1
|
Yao Q, Tan W, Bai F. Gut microbiome and metabolomics in systemic sclerosis: feature, link and mechanisms. Front Immunol 2024; 15:1475528. [PMID: 39559369 PMCID: PMC11570262 DOI: 10.3389/fimmu.2024.1475528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Accepted: 10/14/2024] [Indexed: 11/20/2024] Open
Abstract
Systemic sclerosis (SSc) is a rare and highly heterogeneous chronic autoimmune disease characterized by multi-organ and tissue fibrosis, often accompanied by a poor prognosis and high mortality rates. The primary pathogenic mechanisms of SSc are considered to involve tissue fibrosis, autoimmune dysfunction, and microvascular abnormalities. Recent studies have shed light on the gut microbiota (GM) and metabolites in SSc patients, revealing their association with gastrointestinal symptoms and disease phenotypes. However, further elucidation is needed on the specific mechanisms underlying the interactions between GM, metabolites, and the immune system and their roles in the pathogenesis of SSc. This review outlines the characteristics of GM and metabolites in SSc patients, exploring their interrelationships and analyzing their correlations with the clinical phenotypes of SSc. The findings indicate that while the α-diversity of GM in SSc patients resembles that of healthy individuals, notable differences exist in the β-diversity and the abundance of specific bacterial genera, which are closely linked to gastrointestinal symptoms. Moreover, alterations in the levels of amino acids and lipid metabolites in SSc patients are prominently observed and significantly associated with clinical phenotypes. Furthermore, this review delves into the potential immunopathological mechanisms of GM and metabolites in SSc, emphasizing the critical role of interactions between GM, metabolites, and the immune system in comprehending the immunopathological processes of SSc. These insights may offer new scientific evidence for the development of future treatment strategies.
Collapse
Affiliation(s)
- Qicen Yao
- Department of Rheumatology and Immunology, The Second Affiliated Hospital of Hainan Medical University, Haikou, China
- Nanjing Medical University, Nanjing, China
| | - Wenfeng Tan
- Department of Rheumatology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Feihu Bai
- Department of Gastroenterology, The Second Affiliated Hospital of Hainan Medical University, Haikou, China
| |
Collapse
|
2
|
Cannataro R, Abrego-Guandique DM, Straface N, Cione E. Omega-3 and Sports: Focus on Inflammation. Life (Basel) 2024; 14:1315. [PMID: 39459615 PMCID: PMC11509128 DOI: 10.3390/life14101315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/03/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024] Open
Abstract
Inflammation is expected in sports, especially when practiced at a high level. The human body is pushed toward its limit, and this is perceived as a "stressogenic agent". Athletes, especially elite ones, desire it because their bodies can react with super-compensation, i.e., improve muscle mass, strength, speed, resistance, and, therefore, athletic performance. Thus, the inflammatory stimuli should be there during training but also counteracted to have the body placed in the optimal conditions for reacting with super-compensation. In this sense, omega-3 fatty acids have been shown to have anti-inflammatory biochemical activity. In this review, we will present the biochemical mechanisms of action of omega-3 fatty acids through their mediators, specialized pro-resolving mediators, which have anti-inflammatory activity. A focus will be on studies on omega-3 fatty acid supplementation in sports, and we will provide indications for possible practical applications and future studies, which are undoubtedly necessary to clarify the omega-3 fatty acids used in sports practice.
