1
|
Chen J, Wen Y, Pan Y, He Y, Gong X, Yang W, Chen W, Zhou F, Jiang D. Analysis of the role of the rice metallothionein gene OsMT2b in grain size regulation. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 349:112272. [PMID: 39321878 DOI: 10.1016/j.plantsci.2024.112272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 09/19/2024] [Accepted: 09/21/2024] [Indexed: 09/27/2024]
Abstract
Seed size is one of the three main characteristics determining rice yield. Clarification of the mechanisms regulating seed size in rice has implications for improving rice yield. Although several genes have been reported to regulate seed size, most of the reports are fragmentary. The role of metallothioneins (MTs) in regulating seed size remains unknown. Here, we found that OsMT2b was expressed in both spikelets and developing seeds. OsMT2b-overexpression lines had large and heavy seeds, and RNAi (RNA interference) lines had small and light seeds. Scanning electron microscopy (SEM) observations revealed that OsMT2b regulated spikelet hull size by affecting cell expansion in the outer epidermis. Histological analysis indicated that OsMT2b affected the number of cells in the cross-section of spikelet hulls, which affected seed size. The fresh weight of seeds was consistently higher in OsMT2b-overexpression lines than in seeds of the wild-type (WT) and RNAi lines from 6 DAP (days after pollination) until maturity, indicating that OsMT2b affected seed filling. Reverse transcription-quantitative PCR (RT-qPCR) analyses revealed that OsMT2b regulates the expression of reactive oxygen species scavenging-related genes involved in seed size regulation. In conclusion, our results indicated that OsMT2b positively regulates seed size, which provides a novel approach for regulating seed size with genetic engineering technology.
Collapse
Affiliation(s)
- Jian Chen
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Yunyi Wen
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Yibin Pan
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Ying He
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Xiaoting Gong
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Wenli Yang
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Weiting Chen
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Feng Zhou
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Dagang Jiang
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
2
|
Liu L, Song S, Yang N, He B, Xin L, Huang Y. Metallothionein family genes in kiwifruit: characterization and determining their roles in plant's response to different stresses. FRONTIERS IN PLANT SCIENCE 2024; 15:1425072. [PMID: 39494058 PMCID: PMC11529040 DOI: 10.3389/fpls.2024.1425072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 09/30/2024] [Indexed: 11/05/2024]
Abstract
Kiwifruit growth and development are severely affected by various biotic and abiotic stresses, especially cold stress and the bacterial disease caused by Pseudomonas syringae pv. actinidiae (Psa). Metallothioneins (MTs) are a group of cysteine-rich proteins that play crucial roles in stress response, metal detoxification, and homeostasis in plants. However, the protective role of these MTs in kiwifruit remains to be elucidated. In the present study, four AcMT genes were identified in the Hongyang kiwifruit genome, namely, two Type 2 isoforms (AcMT2 and AcMT2a) and two Type 3 isoforms (AcMT3a and AcMT3b) located separately on four different chromosomes. The hormones and stress response cis-elements within the promoter regions of these AcMTs were characterized. It was revealed that the four AcMT genes exhibited different expression patterns in different tissues: AcMT2 and AcMT2a were expressed at much higher levels in the fruit, male flower, female flower, root, and bark, while AcMT3a was expressed mainly in the fruit and AcMT3b was expressed highly in the bark. The expression patterns of these AcMT genes after exposure to Psa infection and different phytohormones, including gibberellic acid A3(GA3), ethylene (ET), and abscisic acid (ABA), were evaluated. It was revealed that in response to Psa infection, the main AcMTs in each tissue (those with expression levels higher compared to the other MTs in that tissue) were downregulated during the early stage in kiwifruits, followed by a recovery phase. In addition, most AcMTs were downregulated after exposure to ET and GA3, while type 2 AcMTs (AcMT2 and AcMT2a) were upregulated after treatment with ABA. The overexpression of AcMTs in Escherichia coli presented a higher tolerance to H2O2, heavy metals, low temperature, and high temperature. Collectively, these findings demonstrated the protective roles of AcMTs in terms of stress resistance conferred through plant hormone-related signal pathways.
