui University, Lishui, 323000, China
| | - Arnaud John Kombe Kombe
- Laboratory of Structural Immunology, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China
| | - Shasha Deng
- Laboratory of Structural Immunology, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China
| | - Hongliang Zhang
- Center of Disease Immunity and Intervention, College of Medicine, Lishui University, Lishui, 323000, China
| | - Songquan Wu
- Center of Disease Immunity and Intervention, College of Medicine, Lishui University, Lishui, 323000, China
| | - Jianbin Ruan
- Department of Immunology, University of Connecticut Health Center, Farmington, 06030, USA.
| | - Ying Zhou
- Department of Obstetrics and Gynecology, Core Facility Center, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, 230001, Anhui, China.
| | - Tengchuan Jin
- Center of Disease Immunity and Intervention, College of Medicine, Lishui University, Lishui, 323000, China.
- Laboratory of Structural Immunology, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China.
- Department of Obstetrics and Gynecology, Core Facility Center, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, 230001, Anhui, China.
- Institute of Health and Medicine, Hefei Comprehensive National Science Center, Hefei, Anhui, China.
- Biomedical Sciences and Health Laboratory of Anhui Province, University of Science & Technology of China, Hefei, 230027, China.
- Clinical Research Hospital of Chinese Academy of Sciences (Hefei), University of Science and Technology of China, Hefei, 230001, China.
| |
Collapse
|
17
|
Lee Y, Yoon B, Son S, Cho E, Kim KB, Choi EY, Kim DE. Inhibition of Immunoproteasome Attenuates NLRP3 Inflammasome Response by Regulating E3 Ubiquitin Ligase TRIM31. Cells 2024; 13:675. [PMID: 38667290 PMCID: PMC11048918 DOI: 10.3390/cells13080675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 04/08/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
Excessive secretion of pro-inflammatory cytokines leads to the disruption of intestinal barrier in inflammatory bowel disease (IBD). The inflammatory cytokine tumor necrosis factor alpha (TNFα) induces the assembly of the NLRP3 inflammasome, resulting in the augmented secretion of inflammatory cytokines implicated in the pathogenesis of inflammatory bowel disease (IBD). TNFα has also been known to induce the formation of immunoproteasome (IP), which incorporates immunosubunits LMP2, LMP7, and MECL-1. Inhibition of IP activity using the IP subunit LMP2-specific inhibitor YU102, a peptide epoxyketone, decreased the protein levels of NLRP3 and increased the K48-linked polyubiquitination levels of NLRP3 in TNFα-stimulated intestinal epithelial cells. We observed that inhibition of IP activity caused an increase in the protein level of the ubiquitin E3 ligase, tripartite motif-containing protein 31 (TRIM31). TRIM31 facilitated K48-linked polyubiquitination and proteasomal degradation of NLRP3 with an enhanced interaction between NLRP3 and TRIM31 in intestinal epithelial cells. In addition, IP inhibition using YU102 ameliorated the symptoms of colitis in the model mice inflicted with dextran sodium sulfate (DSS). Administration of YU102 in the DSS-treated colitis model mice caused suppression of the NLRP3 protein levels and accompanied inflammatory cytokine release in the intestinal epithelium. Taken together, we demonstrated that inhibiting IP under inflammatory conditions induces E3 ligase TRIM31-mediated NLRP3 degradation, leading to attenuation of the NLRP3 inflammatory response that triggers disruption of intestinal barrier.
Collapse
Affiliation(s)
- Yubin Lee
- Department of Bioscience and Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea; (Y.L.); (B.Y.); (S.S.); (E.C.)
| | - Boran Yoon
- Department of Bioscience and Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea; (Y.L.); (B.Y.); (S.S.); (E.C.)
| | - Sumin Son
- Department of Bioscience and Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea; (Y.L.); (B.Y.); (S.S.); (E.C.)
| | - Eunbin Cho
- Department of Bioscience and Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea; (Y.L.); (B.Y.); (S.S.); (E.C.)
| | - Kyung Bo Kim
- Department of Cellular & Molecular Medicine, Herbert Wertheim College of Medicine, Center for Translational Science at Port St. Lucie, Florida International University, 11350 SW Village Pkwy, Port St. Lucie, FL 34987, USA;
| | - Eun Young Choi
- Department of Cellular & Molecular Medicine, Herbert Wertheim College of Medicine, Center for Translational Science at Port St. Lucie, Florida International University, 11350 SW Village Pkwy, Port St. Lucie, FL 34987, USA;
| | - Dong-Eun Kim
- Department of Bioscience and Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea; (Y.L.); (B.Y.); (S.S.); (E.C.)
| |
Collapse
|
18
|
Que X, Zheng S, Song Q, Pei H, Zhang P. Fantastic voyage: The journey of NLRP3 inflammasome activation. Genes Dis 2024; 11:819-829. [PMID: 37692521 PMCID: PMC10491867 DOI: 10.1016/j.gendis.2023.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 01/07/2023] [Indexed: 09/12/2023] Open
Abstract
NLRP3 inflammasome, an intracellular multiprotein complex, can be activated by a range of pathogenic microbes or endogenous hazardous chemicals. Its activation results in the release of cytokines such as IL-1β and IL-18, as well as Gasdermin D which eventually causes pyroptosis. The activation of NLRP3 inflammasome is under strict control and regulation by numerous pathways and mechanisms. Its excessive activation can lead to a persistent inflammatory response, which is linked to the onset and progression of severe illnesses. Recent studies have revealed that the subcellular localization of NLRP3 changes significantly during the activation process. In this review, we review the current understanding of the molecular mechanism of NLRP3 inflammasome activation, focusing on the subcellular localization of NLRP3 and the associated regulatory mechanisms. We aim to provide a comprehensive understanding of the dynamic transportation, activation, and degradation processes of NLRP3.
Collapse
Affiliation(s)
- Xiangyong Que
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Sihao Zheng
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Qibin Song
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Huadong Pei
- Department of Oncology, Georgetown Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Pingfeng Zhang
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| |
Collapse
|
19
|
Ha J, Kim M, Park JS, Lee Y, Lee JY, Shin JC, Seo D, Park SS, You J, Jung SM, Kim HY, Mizuno S, Takahashi S, Kim SJ, Park SH. SERTAD1 initiates NLRP3-mediated inflammasome activation through restricting NLRP3 polyubiquitination. Cell Rep 2024; 43:113752. [PMID: 38341852 DOI: 10.1016/j.celrep.2024.113752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 01/03/2024] [Accepted: 01/23/2024] [Indexed: 02/13/2024] Open
Abstract
We here demonstrate that SERTAD1 is an adaptor protein responsible for the regulation of lysine 63 (K63)-linked NLRP3 polyubiquitination by the Cullin1 E3 ubiquitin ligase upon inflammasome activation. SERTAD1 specifically binds to NLRP3 but not to other inflammasome sensors. This endogenous interaction increases after inflammasome activation, interfering with the interaction between NLRP3 and Cullin1. Interleukin (IL)-1β and IL-18 secretion, as well as the cleavage of gasdermin D, are decreased in SERTAD1 knockout bone-marrow-derived macrophages, together with reduced formation of the NLRP3 inflammasome complex. Additionally, SERTAD1-deficient mice show attenuated severity of monosodium-uric-acid-induced peritonitis and experimental autoimmune encephalomyelitis. Analysis of public datasets indicates that expression of SERTAD1 mRNA is significantly increased in the patients of autoimmune diseases. Thus, our findings uncover a function of SERTAD1 that specifically reduces Cullin1-mediated NLRP3 polyubiquitination via direct binding to NLRP3, eventually acting as a crucial factor to regulate the initiation of NLRP3-mediated inflammasome activation.
Collapse
Affiliation(s)
- Jihoon Ha
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Minbeom Kim
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Jin Seok Park
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Yerin Lee
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Jae Young Lee
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Jin-Cheol Shin
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Dongyeob Seo
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Seong Shil Park
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Jiyeon You
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Su Myung Jung
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Hye Young Kim
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Republic of Korea; SRC Center for Immune Research on Non-lymphoid Organs, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Seiya Mizuno
- Laboratory Animal Resource Center, Transborder Medical Research Center, Institute of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8578, Japan
| | - Satoru Takahashi
- Laboratory Animal Resource Center, Transborder Medical Research Center, Institute of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8578, Japan
| | - Seong-Jin Kim
- GILO Institute, GILO Foundation, Seoul 06668, Republic of Korea
| | - Seok Hee Park
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Republic of Korea; SRC Center for Immune Research on Non-lymphoid Organs, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| |
Collapse
|
20
|
Zhang L, Li G, Li Y. TRIM59 suppresses the brain ischaemia/reperfusion injury and pyroptosis of microglial through mediating the ubiquitination of NLRP3. Sci Rep 2024; 14:2511. [PMID: 38291200 PMCID: PMC10828378 DOI: 10.1038/s41598-024-52914-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 01/25/2024] [Indexed: 02/01/2024] Open
Abstract
Cerebral ischaemia/reperfusion (I/R) injury induces irreversible brain injury and causes functional impairment. Ubiquitination plays a crucial role in protein degradation, but its role in cerebral I/R injury remains unclear. Differentially expressed genes in stroke were identified by analysing the microarray dataset GSE119121. Cerebral I/R was simulated in vitro by treating human microglial HMC3 cells with oxygen-glucose deprivation/reperfusion (OGD/R). Cell viability was tested by Cell Counting Kit 8 (CCK-8) assays, and pyroptosis was examined by flow cytometry. Lactate dehydrogenase (LDH) and inflammatory cytokine secretion were measured by LDH cytotoxicity assays and enzyme-linked immunosorbent assay (ELISA), respectively. The cerebral I/R animal model was established by middle cerebral artery occlusion (MCAO) surgery in rats. Bioinformatic analysis indicated that tripartite motif-containing protein 59 (TRIM59) is downregulated in stroke, which was verified in cerebral I/R models. The upregulation of TRIM59 promoted viability and inhibited pyroptosis in OGD/R-treated microglia and alleviated cerebral I/R injury in vivo. TRIM59 attenuated NOD-like receptor family pyrin domain containing 3 (NLRP3) protein expression through ubiquitination, thus degrading NLRP3 and alleviating OGD/R-induced injury. TRIM59 relieves cerebral I/R injury in vivo and in vivo. Mechanistically, TRIM59 directly interacts with NLRP3 and inhibits NLRP3 through ubiquitination. Targeting the TRIM59/NLRP3 signalling axis may be an effective therapeutic strategy for cerebral I/R.
