1
|
Fang H, Huang S, Li R, Wang P, Jiang Q, Zhong C, Yang Y, Yu W. Combined BSA-Seq and RNA-Seq to Identify Potential Genes Regulating Fruit Size in Bottle Gourd ( Lagenaria siceraria L.). PLANTS (BASEL, SWITZERLAND) 2024; 13:2154. [PMID: 39124272 PMCID: PMC11314176 DOI: 10.3390/plants13152154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 07/22/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024]
Abstract
Fruit size is a crucial agronomic trait in bottle gourd, impacting both yield and utility. Despite its significance, the regulatory mechanism governing fruit size in bottle gourd remains largely unknown. In this study, we used bottle gourd (small-fruited H28 and large-fruited H17) parent plants to measure the width and length of fruits at various developmental stages, revealing a single 'S' growth curve for fruit expansion. Paraffin section observations indicated that both cell number and size significantly influence bottle gourd fruit size. Through bulked segregant analysis and combined genotype-phenotype analysis, the candidate interval regulating fruit size was pinpointed to 17,747,353 bp-18,185,825 bp on chromosome 9, encompassing 0.44 Mb and including 44 genes. Parental fruits in the rapid expansion stage were subjected to RNA-seq, highlighting that differentially expressed genes were mainly enriched in pathways related to cell wall biosynthesis, sugar metabolism, and hormone signaling. Transcriptome and resequencing analysis, combined with gene function annotation, identified six genes within the localized region as potential regulators of fruit size. This study not only maps the candidate interval of genes influencing fruit size in bottle gourd through forward genetics, but also offers new insights into the potential molecular mechanisms underlying this trait through transcriptome analysis.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Wenjin Yu
- College of Agriculture, Guangxi University, Nanning 530004, China; (H.F.); (S.H.); (R.L.); (P.W.); (Q.J.); (C.Z.); (Y.Y.)
| |
Collapse
|
2
|
Chen T, Xu T, Wang J, Zhang T, Yang J, Feng L, Song T, Yang J, Wu Y. Transcriptomic and free monoterpene analyses of aroma reveal that isopentenyl diphosphate isomerase inhibits monoterpene biosynthesis in grape (Vitis vinifera L.). BMC PLANT BIOLOGY 2024; 24:595. [PMID: 38914931 PMCID: PMC11197285 DOI: 10.1186/s12870-024-05306-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 06/18/2024] [Indexed: 06/26/2024]
Abstract
BACKGROUND Monoterpenes are among the most important volatile aromatic compounds contributing to the flavor and aroma of grapes and wine. However, the molecular basis of monoterpene biosynthesis has not yet been fully elucidated. RESULTS In our study, transcriptomics and gas chromatography-mass spectrometry (GC-MS) were used to mine candidate genes and transcription factors involved in monoterpene biosynthesis between high-monoterpene and zero-monoterpene table grape cultivars. We found that monoterpene biosynthesis was positively correlated by the expression of five genes encoding 1-deoxy-D-xylulose-5-phosphate synthase (VvDXSs), one encoding 4-hydroxy-3-methylbut-2-enyl diphosphate reductase (VvHDR), three hydroxy-3-methylglutaryl-CoA synthases (VvHMGSs) and one mevalonate kinase (VvMVK), whereas the expression of one isopentenyl diphosphate isomerase (VvIDI) and one 3-hydroxy-3-methylglutaryl-CoA reductase (VvHMGR) negatively correlated monoterpene biosynthesis. Of these genes, VvIDI was selected to validate its function in monoterpene accumulation through a transient overexpression experiment, and was shown to inhibit the biosynthesis of grape linalool and α-terpineol. Meanwhile, we found that a 64-amino acid extension sequence at the N-terminus can guide the VvIDI protein to target the chloroplast. CONCLUSIONS The findings of this study should help to guide future functional analysis of key genes as well as mining the potential regulatory mechanism of monoterpene biosynthesis in grapes and grape products.
Collapse
Affiliation(s)
- Tianchi Chen
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, 315100, China
- College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Tao Xu
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, 315100, China
| | - Jinnan Wang
- State Key Laboratory for Quality and Safety of Agro-Products, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Tianye Zhang
- State Key Laboratory for Quality and Safety of Agro-Products, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Jin Yang
- State Key Laboratory for Quality and Safety of Agro-Products, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Lixiao Feng
- State Key Laboratory for Quality and Safety of Agro-Products, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Tiefeng Song
- College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Jian Yang
- State Key Laboratory for Quality and Safety of Agro-Products, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China.
| | - Yueyan Wu
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, 315100, China.