Collapse
Affiliation(s)
- Roberto Cannataro
- Galascreen Laboratories, University of Calabria, 87036 Rende, Italy;
- Research Division, Dynamical Business & Science Society—DBSS International SAS, Bogotá 110311, Colombia
| | | | - Natascia Straface
- Galascreen Laboratories, University of Calabria, 87036 Rende, Italy;
| | - Erika Cione
- Galascreen Laboratories, University of Calabria, 87036 Rende, Italy;
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy
| |
Collapse
|
3
|
Course CW, Lewis PA, Kotecha SJ, Cousins M, Hart K, Heesom KJ, Watkins WJ, Kotecha S. Similarities of metabolomic disturbances in prematurity-associated obstructive lung disease to chronic obstructive pulmonary disease. Sci Rep 2024; 14:23294. [PMID: 39375379 PMCID: PMC11458810 DOI: 10.1038/s41598-024-73704-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 09/19/2024] [Indexed: 10/09/2024] Open
Abstract
Prematurity-associated lung disease (PLD) is a long-term consequence of preterm-birth. Since the underlying mechanisms of PLD remain poorly characterised, we compared the urinary metabolome between recently described spirometry phenotypes of PLD. Preterm- and term-born children aged 7-12 years, from the Respiratory Health Outcomes in Neonates (RHiNO) cohort, underwent spirometry and urine collection. The urinary metabolome was analysed by gas chromatography time-of-flight mass spectrometry. Preterm-born children were classified into phenotypes of prematurity-associated obstructive lung disease (POLD, Forced expiratory volume in 1 s (FEV1) < lower limit of normal (LLN), FEV1/Forced Vital Capacity (FVC) < LLN), prematurity-associated preserved ratio impaired spirometry (pPRISm, FEV1 < LLN, FEV1/FVC ≥ LLN) and Preterm/Term controls (FEV1 ≥ LLN). Metabolite set enrichment analysis was used to link significantly altered metabolites between the groups with metabolic pathways. Univariable and multivariable linear regression models examined associations between early and current life factors and significantly altered metabolites of interest. Urine from 197 preterm- and 94 term-born children was analysed. 23 and 25 were classified into POLD and pPRISm groups respectively. Of 242 identified metabolites, 49 metabolites were significantly altered in the POLD group compared with Preterm controls. Decreased capric acid (log2 fold change - 0.23; p = 0.003), caprylic acid (- 0.18; 0.003) and ceratinic acid (- 0.64; 0.014) in the POLD group, when compared to preterm controls, were linked with reduced β-oxidation of very long chain fatty acids (p = 0.004). Reduced alanine (log2 fold change - 0.21; p = 0.046), glutamic acid (- 0.24; 0.023), and pyroglutamic acid (- 0.17; 0.035) were linked with decreased glutathione metabolism (p = 0.008). These metabolites remained significantly associated with POLD in multivariable models adjusting for early/current life factors. The pPRISm urinary metabolome was minimally changed when compared with preterm-born controls. When compared to term-born subjects, alterations in tryptophan metabolism were implicated (p = 0.01). The urinary metabolome in POLD showed significantly altered β-oxidation of fatty acids and glutathione metabolism, implying alterations in cellular metabolism and oxidative stress. Similar findings have been noted in adults with chronic obstructive pulmonary disease. Given the similarity of findings between the POLD group and those reported for COPD, the POLD group should be considered at future risk of developing COPD.
Collapse
Affiliation(s)
- Christopher W Course
- Department of Child Health, School of Medicine, Cardiff University, Heath Park, Cardiff, CF14 4XN, UK
| | - Philip A Lewis
- Faculty of Life Sciences, University of Bristol, Bristol, UK
| | - Sarah J Kotecha
- Department of Child Health, School of Medicine, Cardiff University, Heath Park, Cardiff, CF14 4XN, UK
| | - Michael Cousins
- Department of Child Health, School of Medicine, Cardiff University, Heath Park, Cardiff, CF14 4XN, UK
- Department of Paediatrics, Cardiff and Vale University Health Board, Cardiff, UK
| | - Kylie Hart
- Department of Paediatrics, Cardiff and Vale University Health Board, Cardiff, UK
| | - Kate J Heesom
- Faculty of Life Sciences, University of Bristol, Bristol, UK
| | - W John Watkins
- Department of Child Health, School of Medicine, Cardiff University, Heath Park, Cardiff, CF14 4XN, UK
| | - Sailesh Kotecha
- Department of Child Health, School of Medicine, Cardiff University, Heath Park, Cardiff, CF14 4XN, UK.