Collapse
Affiliation(s)
- Liangtian Zhang
- Department of Emergency Medicine, Chun'an First People's Hospital, Hangzhou City, Zhejiang Province, China
| | - Gang Li
- Emergency and Critical Care Center, Department of Emergency Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, China
| | - Ying Li
- Department of Special Inspection, Hangzhou TCM Hospital, Affiliated to Zhejiang Chinese Medical University, No. 453, Tiyuchang Road, Hangzhou City, Zhejiang Province, China.
| |
Collapse
|
21
|
Tang S, Geng Y, Wang Y, Lin Q, Yu Y, Li H. The roles of ubiquitination and deubiquitination of NLRP3 inflammasome in inflammation-related diseases: A review. BIOMOLECULES & BIOMEDICINE 2024; 24:708-721. [PMID: 38193803 PMCID: PMC11293225 DOI: 10.17305/bb.2023.9997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/15/2023] [Accepted: 01/08/2024] [Indexed: 01/10/2024]
Abstract
The inflammatory response is a natural immune response that prevents microbial invasion and repairs damaged tissues. However, excessive inflammatory responses can lead to various inflammation-related diseases, posing a significant threat to human health. The NOD-like receptor pyrin domain-containing protein 3 (NLRP3) inflammasome is a vital mediator in the activation of the inflammatory cascade. Targeting the hyperactivation of the NLRP3 inflammasome may offer potential strategies for the prevention or treatment of inflammation-related diseases. It has been established that the ubiquitination and deubiquitination modifications of the NLRP3 inflammasome can provide protective effects in inflammation-related diseases. These modifications modulate several pathological processes, including excessive inflammatory responses, pyroptosis, abnormal autophagy, proliferation disorders, and oxidative stress damage. Therefore, this review discusses the regulation of NLRP3 inflammasome activation by ubiquitination and deubiquitination modifications, explores the role of these modifications in inflammation-related diseases, and examines the potential underlying mechanisms.
Collapse
Affiliation(s)
- Shaokai Tang
- School of Physical Education, Yanshan University, Qinhuangdao, China
| | - Yuanwen Geng
- School of Physical Education, Yanshan University, Qinhuangdao, China
| | - Yawei Wang
- School of Public Administration, Yanshan University, Qinhuangdao, China
| | - Qinqin Lin
- School of Physical Education, Yanshan University, Qinhuangdao, China
- School of Public Administration, Yanshan University, Qinhuangdao, China
| | - Yirong Yu
- School of Physical Education, Yanshan University, Qinhuangdao, China
| | - Hao Li
- School of Physical Education, Yanshan University, Qinhuangdao, China
| |
Collapse
|
22
|
Gao J, Gao Z. The regulatory role and mechanism of USP14 in endothelial cell pyroptosis induced by coronary heart disease. Clin Hemorheol Microcirc 2024; 86:495-508. [PMID: 38073382 DOI: 10.3233/ch-232003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2024]
Abstract
OBJECTIVE The present study probes into the role and mechanism of ubiquitin specific peptidase 14 (USP14) in coronary heart disease (CHD)-triggered endothelial cell pyroptosis. METHODS An in vitro CHD model was established by inducing human coronary artery endothelial cells (HCAECs) with oxidized low-density lipoprotein (ox-LDL). HCAECs were transfected with si-USP14, followed by evaluation of cell viability by CCK-8 assay, detection of lactate dehydrogenase (LDH) activity by assay kit, detection of USP14, miR-15b-5p, NLRP3, GSDMD-N, and Cleaved-Caspase-1 expressions by qRT-PCR or Western blot, as well as IL-1β and IL-18 concentrations by ELISA. Co-IP confirmed the binding between USP14 and NLRP3. The ubiquitination level of NLRP3 in cells was measured after protease inhibitor MG132 treatment. Dual-luciferase reporter assay verified the targeting relationship between miR-15b-5p and USP14. RESULTS USP14 and NLRP3 were highly expressed but miR-15b-5p was poorly expressed in ox-LDL-exposed HCAECs. USP14 silencing strengthened the viability of ox-LDL-exposed HCAECs, reduced the intracellular LDH activity, and diminished the NLRP3, GSDMD-N, Cleaved-Caspase-1, IL-1β, and IL-18 expressions. USP14 bound to NLRP3 protein and curbed its ubiquitination. Repression of NLRP3 ubiquitination counteracted the inhibitory effect of USP14 silencing on HCAEC pyroptosis. miR-15b-5p restrained USP14 transcription and protein expression. miR-15b-5p overexpression alleviated HCAEC pyroptosis by suppressing USP14/NLRP3. CONCLUSION USP14 stabilizes NLRP3 protein expression through deubiquitination, thereby facilitating endothelial cell pyroptosis in CHD. miR-15b-5p restrains endothelial cell pyroptosis by targeting USP14 expression.
Collapse
Affiliation(s)
- Jie Gao
- Department of Cardiology, Xi'an International Medical Center Hospital, Xi'an, China
| | - Zhao Gao
- Department of Cardiology, Xi'an International Medical Center Hospital, Xi'an, China
| |
Collapse
|
23
|
Peng J, He J, Lin L, Li Y, Xia Y. Neural Stem Cell Extracellular Vesicles Carrying YBX1 Inhibited Neuronal Pyroptosis Through Increasing m6A-modified GPR30 Stability and Expression in Ischemic Stroke. Transl Stroke Res 2023:10.1007/s12975-023-01210-z. [PMID: 37966628 DOI: 10.1007/s12975-023-01210-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 10/12/2023] [Accepted: 10/26/2023] [Indexed: 11/16/2023]
Abstract
Neural stem cell-derived extracellular vesicles (NSC-derived EVs) alleviated ischemic stroke (IS) by suppressing the activation of nucleotide-binding domain leucine-rich repeats family protein 3 (NLRP3) inflammasome and neuronal pyroptosis. However, the specific mechanism needs further investigation. qRT-qPCR, Western blotting, and immunofluorescence detected related gene expression. Immunofluorescent analyzed the expression of Ki-67, βIII-Tubulin (Tuj1), and GFAP. Lactate dehydrogenase (LDH) release and IL-1β and IL-18 levels were analyzed by LDH and ELISA kits. TTC staining evaluated the infarction of brain tissues. Flow cytometric analysis measured caspase-1 activity. M6A methylated RNA immunoprecipitation PCR (MeRIP-PCR) measured methylation levels of G protein-coupled receptor 30 (GPR30). RIP and Co-IP analyzed the interactions of Y box binding protein (YBX1)/GPR30, YBX1/IGF2BP1 and NLRP3/speckle-type POZ protein (SPOP), as well as the ubiquitination levels of NLRP3. NSC-derived EVs inhibited the ischemia-reperfusion (I/R) injury of rats and the neuronal pyroptosis induced by oxygen-glucose deprivation/reoxygenation (OGD/R). Knockdown of EVs carrying YBX1 or GPR30 silencing abolished these inhibiting effects. GPR30 mRNA and IGF2BP1 protein were enriched by YBX1 antibody. YBX1 enhanced the stability of m6A-modified GPR30 by interacting with IGF2BP1 and thus promoting GPR30 expression. Knockdown of IGF2BP1 suppressed the binding between YBX1 and GPR30 mRNA. GPR30 promoted NLRP3 ubiquitination by interacting with SPOP. EVs carrying YBX1 could reduce the infarction of brain tissues and inhibit neuronal pyroptosis in rats with I/R injury. NSC-derived EVs carrying YBX1 increased the stability of m6A-modified GPR30 by interacting with IGF2BP1; the upregulation of GPR30 inhibited the activation of NLRP3 inflammasome through promoting NLRP3 ubiquitination by SPOP, ultimately suppressing the neuronal pyroptosis in IS.