| |
Collapse
|
3
|
Chu NTB, Le MT, La HV, Le QTN, Le TD, Tran HTT, Tran LTM, Le CT, Nguyen DV, Cao PB, Chu HD. Genome-wide identification, characterization, and expression analysis of the small auxin-up RNA gene family during zygotic and somatic embryo maturation of the cacao tree (Theobroma cacao). Genomics Inform 2024; 22:2. [PMID: 38907330 PMCID: PMC11184954 DOI: 10.1186/s44342-024-00003-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 12/12/2023] [Indexed: 06/23/2024] Open
Abstract
Small auxin-up RNA (SAUR) proteins were known as a large family that supposedly participated in various biological processes in higher plant species. However, the SAUR family has been still not explored in cacao (Theobroma cacao L.), one of the most important industrial trees. The present work, as an in silico study, revealed comprehensive aspects of the structure, phylogeny, and expression of TcSAUR gene family in cacao. A total of 90 members of the TcSAUR gene family have been identified and annotated in the cacao genome. According to the physic-chemical features analysis, all TcSAUR proteins exhibited slightly similar characteristics. Phylogenetic analysis showed that these TcSAUR proteins could be categorized into seven distinct groups, with 10 sub-groups. Our results suggested that tandemly duplication events, segmental duplication events, and whole genome duplication events might be important in the growth of the TcSAUR gene family in cacao. By re-analyzing the available transcriptome databases, we found that a number of TcSAUR genes were exclusively expressed during the zygotic embryogenesis and somatic embryogenesis. Taken together, our study will be valuable to further functional characterizations of candidate TcSAUR genes for the genetic engineering of cacao.
Collapse
Affiliation(s)
- Ngoc Thi Bich Chu
- Faculty of Natural Sciences, Hung Vuong University, Viet Tri City, Phu Tho Province, 35000, Vietnam
| | - Man Thi Le
- Faculty of Natural Sciences, Hung Vuong University, Viet Tri City, Phu Tho Province, 35000, Vietnam
| | - Hong Viet La
- Institute of Research and Application, Hanoi Pedagogical University 2, Phuc Yen City, Vinh Phuc Province, 280000, Vietnam
| | - Quynh Thi Ngoc Le
- Department of Biotechnology, Thuyloi University, Hanoi City, 116830, Vietnam
| | - Thao Duc Le
- Agricultural Genetics Institute, Vietnam Academy of Agricultural Sciences, Hanoi City, 143330, Vietnam
| | - Huyen Thi Thanh Tran
- Faculty of Biology, Hanoi National University of Education, Xuan Thuy Road, Cau Giay District, Hanoi City, 122300, Vietnam
| | - Lan Thi Mai Tran
- Faculty of Natural Sciences, Hung Vuong University, Viet Tri City, Phu Tho Province, 35000, Vietnam
| | - Chi Toan Le
- Faculty of Biology and Agricultural Engineering, Hanoi Pedagogical University 2, Phuc Yen City, Vinh Phuc Province, 280000, Vietnam
| | - Dung Viet Nguyen
- Faculty of Natural Sciences, Hung Vuong University, Viet Tri City, Phu Tho Province, 35000, Vietnam
- Thanh Thuy Junior High School, Thanh Thuy District, Phu Tho Province, 35850, Vietnam
| | - Phi Bang Cao
- Faculty of Natural Sciences, Hung Vuong University, Viet Tri City, Phu Tho Province, 35000, Vietnam.
| | - Ha Duc Chu
- Faculty of Agricultural Technology, University of Engineering and Technology, Vietnam National University Hanoi, Xuan Thuy Road, Cau Giay District, Hanoi City, 122300, Vietnam.
| |
Collapse
|
4
|
Gong G, Jia H, Tang Y, Pei H, Zhai L, Huang J. Genetic analysis and QTL mapping for pericarp thickness in maize (Zea mays L.). BMC PLANT BIOLOGY 2024; 24:338. [PMID: 38664642 PMCID: PMC11044598 DOI: 10.1186/s12870-024-05052-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 04/19/2024] [Indexed: 04/29/2024]
Abstract
Proper pericarp thickness protects the maize kernel against pests and diseases, moreover, thinner pericarp improves the eating quality in fresh corn. In this study, we aimed to investigate the dynamic changes in maize pericarp during kernel development and identified the major quantitative trait loci (QTLs) for maize pericarp thickness. It was observed that maize pericarp thickness first increased and then decreased. During the growth and formation stages, the pericarp thickness gradually increased and reached the maximum, after which it gradually decreased and reached the minimum during maturity. To identify the QTLs for pericarp thickness, a BC4F4 population was constructed using maize inbred lines B73 (recurrent parent with thick pericarp) and Baimaya (donor parent with thin pericarp). In addition, a high-density genetic map was constructed using maize 10 K SNP microarray. A total of 17 QTLs related to pericarp thickness were identified in combination with the phenotypic data. The results revealed that the heritability of the thickness of upper germinal side of pericarp (UG) was 0.63. The major QTL controlling UG was qPT1-1, which was located on chromosome 1 (212,215,145-212,948,882). The heritability of the thickness of upper abgerminal side of pericarp (UA) was 0.70. The major QTL controlling UA was qPT2-1, which was located on chromosome 2 (2,550,197-14,732,993). In addition, a combination of functional annotation, DNA sequencing analysis and quantitative real-time PCR (qPCR) screened two candidate genes, Zm00001d001964 and Zm00001d002283, that could potentially control maize pericarp thickness. This study provides valuable insights into the improvement of maize pericarp thickness during breeding.
