1
|
Teschke R. Copper, Iron, Cadmium, and Arsenic, All Generated in the Universe: Elucidating Their Environmental Impact Risk on Human Health Including Clinical Liver Injury. Int J Mol Sci 2024; 25:6662. [PMID: 38928368 PMCID: PMC11203474 DOI: 10.3390/ijms25126662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 06/12/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024] Open
Abstract
Humans are continuously exposed to various heavy metals including copper, iron, cadmium, and arsenic, which were specifically selected for the current analysis because they are among the most frequently encountered environmental mankind and industrial pollutants potentially causing human health hazards and liver injury. So far, these issues were poorly assessed and remained a matter of debate, also due to inconsistent results. The aim of the actual report is to thoroughly analyze the positive as well as negative effects of these four heavy metals on human health. Copper and iron are correctly viewed as pollutant elements essential for maintaining human health because they are part of important enzymes and metabolic pathways. Healthy individuals are prepared through various genetically based mechanisms to maintain cellular copper and iron homeostasis, thereby circumventing or reducing hazardous liver and organ injury due to excessive amounts of these metals continuously entering the human body. In a few humans with gene aberration, however, liver and organ injury may develop because excessively accumulated copper can lead to Wilson disease and substantial iron deposition to hemochromatosis. At the molecular level, toxicities of some heavy metals are traced back to the Haber Weiss and Fenton reactions involving reactive oxygen species formed in the course of oxidative stress. On the other hand, cellular homeostasis for cadmium and arsenic cannot be provided, causing their life-long excessive deposition in the liver and other organs. Consequently, cadmium and arsenic represent health hazards leading to higher disability-adjusted life years and increased mortality rates due to cancer and non-cancer diseases. For unknown reasons, however, liver injury in humans exposed to cadmium and arsenic is rarely observed. In sum, copper and iron are good for the human health of most individuals except for those with Wilson disease or hemochromatosis at risk of liver injury through radical formation, while cadmium and arsenic lack any beneficial effects but rather are potentially hazardous to human health with a focus on increased disability potential and risk for cancer. Primary efforts should focus on reducing the industrial emission of hazardous heavy metals.
Collapse
Affiliation(s)
- Rolf Teschke
- Department of Internal Medicine II, Division of Gastroenterology and Hepatology, Klinikum Hanau, 63450 Hanau, Germany; ; Tel.: +49-6181/21859; Fax: +49-6181/2964211
- Academic Teaching Hospital of the Medical Faculty, Goethe University Frankfurt/Main, 60590 Hanau, Germany
| |
Collapse
|
2
|
Teschke R, Eickhoff A. Wilson Disease: Copper-Mediated Cuproptosis, Iron-Related Ferroptosis, and Clinical Highlights, with Comprehensive and Critical Analysis Update. Int J Mol Sci 2024; 25:4753. [PMID: 38731973 PMCID: PMC11084815 DOI: 10.3390/ijms25094753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/18/2024] [Accepted: 04/20/2024] [Indexed: 05/13/2024] Open
Abstract
Wilson disease is a genetic disorder of the liver characterized by excess accumulation of copper, which is found ubiquitously on earth and normally enters the human body in small amounts via the food chain. Many interesting disease details were published on the mechanistic steps, such as the generation of reactive oxygen species (ROS) and cuproptosis causing a copper dependent cell death. In the liver of patients with Wilson disease, also, increased iron deposits were found that may lead to iron-related ferroptosis responsible for phospholipid peroxidation within membranes of subcellular organelles. All topics are covered in this review article, in addition to the diagnostic and therapeutic issues of Wilson disease. Excess Cu2+ primarily leads to the generation of reactive oxygen species (ROS), as evidenced by early experimental studies exemplified with the detection of hydroxyl radical formation using the electron spin resonance (ESR) spin-trapping method. The generation of ROS products follows the principles of the Haber-Weiss reaction and the subsequent Fenton reaction leading to copper-related cuproptosis, and is thereby closely connected with ROS. Copper accumulation in the liver is due to impaired biliary excretion of copper caused by the inheritable malfunctioning or missing ATP7B protein. As a result, disturbed cellular homeostasis of copper prevails within the liver. Released from the liver cells due to limited storage capacity, the toxic copper enters the circulation and arrives at other organs, causing local accumulation and cell injury. This explains why copper injures not only the liver, but also the brain, kidneys, eyes, heart, muscles, and bones, explaining the multifaceted clinical features of Wilson disease. Among these are depression, psychosis, dysarthria, ataxia, writing problems, dysphagia, renal tubular dysfunction, Kayser-Fleischer corneal rings, cardiomyopathy, cardiac arrhythmias, rhabdomyolysis, osteoporosis, osteomalacia, arthritis, and arthralgia. In addition, Coombs-negative hemolytic anemia is a key feature of Wilson disease with undetectable serum haptoglobin. The modified Leipzig Scoring System helps diagnose Wilson disease. Patients with Wilson disease are well-treated first-line with copper chelators like D-penicillamine that facilitate the removal of circulating copper bound to albumin and increase in urinary copper excretion. Early chelation therapy improves prognosis. Liver transplantation is an option viewed as ultima ratio in end-stage liver disease with untreatable complications or acute liver failure. Liver transplantation finally may thus be a life-saving approach and curative treatment of the disease by replacing the hepatic gene mutation. In conclusion, Wilson disease is a multifaceted genetic disease representing a molecular and clinical challenge.