Collapse
Affiliation(s)
- Linya Liu
- School of Biological Science and Technology, Liupanshui Normal University, Liupanshui, China
| | - Shuyi Song
- School of Biological Science and Technology, Liupanshui Normal University, Liupanshui, China
| | - Na Yang
- School of Biological Science and Technology, Liupanshui Normal University, Liupanshui, China
| | - Bin He
- School of Biological Science and Technology, Liupanshui Normal University, Liupanshui, China
| | - Lusheng Xin
- School of Public Health, Jining Medical University, Jining, China
| | - Yacheng Huang
- School of Biological Science and Technology, Liupanshui Normal University, Liupanshui, China
| |
Collapse
|
3
|
Wang Z, Wang R, Yuan H, Fan F, Li S, Cheng M, Tian Z. Comprehensive identification and analysis of DUF640 genes associated with rice growth. Gene 2024; 914:148404. [PMID: 38521113 DOI: 10.1016/j.gene.2024.148404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/13/2024] [Accepted: 03/20/2024] [Indexed: 03/25/2024]
Abstract
Protein domains with conserved amino acid sequences and uncharacterized functions are called domains of unknown function (DUF). The DUF640 gene family plays a crucial role in plant growth, particularly in light regulation, floral organ development, and fruit development. However, there exists a lack of systematic understanding of the evolutionary relationships and functional differentiation of DUF640 within the Oryza genus. In this study, 61 DUF640 genes were identified in the Oryza genus. The expression of DUF640s is induced by multiple hormonal stressors including abscisic acid (ABA), cytokinin (CK), ethylene (ETH), and indole-3-acetic acid (IAA). Specifically, OiDUF640-10 expression significantly increased after ETH treatment. Transgenic experiments showed that overexpressing OiDUF640-10 lines were sensitive to ETH, and seedling length was obstructed. Evolutionary analysis revealed differentiation of the OiDUF640-10 gene in O. sativa ssp. indica and japonica varieties, likely driven by natural selection during the domestication of cultivated rice. These results indicate that OiDUF640-10 plays a vital role in the regulation of rice seedling length.
Collapse
Affiliation(s)
- Zhikai Wang
- Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education, College of Life Science, Yangtze University, Jingzhou, China
| | - Ruihua Wang
- State Key Laboratory of Hybrid Rice, Key Laboratory for Research and Utilization of Heterosis in Indica Rice of Ministry of Agriculture, Engineering Research Center for Plant Biotechnology and Germplasm Utilization of Ministry of Education, College of Life Sciences, Wuhan University, Wuhan, China
| | - Huanran Yuan
- State Key Laboratory of Hybrid Rice, Key Laboratory for Research and Utilization of Heterosis in Indica Rice of Ministry of Agriculture, Engineering Research Center for Plant Biotechnology and Germplasm Utilization of Ministry of Education, College of Life Sciences, Wuhan University, Wuhan, China; Hubei Hongshan Laboratory, Wuhan, China
| | - Fengfeng Fan
- State Key Laboratory of Hybrid Rice, Key Laboratory for Research and Utilization of Heterosis in Indica Rice of Ministry of Agriculture, Engineering Research Center for Plant Biotechnology and Germplasm Utilization of Ministry of Education, College of Life Sciences, Wuhan University, Wuhan, China; Hubei Hongshan Laboratory, Wuhan, China
| | - Shaoqing Li
- State Key Laboratory of Hybrid Rice, Key Laboratory for Research and Utilization of Heterosis in Indica Rice of Ministry of Agriculture, Engineering Research Center for Plant Biotechnology and Germplasm Utilization of Ministry of Education, College of Life Sciences, Wuhan University, Wuhan, China; Hubei Hongshan Laboratory, Wuhan, China
| | - Mingxing Cheng
- State Key Laboratory of Hybrid Rice, Key Laboratory for Research and Utilization of Heterosis in Indica Rice of Ministry of Agriculture, Engineering Research Center for Plant Biotechnology and Germplasm Utilization of Ministry of Education, College of Life Sciences, Wuhan University, Wuhan, China; Hubei Hongshan Laboratory, Wuhan, China.
| | - Zhihong Tian
- Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education, College of Life Science, Yangtze University, Jingzhou, China.