Collapse
Affiliation(s)
- Guantong Gong
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou, 510642, China
| | - Haitao Jia
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan, 430064, China
| | - Yunqi Tang
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou, 510642, China
| | - Hu Pei
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou, 510642, China
| | - Lihong Zhai
- Basic School of Medicine, Hubei University of Arts and Science, Xiangyang, 441053, China.
| | - Jun Huang
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
5
|
Schneider M, Van Bel M, Inzé D, Baekelandt A. Leaf growth - complex regulation of a seemingly simple process. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 117:1018-1051. [PMID: 38012838 DOI: 10.1111/tpj.16558] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 11/08/2023] [Accepted: 11/11/2023] [Indexed: 11/29/2023]
Abstract
Understanding the underlying mechanisms of plant development is crucial to successfully steer or manipulate plant growth in a targeted manner. Leaves, the primary sites of photosynthesis, are vital organs for many plant species, and leaf growth is controlled by a tight temporal and spatial regulatory network. In this review, we focus on the genetic networks governing leaf cell proliferation, one major contributor to final leaf size. First, we provide an overview of six regulator families of leaf growth in Arabidopsis: DA1, PEAPODs, KLU, GRFs, the SWI/SNF complexes, and DELLAs, together with their surrounding genetic networks. Next, we discuss their evolutionary conservation to highlight similarities and differences among species, because knowledge transfer between species remains a big challenge. Finally, we focus on the increase in knowledge of the interconnectedness between these genetic pathways, the function of the cell cycle machinery as their central convergence point, and other internal and environmental cues.
Collapse
Affiliation(s)
- Michele Schneider
- Ghent University, Department of Plant Biotechnology and Bioinformatics, 9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052, Ghent, Belgium
| | - Michiel Van Bel
- Ghent University, Department of Plant Biotechnology and Bioinformatics, 9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052, Ghent, Belgium
| | - Dirk Inzé
- Ghent University, Department of Plant Biotechnology and Bioinformatics, 9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052, Ghent, Belgium
| | - Alexandra Baekelandt
- Ghent University, Department of Plant Biotechnology and Bioinformatics, 9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052, Ghent, Belgium
| |
Collapse
|
6
|
Zhao Y, Ji X, Liu X, Qin L, Tan D, Wu D, Bai C, Yang J, Xie J, He Y. Age-dependent dendrobine biosynthesis in Dendrobium nobile: insights into endophytic fungal interactions. Front Microbiol 2023; 14:1294402. [PMID: 38149273 PMCID: PMC10749937 DOI: 10.3389/fmicb.2023.1294402] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 11/13/2023] [Indexed: 12/28/2023] Open
Abstract
Introduction Dendrobium nobile (D. nobile), a valued Chinese herb known for its diverse pharmacological effects, owes much of its potency to the bioactive compound dendrobine. However, dendrobine content varies significantly with plant age, and the mechanisms governing this variation remain unclear. This study delves into the potential role of endophytic fungi in shaping host-microbe interactions and influencing plant metabolism. Methods Using RNA-seq, we examined the transcriptomes of 1-year-old, 2-year-old, and 3-year-old D. nobile samples and through a comprehensive analysis of endophytic fungal communities and host gene expression in D. nobile stems of varying ages, we aim to identify associations between specific fungal taxa and host genes. Results The results revealing 192 differentially expressed host genes. These genes exhibited a gradual decrease in expression levels as the plants aged, mirroring dendrobine content changes. They were enriched in 32 biological pathways, including phagosome, fatty acid degradation, alpha-linolenic acid metabolism, and plant hormone signal transduction. Furthermore, a significant shift in the composition of the fungal community within D. nobile stems was observed along the age gradient. Olipidium, Hannaella, and Plectospherella dominated in 1-year-old plants, while Strelitziana and Trichomerium prevailed in 2-year-old plants. Conversely, 3-year-old plants exhibited additional enrichment of endophytic fungi, including the genus Rhizopus. Two gene expression modules (mediumpurple3 and darkorange) correlated significantly with dominant endophytic fungi abundance and dendrobine accumulation. Key genes involved in dendrobine synthesis were found associated with plant hormone synthesis. Discussion This study suggests that the interplay between different endophytic fungi and the hormone signaling system in D. nobile likely regulates dendrobine biosynthesis, with specific endophytes potentially triggering hormone signaling cascades that ultimately influence dendrobine synthesis.