Collapse
Affiliation(s)
- Rolf Teschke
- Department of Internal Medicine II, Division of Gastroenterology and Hepatology, Klinikum Hanau, D-63450 Hanau, Germany;
- Academic Teaching Hospital of the Medical Faculty, Goethe University Frankfurt, D-60590 Frankfurt, Germany
| | - Axel Eickhoff
- Department of Internal Medicine II, Division of Gastroenterology and Hepatology, Klinikum Hanau, D-63450 Hanau, Germany;
- Academic Teaching Hospital of the Medical Faculty, Goethe University Frankfurt, D-60590 Frankfurt, Germany
| |
Collapse
|
3
|
Huang Z, Wu Z, Gu X, Ji L. Diagnosis, toxicological mechanism, and detoxification for hepatotoxicity induced by pyrrolizidine alkaloids from herbal medicines or other plants. Crit Rev Toxicol 2024; 54:123-133. [PMID: 38411492 DOI: 10.1080/10408444.2024.2310597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 01/18/2024] [Indexed: 02/28/2024]
Abstract
Pyrrolizidine alkaloids (PAs) are one type of phytotoxins distributed in various plants, including many medicinal herbs. Many organs might suffer injuries from the intake of PAs, and the liver is the most susceptible one. The diagnosis, toxicological mechanism, and detoxification of PAs-induced hepatotoxicity have been studied for several decades, which is of great significance for its prevention, diagnosis, and therapy. When the liver was exposed to PAs, liver sinusoidal endothelial cells (LSECs) loss, hemorrhage, liver parenchymal cells death, nodular regeneration, Kupffer cells activation, and fibrogenesis occurred. These pathological changes classified the PAs-induced liver injury as acute, sub-acute, and chronic type. PAs metabolic activation, mitochondria injury, glutathione (GSH) depletion, inflammation, and LSECs damage-induced activation of the coagulation system were well recognized to play critical roles in the pathological process of PAs-induced hepatotoxicity. A lot of natural compounds like glycyrrhizic acid, (-)-epicatechin, quercetin, baicalein, chlorogenic acid, and so on were demonstrated to be effective in alleviating PAs-induced liver injury, which rendered them huge potential to be developed into therapeutic drugs for PAs poisoning in clinics. This review presents updated information about the diagnosis, toxicological mechanism, and detoxification studies on PAs-induced hepatotoxicity.
Collapse
Affiliation(s)
- Zhenlin Huang
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zeqi Wu
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xinnan Gu
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lili Ji
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
4
|
Shu YY, Hu LL, Yang L, Chu HK, Ye J, Jin Y. Rifaximin Prevents Intestinal Barrier Dysfunction and Alleviates Liver Injury in MCT-induced HSOS Mice. Curr Med Sci 2023; 43:1183-1194. [PMID: 37950130 DOI: 10.1007/s11596-023-2801-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 12/22/2022] [Indexed: 11/12/2023]
Abstract
OBJECTIVE Rifaximin is an effective component of treatment strategies for liver and intestinal diseases. However, the efficacy of rifaximin in hepatic sinusoidal obstruction syndrome (HSOS) has not been explored. The present study aimed to investigate the efficacy and mechanism of rifaximin in HSOS. METHODS An HSOS model was established in mice through the administration of monocrotaline (MCT, 800 mg/kg), and part of the HSOS mice were intragastrically administered with rifaximin. Then, the efficacy of rifaximin in HSOS was evaluated based on the liver pathological findings, liver proinflammatory cytokines, and alanine aminotransferase and aspartate aminotransferase levels. The Ussing chamber was used to evaluate the intestinal permeability, and tight junction (TJ) proteins were measured by Western blotting and real-time polymerase chain reaction to evaluate the intestinal barrier integrity. Then, the serum proinflammatory cytokine levels were evaluated by enzyme-linked immunosorbent assay. Afterwards, an in vitro experiment was performed to determine the relationship between rifaximin and TJ proteins. RESULTS Rifaximin effectively alleviated the MCT-induced HSOS liver injury, suppressed the expression of liver proinflammatory cytokines, and reduced the serum levels of tumor necrosis factor-alpha and interleukin-6. Furthermore, rifaximin reduced the intestinal permeability, improved the intestinal barrier integrity, and promoted the expression of TJ proteins. CONCLUSION The results revealed that the intestinal barrier integrity was destroyed in MCT-induced HSOS. The significant alleviation of MCT-induced HSOS induced by rifaximin might be correlated to the repairment of intestinal barrier integrity via the regulation of the TJ protein expression.
Collapse
Affiliation(s)
- Yan-Yun Shu
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Department of Ultrasound, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, China
| | - Li-Lin Hu
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Ling Yang
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Hui-Kuan Chu
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jin Ye
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Yu Jin
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
5
|
Haas M, Ackermann G, Küpper JH, Glatt H, Schrenk D, Fahrer J. OCT1-dependent uptake of structurally diverse pyrrolizidine alkaloids in human liver cells is crucial for their genotoxic and cytotoxic effects. Arch Toxicol 2023; 97:3259-3271. [PMID: 37676300 PMCID: PMC10567918 DOI: 10.1007/s00204-023-03591-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 08/24/2023] [Indexed: 09/08/2023]
Abstract
Pyrrolizidine alkaloids (PAs) are important plant hepatotoxins, which occur as contaminants in plant-based foods, feeds and phytomedicines. Numerous studies demonstrated that the genotoxicity and cytotoxicity of PAs depend on their chemical structure, allowing for potency ranking and grouping. Organic cation transporter-1 (OCT1) was previously shown to be involved in the cellular uptake of the cyclic PA diesters monocrotaline, retrorsine and senescionine. However, little is known about the structure-dependent transport of PAs. Therefore, we investigated the impact of OCT1 on the uptake and toxicity of three structurally diverse PAs (heliotrine, lasiocarpine and riddelliine) differing in their degree and type of esterification in metabolically competent human liver cell models and hamster fibroblasts. Human HepG2-CYP3A4 liver cells were exposed to the respective PA in the presence or absence of the OCT1-inhibitors D-THP and quinidine, revealing a strongly attenuated cytotoxicity upon OCT1 inhibition. The same experiments were repeated in V79-CYP3A4 hamster fibroblasts, confirming that OCT1 inhibition prevents the cytotoxic effects of all tested PAs. Interestingly, OCT1 protein levels were much lower in V79-CYP3A4 than in HepG2-CYP3A4 cells, which correlated with their lower susceptibility to PA-induced cytotoxicity. The cytoprotective effect of OCT1 inhibiton was also demonstrated in primary human hepatocytes following PA exposure. Our experiments further showed that the genotoxic effects triggered by the three PAs are blocked by OCT1 inhibition as evidenced by strongly reduced γH2AX and p53 levels. Consistently, inhibition of OCT1-mediated uptake suppressed the activation of the DNA damage response (DDR) as revealed by decreased phosphorylation of checkpoint kinases upon PA treatment. In conclusion, we demonstrated that PAs, independent of their degree of esterification, are substrates for OCT1-mediated uptake into human liver cells. We further provided evidence that OCT1 inhibition prevents PA-triggered genotoxicity, DDR activation and subsequent cytotoxicity. These findings highlight the crucial role of OCT1 together with CYP3A4-dependent metabolic activation for PA toxicity.