| |
Collapse
|
4
|
Xu Z, Yang S, Li C, Xie M, He Y, Chen S, Tang Y, Li D, Wang T, Yang G. Characterization of metallothionein genes from Broussonetia papyrifera: metal binding and heavy metal tolerance mechanisms. BMC Genomics 2024; 25:563. [PMID: 38840042 PMCID: PMC11151532 DOI: 10.1186/s12864-024-10477-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 05/29/2024] [Indexed: 06/07/2024] Open
Abstract
BACKGROUND Broussonetia papyrifera is an economically significant tree with high utilization value, yet its cultivation is often constrained by soil contamination with heavy metals (HMs). Effective scientific cultivation management, which enhances the yield and quality of B. papyrifera, necessitates an understanding of its regulatory mechanisms in response to HM stress. RESULTS Twelve Metallothionein (MT) genes were identified in B. papyrifera. Their open reading frames ranged from 186 to 372 bp, encoding proteins of 61 to 123 amino acids with molecular weights between 15,473.77 and 29,546.96 Da, and theoretical isoelectric points from 5.24 to 5.32. Phylogenetic analysis classified these BpMTs into three subclasses: MT1, MT2, and MT3, with MT2 containing seven members and MT3 only one. The expression of most BpMT genes was inducible by Cd, Mn, Cu, Zn, and abscisic acid (ABA) treatments, particularly BpMT2e, BpMT2d, BpMT2c, and BpMT1c, which showed significant responses and warrant further study. Yeast cells expressing these BpMT genes exhibited enhanced tolerance to Cd, Mn, Cu, and Zn stresses compared to control cells. Yeasts harboring BpMT1c, BpMT2e, and BpMT2d demonstrated higher accumulation of Cd, Cu, Mn, and Zn, suggesting a chelation and binding capacity of BpMTs towards HMs. Site-directed mutagenesis of cysteine (Cys) residues indicated that mutations in the C domain of type 1 BpMT led to increased sensitivity to HMs and reduced HM accumulation in yeast cells; While in type 2 BpMTs, the contribution of N and C domain to HMs' chelation possibly corelated to the quantity of Cys residues. CONCLUSION The BpMT genes are crucial in responding to diverse HM stresses and are involved in ABA signaling. The Cys-rich domains of BpMTs are pivotal for HM tolerance and chelation. This study offers new insights into the structure-function relationships and metal-binding capabilities of type-1 and - 2 plant MTs, enhancing our understanding of their roles in plant adaptation to HM stresses.
Collapse
Affiliation(s)
- Zhenggang Xu
- College of Forestry, Northwest A & F University, Yangling, 712100, Shaanxi, China
| | - Shen Yang
- College of Forestry, Northwest A & F University, Yangling, 712100, Shaanxi, China
| | - Chenhao Li
- College of Forestry, Northwest A & F University, Yangling, 712100, Shaanxi, China
| | - Muhong Xie
- College of Forestry, Northwest A & F University, Yangling, 712100, Shaanxi, China
| | - Yi He
- College of Forestry, Northwest A & F University, Yangling, 712100, Shaanxi, China
| | - Sisi Chen
- College of Forestry, Northwest A & F University, Yangling, 712100, Shaanxi, China
| | - Yan Tang
- College of Forestry, Northwest A & F University, Yangling, 712100, Shaanxi, China
| | - Dapei Li
- College of Forestry, Northwest A & F University, Yangling, 712100, Shaanxi, China
| | - Tianyu Wang
- College of Forestry, Northwest A & F University, Yangling, 712100, Shaanxi, China
| | - Guiyan Yang
- College of Forestry, Northwest A & F University, Yangling, 712100, Shaanxi, China.