Collapse
Affiliation(s)
- Jun Peng
- Department of Neurosurgery, Haikou Affiliated Hospital of Central South University Xiangya School of Medicine, Hainan Province, Haikou, 570208, People's Republic of China
| | - Jun He
- Department of Neurosurgery, Haikou Affiliated Hospital of Central South University Xiangya School of Medicine, Hainan Province, Haikou, 570208, People's Republic of China
| | - Long Lin
- Department of Neurosurgery, Haikou Affiliated Hospital of Central South University Xiangya School of Medicine, Hainan Province, Haikou, 570208, People's Republic of China
| | - You Li
- Department of Neurosurgery, Haikou Affiliated Hospital of Central South University Xiangya School of Medicine, Hainan Province, Haikou, 570208, People's Republic of China
| | - Ying Xia
- Department of Neurosurgery, Haikou Affiliated Hospital of Central South University Xiangya School of Medicine, Hainan Province, Haikou, 570208, People's Republic of China.
| |
Collapse
|
24
|
Qin Y, Zhao W. Posttranslational modifications of NLRP3 and their regulatory roles in inflammasome activation. Eur J Immunol 2023; 53:e2350382. [PMID: 37382218 DOI: 10.1002/eji.202350382] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 05/09/2023] [Accepted: 06/19/2023] [Indexed: 06/30/2023]
Abstract
The NACHT, LRR, and PYD domains-containing protein 3 (NLRP3) inflammasome is a multimolecular complex that plays a fundamental role in inflammation. Optimal activation of NLRP3 inflammasome is crucial for host defense against pathogens and the maintenance of immune homeostasis. Aberrant NLRP3 inflammasome activity has been implicated in various inflammatory diseases. Posttranslational modifications (PTMs) of NLRP3, a key inflammasome sensor, play critical roles in directing inflammasome activation and controlling the severity of inflammation and inflammatory diseases, such as arthritis, peritonitis, inflammatory bowel disease, atherosclerosis, and Parkinson's disease. Various NLRP3 PTMs, including phosphorylation, ubiquitination, and SUMOylation, could direct inflammasome activation and control inflammation severity by affecting the protein stability, ATPase activity, subcellular localization, and oligomerization of NLRP3 as well as the association between NLRP3 and other inflammasome components. Here, we provide an overview of the PTMs of NLRP3 and their roles in controlling inflammation and summarize potential anti-inflammatory drugs targeting NLRP3 PTMs.
Collapse
Affiliation(s)
- Ying Qin
- Department of Pathogenic Biology and Key Laboratory of Infection and Immunity of Shandong Province, School of Basic Medical Science, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Wei Zhao
- Department of Pathogenic Biology and Key Laboratory of Infection and Immunity of Shandong Province, School of Basic Medical Science, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| |
Collapse
|
25
|
Jiang Q, Zhu Z, Mao X. Ubiquitination is a major modulator for the activation of inflammasomes and pyroptosis. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2023; 1866:194955. [PMID: 37331650 DOI: 10.1016/j.bbagrm.2023.194955] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 05/25/2023] [Accepted: 06/12/2023] [Indexed: 06/20/2023]
Abstract
Inflammasomes are a central node of the innate immune defense system against the threat of homeostatic perturbance caused by pathogenic organisms or host-derived molecules. Inflammasomes are generally composed of multimeric protein complexes that assemble in the cytosol after sensing danger signals. Activated inflammasomes promote downstream proteolytic activation, which triggers the release of pro-inflammatory cytokines therefore inducing pyroptotic cell death. The inflammasome pathway is finely tuned by various mechanisms. Recent studies found that protein post-translational modifications such as ubiquitination also modulate inflammasome activation. Targeting the ubiquitination modification of the inflammasome pathway might be a promising strategy for related diseases. In this review, we extensively discuss the advances in inflammasome activation and pyroptosis modulated by ubiquitination which help in-depth understanding and controlling the inflammasome and pyroptosis in various diseases.
Collapse
Affiliation(s)
- Qiuyun Jiang
- Guangdong Institute of Cardiovascular Diseases, Guangdong Key Laboratory of Vascular Diseases, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, PR China; Guangdong Provincial Key Laboratory of Protein Modification and Degradation, State Key Laboratory of Respiratory Diseases, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong 511436, China
| | - Zhigang Zhu
- Division of Hematology & Oncology, Department of Geriatrics, Guangzhou First People's Hospital, College of Medicine, South China University of Technology, Guangzhou, Guangdong 510180, China
| | - Xinliang Mao
- Guangdong Institute of Cardiovascular Diseases, Guangdong Key Laboratory of Vascular Diseases, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, PR China; Guangdong Provincial Key Laboratory of Protein Modification and Degradation, State Key Laboratory of Respiratory Diseases, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong 511436, China.
| |
Collapse
|
26
|
Han YH, Liu XD, Jin MH, Sun HN, Kwon T. Role of NLRP3 inflammasome-mediated neuronal pyroptosis and neuroinflammation in neurodegenerative diseases. Inflamm Res 2023; 72:1839-1859. [PMID: 37725102 DOI: 10.1007/s00011-023-01790-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 08/14/2023] [Accepted: 08/17/2023] [Indexed: 09/21/2023] Open
Abstract
BACKGROUND Neurodegenerative diseases are a common group of neurological disorders characterized by progressive loss of neuronal structure and function leading to cognitive impairment. Recent studies have shown that neuronal pyroptosis mediated by the NLRP3 inflammasome plays a crucial role in the pathogenesis of neurodegenerative diseases. OBJECTIVE AND METHOD The NLRP3 inflammasome is a multiprotein complex that, when activated within cells, triggers an inflammatory response, ultimately leading to pyroptotic cell death of neurons. Pyroptosis is a typical pro-inflammatory programmed cell death process occurring downstream of NLRP3 inflammasome activation, characterized by the formation of pores on the cell membrane by the GSDMD protein, leading to cell lysis and the release of inflammatory factors. It has been found that NLRP3 inflammasome-mediated neuronal pyroptosis is closely associated with the development of various neurodegenerative diseases, such as Alzheimer's disease, traumatic brain injury, and Parkinson's disease. Therefore, inhibiting NLRP3 inflammasome activation and attenuating neuronal pyroptosis could potentially serve as novel strategies for the treatment of neurodegenerative diseases. RESULTS The aim of this review is to explore the role of NLRP3 activation-mediated neuronal pyroptosis and neuroinflammation in neurodegenerative diseases. Firstly, we extensively discuss the relationship between NLRP3 inflammasome-mediated neuronal pyroptosis and neuroinflammation in various neurodegenerative diseases. Subsequently, we further explore the mechanisms driving NLRP3 activation and assembly, as well as the post-translational modifications regulating NLRP3 inflammasome activation. CONCLUSION Understanding these mechanisms will contribute to a deeper understanding of the link between neuronal pyroptosis and neurodegenerative diseases, and hold significant implications for the treatment and prevention of neurodegenerative diseases.
Collapse
Affiliation(s)
- Ying-Hao Han
- College of Life Science & Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, 163319, China.
| | - Xiao-Dong Liu
- College of Life Science & Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, 163319, China
| | - Mei-Hua Jin
- College of Life Science & Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, 163319, China
| | - Hu-Nan Sun
- College of Life Science & Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, 163319, China.
| | - Taeho Kwon
- Primate Resources Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup-si, Jeonbuk, 56216, Republic of Korea.
- Department of Functional Genomics, KRIBB School of Bioscience, University of Science and Technology, Daejeon, 34113, Republic of Korea.
| |
Collapse
|
27
|
Scalavino V, Piccinno E, Valentini AM, Schena N, Armentano R, Giannelli G, Serino G. miR-369-3p Modulates Intestinal Inflammatory Response via BRCC3/NLRP3 Inflammasome Axis. Cells 2023; 12:2184. [PMID: 37681916 PMCID: PMC10486421 DOI: 10.3390/cells12172184] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/19/2023] [Accepted: 08/28/2023] [Indexed: 09/09/2023] Open
Abstract
Inflammasomes are multiprotein complexes expressed by immune cells in response to distinct stimuli that trigger inflammatory responses and the release of pro-inflammatory cytokines. Evidence suggests a different role of inflammasome NLRP3 in IBD. NLRP3 inflammasome activation can be controlled by post-translational modifications such as ubiquitination through BRCC3. The aim of this study was to investigate the effect of miR-369-3p on the expression and activation of NLRP3 inflammasomes via BRCC3 regulation. After bioinformatics prediction of Brcc3 as a gene target of miR-369-3p, in vitro, we validated its modulation in bone marrow-derived macrophages (BMDM). The increase in miR-369-3p significantly reduced BRCC3 gene and protein expression. This modulation, in turn, reduced the expression of NLRP3 and blocked the recruitment of ASC adaptor protein by NLRP3. As a result, miR-369-3p reduced the activity of Caspase-1 by the inflammasome, decreasing the cleavage of pro-IL-1β and pro-IL-18. These results support a novel mechanism that seems to act on post-translational modification of NLRP3 inflammasome activation by BRCC3. This may be an interesting new target in the personalized treatment of inflammatory disorders, including IBD.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Grazia Serino
- National Institute of Gastroenterology S. De Bellis, IRCCS Research Hospital, Via Turi 27, 70013 Castellana Grotte, BA, Italy; (V.S.); (E.P.); (A.M.V.); (N.S.); (R.A.); (G.G.)