Collapse
Affiliation(s)
- Manuel Haas
- Division of Food Chemistry and Toxicology, Department of Chemistry, RPTU Kaiserslautern-Landau, Erwin-Schroedinger-Str. 52, 67663, Kaiserslautern, Germany
| | - Gabriel Ackermann
- Division of Food Chemistry and Toxicology, Department of Chemistry, RPTU Kaiserslautern-Landau, Erwin-Schroedinger-Str. 52, 67663, Kaiserslautern, Germany
| | - Jan-Heiner Küpper
- Division of Molecular Cell Biology, Department of Environment and Nature Science, Brandenburg University of Technology Cottbus-Senftenberg, 01968, Senftenberg, Germany
| | - Hansruedi Glatt
- Department Food Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Strasse 8-10, 10589, Berlin, Germany
- Department of Nutritional Toxicology, German Institute of Human Nutrition (DIfE), Potsdam-Rehbrücke, Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany
| | - Dieter Schrenk
- Division of Food Chemistry and Toxicology, Department of Chemistry, RPTU Kaiserslautern-Landau, Erwin-Schroedinger-Str. 52, 67663, Kaiserslautern, Germany
| | - Jörg Fahrer
- Division of Food Chemistry and Toxicology, Department of Chemistry, RPTU Kaiserslautern-Landau, Erwin-Schroedinger-Str. 52, 67663, Kaiserslautern, Germany.
| |
Collapse
|
6
|
Gumus ZP. Assessment of Toxic Pyrrolizidine and Tropane Alkaloids in Herbal Teas and Culinary Herbs Using LC-Q-ToF/MS. Foods 2023; 12:3572. [PMID: 37835225 PMCID: PMC10572649 DOI: 10.3390/foods12193572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/20/2023] [Accepted: 09/22/2023] [Indexed: 10/15/2023] Open
Abstract
Pyrrolizidine alkaloids are secondary metabolites produced by plants as a defense against insects. These can cause acute or chronic toxicity in humans. Therefore, avoiding potential poisoning from the consumption of tea and culinary plants contaminated with pyrrolizidine alkaloids (PAs), pyrrolizidine alkaloids N-oxides (PANOs), and tropane alkaloids (TAs) is important for human health and food safety. Therefore, it is important to determine the levels of these substances with reliable and highly accurate methods. In this study, the PAs, PANOs, and TAs in herbal teas and culinary herbs sold in Turkish markets were identified and their levels were determined. Thus, the general profiles of herbal teas and culinary herbs in Turkey were revealed, and the compliance of the total amounts of PA and TA with the regulations was examined. The identification and quantification of 25 PAs and N-oxides and 2 TAs (atropine and scopolamine) in the samples was performed with a liquid chromatography-quadrupole time-of-flight tandem mass spectrometer (LC-Q-ToF/MS). At least a few of these substances were detected in all of the tested herbal teas and culinary herbs. The total contents of the black tea, green tea, mixed tea, flavored tea, chamomile tea, sage tea, linden tea, fennel tea, rosehip tea, peppermint, and thyme samples ranged from 4.6 ng g-1 to 1054.5 ng g-1. The results obtained shed light on the importance of analyzing the total dehydro PA, PANO, and TA amounts in plant-based products consumed in diets with sensitive and accurate methods, and they highlight the necessity of performing these analyses routinely in terms of food safety.
Collapse
Affiliation(s)
- Zinar Pinar Gumus
- Central Research Test and Analysis Laboratory Application and Research Center (EGE-MATAL), Ege University, 35100 Izmir, Turkey
| |
Collapse
|
7
|
Huang T, Zhang X, Yan K, Lou D, He Y, Dai S, Zheng D, Chen P, Wu F, Gu L. Transjugular intrahepatic portosystemic shunt for pyrrolidine alkaloids-induced hepatic sinusoidal obstruction syndrome: a retrospective cohort study. Eur J Gastroenterol Hepatol 2023; 35:1004-1011. [PMID: 37395216 DOI: 10.1097/meg.0000000000002591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
BACKGROUND This study aimed to investigate the efficacy and safety of transjugular intrahepatic portosystemic shunt (TIPS) in the treatment of patients with pyrrolidine alkaloids-induced hepatic sinusoidal obstruction syndrome (PA-HSOS). METHODS Patients diagnosed with PA-HSOS and treated in Ningbo No.2 Hospital between November 2017 and October 2022 were enlisted in this retrospective cohort study. RESULTS This cohort comprised a total of 22 patients with PA-HSOS, of which 12 patients received TIPS treatment and 10 patients experienced conservative treatment. The median follow-up duration was 10.5 months. Baseline characteristics existed with no significant difference between the two groups. No operation failures or any TIPS-associated intraoperative complications were observed after TIPS. In the TIPS group, the portal venous pressure was substantially decreased from 25.3 ± 6.3 mmHg to 14.4 ± 3.5 mmHg after TIPS ( P = 0.002). Compared with preoperative, the ascites after TIPS were significantly subsided ( P = 0.001) and there existed a considerable decrease in Child-Pugh score. At the end of follow-up, 5 patients died, involving 1 in the TIPS group and 4 in the conservative treatment group. The median survival time was 13 (3-28) months in the TIPS group and 6.5 (1-49) months in the conservative treatment group, respectively. The survival analysis demonstrated that the total survival time of TIPS group was longer than that of the conservative treatment group, no statistical significance was observed ( P = 0.08). CONCLUSION TIPS may be a secure and effective therapeutic strategy for PA-HSOS patients who do not respond to conservative treatment.