- Labortory of Walnut Research Center, College of Forestry, Northwest A & F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
5
|
Zinta R, Tiwari JK, Buckseth T, Goutam U, Singh RK, Kumar V, Thakur AK. Transcriptome profiling and characterization of genes associated with tuberization under high temperature in aeroponics in potato cv. Kufri Anand. Genes Genomics 2024; 46:409-421. [PMID: 38381322 DOI: 10.1007/s13258-024-01503-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 02/02/2024] [Indexed: 02/22/2024]
Abstract
BACKGROUND High temperature stress is an important abiotic factor, which affects tuberization and ultimately causes heavy yield reduction in potato. OBJECTIVES Identification and characterization of genes associated with tuberization under high temperature stress is essential for future management through biotechnology. METHODOLOGY Two contrasting potato varieties Kufri Anand (profuse tuber-bearing) versus Kufri Frysona (very less/scanty tuber-bearing, control) were cultivated in aeroponics under high temperature stress, and transcriptomes were analyzed. RESULTS Potato cv. Kufri Anand was found superior over control (Kufri Frysona) for tuber yield and its component traits along with root morphology under aeroponics. Transcriptomes of tuber and leaf tissues were analyzed. Statistically significant (p < 0.05) differentially expressed genes (DEGs) were categorised into up-regulated (> 2 log2 fold change, FC) and down-regulated (< -2 log2 FC) genes. DEGs were annotated by gene ontology and KEGG pathways. A few selected up-regulated genes of both tissues were identified, and phylogeny tree and motif analysis were analysed based on 36 peptide sequences representing 15 selected DEGs in this study. Further, gene expression markers were developed and validated by real time qPCR analysis for the identification of high temperature tolerant genotypes. CONCLUSION A few key genes associated in tuberization under high temperature conditions were heat shock proteins (e.g. 18.5 kDa class I heat shock protein), sugar metabolism (e.g. glucosyltransferase), transcription factor (e.g. WRKY), and phytohormones (e.g. auxin-induced beta-glucosidase). Our study provides an overview of key genes involved in tuberization under high temperature stress in potato cv. Kufri Anand under aeroponics.
Collapse
Affiliation(s)
- Rasna Zinta
- Indian Council of Agricultural Research-Central Potato Research Institute, Shimla, Himachal Pradesh, India
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India
| | - Jagesh Kumar Tiwari
- Indian Council of Agricultural Research-Central Potato Research Institute, Shimla, Himachal Pradesh, India.
- ICAR-Indian Institute of Vegetable Research Institute, Varanasi, Uttar Pradesh, India.
| | - Tanuja Buckseth
- Indian Council of Agricultural Research-Central Potato Research Institute, Shimla, Himachal Pradesh, India
| | - Umesh Goutam
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India
| | - Rajesh Kumar Singh
- Indian Council of Agricultural Research-Central Potato Research Institute, Shimla, Himachal Pradesh, India
| | - Vinod Kumar
- Indian Council of Agricultural Research-Central Potato Research Institute, Shimla, Himachal Pradesh, India
| | - Ajay Kumar Thakur
- Indian Council of Agricultural Research-Central Potato Research Institute, Shimla, Himachal Pradesh, India
| |
Collapse
|
6
|
Cheng M, Yuan H, Wang R, Wang W, Zhang L, Fan F, Li S. Identification and characterization of BES1 genes involved in grain size development of Oryza sativa L. Int J Biol Macromol 2023; 253:127327. [PMID: 37820910 DOI: 10.1016/j.ijbiomac.2023.127327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/14/2023] [Accepted: 10/07/2023] [Indexed: 10/13/2023]
Abstract
BES1 (BRI1-EMS-SUPPRESSOR1) defines a unique class of plant-specific transcription factors that plays an essential role in response to Brassinosteroids (BRs) signal induction pathways. In our study, we conducted genome-wide scanning and comprehensive characterization of the BES1 gene family in rice and other eukaryotes, leading to valuable findings. Molecular docking experiments showed that all OsBES1 genes in rice could directly bind to BR small molecules. Among the identified genes, OsBES1-4 exhibited a remarkable response as it consistently showed induction upon exposure to various phytohormones after treatment. Further functional verification of OsBES1-4 revealed its impact on grain size. Overexpression of OsBES1-4 resulted in increased grain size, as confirmed by cytological observations showing an increase in cell length and cell number. Moreover, we identified that OsBES1-4 plays a role in rice grain size development by binding to the BR response element in the promoter region of the OsBZR1 gene. Evolutionary analysis indicated differentiation of OsBES1-4 between indica and japonica rice varieties, suggesting natural selection during the domestication process of cultivated rice. Therefore, we conclude that OsBES1-4 plays a crucial role in regulating rice grain size and has the potential to be an important target in rice breeding programs, and haplotype analysis found that all OsBES1 genes were associated with grain size development, either thousand-grain weight, grain length, or grain width. Overall, these findings suggest that the BES1 genes are involved in the regulation of grain size development in rice, and the utilization of SNPs in the OsBES1-4 gene promoter could be a favorable option for distinguishing indica and japonica.