| |
Collapse
|
28
|
Chen M, He Y, Hu X, Dong X, Yan Z, Zhao Q, Li J, Xiang D, Lin Y, Song H, Bian X. Vitamin D3 attenuates SARS-CoV-2 nucleocapsid protein-caused hyperinflammation by inactivating the NLRP3 inflammasome through the VDR-BRCC3 signaling pathway in vitro and in vivo. MedComm (Beijing) 2023; 4:e318. [PMID: 37361896 PMCID: PMC10285036 DOI: 10.1002/mco2.318] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 05/30/2023] [Accepted: 05/30/2023] [Indexed: 06/28/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection-caused coronavirus disease 2019 (COVID-19) is a global crisis with no satisfactory therapies. Vitamin D3 (VD3) is considered a potential candidate for COVID-19 treatment; however, little information is available regarding the exact effects of VD3 on SARS-CoV-2 infection and the underlying mechanism. Herein, we confirmed that VD3 reduced SARS-CoV-2 nucleocapsid (N) protein-caused hyperinflammation in human bronchial epithelial (HBE) cells. Meanwhile, VD3 inhibited the NOD-like receptor family pyrin domain containing 3 (NLRP3) inflammasome activation in N protein-overexpressed HBE (HBE-N) cells. Notably, the inhibitors of caspase-1, NLRP3, and NLRP3 or caspase-1 small interference RNA (siRNA) enhanced VD3-induced NLRP3 inflammasome inactivation, with subsequent suppression of interleukin-6 (IL6) and IL1β release in HBE-N cells, which were abolished by the NLRP3 agonist. Moreover, VD3 increased NLRP3 ubiquitination (Ub-NLRP3) expression and the binding of the VDR with NLRP3, with decreased BRCA1/BRCA2-containing complex subunit 3 (BRCC3) expression and NLRP3-BRCC3 association. VD3-induced Ub-NLRP3 expression, NLRP3 inflammasome inactivation, and hyperinflammation inhibition were improved by the BRCC3 inhibitor or BRCC3 siRNA, which were attenuated by the vitamin D receptor (VDR) antagonist or VDR siRNA in HBE-N cells. Finally, the results of the in vivo study in AAV-Lung-enhanced green fluorescent protein-N-infected lungs were consistent with the findings of the in vitro experiment. In conclusion, VD3 attenuated N protein-caused hyperinflammation by inactivating the NLRP3 inflammasome partially through the VDR-BRCC3 signaling pathway.
Collapse
Affiliation(s)
- Mingliang Chen
- Institute of Pathology and Southwest Cancer CentreSouthwest HospitalArmy Medical UniversityChongqingChina
- Institute of ToxicologySchool of Military Preventive MedicineArmy Medical UniversityChongqingChina
| | - Ying He
- Department of UltrasoundXinqiao HospitalArmy Medical UniversityChongqingChina
| | - Xiaofeng Hu
- Department of Health Supervision and SurveillanceChinese PLA Center for Disease Control and PreventionBeijingChina
| | - Xunhu Dong
- Institute of ToxicologySchool of Military Preventive MedicineArmy Medical UniversityChongqingChina
| | - Zexuan Yan
- Institute of Pathology and Southwest Cancer CentreSouthwest HospitalArmy Medical UniversityChongqingChina
| | - Qingning Zhao
- Institute of Pathology and Southwest Cancer CentreSouthwest HospitalArmy Medical UniversityChongqingChina
| | - Jingyuan Li
- Institute of Pathology and Southwest Cancer CentreSouthwest HospitalArmy Medical UniversityChongqingChina
| | - Dongfang Xiang
- Institute of Pathology and Southwest Cancer CentreSouthwest HospitalArmy Medical UniversityChongqingChina
| | - Yong Lin
- Institute of Pathology and Southwest Cancer CentreSouthwest HospitalArmy Medical UniversityChongqingChina
| | - Hongbin Song
- Department of Health Supervision and SurveillanceChinese PLA Center for Disease Control and PreventionBeijingChina
| | - Xiuwu Bian
- Institute of Pathology and Southwest Cancer CentreSouthwest HospitalArmy Medical UniversityChongqingChina
| |
Collapse
|
29
|
Jeon S, Kang J, Lee SB. BC-1215 inhibits ATP-induced IL-1β secretion via the FBXL2-mediated ubiquitination and degradation of not only NLRP3, but also pro-IL-1β in LPS-primed THP-1 cells. Biochem Biophys Res Commun 2023; 657:128-135. [PMID: 37004285 DOI: 10.1016/j.bbrc.2023.03.055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/15/2023] [Accepted: 03/21/2023] [Indexed: 04/03/2023]
Abstract
BC-1215, bis-pyridinyl benzyl ethanediamine, is an inhibitor of F-box only protein 3 (FBXO3) and exerts anti-inflammatory effects. BC-1215 inhibits interactions between FBXO3-F-box and the leucine rich repeat protein 2 (FBXL2), leading to the upregulation of FBXL2 expression, FBXL2-mediated ubiquitination and the degradation of tumor necrosis factor receptor (TNFR)-associated factor 6 (TRAF6) or NOD-, LRR- and the pyrin domain-containing protein 3 (NLRP3), which subsequently results in the down-regulation of inflammatory cytokine production. In the current study, we investigated the issue of whether or how BC-1215 suppresses the ATP-induced secretion of IL-1β in LPS-primed human macrophage-like cells, THP-1 cells. Our result show that pre-treatment with BC-1215 attenuated the ATP-induced secretion of IL-1β in LPS-primed THP-1 cells. Treatment of the LPS-primed THP-1 cells with BC-1215 resulted in a decrease in the level of NLRP3 and pro-IL-1β at the protein level, but not at the mRNA level. In addition, treatment with MG-132, but not leupeptin, inhibited the BC-1215-induced degradation of NLRP3 and pro-IL-1β proteins, and restored their levels, suggesting that BC-1215 decreases the stability of NLRP3 and pro-IL-1β at the protein level via proteasome-dependent degradation. Our results also show that FBXL2, which is increased by BC-1215, bound to and ubiquitinated NLRP3 and pro-IL-1β, but not pro-caspase-1. These collective results indicate that treatment with BC-1215, an inhibitor of FBXO3, inhibits ATP-induced IL-1β secretion via the FBXL2-mediated ubiquitination and degradation of pro-IL-1β as well as NLRP3 in LPS-primed THP-1 cells, suggesting that FBXO3 is a potential therapeutic target for developing agents against inflammatory diseases.
Collapse
|
30
|
Yang X, Wang C, Zhu G, Guo Z, Fan L. METTL14/YTHDF1 axis-modified UCHL5 aggravates atherosclerosis by activating the NLRP3 inflammasome. Exp Cell Res 2023; 427:113587. [PMID: 37044315 DOI: 10.1016/j.yexcr.2023.113587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 03/28/2023] [Accepted: 04/04/2023] [Indexed: 04/14/2023]
Abstract
BACKGROUND Vascular smooth muscle cell (VSMC) phenotypic switching contributes to VSMC proliferation and migration in atherosclerosis (AS). Nevertheless, the regulatory mechanism of VSMC phenotypic switching during AS progression is unclear. Here, the role and regulatory mechanism of UCHL5 in VSMC phenotypic switching during AS progression were investigated. METHODS ApoE-/- mice were fed with high fat diet to establish AS model in vivo. VSMCs stimulated by ox-LDL were used as AS cellular model. VSMC proliferation and migration were examined by CCK8 assay and transwell assay, respectively. The levels of pro-inflammatory cytokines were assessed using ELISA. The interactions between METTL14/YTHDF1, UCHL5 and NLRP3 were analyzed using RIP and/or dual-luciferase reporter gene and/or Co-IP assays. NLRP3 ubiquitination was analyzed by ubiquitination analysis. RESULTS UCHL5 was significantly upregulated in AS patients and ox-LDL-treated VSMCs. UCHL5 silencing ameliorated plaque formation and vascular remodeling in vivo and suppressed ox-LDL-induced VSMC proliferation, migration, inflammation and phenotypic switching in vitro. Moreover, METTL14 could increase UCHL5 mRNA m6A level and promoted UCHL5 expression by recruiting YTHDF1. Moreover, UCHL5 overexpression enhanced protein stability by deubiquitinating NLRP3. Rescue studies revealed that NLRP3 overexpression abrogated UCHL5 silencing-mediated biological effects in ox-LDL-treated VSMCs. CONCLUSION UCHL5 modified by METTL14/YTHDF1 axis could facilitate the inflammation and vascular remodeling in atherosclerosis by activating the NLRP3 inflammasome.