Collapse
Affiliation(s)
- Yongxia Zhao
- Guizhou Engineering Research Center of Industrial Key-Technology for Dendrobium nobile, Engineering Research Center of Pharmaceutical Orchid Plant Breeding, High Efficiency Application in Guizhou Province, Zunyi Medical University, Zunyi, China
- Key Laboratory of Basic Pharmacology of Ministry of Education, Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
- 2011 Cooperative Inovational Center for Guizhou Traditional Chinese Medicine and Ethnic Medicine, Zunyi Medical University, Zunyi, China
| | - Xiaolong Ji
- Guizhou Engineering Research Center of Industrial Key-Technology for Dendrobium nobile, Engineering Research Center of Pharmaceutical Orchid Plant Breeding, High Efficiency Application in Guizhou Province, Zunyi Medical University, Zunyi, China
- Key Laboratory of Basic Pharmacology of Ministry of Education, Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
- 2011 Cooperative Inovational Center for Guizhou Traditional Chinese Medicine and Ethnic Medicine, Zunyi Medical University, Zunyi, China
| | - Xiaoqi Liu
- Guizhou Engineering Research Center of Industrial Key-Technology for Dendrobium nobile, Engineering Research Center of Pharmaceutical Orchid Plant Breeding, High Efficiency Application in Guizhou Province, Zunyi Medical University, Zunyi, China
- Key Laboratory of Basic Pharmacology of Ministry of Education, Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
- 2011 Cooperative Inovational Center for Guizhou Traditional Chinese Medicine and Ethnic Medicine, Zunyi Medical University, Zunyi, China
| | - Lin Qin
- Guizhou Engineering Research Center of Industrial Key-Technology for Dendrobium nobile, Engineering Research Center of Pharmaceutical Orchid Plant Breeding, High Efficiency Application in Guizhou Province, Zunyi Medical University, Zunyi, China
- Key Laboratory of Basic Pharmacology of Ministry of Education, Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
- 2011 Cooperative Inovational Center for Guizhou Traditional Chinese Medicine and Ethnic Medicine, Zunyi Medical University, Zunyi, China
| | - Daopeng Tan
- Guizhou Engineering Research Center of Industrial Key-Technology for Dendrobium nobile, Engineering Research Center of Pharmaceutical Orchid Plant Breeding, High Efficiency Application in Guizhou Province, Zunyi Medical University, Zunyi, China
- Key Laboratory of Basic Pharmacology of Ministry of Education, Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
- 2011 Cooperative Inovational Center for Guizhou Traditional Chinese Medicine and Ethnic Medicine, Zunyi Medical University, Zunyi, China
| | - Di Wu
- Guizhou Engineering Research Center of Industrial Key-Technology for Dendrobium nobile, Engineering Research Center of Pharmaceutical Orchid Plant Breeding, High Efficiency Application in Guizhou Province, Zunyi Medical University, Zunyi, China
- Key Laboratory of Basic Pharmacology of Ministry of Education, Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
- 2011 Cooperative Inovational Center for Guizhou Traditional Chinese Medicine and Ethnic Medicine, Zunyi Medical University, Zunyi, China
| | - Chaojun Bai
- Guangxi Shenli Pharmaceutical Co., Ltd., Yulin, China
| | - Jiyong Yang
- Chishui Xintian Chinese Medicine Industry Development Co., Ltd., Zunyi, China
| | - Jian Xie
- Guizhou Engineering Research Center of Industrial Key-Technology for Dendrobium nobile, Engineering Research Center of Pharmaceutical Orchid Plant Breeding, High Efficiency Application in Guizhou Province, Zunyi Medical University, Zunyi, China
- Key Laboratory of Basic Pharmacology of Ministry of Education, Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
- 2011 Cooperative Inovational Center for Guizhou Traditional Chinese Medicine and Ethnic Medicine, Zunyi Medical University, Zunyi, China
| | - Yuqi He
- Guizhou Engineering Research Center of Industrial Key-Technology for Dendrobium nobile, Engineering Research Center of Pharmaceutical Orchid Plant Breeding, High Efficiency Application in Guizhou Province, Zunyi Medical University, Zunyi, China
- Key Laboratory of Basic Pharmacology of Ministry of Education, Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
- 2011 Cooperative Inovational Center for Guizhou Traditional Chinese Medicine and Ethnic Medicine, Zunyi Medical University, Zunyi, China
| |
Collapse
|
7
|