Collapse
Affiliation(s)
- Tongmin Huang
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou
| | | | - Kun Yan
- Department of Radiology, Ningbo No. 2 Hospital, Ningbo
| | - Dandi Lou
- The First Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou
| | - Yujing He
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou
| | - Senjie Dai
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou
| | - Dingcheng Zheng
- Department of General Surgery, Ningbo No. 2 Hospital, Ningbo, Zhejiang, China
| | - Ping Chen
- Department of General Surgery, Ningbo No. 2 Hospital, Ningbo, Zhejiang, China
| | - Feng Wu
- Department of General Surgery, Ningbo No. 2 Hospital, Ningbo, Zhejiang, China
| | - Lihu Gu
- Department of General Surgery, Ningbo No. 2 Hospital, Ningbo, Zhejiang, China
| |
Collapse
|
8
|
Sousa AC, Ribeiro C, Gonçalves VMF, Pádua I, Leal S. Chromatographic Methods for Detection and Quantification of Pyrrolizidine Alkaloids in Flora, Herbal Medicines, and Food: An Overview. Crit Rev Anal Chem 2023:1-25. [PMID: 37300809 DOI: 10.1080/10408347.2023.2218476] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Pyrrolizidine alkaloids (PAs) are natural toxins produced by some plants that gained special interest due to their potential hazardous effects in humans and animals. These substances have been found in wild flora, herbal medicines and food products raising health concerns. Recently, maximum concentration levels of PAs were established for some food products; however, maximum daily intake frequently surpasses the upper limit set by the competent authorities posing a health risk. Given the scarcity or absence of occurrence data on PAs in many products, there is an urgent need to measure their levels and establish safety intake levels. Analytical methods have been reported to detect and quantify PAs in different matrices. The commonly used chromatographic methodologies provides accurate and reliable results. Analytical methods include diverse steps as extraction and sample preparation procedures that are critical for sensitivity and selectivity of the analytical method. Great efforts have been directed toward optimization of extraction procedures, clean up and chromatographic conditions to improve recovery, reduce matrix effects, and achieve low limits of detection and quantification. Therefore, this paper aims to give a general overview about the occurrence of PAs in flora, herbal medicines, and foodstuff; and discuss the different chromatographic methodologies used for PAs analysis, namely extraction and sample preparation procedures and chromatographic conditions.
Collapse
Affiliation(s)
- Ana Catarina Sousa
- TOXRUN - Toxicology Research Unit, University Institute of Health Sciences, CESPU, CRL, Gandra, Portugal
| | - Cláudia Ribeiro
- TOXRUN - Toxicology Research Unit, University Institute of Health Sciences, CESPU, CRL, Gandra, Portugal
| | - Virgínia M F Gonçalves
- TOXRUN - Toxicology Research Unit, University Institute of Health Sciences, CESPU, CRL, Gandra, Portugal
- UNIPRO - Oral Pathology and Rehabilitation Research Unit, University Institute of Health Sciences (IUCS), CESPU, Gandra, Portugal
| | - Inês Pádua
- TOXRUN - Toxicology Research Unit, University Institute of Health Sciences, CESPU, CRL, Gandra, Portugal
- Epidemiology Unit - Institute of Public Health of University of Porto (ISPUP), Porto, Portugal
| | - Sandra Leal
- TOXRUN - Toxicology Research Unit, University Institute of Health Sciences, CESPU, CRL, Gandra, Portugal
- CINTESIS-RISE, MEDCIDS, Faculty of Medicine, University of Porto, Porto, Portugal
| |
Collapse
|
9
|
Ma ZT, Shi Z, Xiao XH, Wang JB. New Insights into Herb-Induced Liver Injury. Antioxid Redox Signal 2023; 38:1138-1149. [PMID: 36401515 PMCID: PMC10259609 DOI: 10.1089/ars.2022.0134] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/07/2022] [Accepted: 11/15/2022] [Indexed: 11/21/2022]
Abstract
Significance: Herbs are widely used worldwide. However, inappropriate use of some of the herbs can lead to herb-induced liver injury (HILI). Intriguingly, HILI incidents are on the rise, and our understanding of the underlying etiologies is in progress, and hence, an update on the current status of incidents as well as our understanding on the etiologies of HILI is appropriate. Recent Advances: HILI reports due to the use of some herbs that are traditionally considered to be safe are also on the rise. Furthermore, HILI due to the use of certain herbs in combination with other herbs (herb-herb interaction [HHI]) or non-herb components (herb-drug interaction [HDI]) has also been reported, suggesting a potentially important new type of inappropriate use of herbs. Critical Issues: Updated overviews focus on the epidemiology, etiology, phenotypes, and risk factors of HILI, as well as HDI and HHI, and analysis on several types of newly reported "toxic" effects of herbs based on types of hepatotoxicity and the HILI mechanisms. Future Directions: HILI will continue to be a significant public health challenge in the near future. In the light of the lack of broadly available guidelines and regulations for proper and safe uses of herbs worldwide, raising the public awareness of HILI will remain one of the most effective measures. In particular, it should include a better understanding of the contributing factors; a more detail subclassification and description of HILI, better characterization of the components/substances that could induce HILI; and development of HILI diagnosis based on the Roussel Uclaf Causality Assessment Method (RUCAM). Antioxid. Redox Signal. 38, 1138-1149.
Collapse
Affiliation(s)
- Zhi-Tao Ma
- Department of Pharmaceutics of Chinese Materia Medica, School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Zhuo Shi
- China Military Institute of Chinese Medicine, Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Xiao-He Xiao
- China Military Institute of Chinese Medicine, Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Jia-Bo Wang
- Department of Pharmaceutics of Chinese Materia Medica, School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| |
Collapse
|
10
|
Teschke R. Molecular Idiosyncratic Toxicology of Drugs in the Human Liver Compared with Animals: Basic Considerations. Int J Mol Sci 2023; 24:ijms24076663. [PMID: 37047633 PMCID: PMC10095090 DOI: 10.3390/ijms24076663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/16/2023] [Accepted: 03/27/2023] [Indexed: 04/05/2023] Open
Abstract
Drug induced liver injury (DILI) occurs in patients exposed to drugs at recommended doses that leads to idiosyncratic DILI and provides an excellent human model with well described clinical features, liver injury pattern, and diagnostic criteria, based on patients assessed for causality using RUCAM (Roussel Uclaf Causality Assessment Method) as original method of 1993 or its update of 2016. Overall, 81,856 RUCAM based DILI cases have been published until mid of 2020, allowing now for an analysis of mechanistic issues of the disease. From selected DILI cases with verified diagnosis by using RUCAM, direct evidence was provided for the involvement of the innate and adapted immune system as well as genetic HLA (Human Leucocyte Antigen) genotypes. Direct evidence for a role of hepatic immune systems was substantiated by (1) the detection of anti-CYP (Cytochrome P450) isoforms in the plasma of affected patients, in line with the observation that 65% of the drugs most implicated in DILI are metabolized by a range of CYP isoforms, (2) the DIAIH (drug induced autoimmune hepatitis), a subgroup of idiosyncratic DILI, which is characterized by high RUCAM causality gradings and the detection of plasma antibodies such as positive serum anti-nuclear antibodies (ANA) and anti-smooth muscle antibodies (ASMA), rarely also anti-mitochondrial antibodies (AMA), (3) the effective treatment with glucocorticoids in part of an unselected RUCAM based DILI group, and (4) its rare association with the immune-triggered Stevens-Johnson syndrome (SJS) and toxic epidermal necrolysis (TEN) caused by a small group of drugs. Direct evidence of a genetic basis of idiosyncratic DILI was shown by the association of several HLA genotypes for DILI caused by selected drugs. Finally, animal models of idiosyncratic DILI mimicking human immune and genetic features are not available and further search likely will be unsuccessful. In essence and based on cases of DILI with verified diagnosis using RUCAM for causality evaluation, there is now substantial direct evidence that immune mechanisms and genetics can account for idiosyncratic DILI by many but not all implicated drugs, which may help understand the mechanistic background of the disease and contribute to new approaches of therapy and prevention.