Collapse
Affiliation(s)
- Xiaohu Yang
- Department of Vascular Surgery, Qingpu Branch of Zhongshan Hospital, Fudan University, Shanghai, 201700, China
| | - Chen Wang
- Department of Vascular Surgery, Qingpu Branch of Zhongshan Hospital, Fudan University, Shanghai, 201700, China
| | - Guanglang Zhu
- Department of Vascular Surgery, Qingpu Branch of Zhongshan Hospital, Fudan University, Shanghai, 201700, China
| | - Zhenyu Guo
- Department of Vascular Surgery, Qingpu Branch of Zhongshan Hospital, Fudan University, Shanghai, 201700, China
| | - Longhua Fan
- Department of Vascular Surgery, Qingpu Branch of Zhongshan Hospital, Fudan University, Shanghai, 201700, China.
| |
Collapse
|
31
|
Thapa P, Upadhyay SP, Singh V, Boinpelly VC, Zhou J, Johnson DK, Gurung P, Lee ES, Sharma R, Sharma M. Chalcone: A potential scaffold for NLRP3 inflammasome inhibitors. EUROPEAN JOURNAL OF MEDICINAL CHEMISTRY REPORTS 2023; 7:100100. [PMID: 37033416 PMCID: PMC10081147 DOI: 10.1016/j.ejmcr.2022.100100] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Overactivated NLRP3 inflammasome has been shown to associate with an increasing number of disease conditions. Activation of the NLRP3 inflammasome results in caspase-1-catalyzed formation of active pro-inflammatory cytokines (IL-1β and IL-18) resulting in pyroptosis. The multi-protein composition of the NLRP3 inflammasome and its sensitivity to several damage-associated molecular patterns (DAMPs) and pathogen-associated molecular patterns (PAMPs) make this extensively studied inflammasome an attractive target to treat chronic conditions. However, none of the known NLRP3 inhibitors has been approved for clinical use. Sulfonylurea and covalent inhibitors with electrophilic warhead (Michael acceptor) are among the prominent classes of compounds explored for their NLRP3 inhibitory effects. Chalcone, a small molecule with α, β unsaturated carbonyl group (Michael acceptor), has also been studied as a promising scaffold for the development of NLRP3 inhibitors. Low molecular weight, easy to manipulate lipophilicity and cost-effectiveness have attracted many to use chalcone scaffold for drug development. In this review, we highlight chalcone derivatives with NLRP3 inflammasome inhibitory activities. Recent developments and potential new directions summarized here will, hopefully, serve as valuable perspectives for investigators including medicinal chemists and drug discovery researchers to utilize chalcone as a scaffold for developing novel NLRP3 inflammasome inhibitors.
Collapse
Affiliation(s)
- Pritam Thapa
- Drug Discovery Program, Midwest Veterans’ Biomedical Research Foundation, KCVA Medical Center, Kansas City, MO, 64128, USA
| | - Sunil P. Upadhyay
- Drug Discovery Program, Midwest Veterans’ Biomedical Research Foundation, KCVA Medical Center, Kansas City, MO, 64128, USA
| | - Vikas Singh
- Division of Neurology, KCVA Medical Center, Kansas City, MO, USA
| | - Varun C. Boinpelly
- Renal Research Laboratory, Kansas City VA Medical Center, Kansas City, MO, USA
| | - Jianping Zhou
- Renal Research Laboratory, Kansas City VA Medical Center, Kansas City, MO, USA
| | - David K. Johnson
- Department of Computational Chemical Biology Core, Molecular Graphics and Modeling Core, University of Kansas, KS, 66047, USA
| | - Prajwal Gurung
- Inflammation Program, University of Iowa, Iowa City, IA, 52242, USA
| | - Eung Seok Lee
- College of Pharmacy, Yeungnam University, Gyeongsan, 712-749, Republic of Korea
| | - Ram Sharma
- Drug Discovery Program, Midwest Veterans’ Biomedical Research Foundation, KCVA Medical Center, Kansas City, MO, 64128, USA
| | - Mukut Sharma
- Drug Discovery Program, Midwest Veterans’ Biomedical Research Foundation, KCVA Medical Center, Kansas City, MO, 64128, USA
- Renal Research Laboratory, Kansas City VA Medical Center, Kansas City, MO, USA
| |
Collapse
|
32
|
Liu S, Bi H, Jiang M, Chen Y, Jiang M. An update on the role of TRIM/NLRP3 signaling pathway in atherosclerosis. Biomed Pharmacother 2023; 160:114321. [PMID: 36736278 DOI: 10.1016/j.biopha.2023.114321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 01/14/2023] [Accepted: 01/26/2023] [Indexed: 02/04/2023] Open
Abstract
Atherosclerosis (AS) is a chronic inflammatory disease of large and medium arteries that includes lipid metabolism disorder and recruitment of immune cells to the artery wall. An increasing number of studies have confirmed that inflammasome over-activation is associated with the onset and progression of atherosclerosis. The NLRP3 inflammasome, in particular, has been proven to increase the incidence rate of cardiovascular diseases (CVD) by promoting pro-inflammatory cytokine release and reducing plaque stability. The strict control of inflammasome and prevention of excessive inflammatory reactions have been the research focus of inflammatory diseases. Tripartite motif (TRIM) is a protein family with a conservative structure and rapid evolution. Several studies have demonstrated the TRIM family's regulatory role in mediating inflammation. This review aims to clarify the relationship between TRIMs and NLRP3 inflammasome and provide insights for future research and treatment discovery.
Collapse
Affiliation(s)
- Sibo Liu
- The QUEEN MARY school, Nanchang University, 999 Xuefu Road, Nanchang, Jiangxi 330031, China
| | - Hongfeng Bi
- Medical Equipment Department, Dongying Shengli Oilfield Central Hospital, Dongying, Shandong 257034, China
| | - Meiling Jiang
- Department of obstetrics, Dongying Shengli Oilfield Central Hospital, Dongying, Shandong 257034, China
| | - Yuanli Chen
- Key Laboratory of Major Metabolic Diseases and Nutritional Regulation of Anhui Department of Education, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Meixiu Jiang
- The Institute of Translational Medicine, Nanchang University, 999 Xuefu Road, Nanchang, Jiangxi 330031, China.
| |
Collapse
|
33
|
Thiolutin attenuates ischemic stroke injury via inhibition of NLRP3 inflammasome: an in vitro and in vivo study. Exp Brain Res 2023; 241:839-849. [PMID: 36749359 DOI: 10.1007/s00221-023-06566-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 01/31/2023] [Indexed: 02/08/2023]
Abstract
A recent study confirmed that thiolutin is effective in the treatment of nucleotide-binding domain-like receptor protein 3 (NLRP3)-related inflammatory diseases. Nevertheless, whether thiolutin (THL) is involved in the regulation of NLRP3 inflammasome in ischemic stroke is not known. The murine neuronal cell oxygen-glucose deprivation (OGD) model was first established, and then different concentrations (25 nM and 50 nM) of THL were administered for 48 h incubation, respectively. Subsequently, cell viability and toxicity, and the levels of intracellular inflammatory factors interleukin-1β (IL-1β), interleukin-18 (IL-18), oxidative stress factors superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), catalase (CAT) and malondialdehyde (MDA), and NLRP3 inflammasome activation-related proteins pro-caspase, caspase-1, apoptosis-associated speck like-protein (ASC) and NLRP3 were examined, respectively. We further established the mouse middle cerebral artery occlusion (MCAO) model to evaluate the therapeutic effects of THL on cerebral infarction like behaviors in mice and the preventive effects on NLRP3 inflammasome activation in vivo. Cell cytotoxic, and the levels of inflammatory factors and oxidative stress were conspicuously increased, and NLRP3 inflammasome was materially activated in the OGD-induced cell model and MCAO-established mouse model, which were partially countered by THL treatment. Besides, intraperitoneal injection of THL could prominently reduce the cerebral infarct volume and neuromotor deficit scores in MCAO mice. The present study confirmed that THL attenuated neuronal and cerebral inflammatory injury caused by OGD and MCAO models in mice through restraining NLRP3 inflammasome activation in vitro and in vivo.
Collapse
|
34
|
Heiblig M, Patel B, Jamilloux Y. VEXAS syndrome, a new kid on the block of auto-inflammatory diseases: A hematologist's point of view. Best Pract Res Clin Rheumatol 2023; 37:101861. [PMID: 37652853 DOI: 10.1016/j.berh.2023.101861] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 06/29/2023] [Accepted: 07/24/2023] [Indexed: 09/02/2023]
Abstract
The recently discovered VEXAS syndrome is caused by the clonal expansion of hematopoietic stem or progenitor cells with acquired mutations in UBA1 gene, which encodes for a key enzyme of the ubiquitylation proteasome system. As a result, a shorter cytoplasmic isoform of UBA1 is transcribed, which is non-functional. The disease is characterized by non-specific and highly heterogeneous inflammatory manifestations and macrocytic anemia. VEXAS syndrome is a unique acquired hematological monogenic disease with unexpected association with hematological neoplasms. Despite its hematopoetic origin, patients with VEXAS syndrome usually present with multi-systemicinflammatory disease and are treated by physicians from many different specialties (rheumatologists, dermatologists, hematologistis, etc.). Furthermore, manifestations of VEXAS may fulfill criteria for existing diseases: relapsing polychondritis, giant cell arteritis, polyarteritis nodosa, and myelodysplastic syndrome. The goal of this review is to depict VEXAS syndrome from a hematologic point of view regarding its consequences on hematopoiesis and the current strategies on therapeutic interventions.