Guzmán-Ardiles RE, Pegoraro C, da Maia LC, Costa de Oliveira A. Genetic changes in the genus Vitis and the domestication of vine. FRONTIERS IN PLANT SCIENCE 2023; 13:1019311. [PMID: 36926258 PMCID: PMC10011507 DOI: 10.3389/fpls.2022.1019311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 11/28/2022] [Indexed: 06/18/2023]
Abstract
The genus Vitis belongs to the Vitaceae family and is divided into two subgenera: Muscadinia and Vitis, the main difference between these subgenera being the number of chromosomes. There are many hypotheses about the origin of the genus, which have been formed with archaeological studies and lately with molecular analyses. Even though there is no consensus on the place of origin, these studies have shown that grapes have been used by man since ancient times, starting later on its domestication. Most studies point to the Near East and Greece as the beginning of domestication, current research suggests it took place in parallel in different sites, but in all cases Vitis vinifera (L.) subsp. sylvestris [Vitis vinifera (L.) subsp. sylvestris (Gmelin) Hagi] seems to be the species chosen by our ancestors to give rise to the now known Vitis vinifera (L.) subsp. vinifera [=sativa (Hegi)= caucasica (Vavilov)]. Its evolution and expansion into other territories followed the formation of new empires and their expansion, and this is where the historical importance of this crop lies. In this process, plants with hermaphrodite flowers were preferentially selected, with firmer, sweeter, larger fruits of different colors, thus favoring the selection of genes associated with these traits, also resulting in a change in seed morphology. Currently, genetic improvement programs have made use of wild species for the introgression of disease resistance genes and tolerance to diverse soil and climate environments. In addition, the mapping of genes of interest, both linked to agronomic and fruit quality traits, has allowed the use of molecular markers for assisted selection. Information on the domestication process and genetic resources help to understand the gene pool available for the development of cultivars that respond to producer and consumer requirements.
Collapse
|
8
|
Huang J, Zhang G, Li Y, Lyu M, Zhang H, Zhang N, Chen R. Integrative genomic and transcriptomic analyses of a bud sport mutant 'Jinzao Wuhe' with the phenotype of large berries in grapevines. PeerJ 2023; 11:e14617. [PMID: 36620751 PMCID: PMC9817954 DOI: 10.7717/peerj.14617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 12/01/2022] [Indexed: 01/05/2023] Open
Abstract
Background Bud sport mutation occurs frequently in fruit plants and acts as an important approach for grapevine improvement and breeding. 'Jinzao Wuhe' is a bud sport of the elite cultivar 'Himord Seedless' with obviously enlarged organs and berries. To date, the molecular mechanisms underlying berry enlargement caused by bud sport in grapevines remain unclear. Methods Whole genome resequencing (WGRS) was performed for two pairs of bud sports and their maternal plants with similar phenotype to identify SNPs, InDels and structural variations (SVs) as well as related genes. Furthermore, transcriptomic sequencing at different developmental stages and weighted gene co-expression network analysis (WGCNA) for 'Jinzao Wuhe' and its maternal plant 'Himord Seedless' were carried out to identify the differentially expressed genes (DEGs), which were subsequently analyzed for Gene Ontology (GO) and function annotation. Results In two pairs of enlarged berry bud sports, a total of 1,334 SNPs, 272 InDels and 74 SVs, corresponding to 1,022 target genes related to symbiotic microorganisms, cell death and other processes were identified. Meanwhile, 1,149 DEGs associated with cell wall modification, stress-response and cell killing might be responsible for the phenotypic variation were also determined. As a result, 42 DEGs between 'Himord Seedless' and 'Jinzao Wuhe' harboring genetic variations were further investigated, including pectin esterase, cellulase A, cytochromes P450 (CYP), UDP-glycosyltransferase (UGT), zinc finger protein, auxin response factor (ARF), NAC transcription factor (TF), protein kinase, etc. These candidate genes offer important clues for a better understanding of developmental regulations of berry enlargement in grapevine. Conclusion Our results provide candidate genes and valuable information for dissecting the underlying mechanisms of berry development and contribute to future improvement of grapevine cultivars.