Collapse
Affiliation(s)
- Rolf Teschke
- Department of Internal Medicine II, Division of Gastroenterology and Hepatology, Klinikum Hanau, D-63450 Hanau, Germany
- Academic Teaching Hospital of the Medical Faculty, Goethe University Frankfurt/Main, D-60590 Frankfurt am Main, Germany
| |
Collapse
|
11
|
He X, Xia Q, Zhu L, He Y, Bryant MS, Lin G, Fu PP. Formation of DHP-DNA Adducts from Rat Liver Microsomal Metabolism of 1,2-Unsaturated Pyrrolizidine Alkaloid-Containing Plant Extracts and Dietary Supplements. Chem Res Toxicol 2023; 36:243-250. [PMID: 36705520 DOI: 10.1021/acs.chemrestox.2c00321] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
1,2-Unsaturated pyrrolizidine alkaloids (PAs) are carcinogenic phytochemicals. We previously determined that carcinogenic PAs and PA N-oxides commonly form a set of four (±)-6,7-dihydro-7-hydroxy-1-hydroxymethyl-5H-pyrrolizine (DHP)-DNA adducts, namely, DHP-dG-3, DHP-dG-4, DHP-dA-3, and DHP-dA-4. This set of DHP-DNA adducts has been implicated as a potential biomarker of PA-induced liver tumor initiation from metabolism of individual carcinogenic PAs. To date, it is not known whether this generality occurs from metabolism of PA-containing plant extracts. In this study, we investigate the rat liver microsomal metabolism of nine PA-containing plant extracts and two PA-containing dietary supplements in the presence of calf thymus DNA. The presence of carcinogenic PAs and PA N-oxides in plant extracts was first confirmed by LC-MS/MS analysis with selected reaction monitoring mode. Upon rat liver microsomal metabolism of these PA-containing plant extracts and dietary supplements, the formation of this set of DHP-DNA adducts was confirmed. Thus, these results indicate that metabolism of PA-containing plant extracts and dietary supplements can generate DHP-dG-3, DHP-dG-4, DHP-dA-3, and DHP-dA-4 adducts, thereby potentially initiating liver tumor formation.
Collapse
Affiliation(s)
- Xiaobo He
- National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas 72079, United States
| | - Qingsu Xia
- National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas 72079, United States
| | - Lin Zhu
- School of Biomedical Science, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, The People's Republic of China
| | - Yisheng He
- School of Biomedical Science, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, The People's Republic of China
| | - Matthew S Bryant
- National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas 72079, United States
| | - Ge Lin
- School of Biomedical Science, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, The People's Republic of China
| | - Peter P Fu
- National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas 72079, United States
| |
Collapse
|
12
|
Zan K, Wang Z, Hu XW, Li YL, Wang Y, Jin HY, Zuo TT, Ma SC. Pyrrolizidine alkaloids and health risk of three Boraginaceae used in TCM. Front Pharmacol 2023; 14:1075010. [PMID: 37033649 PMCID: PMC10076571 DOI: 10.3389/fphar.2023.1075010] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 03/13/2023] [Indexed: 04/11/2023] Open
Abstract
Objective: The aim of this study was to systematically explore the pyrrolizidine alkaloids (PAs) type, content and risk assessment in the three Boraginaceae used in TCM, involving Arnebia euchroma (AE), A. guttata (AG), and Lithospermum erythrorhizon (LE). Method: A UHPLC-MS/MS method was established to simultaneously determine eight pyrrolizidine alkaloids (PAs), namely intermedine, lycopsamine, intermedine N-oxide, lycopsamine N-oxide, 7-acetyllycopsamine, 7-acetyllycopsamine N-oxide, echimidine N-oxide, and echimidine in the three herbs. Based on these results, the risk assessment was explored using the routine margin of exposure (MOE) combined with relative potency (REP) for oral and external usage, respectively. Results and Conclusion: Imermedine and imermedine N-oxide were common components in the eight tested PAs. 7-acetyllycopsamine and its N-oxide were not detected in AE; echimidine and its N-oxide were not detected in AG; lycopsamine and its N-oxide, 7-acetyllycopsamine and its N-oxide were not detected in LE. The total contents of 8 PAs in 11 batches of AG was341.56-519.51 μg/g; the content in 15 batches of LE was 71.16-515.73 μg/g, and the content in 11 batches of AE was 23.35-207.13 μg/g. Based on these results, the risk assessment was explored using MOE combined with REP for oral and external usage, respectively. The findings of the risk assessment method of PAs based on MOE combined with the REP factor were consistent with the clinical toxicity results. As an oral herb, AE had low risk or no risk due to its low PA contents, and individual batches of LE were medium risk, while attention should be paid to their clinical use.AG was also low risk. The external use of the three Boraginaceae used in TCM was not associated with any risk. This study systematically explored the PA type and content of the three Boraginaceae used in TCM. Additionally, the refined risk assessment of PAs based on REP provided a more scientific basis for quality evaluation and rational use of the medicinal Boraginaceae used in TCM to improve public health.