| |
Collapse
|
4
|
Jamshidi V, Nobakht BF, Bagheri H, Saeedi P, Ghanei M, Halabian R. Metabolomics to investigate the effect of preconditioned mesenchymal stem cells with crocin on pulmonary epithelial cells exposed to 2-chloroethyl ethyl sulfide. J Proteomics 2024; 308:105280. [PMID: 39147238 DOI: 10.1016/j.jprot.2024.105280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/11/2024] [Accepted: 08/11/2024] [Indexed: 08/17/2024]
Abstract
Metabolomics significantly impacts drug discovery and precise disease management. This study meticulously assesses the metabolite profiles of cells treated with Crocin, Dexamethasone, and mesenchymal stem cells (MSCs) under oxidative stress induced by 2-chloroethyl ethyl sulfide (CEES). Gas chromatography/mass spectrometry (GC/MS) analysis unequivocally identified substantial changes in 37 metabolites across the treated groups. Notably, pronounced alterations were observed in pathways associated with aminoacyl-tRNA biosynthesis and the metabolism of aspartate, serine, proline, and glutamate. These findings demonstrate the potent capacity of the analyzed treatments to effectively reduce inflammation, mitigate reactive oxygen species production, and enhance cell survival rates. SIGNIFICANCE.
Collapse
Affiliation(s)
- Vahid Jamshidi
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - B Fatemeh Nobakht
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| | - Hasan Bagheri
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| | - Pardis Saeedi
- Applied Microbiology Research Center, Biomedicine Technologies Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mostafa Ghanei
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Raheleh Halabian
- Applied Microbiology Research Center, Biomedicine Technologies Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
5
|
Ramos CDO, Sant'Ana MR, Gonçalves GR, Rios TDS, Nakandakari SCBR, Burger B, Fernandes LGR, Zollner RDL, de Oliveira AN, Ramos RC, da Silva ASR, Pauli JR, de Moura LP, Ropelle ER, Mansour E, Cintra DE. The Effects of High-Fat Diet and Flaxseed Oil-Enriched Diet on the Lung Parenchyma of Obese Mice. Mol Nutr Food Res 2024; 68:e2300050. [PMID: 39205544 DOI: 10.1002/mnfr.202300050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 05/28/2024] [Indexed: 09/04/2024]
Abstract
Omega-3 (ω3) fatty acids are widely investigated for their anti-inflammatory potential, however, there is little evidence regarding their action in the lung parenchyma in the context of obesity. The objective is to investigate the effects of flaxseed oil (FS), rich in α-linolenic (C18:3 - ω3), on the lungs of obese mice. Mice were fed a high-fat diet (HF) for 8 weeks to induce obesity. Subsequently, a part of these animals received HF containing FS oil for another 8 weeks. The HF consumption induced weight gain and hyperglycemia. The lung parenchyma shows a complete fatty acids profile, compared to the control group (CT). In the lung parenchyma, FS increases the ω3 content and, notwithstanding a reduction in the interleukins (IL) IL1β and IL18 contents compared to HF. However, FS promoted increased alveolar spaces, followed by MCP1 (Monocytes Chemoattractant Protein-1) positive cell infiltration and a dramatic reduction in the anti-inflammatory cytokine, IL10. Despite reducing the pulmonary inflammatory response, the consumption of a food source of ω3 was associated with alterations in the lipid profile and histoarchitecture of the lung parenchyma, which can lead to the development of pulmonary complications. This study brings an alert against the indiscriminate use of ω3 supplements, warranting caution.