Collapse
Affiliation(s)
- Jianquan Huang
- The Research Institute of Forestry and Pomology, Tianjin Academy of Agricultural Sciences, Tianjin, China
| | - Guan Zhang
- Institute of Crop Germplasm and Biotechnology, Tianjin Academy of Agricultural Sciences, Tianjin, China
- College of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin, China
| | - Yanhao Li
- The Research Institute of Forestry and Pomology, Tianjin Academy of Agricultural Sciences, Tianjin, China
- College of Horticulture and Gardening, Tianjin Agricultural University, Tianjin, China
| | - Mingjie Lyu
- Institute of Crop Germplasm and Biotechnology, Tianjin Academy of Agricultural Sciences, Tianjin, China
| | - He Zhang
- The Research Institute of Forestry and Pomology, Tianjin Academy of Agricultural Sciences, Tianjin, China
| | - Na Zhang
- The Research Institute of Forestry and Pomology, Tianjin Academy of Agricultural Sciences, Tianjin, China
| | - Rui Chen
- Institute of Crop Germplasm and Biotechnology, Tianjin Academy of Agricultural Sciences, Tianjin, China
| |
Collapse
|
9
|
Luo C, Yan J, He C, Liu W, Xie D, Jiang B. Genome-Wide Identification of the SAUR Gene Family in Wax Gourd ( Benincasa hispida) and Functional Characterization of BhSAUR60 during Fruit Development. Int J Mol Sci 2022; 23:ijms232214021. [PMID: 36430500 PMCID: PMC9694812 DOI: 10.3390/ijms232214021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/01/2022] [Accepted: 11/03/2022] [Indexed: 11/16/2022] Open
Abstract
The wax gourd (Benincasa hispida) is an important vegetable crop whose fruits contain nutrients and metabolites. Small auxin upregulated RNA (SAUR) genes constitute the largest early auxin-responsive gene family and regulate various biological processes in plants, although this gene family has not been studied in the wax gourd. Here, we performed genome-wide identification of the SAUR gene family in wax gourds and analyzed their syntenic and phylogenetic relationships, gene structures, conserved motifs, cis-acting elements, and expression patterns. A total of 68 SAUR (BhSAUR) genes were identified, which were distributed on nine chromosomes with 41 genes in two clusters. More than half of the BhSAUR genes were derived from tandem duplication events. The BhSAUR proteins were classified into seven subfamilies. BhSAUR gene promoters contained cis-acting elements involved in plant hormone and environmental signal responses. Further expression profiles showed that BhSAUR genes displayed different expression patterns. BhSAUR60 was highly expressed in fruits, and overexpression led to longer fruits in Arabidopsis. In addition, the plants with overexpression displayed longer floral organs and wavy stems. In conclusion, our results provide a systematic analysis of the wax gourd SAUR gene family and facilitate the functional study of BhSAUR60 during wax gourd fruit development.
Collapse
Affiliation(s)
- Chen Luo
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Guangdong Key Laboratory for New Technology Research of Vegetables, Guangzhou 510640, China
| | - Jinqiang Yan
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Guangdong Key Laboratory for New Technology Research of Vegetables, Guangzhou 510640, China
| | - Changxia He
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Guangdong Key Laboratory for New Technology Research of Vegetables, Guangzhou 510640, China
| | - Wenrui Liu
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Guangdong Key Laboratory for New Technology Research of Vegetables, Guangzhou 510640, China
| | - Dasen Xie
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Guangdong Key Laboratory for New Technology Research of Vegetables, Guangzhou 510640, China
| | - Biao Jiang
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Guangdong Key Laboratory for New Technology Research of Vegetables, Guangzhou 510640, China
- Correspondence: ; Tel.: +86-020-38469441
| |
Collapse
|
10
|
Peng Z, Li W, Gan X, Zhao C, Paudel D, Su W, Lv J, Lin S, Liu Z, Yang X. Genome-Wide Analysis of SAUR Gene Family Identifies a Candidate Associated with Fruit Size in Loquat ( Eriobotrya japonica Lindl.). Int J Mol Sci 2022; 23:13271. [PMID: 36362065 PMCID: PMC9659022 DOI: 10.3390/ijms232113271] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 10/24/2022] [Accepted: 10/27/2022] [Indexed: 09/28/2023] Open
Abstract
Fruit size is an important fruit quality trait that influences the production and commodity values of loquats (Eriobotrya japonica Lindl.). The Small Auxin Upregulated RNA (SAUR) gene family has proven to play a vital role in the fruit development of many plant species. However, it has not been comprehensively studied in a genome-wide manner in loquats, and its role in regulating fruit size remains unknown. In this study, we identified 95 EjSAUR genes in the loquat genome. Tandem duplication and segmental duplication contributed to the expansion of this gene family in loquats. Phylogenetic analysis grouped the SAURs from Arabidopsis, rice, and loquat into nine clusters. By analyzing the transcriptome profiles in different tissues and at different fruit developmental stages and comparing two sister lines with contrasting fruit sizes, as well as by functional predictions, a candidate gene (EjSAUR22) highly expressed in expanding fruits was selected for further functional investigation. A combination of Indoleacetic acid (IAA) treatment and virus-induced gene silencing revealed that EjSAUR22 was not only responsive to auxin, but also played a role in regulating cell size and fruit expansion. The findings from our study provide a solid foundation for understanding the molecular mechanisms controlling fruit size in loquats, and also provide potential targets for manipulation of fruit size to accelerate loquat breeding.