Collapse
Affiliation(s)
- Mingxing Cheng
- State Key Laboratory of Hybrid Rice, Key Laboratory for Research and Utilization of Heterosis in Indica Rice of Ministry of Agriculture, Engineering Research Center for Plant Biotechnology and Germplasm Utilization of Ministry of Education, College of Life Science, Wuhan University, Wuhan 430072, China; Hongshan Laboratory of Hubei Province, China
| | - Huanran Yuan
- State Key Laboratory of Hybrid Rice, Key Laboratory for Research and Utilization of Heterosis in Indica Rice of Ministry of Agriculture, Engineering Research Center for Plant Biotechnology and Germplasm Utilization of Ministry of Education, College of Life Science, Wuhan University, Wuhan 430072, China; Hongshan Laboratory of Hubei Province, China
| | - Ruihua Wang
- State Key Laboratory of Hybrid Rice, Key Laboratory for Research and Utilization of Heterosis in Indica Rice of Ministry of Agriculture, Engineering Research Center for Plant Biotechnology and Germplasm Utilization of Ministry of Education, College of Life Science, Wuhan University, Wuhan 430072, China
| | - Wei Wang
- State Key Laboratory of Hybrid Rice, Key Laboratory for Research and Utilization of Heterosis in Indica Rice of Ministry of Agriculture, Engineering Research Center for Plant Biotechnology and Germplasm Utilization of Ministry of Education, College of Life Science, Wuhan University, Wuhan 430072, China
| | - Licheng Zhang
- State Key Laboratory of Hybrid Rice, Key Laboratory for Research and Utilization of Heterosis in Indica Rice of Ministry of Agriculture, Engineering Research Center for Plant Biotechnology and Germplasm Utilization of Ministry of Education, College of Life Science, Wuhan University, Wuhan 430072, China
| | - Fengfeng Fan
- State Key Laboratory of Hybrid Rice, Key Laboratory for Research and Utilization of Heterosis in Indica Rice of Ministry of Agriculture, Engineering Research Center for Plant Biotechnology and Germplasm Utilization of Ministry of Education, College of Life Science, Wuhan University, Wuhan 430072, China; Hongshan Laboratory of Hubei Province, China
| | - Shaoqing Li
- State Key Laboratory of Hybrid Rice, Key Laboratory for Research and Utilization of Heterosis in Indica Rice of Ministry of Agriculture, Engineering Research Center for Plant Biotechnology and Germplasm Utilization of Ministry of Education, College of Life Science, Wuhan University, Wuhan 430072, China; Hongshan Laboratory of Hubei Province, China.
| |
Collapse
|
7
|
Fan F, Cheng M, Yuan H, Li N, Liu M, Cai M, Luo X, Ahmad A, Li N, Li S. A transposon-derived gene family regulates heading date in rice. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 337:111871. [PMID: 37722508 DOI: 10.1016/j.plantsci.2023.111871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 09/03/2023] [Accepted: 09/14/2023] [Indexed: 09/20/2023]
Abstract
As a consequence of transposon domestication, transposon-derived proteins often acquire important biological functions. However, there have been limited studies on transposon-derived proteins in rice, and a systematic analysis of transposon-derived genes is lacking. Here, for the first time, we conducted a comprehensive analysis of the DDE_Tnp_4 (DDE) gene family, which originated from transposons but lost their transpositional ability and acquired new gene functions in Oryza species. A total of 58 DDE family genes, categorized into six groups, were identified in Oryza species, including 13 OsDDE genes in Oryza sativa ssp. japonica. Our analysis indicates that gene duplication events were not the primary mechanism behind the expansion of OsDDE genes in rice. Promoter cis-element analysis combined with haplotype analysis confirmed that OsDDEs regulate the heading date in rice. Specifically, OsDDE9 is a nuclear-localized protein expressed ubiquitously, which promotes heading date by regulating the expression of Ghd7 and Ehd1 under both short-day and long-day conditions. Single-nucleotide polymorphism (SNP) variations in the OsDDE9 promoter leads to changes in promoter activity, resulting in variations in heading dates. This study provides valuable insights into the molecular function and mechanism of the OsDDE genes.