Collapse
Affiliation(s)
- Maël Heiblig
- Hospices Civils de Lyon, Hôpital Lyon Sud, Service d'hématologie clinique, Lyon, France; Université Claude Bernard Lyon 1, Faculté de médecine et de maïeutique Lyon Sud Charles Mérieux, Lymphoma Immunobiology Team, Pierre Bénite, France.
| | - Bhavisha Patel
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Yvan Jamilloux
- Hospices Civils de Lyon, Hôpital de la Croix Rousse, Service de médecine interne, Lyon, France
| |
Collapse
|
35
|
Ghazi BK, Bangash MH, Razzaq AA, Kiyani M, Girmay S, Chaudhary WR, Zahid U, Hussain U, Mujahid H, Parvaiz U, Buzdar IA, Nawaz S, Elsadek MF. In Silico Structural and Functional Analyses of NLRP3 Inflammasomes to Provide Insights for Treating Neurodegenerative Diseases. BIOMED RESEARCH INTERNATIONAL 2023; 2023:9819005. [PMID: 36726838 PMCID: PMC9886462 DOI: 10.1155/2023/9819005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 10/08/2022] [Accepted: 11/24/2022] [Indexed: 01/24/2023]
Abstract
Inflammasomes are cytoplasmic intracellular multiprotein complexes that control the innate immune system's activation of inflammation in response to derived chemicals. Recent advancements increased our molecular knowledge of activation of NLRP3 inflammasomes. Although several studies have been done to investigate the role of inflammasomes in innate immunity and other diseases, structural, functional, and evolutionary investigations are needed to further understand the clinical consequences of NLRP3 gene. The purpose of this study is to investigate the structural and functional impact of the NLRP3 protein by using a computational analysis to uncover putative protein sites involved in the stabilization of the protein-ligand complexes with inhibitors. This will allow for a deeper understanding of the molecular mechanism underlying these interactions. It was found that human NLRP3 gene coexpresses with PYCARD, NLRC4, CASP1, MAVS, and CTSB based on observed coexpression of homologs in other species. The NACHT, LRR, and PYD domain-containing protein 3 is a key player in innate immunity and inflammation as the sensor subunit of the NLRP3 inflammasome. The inflammasome polymeric complex, consisting of NLRP3, PYCARD, and CASP1, is formed in response to pathogens and other damage-associated signals (and possibly CASP4 and CASP5). Comprehensive structural and functional analyses of NLRP3 inflammasome components offer a fresh approach to the development of new treatments for a wide variety of human disorders.
Collapse
Affiliation(s)
| | | | | | | | - Shishay Girmay
- Department of Animal Science, College of Dryland Agriculture, Samara University, Ethiopia
| | | | - Usman Zahid
- Acute & Specialty Medicine Hospital Epsom & St. Helier University Hospitals NHS Trust Medical College, Faisalabad Medical University, Pakistan
| | | | - Huma Mujahid
- Institute of Biochemistry and Biotechnology, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Usama Parvaiz
- Institute of Biochemistry and Biotechnology, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | | | - Shah Nawaz
- Department of Anatomy, Faculty of Veterinary Science, University of Agriculture, Faisalabad, Pakistan
| | - Mohamed Farouk Elsadek
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, P.O. Box 10219, Riyadh 11433, Saudi Arabia
| |
Collapse
|
36
|
Li J, Li L, He J, Xu J, Bao F. The NLRP3 inflammasome is a potential mechanism and therapeutic target for perioperative neurocognitive disorders. Front Aging Neurosci 2023; 14:1072003. [PMID: 36688154 PMCID: PMC9845955 DOI: 10.3389/fnagi.2022.1072003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 11/21/2022] [Indexed: 01/06/2023] Open
Abstract
Perioperative neurocognitive disorders (PNDs) are frequent complications associated with cognitive impairment during the perioperative period, including acute postoperative delirium and long-lasting postoperative cognitive dysfunction. There are some risk factors for PNDs, such as age, surgical trauma, anesthetics, and the health of the patient, but the underlying mechanism has not been fully elucidated. Pyroptosis is a form of programmed cell death that is mediated by the gasdermin protein and is involved in cognitive dysfunction disorders. The canonical pathway induced by nucleotide oligomerization domain (NOD)-, leucine-rich repeat (LRR)- and pyrin domain-containing protein 3 (NLRP3) inflammasomes contributes to PNDs, which suggests that targeting NLRP3 inflammasomes may be an effective strategy for the treatment of PNDs. Therefore, inhibiting upstream activators and blocking the assembly of the NLRP3 inflammasome may attenuate PNDs. The present review summarizes recent studies and systematically describes the pathogenesis of NLRP3 activation and regulation and potential therapeutics targeting NLRP3 inflammasomes in PNDs patients.
Collapse
Affiliation(s)
- Jiayue Li
- Department of Anesthesiology, The Fourth Affiliated Hospital, International Institutes of Medicine, Zhejiang University School of Medicine, Yiwu, China
| | - Li Li
- Department of Anesthesiology, The Fourth Affiliated Hospital, International Institutes of Medicine, Zhejiang University School of Medicine, Yiwu, China
| | - Jiannan He
- Department of Anesthesiology, The Fourth Affiliated Hospital, International Institutes of Medicine, Zhejiang University School of Medicine, Yiwu, China
| | - Jianhong Xu
- Department of Anesthesiology, The Fourth Affiliated Hospital, International Institutes of Medicine, Zhejiang University School of Medicine, Yiwu, China
| | - Fangping Bao
- Department of Anesthesiology, The Fourth Affiliated Hospital, International Institutes of Medicine, Zhejiang University School of Medicine, Yiwu, China,Department of Anesthesiology, The First Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, China,*Correspondence: Fangping Bao,
| |
Collapse
|
37
|
Chronic kidney disease and NLRP3 inflammasome: Pathogenesis, development and targeted therapeutic strategies. Biochem Biophys Rep 2022; 33:101417. [PMID: 36620089 PMCID: PMC9813680 DOI: 10.1016/j.bbrep.2022.101417] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/19/2022] [Accepted: 12/22/2022] [Indexed: 12/27/2022] Open
Abstract
Chronic kidney disease (CKD) is a global health concern and public health priority. The condition often involves inflammation due to the accumulation of toxins and the reduced clearance of inflammatory cytokines, leading to gradual loss of kidney function. Because of the tremendous burden of CKD, finding effective treatment strategies against inflammation is crucial. Substantial evidence suggests an association between kidney disease and the inflammasome. As a well-known multiprotein signaling complex, the NLR family pyrin domain containing 3 (NLRP3) inflammasome plays an important role in inducing renal inflammation and fibrosis. Small molecule inhibitors targeting the NLRP3 inflammasome are potential agents for the treatment of CKD.The NLRP3 inflammasome activation amplifies the inflammation response, promoting pyroptotic cell death. Thus, it may contribute to the onset and progression of CKD, but the mechanism behind inflammasome activation in CKD remains obscure.In this review, we summarized recent findings on the role of the NLRP3 inflammasome in CKD and new strategies targeting the NLRP3 inflammasome.
Collapse
Key Words
- ,IL-18, Interleukin-18
- ASC, apoptosis-associated speck-like protein
- Ang II, Angiotensin II
- CKD, Chronic kidney disease
- Chronic kidney disease
- DAMPs, damage-associated molecular patterns
- ESRD, End-stage renal disease
- GFR, glomerular filtration rate
- HK-2, renal tubular epithelial cells
- IL-1β, Interleukin-1β
- Inflammasome
- Kidney function
- LRR, leucine-rich repeat
- NEK7, NIMA-related kinase 7
- NF-kB, nuclear factor kappa-B
- NLRP3, NLR family pyrin domain containing 3
- NOD-like receptor
- PAMPs, Pathogen-associated molecular patterns
- ROS, reactive oxygen species
- TXNIP, thioredoxin-interacting protein
Collapse
|
38
|
Irandoost E, Najibi S, Talebbeigi S, Nassiri S. Focus on the role of NLRP3 inflammasome in the pathology of endometriosis: a review on molecular mechanisms and possible medical applications. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2022; 396:621-631. [PMID: 36542122 DOI: 10.1007/s00210-022-02365-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 12/08/2022] [Indexed: 12/24/2022]
Abstract
Endometriosis (EMS) is a gynecological disease that leads to pathological conditions, which are connected to the initiation of pro-inflammatory cytokine production. Inflammation plays a vital role in the pathogenesis of EMS. The activation and formation of cytoplasmic inflammasome complexes is considered an important step of inflammation and a key regulator of pyroptosis, a form of cell death. NLR family pyrin domain containing 3 (NLRP3) inflammasome complex modulates innate immune activity and inflammation. The NLRP3 inflammasome activates cysteine protease caspase-1, which produces active pro-inflammatory interleukins (ILs), including IL-1β and IL-18. The aim of this review article was to discuss the involvement of NLRP3 inflammasome assembly and its activation in the pathophysiology of EMS and target related pathways in designing appropriate therapeutic approaches. Dysregulation of sex hormone signaling pathways was associated with over-activation of the NLPR3 inflammasome. In this study, we demonstrated the involvement of NLRP3 inflammasome signaling pathways in the pathophysiology of EMS. The manuscript also discusses the beneficial effects of targeted therapy through synthetic inhibitors of NLRP3 signaling pathways to control EMS lesions.