Collapse
Affiliation(s)
- Ke Zan
- National Institutes for Food and Drug Control, Beijing, China
| | - Zhao Wang
- National Institutes for Food and Drug Control, Beijing, China
| | - Xiao-Wen Hu
- National Institutes for Food and Drug Control, Beijing, China
| | - Yao-Lei Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Ying Wang
- National Institutes for Food and Drug Control, Beijing, China
| | - Hong-Yu Jin
- National Institutes for Food and Drug Control, Beijing, China
| | - Tian-Tian Zuo
- National Institutes for Food and Drug Control, Beijing, China
- *Correspondence: Tian-Tian Zuo, ; Shuang-Cheng Ma,
| | - Shuang-Cheng Ma
- National Institutes for Food and Drug Control, Beijing, China
- *Correspondence: Tian-Tian Zuo, ; Shuang-Cheng Ma,
| |
Collapse
|
13
|
Treatment of Drug-Induced Liver Injury. Biomedicines 2022; 11:biomedicines11010015. [PMID: 36672522 PMCID: PMC9855719 DOI: 10.3390/biomedicines11010015] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 11/28/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
Current pharmacotherapy options of drug-induced liver injury (DILI) remain under discussion and are now evaluated in this analysis. Needless to say, the use of the offending drug must be stopped as soon as DILI is suspected. Normal dosed drugs may cause idiosyncratic DILI, and drugs taken in overdose commonly lead to intrinsic DILI. Empirically used but not substantiated regarding efficiency by randomized controlled trials (RCTs) is the intravenous antidote treatment with N-acetylcysteine (NAC) in patients with intrinsic DILI by N-acetyl-p-aminophenol (APAP) overdose. Good data recommending pharmacotherapy in idiosyncratic DILI caused by hundreds of different drugs are lacking. Indeed, a recent analysis revealed that just eight RCTs have been published, and in only two out of eight trials were DILI cases evaluated for causality by the worldwide used Roussel Uclaf Causality Assessment Method (RUCAM), representing overall a significant methodology flaw, as results of DILI RCTs lacking RUCAM are misleading since many DILI cases are known to be attributable erroneously to nondrug alternative causes. In line with these major shortcomings and mostly based on anecdotal reports, glucocorticoids (GCs) and other immuno-suppressants may be given empirically in carefully selected patients with idiosyncratic DILI exhibiting autoimmune features or caused by immune checkpoint inhibitors (ICIs), while some patients with cholestatic DILI may benefit from ursodeoxycholic acid use; in other patients with drug-induced hepatic sinusoidal obstruction syndrome (HSOS) and coagulopathy risks, the indication for anticoagulants should be considered. In view of many other mechanistic factors such as the hepatic microsomal cytochrome P450 with a generation of reactive oxygen species (ROS), ferroptosis with toxicity of intracellular iron, and modification of the gut microbiome, additional therapy options may be available in the future. In summation, stopping the offending drug is still the first line of therapy for most instances of acute DILI, while various therapies are applied empirically and not based on good data from RCTs awaiting further trials using the updated RUCAM that asks for strict exclusion and inclusion details like liver injury criteria and provides valid causality rankings of probable and highly probable grades.
Collapse
|
14
|
Al-Subaie SF, Alowaifeer AM, Mohamed ME. Pyrrolizidine Alkaloid Extraction and Analysis: Recent Updates. Foods 2022; 11:foods11233873. [PMID: 36496681 PMCID: PMC9740414 DOI: 10.3390/foods11233873] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/20/2022] [Accepted: 11/22/2022] [Indexed: 12/03/2022] Open
Abstract
Pyrrolizidine alkaloids are natural secondary metabolites that are mainly produced in plants, bacteria, and fungi as a part of an organism's defense machinery. These compounds constitute the largest class of alkaloids and are produced in nearly 3% of flowering plants, most of which belong to the Asteraceae and Boraginaceae families. Chemically, pyrrolizidine alkaloids are esters of the amino alcohol necine (which consists of two fused five-membered rings including a nitrogen atom) and one or more units of necic acids. Pyrrolizidine alkaloids are toxic to humans and mammals; thus, the ability to detect these alkaloids in food and nutrients is a matter of food security. The latest advances in the extraction and analysis of this class of alkaloids are summarized in this review, with special emphasis on chromatographic-based analysis and determinations in food.
Collapse
Affiliation(s)
- Sarah F. Al-Subaie
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
- Reference Laboratory for Food Chemistry, Saudi Food and Drug Authority (SFDA), Riyadh 11561, Saudi Arabia
| | - Abdullah M. Alowaifeer
- Reference Laboratory for Food Chemistry, Saudi Food and Drug Authority (SFDA), Riyadh 11561, Saudi Arabia
| | - Maged E. Mohamed
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
- Correspondence: ; Tel.: +966-542990226
| |
Collapse
|
15
|
Teschke R. Aluminum, Arsenic, Beryllium, Cadmium, Chromium, Cobalt, Copper, Iron, Lead, Mercury, Molybdenum, Nickel, Platinum, Thallium, Titanium, Vanadium, and Zinc: Molecular Aspects in Experimental Liver Injury. Int J Mol Sci 2022; 23:12213. [PMID: 36293069 PMCID: PMC9602583 DOI: 10.3390/ijms232012213] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 09/30/2022] [Accepted: 10/11/2022] [Indexed: 11/25/2022] Open
Abstract
Experimental liver injury with hepatocelluar necrosis and abnormal liver tests is caused by exposure to heavy metals (HMs) like aluminum, arsenic, beryllium, cadmium, chromium, cobalt, copper, iron, lead, mercury, molybdenum, nickel, platinum, thallium, titanium, vanadium, and zinc. As pollutants, HMs disturb the ecosystem, and as these substances are toxic, they may affect the health of humans and animals. HMs are not biodegradable and may be deposited preferentially in the liver. The use of animal models can help identify molecular and mechanistic steps leading to the injury. HMs commonly initiate hepatocellular overproduction of ROS (reactive oxygen species) due to oxidative stress, resulting in covalent binding of radicals to macromolecular proteins or lipids existing in membranes of subcellular organelles. Liver injury is facilitated by iron via the Fenton reaction, providing ROS, and is triggered if protective antioxidant systems are exhausted. Ferroptosis syn pyroptosis was recently introduced as mechanistic concept in explanations of nickel (Ni) liver injury. NiCl2 causes increased iron deposition in the liver, upregulation of cyclooxygenase 2 (COX-2) protein and mRNA expression levels, downregulation of glutathione eroxidase 4 (GPX4), ferritin heavy chain 1 (FTH1), nuclear receptor coactivator 4 (NCOA4) protein, and mRNA expression levels. Nickel may cause hepatic injury through mitochondrial damage and ferroptosis, defined as mechanism of iron-dependent cell death, similar to glutamate-induced excitotoxicity but likely distinct from apoptosis, necrosis, and autophagy. Under discussion were additional mechanistic concepts of hepatocellular uptake and biliary excretion of mercury in exposed animals. For instance, the organic anion transporter 3 (Oat3) and the multidrug resistance-associated protein 2 (Mrp2) were involved in the hepatic handling of mercury. Mercury treatment modified the expression of Mrp2 and Oat3 as assessed by immunoblotting, partially explaining its impaired biliary excretion. Concomitantly, a decrease in Oat3 abundance in the hepatocyte plasma membranes was observed that limits the hepatic uptake of mercury ions. Most importantly and shown for the first time in liver injury caused by HMs, titanium changed the diversity of gut microbiota and modified their metabolic functions, leading to increased generation of lipopolysaccharides (LPS). As endotoxins, LPS may trigger and perpetuate the liver injury at the level of gut-liver. In sum, mechanistic and molecular steps of experimental liver injury due to HM administration are complex, with ROS as the key promotional compound. However, additional concepts such as iron used in the Fenton reaction, ferroptosis, modification of transporter systems, and endotoxins derived from diversity of intestinal bacteria at the gut-liver level merit further consideration.