Collapse
Affiliation(s)
- Fengfeng Fan
- State Key Laboratory of Hybrid Rice, Key Laboratory for Research and Utilization of Heterosis in Indica Rice of Ministry of Agriculture, Engineering Research Center for Plant Biotechnology and Germplasm Utilization of Ministry of Education, College of Life Science, Wuhan University, Wuhan 430072, China; Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Mingxing Cheng
- State Key Laboratory of Hybrid Rice, Key Laboratory for Research and Utilization of Heterosis in Indica Rice of Ministry of Agriculture, Engineering Research Center for Plant Biotechnology and Germplasm Utilization of Ministry of Education, College of Life Science, Wuhan University, Wuhan 430072, China
| | - Huanran Yuan
- State Key Laboratory of Hybrid Rice, Key Laboratory for Research and Utilization of Heterosis in Indica Rice of Ministry of Agriculture, Engineering Research Center for Plant Biotechnology and Germplasm Utilization of Ministry of Education, College of Life Science, Wuhan University, Wuhan 430072, China
| | - Nannan Li
- State Key Laboratory of Hybrid Rice, Key Laboratory for Research and Utilization of Heterosis in Indica Rice of Ministry of Agriculture, Engineering Research Center for Plant Biotechnology and Germplasm Utilization of Ministry of Education, College of Life Science, Wuhan University, Wuhan 430072, China
| | - Manman Liu
- State Key Laboratory of Hybrid Rice, Key Laboratory for Research and Utilization of Heterosis in Indica Rice of Ministry of Agriculture, Engineering Research Center for Plant Biotechnology and Germplasm Utilization of Ministry of Education, College of Life Science, Wuhan University, Wuhan 430072, China
| | - Meng Cai
- State Key Laboratory of Hybrid Rice, Key Laboratory for Research and Utilization of Heterosis in Indica Rice of Ministry of Agriculture, Engineering Research Center for Plant Biotechnology and Germplasm Utilization of Ministry of Education, College of Life Science, Wuhan University, Wuhan 430072, China
| | - Xiong Luo
- State Key Laboratory of Hybrid Rice, Key Laboratory for Research and Utilization of Heterosis in Indica Rice of Ministry of Agriculture, Engineering Research Center for Plant Biotechnology and Germplasm Utilization of Ministry of Education, College of Life Science, Wuhan University, Wuhan 430072, China
| | - Ayaz Ahmad
- State Key Laboratory of Hybrid Rice, Key Laboratory for Research and Utilization of Heterosis in Indica Rice of Ministry of Agriculture, Engineering Research Center for Plant Biotechnology and Germplasm Utilization of Ministry of Education, College of Life Science, Wuhan University, Wuhan 430072, China
| | - Nengwu Li
- State Key Laboratory of Hybrid Rice, Key Laboratory for Research and Utilization of Heterosis in Indica Rice of Ministry of Agriculture, Engineering Research Center for Plant Biotechnology and Germplasm Utilization of Ministry of Education, College of Life Science, Wuhan University, Wuhan 430072, China
| | - Shaoqing Li
- State Key Laboratory of Hybrid Rice, Key Laboratory for Research and Utilization of Heterosis in Indica Rice of Ministry of Agriculture, Engineering Research Center for Plant Biotechnology and Germplasm Utilization of Ministry of Education, College of Life Science, Wuhan University, Wuhan 430072, China; Hubei Hongshan Laboratory, Wuhan 430070, China.
| |
Collapse
|
8
|
Konieczna W, Mierek-Adamska A, Chojnacka N, Antoszewski M, Szydłowska-Czerniak A, Dąbrowska GB. Characterization of the Metallothionein Gene Family in Avena sativa L. and the Gene Expression during Seed Germination and Heavy Metal Stress. Antioxidants (Basel) 2023; 12:1865. [PMID: 37891944 PMCID: PMC10603854 DOI: 10.3390/antiox12101865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/10/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023] Open
Abstract
Metallothioneins (MTs) are a family of small proteins rich in cysteine residues. The sulfhydryl group of metallothioneins can bind to metal ions, maintaining metal homeostasis and protecting the cells from damage caused by toxic heavy metals. Moreover, MTs can function as reactive oxygen species scavengers since cysteine thiols undergo reversible and irreversible oxidation. Here, we identified 21 metallothionein genes (AsMTs) in the oat (Avena sativa L.) genome, which were divided into four types depending on the amino acid sequences of putative proteins encoded by identified genes. Analysis of promoter sequences showed that MTs might respond to a variety of stimuli, including biotic and abiotic stresses and phytohormones. The results of qRT-PCR showed that all four types of AsMTs are differentially expressed during the first 48 hours of seed germination. Moreover, stress induced by the application of zinc, cadmium, and a mixture of zinc and cadmium affects the expression of oat MTs variously depending on the MT type, indicating that AsMT1-4 fulfil different roles in plant cells.