Collapse
Affiliation(s)
- Elnaz Irandoost
- Department of Gynecology and Obstetrics, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Shaparak Najibi
- Department of Gynecology and Obstetrics, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Saba Talebbeigi
- Department of Gynecology and Obstetrics, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Saina Nassiri
- Department of Gynecology and Obstetrics, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
39
|
Mushroom Natural Products in Neurodegenerative Disease Drug Discovery. Cells 2022; 11:cells11233938. [PMID: 36497196 PMCID: PMC9740391 DOI: 10.3390/cells11233938] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 11/21/2022] [Accepted: 11/23/2022] [Indexed: 12/12/2022] Open
Abstract
The variety of drugs available to treat neurodegenerative diseases is limited. Most of these drug's efficacy is restricted by individual genetics and disease stages and usually do not prevent neurodegeneration acting long after irreversible damage has already occurred. Thus, drugs targeting the molecular mechanisms underlying subsequent neurodegeneration have the potential to negate symptom manifestation and subsequent neurodegeneration. Neuroinflammation is a common feature of neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, Huntington's disease, and multiple sclerosis, and is associated with the activation of the NLRP3 inflammasome, which in turn leads to neurodegeneration. Inflammasome activation and oligomerisation is suggested to be a major driver of disease progression occurring in microglia. With several natural products and natural product derivatives currently in clinical trials, mushrooms have been highlighted as a rich and largely untapped source of biologically active compounds in both in vitro and in vivo neurodegenerative disease models, partially supported by successful clinical trial evaluations. Additionally, novel high-throughput methods for the screening of natural product compound libraries are being developed to help accelerate the neurodegenerative disease drug discovery process, targeting neuroinflammation. However, the breadth of research relating to mushroom natural product high-throughput screening is limited, providing an exciting opportunity for further detailed investigations.
Collapse
|
40
|
Zhou Z, Song X, Kang R, Tang D. The Emerging Role of Deubiquitinases in Cell Death. Biomolecules 2022; 12:1825. [PMID: 36551253 PMCID: PMC9775562 DOI: 10.3390/biom12121825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/01/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
Regulated cell death (RCD) is a signal-controlled process that not only eliminates infected, damaged, or aged cells but is also implicated in a variety of pathological conditions. The process of RCD is regulated by intracellular proteins that undergo varying levels of post-translational modifications, including mono- or polyubiquitination. Functionally, ubiquitination can affect protein abundance, localization, and activity. Like other post-translational modifications, ubiquitination is a dynamic and reversible process mediated by deubiquitinases, a large class of proteases that cleave ubiquitin from proteins and other substrates. The balance between ubiquitination and deubiquitination machinery determines cell fate under stressful conditions. Here, we review the latest advances in our understanding of the role of deubiquitinases in regulating the main types of RCD, including apoptosis, necroptosis, pyroptosis, and ferroptosis. This knowledge may contribute to identifying new protein degradation-related prognostic markers and therapeutic targets for human disease.
Collapse
Affiliation(s)
| | | | | | - Daolin Tang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
41
|
Liu G, Hu X, Li Y, Long M. Circulating long non-coding RNA Coromarker expression correlated with inflammation, coronary artery stenosis, and plaque vulnerability in patients with coronary artery disease. J Clin Lab Anal 2022; 36:e24716. [PMID: 36164725 DOI: 10.1002/jcla.24716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/16/2022] [Accepted: 09/16/2022] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND The aim of the study was to assess the correlation between circulating long non-coding RNA (lncRNA) OTTHUMT00000387022 (named Coromarker) expression and disease severity, inflammatory cytokine levels, and plaque vulnerability in patients with coronary artery disease (CAD). METHODS A total of 134 participants who received coronary angiography were enrolled and classified them as CAD patients (N = 89) and controls (N = 45). Blood samples were obtained from all subjects. Quantitative polymerase chain reaction was used to evaluate Coromarker expression. The enzyme-linked immunosorbent test was used to measure inflammatory cytokines including high sensitivity C reactive protein (hsCRP), interleukin (IL)-1β (IL-1β), IL-6, NOD-like receptor protein 3 (NLRP3), and markers of coronary plaque stability including matrix metallopeptidase 9 (MMP-9) and soluble CD40 ligand (sCD40L). The severity of coronary stenosis was determined from the Gensini Score. RESULTS LncRNA Coromarker expression was elevated to a greater extent in CAD patients than in control subjects before and after adjustments for age/gender (both p < 0.001); it was an independent predictor of CAD risk (area under curve: 0.824, 95% CI: 0.732-0.915). Additionally, Coromarker expression was significantly associated with Gensini Score (r = 0.574, p < 0.001), hsCRP (r = 0.221, p = 0.015), IL-1β (r = 0.351, p < 0.001), IL-6 (r = 0.286, p < 0.01), and NLRP3 levels (r = 0.312, p < 0.001). Coromarker expression was found to be linked with MMP-9 (r = 0.260, p < 0.01) and sCD40L (r = 0.441, p < 0.001). CONCLUSION Circulating lncRNA Coromarker expression correlates with increased disease severity and inflammation as well as plaque vulnerability in patients with CAD.
Collapse
Affiliation(s)
- Gang Liu
- Department of Cardiology, The First Affiliated Hospital Sun Yat-Sen University, Guangzhou, China.,Key Laboratory on Assisted Circulation, Ministry of Health, Guangzhou, China
| | - Xun Hu
- Department of Cardiology, The First Affiliated Hospital Sun Yat-Sen University, Guangzhou, China.,Key Laboratory on Assisted Circulation, Ministry of Health, Guangzhou, China
| | - Yi Li
- Department of Cardiology, The First Affiliated Hospital Sun Yat-Sen University, Guangzhou, China.,Key Laboratory on Assisted Circulation, Ministry of Health, Guangzhou, China
| | - Ming Long
- Department of Cardiology, The First Affiliated Hospital Sun Yat-Sen University, Guangzhou, China.,Key Laboratory on Assisted Circulation, Ministry of Health, Guangzhou, China
| |
Collapse
|
42
|
Wu X, Sun P, Chen X, Hua L, Cai H, Liu Z, Zhang C, Liang S, Chen Y, Wu D, Ou Y, Hu W, Yang Z. Discovery of a Novel Oral Proteasome Inhibitor to Block NLRP3 Inflammasome Activation with Anti-inflammation Activity. J Med Chem 2022; 65:11985-12001. [PMID: 36063115 DOI: 10.1021/acs.jmedchem.2c00523] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
NLRP3 inflammasome activation plays a critical role in inflammation-related disorders. More small-molecule entities are needed to study the mechanism of NLRP3 inflammasome activation and to validate the efficacy and safety of the NLRP3 pathway. Herein, we report the discovery of an orally bioavailable proteasome inhibitor NIC-0102 (27) that specifically prevents NLRP3 inflammasome activation but has no effect on NLRC4 or AIM2 inflammasomes. In vitro studies revealed that NIC-0102 induced the polyubiquitination of NLRP3, interfered with the NLRP3-ASC interaction, and blocked ASC oligomerization, thereby resulting in the inhibition of NLRP3 inflammasome activation. In addition, NIC-0102 also inhibited the production of pro-IL-1β. Importantly, NIC-0102 showed potent anti-inflammatory effects on DSS-induced ulcerative colitis model in vivo. As a result of these studies, a potential small molecule is identified to demonstrate the possible link between the proteasome and NLRP3 pathway, which supports further exploration of potentially druggable nodes to modulate NLRP3 inflammasome activation.
Collapse
Affiliation(s)
- Xinyi Wu
- Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Ping Sun
- Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Xiuhui Chen
- Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Lei Hua
- Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Haowei Cai
- Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Zhuorong Liu
- Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Cheng Zhang
- Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Shuli Liang
- Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Yanhong Chen
- Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Dan Wu
- Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Yitao Ou
- Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Wenhui Hu
- Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Zhongjin Yang
- Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| |
Collapse
|
43
|
Nanda SK, Vollmer S, Perez-Oliva AB. Posttranslational Regulation of Inflammasomes, Its Potential as Biomarkers and in the Identification of Novel Drugs Targets. Front Cell Dev Biol 2022; 10:887533. [PMID: 35800898 PMCID: PMC9253692 DOI: 10.3389/fcell.2022.887533] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 05/27/2022] [Indexed: 11/13/2022] Open
Abstract
In this review, we have summarized classical post-translational modifications (PTMs) such as phosphorylation, ubiquitylation, and SUMOylation of the different components of one of the most studied NLRP3, and other emerging inflammasomes. We will highlight how the discovery of these modifications have provided mechanistic insight into the biology, function, and regulation of these multiprotein complexes not only in the context of the innate immune system but also in adaptive immunity, hematopoiesis, bone marrow transplantation, as well and their role in human diseases. We have also collected available information concerning less-studied modifications such as acetylation, ADP-ribosylation, nitrosylation, prenylation, citrullination, and emphasized their relevance in the regulation of inflammasome complex formation. We have described disease-associated mutations affecting PTMs of inflammasome components. Finally, we have discussed how a deeper understanding of different PTMs can help the development of biomarkers and identification of novel drug targets to treat diseases caused by the malfunctioning of inflammasomes.