Collapse
Affiliation(s)
- Rolf Teschke
- Department of Internal Medicine II, Division of Gastroenterology and Hepatology, Klinikum Hanau, Academic Teaching Hospital of the Medical Faculty, Goethe University Frankfurt, 63450 Hanau, Germany
| |
Collapse
|
16
|
Kohn OF, Lew SQ, Wong SSM, Sam R, Chen HC, Raimann JG, Leehey DJ, Tzamaloukas AH, Ing TS. Using herbs medically without knowing their composition: are we playing Russian roulette? Curr Med Res Opin 2022; 38:847-852. [PMID: 35362342 DOI: 10.1080/03007995.2022.2061706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Herbal medicine, a form of complementary and alternative medicine (CAM), is used throughout the world, in both developing and developed countries. The ingredients in herbal medicines are not standardized by any regulatory agency. Variability exists in the ingredients as well as in their concentrations. Plant products may become contaminated with bacteria and fungi during storage. Therefore, harm can occur to the kidney, liver, and blood components after ingestion. We encourage scientific studies to identify the active ingredients in herbs and to standardize their concentrations in all herbal preparations. Rigorous studies need to be performed in order to understand the effect of herbal ingredients on different organ systems as well as these substances' interaction with other medications.
Collapse
Affiliation(s)
- Orly F Kohn
- Pritzker School of Medicine, University of Chicago, Chicago, IL, USA
| | - Susie Q Lew
- School of Medicine and Health Sciences, George Washington University, Washington, DC, USA
| | - Steve Siu-Man Wong
- Department of Nephrology, Scarborough Health Network, Scarborough, Canada
| | - Ramin Sam
- San Francisco School of Medicine, Zuckerberg San Francisco General Hospital, University of California, San Francisco, CA, USA
| | - Hung-Chun Chen
- Division of Nephrology, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Jochen G Raimann
- Research Division, Renal Research Institute, New York, New York, USA
| | - David J Leehey
- Stritch School of Medicine, Loyola University Chicago, Maywood, Illinois, USA
| | - Antonios H Tzamaloukas
- Raymond G. Murphy Veterans Affairs Medical Center, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - Todd S Ing
- Stritch School of Medicine, Loyola University Chicago, Maywood, Illinois, USA
| |
Collapse
|
17
|
Wang Z, Ma J, Yao S, He Y, Miu KK, Xia Q, Fu PP, Ye Y, Lin G. Liquorice Extract and 18β-Glycyrrhetinic Acid Protect Against Experimental Pyrrolizidine Alkaloid-Induced Hepatotoxicity in Rats Through Inhibiting Cytochrome P450-Mediated Metabolic Activation. Front Pharmacol 2022; 13:850859. [PMID: 35370657 PMCID: PMC8966664 DOI: 10.3389/fphar.2022.850859] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 02/25/2022] [Indexed: 12/14/2022] Open
Abstract
Misuse of pyrrolizidine alkaloid (PA)-containing plants or consumption of PA-contaminated foodstuffs causes numerous poisoning cases in humans yearly, while effective therapeutic strategies are still limited. PA-induced liver injury was initiated by cytochrome P450 (CYP)-mediated metabolic activation and subsequent formation of adducts with cellular proteins. Liquorice, a hepato-protective herbal medicine, is commonly used concurrently with PA-containing herbs in many compound traditional Chinese medicine formulas, and no PA-poisoning cases have been reported with this combination. The present study aimed to investigate hepato-protective effects of liquorice aqueous extract (EX) and 18β-glycyrrhetinic acid (GA, the primary bioactive constituent of liquorice) against PA-induced hepatotoxicity and the underlying mechanism. Histopathological and biochemical analysis demonstrated that both single- and multiple-treatment of EX (500 mg/kg) or GA (50 mg/kg) significantly attenuated liver damage caused by retrorsine (RTS, a representative hepatotoxic PA). The formation of pyrrole-protein adducts was significantly reduced by single- (30.3% reduction in liver; 50.8% reduction in plasma) and multiple- (32.5% reduction in liver; 56.5% reduction in plasma) treatment of GA in rats. Single- and multiple-treatment of EX also decreased the formation of pyrrole-protein adducts, with 30.2 and 31.1% reduction in rat liver and 51.8 and 53.1% reduction in rat plasma, respectively. In addition, in vitro metabolism assay with rat liver microsomes demonstrated that GA reduced the formation of metabolic activation-derived pyrrole-glutathione conjugate in a dose-dependent manner with the estimated IC50 value of 5.07 µM. Further mechanism study showed that GA inhibited activities of CYPs, especially CYP3A1, the major CYP isoform responsible for the metabolic activation of RTS in rats. Enzymatic kinetic study revealed a competitive inhibition of rat CYP3A1 by GA. In conclusion, our findings demonstrated that both EX and GA exhibited significant hepato-protective effects against RTS-induced hepatotoxicity, mainly through the competitive inhibition of CYP-mediated metabolic activation of RTS.