Collapse
Affiliation(s)
- Wiktoria Konieczna
- Department of Genetics, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruń, Lwowska 1, 87-100 Toruń, Poland; (W.K.); (M.A.)
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University in Toruń, Wileńska 4, 87-100 Toruń, Poland
| | - Agnieszka Mierek-Adamska
- Department of Genetics, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruń, Lwowska 1, 87-100 Toruń, Poland; (W.K.); (M.A.)
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University in Toruń, Wileńska 4, 87-100 Toruń, Poland
| | - Natalia Chojnacka
- Department of Genetics, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruń, Lwowska 1, 87-100 Toruń, Poland; (W.K.); (M.A.)
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University in Toruń, Wileńska 4, 87-100 Toruń, Poland
| | - Marcel Antoszewski
- Department of Genetics, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruń, Lwowska 1, 87-100 Toruń, Poland; (W.K.); (M.A.)
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University in Toruń, Wileńska 4, 87-100 Toruń, Poland
| | - Aleksandra Szydłowska-Czerniak
- Department of Analytical Chemistry and Applied Spectroscopy, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina 7, 87-100 Toruń, Poland;
| | - Grażyna B. Dąbrowska
- Department of Genetics, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruń, Lwowska 1, 87-100 Toruń, Poland; (W.K.); (M.A.)
| |
Collapse
|
9
|
Wang W, Cheng M, Wei X, Wang R, Fan F, Wang Z, Tian Z, Li S, Yuan H. Comprehensive evolutionary analysis of growth-regulating factor gene family revealing the potential molecular basis under multiple hormonal stress in Gramineae crops. FRONTIERS IN PLANT SCIENCE 2023; 14:1174955. [PMID: 37063175 PMCID: PMC10102486 DOI: 10.3389/fpls.2023.1174955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 03/20/2023] [Indexed: 06/17/2023]
Abstract
Growth-regulating factors (GRFs) are plant-specific transcription factors that contain two highly conserved QLQ and WRC domains, which control a range of biological functions, including leaf growth, floral organ development, and phytohormone signaling. However, knowledge of the evolutionary patterns and driving forces of GRFs in Gramineae crops is limited and poorly characterized. In this study, a total of 96 GRFs were identified from eight crops of Brachypodium distachyon, Hordeum vulgare, Oryza sativa L. ssp. indica, Oryza rufipogon, Oryza sativa L. ssp. japonica, Setaria italic, Sorghum bicolor and Zea mays. Based on their protein sequences, the GRFs were classified into three groups. Evolutionary analysis indicated that the whole-genome or segmental duplication plays an essential role in the GRFs expansion, and the GRFs were negatively selected during the evolution of Gramineae crops. The GRFs protein function as transcriptional activators with distinctive structural motifs in different groups. In addition, the expression of GRFs was induced under multiple hormonal stress, including IAA, BR, GA3, 6BA, ABA, and MeJ treatments. Specifically, OjGRF11 was significantly induced by IAA at 6 h after phytohormone treatment. Transgenic experiments showed that roots overexpressing OjGRF11 were more sensitive to IAA and affect root elongation. This study will broaden our insights into the origin and evolution of the GRF family in Gramineae crops and will facilitate further research on GRF function.