Collapse
Affiliation(s)
- Sambit K. Nanda
- Bioscience Immunology, Research and Early Development, Respiratory and Immunology (R&I), Gaithersburg, MD, United States
- *Correspondence: Sambit K. Nanda, ; Stefan Vollmer, ; Ana B. Perez-Oliva,
| | - Stefan Vollmer
- Bioscience COPD/IPF, Research and Early Development, Respiratory and Immunology (R&I), Gothenburg, Sweden
- *Correspondence: Sambit K. Nanda, ; Stefan Vollmer, ; Ana B. Perez-Oliva,
| | - Ana B. Perez-Oliva
- Instituto Murciano de Investigación Biosanitaria (IMIB)-Arrixaca, Murcia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
- *Correspondence: Sambit K. Nanda, ; Stefan Vollmer, ; Ana B. Perez-Oliva,
| |
Collapse
|
44
|
Zhang XN, Yu ZL, Chen JY, Li XY, Wang ZP, Wu M, Liu LT. The crosstalk between NLRP3 inflammasome and gut microbiome in atherosclerosis. Pharmacol Res 2022; 181:106289. [PMID: 35671922 DOI: 10.1016/j.phrs.2022.106289] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 05/22/2022] [Accepted: 06/01/2022] [Indexed: 01/29/2023]
Abstract
Atherosclerosis (AS) is chronic pathological process based on the inflammatory reaction associated with factors including vascular endothelial dysfunction, inflammation, and autoimmunity. Inflammasomes are known to be at the core of the inflammatory response. As a pattern recognition receptor of innate immunity, the NLRP3 inflammasome mediates the secretion of inflammatory factors by activating the Caspase-1, which is important for maintaining the immune system and regulating the gut microbiome, and participates in the occurrence and development of AS. The intestinal microecology is composed of a large number of complex structures of gut microbiota and its metabolites, which play an important role in AS. The gut microbiota and its metabolites regulate the activation of the NLRP3 inflammasome. Targeting the NLRP3 inflammasome and regulating intestinal microecology represent a new direction for the treatment of AS. This paper systematically reviews the interaction between the NLRP3 inflammasome and gut microbiome in AS, strategies for targeting the NLRP3 inflammasome and gut microbiome for the treatment of AS, and provides new ideas for the research and development of drugs for the treatment of AS.
Collapse
Affiliation(s)
- Xiao-Nan Zhang
- Department of Cardiovascular Medicine, National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100093, China
| | - Zong-Liang Yu
- Department of Cardiovascular Medicine, National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100093, China
| | - Ji-Ye Chen
- Department of Cardiovascular Medicine, National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100093, China
| | - Xiao-Ya Li
- Department of Cardiovascular Medicine, National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100093, China; Department of Cardiovascular Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Ze-Ping Wang
- Department of Cardiovascular Medicine, National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100093, China; Department of Cardiovascular Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Min Wu
- Department of comprehensive Internal Medicine, Guang'an Men Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China.
| | - Long-Tao Liu
- Department of Cardiovascular Medicine, National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100093, China.
| |
Collapse
|
45
|
Editorial of Special Issue "Inflammasomes and Inflammation". Int J Mol Sci 2022; 23:ijms23052489. [PMID: 35269630 PMCID: PMC8910550 DOI: 10.3390/ijms23052489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 02/23/2022] [Accepted: 02/23/2022] [Indexed: 11/16/2022] Open
|
46
|
NLRP3 Inflammasome in Vascular Disease: A Recurrent Villain to Combat Pharmacologically. Antioxidants (Basel) 2022; 11:antiox11020269. [PMID: 35204152 PMCID: PMC8868353 DOI: 10.3390/antiox11020269] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/21/2022] [Accepted: 01/25/2022] [Indexed: 02/07/2023] Open
Abstract
Despite the great advances in medicine, mortality from cardiovascular diseases keeps on growing. This tendency is not likely to change considering the pandemic proportions of obesity and diabetes. Besides, the global population is more aged as life expectancy increases, and vascular aging plays a key role in the increased risk of vascular disease. In light of recent trials, namely the CANTOS study, showing the enormous potential of anti-inflammatory therapies and in particular those targeted to IL-1β, a change in therapeutical management of cardiovascular diseases is coming about. The NLRP3 inflammasome is a multiprotein complex that assembles to engage the innate immune defense by processing the maturation of pro-inflammatory cytokines IL-1β and IL-18. Substantial evidence has positioned the NLRP3 inflammasome at the center of vascular disease progression, with a particular significance in the context of aging and the low-grade chronic inflammation associated (inflammaging). Therefore, pharmacological blockade of the NLRP3 inflammasome and its end products has arisen as an extremely promising tool to battle vascular disease. In this review, we discuss the mechanisms by which the NLRP3 inflammasome contributes to vascular disease, with particular attention to the consequences of aging, and we enumerate the therapeutic options available to combat this recurrent villain.
Collapse
|
47
|
Loh D, Reiter RJ. Melatonin: Regulation of Prion Protein Phase Separation in Cancer Multidrug Resistance. Molecules 2022; 27:705. [PMID: 35163973 PMCID: PMC8839844 DOI: 10.3390/molecules27030705] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/11/2022] [Accepted: 01/17/2022] [Indexed: 12/13/2022] Open
Abstract
The unique ability to adapt and thrive in inhospitable, stressful tumor microenvironments (TME) also renders cancer cells resistant to traditional chemotherapeutic treatments and/or novel pharmaceuticals. Cancer cells exhibit extensive metabolic alterations involving hypoxia, accelerated glycolysis, oxidative stress, and increased extracellular ATP that may activate ancient, conserved prion adaptive response strategies that exacerbate multidrug resistance (MDR) by exploiting cellular stress to increase cancer metastatic potential and stemness, balance proliferation and differentiation, and amplify resistance to apoptosis. The regulation of prions in MDR is further complicated by important, putative physiological functions of ligand-binding and signal transduction. Melatonin is capable of both enhancing physiological functions and inhibiting oncogenic properties of prion proteins. Through regulation of phase separation of the prion N-terminal domain which targets and interacts with lipid rafts, melatonin may prevent conformational changes that can result in aggregation and/or conversion to pathological, infectious isoforms. As a cancer therapy adjuvant, melatonin could modulate TME oxidative stress levels and hypoxia, reverse pH gradient changes, reduce lipid peroxidation, and protect lipid raft compositions to suppress prion-mediated, non-Mendelian, heritable, but often reversible epigenetic adaptations that facilitate cancer heterogeneity, stemness, metastasis, and drug resistance. This review examines some of the mechanisms that may balance physiological and pathological effects of prions and prion-like proteins achieved through the synergistic use of melatonin to ameliorate MDR, which remains a challenge in cancer treatment.
Collapse
Affiliation(s)
- Doris Loh
- Independent Researcher, Marble Falls, TX 78654, USA
| | - Russel J. Reiter
- Department of Cellular and Structural Biology, UT Health San Antonio, San Antonio, TX 78229, USA
| |
Collapse
|
48
|
Potential Combination Drug Therapy to Prevent Redox Stress and Mitophagy Dysregulation in Retinal Müller Cells under High Glucose Conditions: Implications for Diabetic Retinopathy. Diseases 2021; 9:diseases9040091. [PMID: 34940029 PMCID: PMC8700204 DOI: 10.3390/diseases9040091] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 12/02/2021] [Accepted: 12/10/2021] [Indexed: 12/12/2022] Open
Abstract
Chronic hyperglycemia-induced thioredoxin-interacting protein (TXNIP) expression, associated oxidative/nitrosative stress (ROS/RNS), and mitochondrial dysfunction play critical roles in the etiology of diabetic retinopathy (DR). However, there is no effective drug treatment to prevent or slow down the progression of DR. The purpose of this study is to examine if a combination drug treatment targeting TXNIP and the mitochondria-lysosome pathway prevents high glucose-induced mitochondrial stress and mitophagic flux in retinal Müller glial cells in culture, relevant to DR. We show that diabetes induces TXNIP expression, redox stress, and Müller glia activation (gliosis) in rat retinas when compared to non-diabetic rat retinas. Furthermore, high glucose (HG, 25 mM versus low glucose, LG 5.5 mM) also induces TXNIP expression and mitochondrial stress in a rat retinal Müller cell line, rMC1, in in vitro cultures. Additionally, we develop a mitochondria-targeted mCherry and EGFP probe tagged with two tandem COX8a mitochondrial target sequences (adenovirus-CMV-2×mt8a-CG) to examine mitophagic flux in rMC1. A triple drug combination treatment was applied using TXNIP-IN1 (which inhibits TXNIP interaction with thioredoxin), Mito-Tempo (mitochondrial anti-oxidant), and ML-SA1 (lysosome targeted activator of transient calcium channel MCOLN1/TRPML1 and of transcription factor TFEB) to study the mitochondrial-lysosomal axis dysregulation. We found that HG induces TXNIP expression, redox stress, and mitophagic flux in rMC1 versus LG. Treatment with the triple drug combination prevents mitophagic flux and restores transcription factor TFEB and PGC1α nuclear localization under HG, which is critical for lysosome biosynthesis and mitogenesis, respectively. Our results demonstrate that 2×mt8a-CG is a suitable probe for monitoring mitophagic flux, both in live and fixed cells in in vitro experiments, which may also be applicable to in vivo animal studies, and that the triple drug combination treatment has the potential for preventing retinal injury and disease progression in diabetes.
Collapse
|