Collapse
Affiliation(s)
- Zhangting Wang
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Jiang Ma
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Sheng Yao
- State Key Laboratory of Drug Research and Natural Products Chemistry Department, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Yisheng He
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Kai-Kei Miu
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Qingsu Xia
- National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, United States
| | - Peter P Fu
- National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, United States
| | - Yang Ye
- State Key Laboratory of Drug Research and Natural Products Chemistry Department, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Ge Lin
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
18
|
Badalamenti N, Sottile F, Bruno M. Ethnobotany, Phytochemistry, Biological, and Nutritional Properties of Genus Crepis-A Review. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11040519. [PMID: 35214852 PMCID: PMC8875603 DOI: 10.3390/plants11040519] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/09/2022] [Accepted: 02/11/2022] [Indexed: 05/06/2023]
Abstract
The genus Crepis L., included within the Asteraceae family, has a very wide distribution, expanding throughout the northern hemisphere, including Europe, northern Africa, and temperate Asia. This genus has a fundamental value from biodynamic and ecological perspectives, with the different species often being chosen for soil conservation, for environmental sustainability, and for their attraction towards pollinating species. Furthermore, various species of Crepis have been used in the popular medicine of several countries as medicinal herbs and food since ancient times. In most cases, the species is consumed either in the form of a decoction, or as a salad, and is used for its cardiovascular properties, as a digestive, for problems related to sight, for the treatment of diabetes, and for joint diseases. This literature review, the first one of the Crepis genus, includes publications with the word 'Crepis', and considers the single metabolites identified, characterised, and tested to evaluate their biological potential. The various isolated compounds, including in most cases sesquiterpenes and flavonoids, were obtained by extracting the roots and aerial parts of the different species. The secondary metabolites, extracted using traditional (solvent extraction, column chromatography, preparative thin layer chromatography, preparative HPLC, vacuum liquid chromatography), and modern systems such as ultrasounds, microwaves, etc., and characterised by mono- and bi- dimensional NMR experiments and by HPLC-MS, have a varied application spectrum at a biological level, with antimicrobial, antioxidant, antidiabetic, antitumor, antiviral, antiulcer, phytotoxic, and nutritional properties having been reported. Unfortunately, in vitro tests have not always been accompanied by in vivo tests, and this is the major critical aspect that emerges from the study of the scientific aspects related to this genus. Therefore, extensive investigations are necessary to evaluate the real capacity of the different species used in food, and above all to discover what the different plants that have never been analysed could offer at a scientific level.
Collapse
Affiliation(s)
- Natale Badalamenti
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), Università degli Studi di Palermo, Viale delle Scienze, Ed. 17, I-90128 Palermo, Italy;
| | - Francesco Sottile
- Department of Architecture, University of Palermo, Viale delle Scienze, Parco d’Orleans II, I-90128 Palermo, Italy;
- Centro Interdipartimentale di Ricerca “Riuszo Bio-Based Degli Scarti da Matrici Agroalimentari” (RIVIVE), Università degli Studi di Palermo, I-90128 Palermo, Italy
| | - Maurizio Bruno
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), Università degli Studi di Palermo, Viale delle Scienze, Ed. 17, I-90128 Palermo, Italy;
- Centro Interdipartimentale di Ricerca “Riuszo Bio-Based Degli Scarti da Matrici Agroalimentari” (RIVIVE), Università degli Studi di Palermo, I-90128 Palermo, Italy
- Correspondence:
| |
Collapse
|
19
|
Kupffer cells play a crucial role in monocrotaline-induced liver injury by producing TNF-α. Toxicology 2022; 468:153101. [DOI: 10.1016/j.tox.2022.153101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 01/11/2022] [Accepted: 01/12/2022] [Indexed: 11/17/2022]
|
20
|
Ma J, Li M, Li N, Chan WY, Lin G. Pyrrolizidine Alkaloid-Induced Hepatotoxicity Associated with the Formation of Reactive Metabolite-Derived Pyrrole-Protein Adducts. Toxins (Basel) 2021; 13:723. [PMID: 34679016 PMCID: PMC8540779 DOI: 10.3390/toxins13100723] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/08/2021] [Accepted: 10/11/2021] [Indexed: 12/19/2022] Open
Abstract
Pyrrolizidine alkaloids (PAs) with 1,2-unsaturated necine base are hepatotoxic phytotoxins. Acute PA intoxication is initiated by the formation of adducts between PA-derived reactive pyrrolic metabolites with cellular proteins. The present study aimed to investigate the correlation between the formation of hepatic pyrrole-protein adducts and occurrence of PA-induced liver injury (PA-ILI), and to further explore the use of such adducts for rapidly screening the hepatotoxic potency of natural products which contain PAs. Aqueous extracts of Crotalaria sessiliflora (containing one PA: monocrotaline) and Gynura japonica (containing two PAs: senecionine and seneciphylline) were orally administered to rats at different doses for 24 h to investigate PA-ILI. Serum alanine aminotransferase (ALT) activity, hepatic glutathione (GSH) level, and liver histological changes of the treated rats were evaluated to assess the severity of PA-ILI. The levels of pyrrole-protein adducts formed in the rats' livers were determined by a well-established spectrophotometric method. The biological and histological results showed a dose-dependent hepatotoxicity with significantly different toxic severity among groups of rats treated with herbal extracts containing different PAs. Both serum ALT activity and the amount of hepatic pyrrole-protein adducts increased in a dose-dependent manner. Moreover, the elevation of ALT activity correlated well with the formation of hepatic pyrrole-protein adducts, regardless of the structures of different PAs. The findings revealed that the formation of hepatic pyrrole-protein adducts-which directly correlated with the elevation of serum ALT activity-was a common insult leading to PA-ILI, suggesting a potential for using pyrrole-protein adducts to screen hepatotoxicity and rank PA-containing natural products, which generally contain multiple PAs with different structures.
Collapse
Affiliation(s)
- Jiang Ma
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong 4054577, China; (J.M.); (M.L.); (N.L.); (W.Y.C.)
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510000, China
| | - Mi Li
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong 4054577, China; (J.M.); (M.L.); (N.L.); (W.Y.C.)
| | - Na Li
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong 4054577, China; (J.M.); (M.L.); (N.L.); (W.Y.C.)
| | - Wood Yee Chan
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong 4054577, China; (J.M.); (M.L.); (N.L.); (W.Y.C.)
| | - Ge Lin
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong 4054577, China; (J.M.); (M.L.); (N.L.); (W.Y.C.)
| |
Collapse
|