Collapse
Affiliation(s)
- Ze Peng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Innovation and Utilization of Horticultural Crop Resources in South China, Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Wenxiang Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Innovation and Utilization of Horticultural Crop Resources in South China, Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Xiaoqing Gan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Innovation and Utilization of Horticultural Crop Resources in South China, Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Chongbin Zhao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Innovation and Utilization of Horticultural Crop Resources in South China, Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Dev Paudel
- Department of Environmental Horticulture, Gulf Coast Research and Education Center, IFAS, University of Florida, Wimauma, FL 33598, USA
| | - Wenbing Su
- Fruit Research Institute, Fujian Academy of Agricultural Science, Fuzhou 350013, China
| | - Juan Lv
- College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Shunquan Lin
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Innovation and Utilization of Horticultural Crop Resources in South China, Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Zongli Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Innovation and Utilization of Horticultural Crop Resources in South China, Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Xianghui Yang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Innovation and Utilization of Horticultural Crop Resources in South China, Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
11
|
Guo Z, Ma W, Cai L, Guo T, Liu H, Wang L, Liu J, Ma B, Feng Y, Liu C, Pan G. Comparison of anther transcriptomes in response to cold stress at the reproductive stage between susceptible and resistant Japonica rice varieties. BMC PLANT BIOLOGY 2022; 22:500. [PMID: 36284279 PMCID: PMC9597962 DOI: 10.1186/s12870-022-03873-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Rice is one of the most important cereal crops in the world but is susceptible to cold stress (CS). In this study, we carried out parallel transcriptomic analysis at the reproductive stage on the anthers of two Japonica rice varieties with contrasting CS resistance: cold susceptible Longjing11 (LJ11) and cold resistant Longjing25 (LJ25). RESULTS According to the obtained results, a total of 16,762 differentially expressed genes (DEGs) were identified under CS, including 7,050 and 14,531 DEGs in LJ25 and LJ11, respectively. Examining gene ontology (GO) enrichment identified 35 up- and 39 down-regulated biological process BP GO terms were significantly enriched in the two varieties, with 'response to heat' and 'response to cold' being the most enriched. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis identified 33 significantly enriched pathways. Only the carbon metabolism and amino acid biosynthesis pathways with down-regulated DEGs were enriched considerably in LJ11, while the plant hormone signal transduction pathway (containing 153 DEGs) was dramatically improved. Eight kinds of plant hormones were detected in the pathway, while auxin, abscisic acid (ABA), salicylic acid (SA), and ethylene (ETH) signaling pathways were found to be the top four pathways with the most DEGs. Furthermore, the protein-protein interaction (PPI) network analysis identified ten hub genes (co-expressed gene number ≥ 30), including six ABA-related genes. Various DEGs (such as OsDREB1A, OsICE1, OsMYB2, OsABF1, OsbZIP23, OsCATC, and so on) revealed distinct expression patterns among rice types when the DEGs between LJ11 and LJ25 were compared, indicating that they are likely responsible for CS resistance of rice in cold region. CONCLUSION Collectively, our findings provide comprehensive insights into complex molecular mechanisms of CS response and can aid in CS resistant molecular breeding of rice in cold regions.
Collapse
Affiliation(s)
- Zhenhua Guo
- Rice Research Institute of Heilongjiang Academy of Agricultural Sciences, 154026, Jiamusi, Heilongjiang, China
- National Engineering Research Center of Plant Space Breeding, South China Agricultural University, 510642, Guangzhou, Guangdong, China
| | - Wendong Ma
- Rice Research Institute of Heilongjiang Academy of Agricultural Sciences, 154026, Jiamusi, Heilongjiang, China
| | - Lijun Cai
- Jiamusi Branch of Heilongjiang Academy of Agricultural Sciences, 154007, Jiamusi, Heilongjiang, China.
| | - Tao Guo
- National Engineering Research Center of Plant Space Breeding, South China Agricultural University, 510642, Guangzhou, Guangdong, China
| | - Hao Liu
- Crops Research Institute, Guangdong Academy of Agricultural Sciences, 510640, Guangzhou, Guangdong, China
| | - Linan Wang
- Rice Research Institute of Heilongjiang Academy of Agricultural Sciences, 154026, Jiamusi, Heilongjiang, China
| | - Junliang Liu
- Jiamusi Longjing Seed Industry Co., LTD, 154026, Jiamusi, Heilongjiang, China
| | - Bo Ma
- Qiqihar Branch of Heilongjiang Academy of Agricultural Sciences, 161006, Qiqihar, Heilongjiang, China
| | - Yanjiang Feng
- Rice Research Institute of Heilongjiang Academy of Agricultural Sciences, 154026, Jiamusi, Heilongjiang, China.