Collapse
Affiliation(s)
- Wei Wang
- State Key Laboratory of Hybrid Rice, Key Laboratory for Research and Utilization of Heterosis in Indica Rice of Ministry of Agriculture, Engineering Research Center for Plant Biotechnology and Germplasm Utilization of Ministry of Education, College of Life Sciences, Wuhan University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Mingxing Cheng
- State Key Laboratory of Hybrid Rice, Key Laboratory for Research and Utilization of Heterosis in Indica Rice of Ministry of Agriculture, Engineering Research Center for Plant Biotechnology and Germplasm Utilization of Ministry of Education, College of Life Sciences, Wuhan University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Xiao Wei
- State Key Laboratory of Hybrid Rice, Key Laboratory for Research and Utilization of Heterosis in Indica Rice of Ministry of Agriculture, Engineering Research Center for Plant Biotechnology and Germplasm Utilization of Ministry of Education, College of Life Sciences, Wuhan University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Ruihua Wang
- State Key Laboratory of Hybrid Rice, Key Laboratory for Research and Utilization of Heterosis in Indica Rice of Ministry of Agriculture, Engineering Research Center for Plant Biotechnology and Germplasm Utilization of Ministry of Education, College of Life Sciences, Wuhan University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Fengfeng Fan
- State Key Laboratory of Hybrid Rice, Key Laboratory for Research and Utilization of Heterosis in Indica Rice of Ministry of Agriculture, Engineering Research Center for Plant Biotechnology and Germplasm Utilization of Ministry of Education, College of Life Sciences, Wuhan University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Zhikai Wang
- College of Life Science, Yangtze University, Jingzhou, China
| | - Zhihong Tian
- College of Life Science, Yangtze University, Jingzhou, China
| | - Shaoqing Li
- State Key Laboratory of Hybrid Rice, Key Laboratory for Research and Utilization of Heterosis in Indica Rice of Ministry of Agriculture, Engineering Research Center for Plant Biotechnology and Germplasm Utilization of Ministry of Education, College of Life Sciences, Wuhan University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Huanran Yuan
- State Key Laboratory of Hybrid Rice, Key Laboratory for Research and Utilization of Heterosis in Indica Rice of Ministry of Agriculture, Engineering Research Center for Plant Biotechnology and Germplasm Utilization of Ministry of Education, College of Life Sciences, Wuhan University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| |
Collapse
|
10
|
Konieczna W, Warchoł M, Mierek-Adamska A, Skrzypek E, Waligórski P, Piernik A, Dąbrowska GB. Changes in physio-biochemical parameters and expression of metallothioneins in Avena sativa L. in response to drought. Sci Rep 2023; 13:2486. [PMID: 36775830 PMCID: PMC9922688 DOI: 10.1038/s41598-023-29394-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 02/03/2023] [Indexed: 02/13/2023] Open
Abstract
Drought is one of the major threats to food security. Among several mechanisms involved in plant stress tolerance, one protein family-the plant metallothioneins (MTs)-shows great promise for enhancing drought resistance. Plant metallothioneins in oat (Avena sativa L.) have not yet been deeply analysed, and the literature lacks a comprehensive study of the whole family of plant MTs in response to drought. In this study, we showed that the number and nature of cis-elements linked with stress response in promoters of AsMTs1-3 differed depending on the MT type. Drought stress in oat plants caused an increase in the expression of AsMT2 and AsMT3 and a decrease in the expression of AsMT1 compared to well-watered plants. Moreover, the low values of relative water content, water use efficiency, net photosynthesis (PN), transpiration (E), stomatal conductance (gs), chlorophyll a, and carotenoid were accompanied by high levels of electrolyte leakage, internal CO2 concentration (Ci) and abscisic acid content, and high activity of antioxidants enzymes in plants under drought stress. The present study puts forward the idea that AsMTs are crucial for oat response to drought stress not only by regulating antioxidant activity but also by changing the plant water regime and photosynthesis. Our results support the hypothesis that structural differences among types of plant MTs reflect their diversified physiological roles.
Collapse
Affiliation(s)
- Wiktoria Konieczna
- Department of Genetics, Nicolaus Copernicus University in Toruń, Lwowska 1, 87-100, Toruń, Poland
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University in Toruń, Wileńska 4, 87-100, Toruń, Poland
| | - Marzena Warchoł
- The Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, Niezapominajek 21, 30-239, Kraków, Poland
| | - Agnieszka Mierek-Adamska
- Department of Genetics, Nicolaus Copernicus University in Toruń, Lwowska 1, 87-100, Toruń, Poland
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University in Toruń, Wileńska 4, 87-100, Toruń, Poland
| | - Edyta Skrzypek
- The Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, Niezapominajek 21, 30-239, Kraków, Poland
| | - Piotr Waligórski
- The Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, Niezapominajek 21, 30-239, Kraków, Poland
| | - Agnieszka Piernik
- Department of Geobotany and Landscape Planning, Nicolaus Copernicus University in Toruń, Lwowska 1, 87-100, Toruń, Poland
| | - Grażyna B Dąbrowska
- Department of Genetics, Nicolaus Copernicus University in Toruń, Lwowska 1, 87-100, Toruń, Poland.
| |
Collapse
|