| | - Chuanxue Liu
- Rice Research Institute of Heilongjiang Academy of Agricultural Sciences, 154026, Jiamusi, Heilongjiang, China.
| | - Guojun Pan
- Rice Research Institute of Heilongjiang Academy of Agricultural Sciences, 154026, Jiamusi, Heilongjiang, China.
| |
Collapse
|
12
|
Liu Y, Xiao L, Chi J, Li R, Han Y, Cui F, Peng Z, Wan S, Li G. Genome-wide identification and expression of SAUR gene family in peanut (Arachis hypogaea L.) and functional identification of AhSAUR3 in drought tolerance. BMC PLANT BIOLOGY 2022; 22:178. [PMID: 35387613 PMCID: PMC8988358 DOI: 10.1186/s12870-022-03564-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 03/25/2022] [Indexed: 05/13/2023]
Abstract
BACKGROUND Small auxin-upregulated RNAs (SAURs) gene family plays important roles in plant growth, development, and stress responses. However, the function of few SAUR genes is known in the peanut (Arachis hypogaea L.), one of the world's major food legume crops. This study aimed to perform a comprehensive identification of the SAUR gene family from the peanut genome. RESULTS The genome-wide analysis revealed that a total of 162 SAUR genes were identified in the peanut genome. The phylogenetic analysis indicated that the SAUR proteins were classified into eight subfamilies. The SAUR gene family experienced a remarkable expansion after tetraploidization, which contributed to the tandem duplication events first occurring in subgenome A and then segmental duplication events occurring between A and B subgenomes. The expression profiles based on transcriptomic data showed that SAUR genes were dominantly expressed in the leaves, pistils, perianth, and peg tips, and were widely involved in tolerance against abiotic stresses. A total of 18 AhSAUR genes selected from different subfamilies randomly presented 4 major expression patterns according to their expression characteristics in response to indole-3-acetic acid. The members from the same subfamily showed a similar expression pattern. Furthermore, the functional analysis revealed that AhSAUR3 played a negative role in response to drought tolerance. CONCLUSIONS This study provided insights into the evolution and function of the SAUR gene family and may serve as a resource for further functional research on AhSAUR genes.
Collapse
Affiliation(s)
- Yiyang Liu
- Key Laboratory of Crop Genetic Improvement & Ecology and Physiology, Institute of Crop Germplasm Resources, Shandong Academy of Agricultural Sciences, Ji’nan, 250100 Shandong Province China
| | - Lina Xiao
- Key Laboratory of Crop Genetic Improvement & Ecology and Physiology, Institute of Crop Germplasm Resources, Shandong Academy of Agricultural Sciences, Ji’nan, 250100 Shandong Province China
| | - Jingxian Chi
- Key Laboratory of Crop Genetic Improvement & Ecology and Physiology, Institute of Crop Germplasm Resources, Shandong Academy of Agricultural Sciences, Ji’nan, 250100 Shandong Province China
- Key Lab of Plant Stress Research, College of Life Sciences, Shandong Normal University, Ji’nan, 250014 Shandong Province China
| | - Rongchong Li
- Key Laboratory of Crop Genetic Improvement & Ecology and Physiology, Institute of Crop Germplasm Resources, Shandong Academy of Agricultural Sciences, Ji’nan, 250100 Shandong Province China
| | - Yan Han
- Key Laboratory of Crop Genetic Improvement & Ecology and Physiology, Institute of Crop Germplasm Resources, Shandong Academy of Agricultural Sciences, Ji’nan, 250100 Shandong Province China
| | - Feng Cui
- Key Laboratory of Crop Genetic Improvement & Ecology and Physiology, Institute of Crop Germplasm Resources, Shandong Academy of Agricultural Sciences, Ji’nan, 250100 Shandong Province China
| | - Zhenying Peng
- Key Laboratory of Crop Genetic Improvement & Ecology and Physiology, Institute of Crop Germplasm Resources, Shandong Academy of Agricultural Sciences, Ji’nan, 250100 Shandong Province China
| | - Shubo Wan
- Key Laboratory of Crop Genetic Improvement & Ecology and Physiology, Institute of Crop Germplasm Resources, Shandong Academy of Agricultural Sciences, Ji’nan, 250100 Shandong Province China
| | - Guowei Li
- Key Laboratory of Crop Genetic Improvement & Ecology and Physiology, Institute of Crop Germplasm Resources, Shandong Academy of Agricultural Sciences, Ji’nan, 250100 Shandong Province China
- Key Lab of Plant Stress Research, College of Life Sciences, Shandong Normal University, Ji’nan, 250014 Shandong Province China
| |
Collapse
|