Collapse
Affiliation(s)
- Camila de Oliveira Ramos
- Nutritional Genomics Laboratory, LabGeN, School of Applied Sciences, UNICAMP, São Paulo, 13484-350, Brazil
| | - Marcella Ramos Sant'Ana
- Nutritional Genomics Laboratory, LabGeN, School of Applied Sciences, UNICAMP, São Paulo, 13484-350, Brazil
| | - Giovana Rios Gonçalves
- Nutritional Genomics Laboratory, LabGeN, School of Applied Sciences, UNICAMP, São Paulo, 13484-350, Brazil
| | - Thaiane da Silva Rios
- Nutritional Genomics Laboratory, LabGeN, School of Applied Sciences, UNICAMP, São Paulo, 13484-350, Brazil
| | - Susana Castelo Branco Ramos Nakandakari
- Nutritional Genomics Laboratory, LabGeN, School of Applied Sciences, UNICAMP, São Paulo, 13484-350, Brazil
- Nutrigenomics and Lipids Research Center, CELN, School of Applied Sciences, UNICAMP, São Paulo, 13484-350, Brazil
| | - Beatriz Burger
- Laboratory of Nutrients and Tissue Repair, School of Applied Sciences, UNICAMP, São Paulo, 13484-350, Brazil
| | | | - Ricardo de Lima Zollner
- Laboratory of Translational Immunology, School of Medical Sciences, UNICAMP, São Paulo, 13484-350, Brazil
| | - Arthur Noin de Oliveira
- Innovare Biomarkers Laboratory, School of Pharmaceutical Sciences, UNICAMP, São Paulo, 13484-350, Brazil
| | - Rodrigo Catharino Ramos
- Innovare Biomarkers Laboratory, School of Pharmaceutical Sciences, UNICAMP, São Paulo, 13484-350, Brazil
| | | | - José Rodrigo Pauli
- Laboratory of Molecular Biology of Exercise, School of Applied Sciences, UNICAMP, São Paulo, 13484-350, Brazil
- OCRC - Obesity and Comorbidities Research Center, UNICAMP, São Paulo, 13484-350, Brazil
| | - Leandro Pereira de Moura
- Laboratory of Molecular Biology of Exercise, School of Applied Sciences, UNICAMP, São Paulo, 13484-350, Brazil
- OCRC - Obesity and Comorbidities Research Center, UNICAMP, São Paulo, 13484-350, Brazil
| | - Eduardo Rochete Ropelle
- Laboratory of Molecular Biology of Exercise, School of Applied Sciences, UNICAMP, São Paulo, 13484-350, Brazil
- OCRC - Obesity and Comorbidities Research Center, UNICAMP, São Paulo, 13484-350, Brazil
| | - Eli Mansour
- Department of Clinical Medicine, School of Medical Sciences, UNICAMP, São Paulo, 13484-350, Brazil
| | - Dennys Esper Cintra
- Nutritional Genomics Laboratory, LabGeN, School of Applied Sciences, UNICAMP, São Paulo, 13484-350, Brazil
- Nutrigenomics and Lipids Research Center, CELN, School of Applied Sciences, UNICAMP, São Paulo, 13484-350, Brazil
- OCRC - Obesity and Comorbidities Research Center, UNICAMP, São Paulo, 13484-350, Brazil
| |
Collapse
|
6
|
Huang P, Xiang T, Wang Q, Han L, Zheng S, Zhang D, Huang F, Duan B, Li J, Li H, Huang T. Protective effect of Xixin-Ganjiang herb pair for warming the lungs to dissolve phlegm in chronic obstructive pulmonary disease rats based on integrated network pharmacology and metabolomics. Biomed Chromatogr 2024; 38:e5851. [PMID: 38449348 DOI: 10.1002/bmc.5851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 01/21/2024] [Accepted: 02/03/2024] [Indexed: 03/08/2024]
Abstract
Xixin-Ganjiang herb pair (XGHP) is a classic combination for warming the lungs to dissolve phlegm and is often used to treat a variety of chronic lung diseases; it can treat the syndrome of cold phlegm obstruction of lungs. First, ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) was used to examine the composition of XGHP, and network pharmacology was used to predict its potential core targets and signaling pathways in the current study. Second, a rat model of chronic obstructive pulmonary disease (COPD) was established for assessing the anti-COPD activity of XGHP, and metabolomics was used to explore the biomarkers and metabolic pathways. Finally, the sample was validated using molecular docking and Western blotting. The integration of metabolomics and network pharmacology results identified 11 targets, 3 biomarkers, 3 pathways, and 2 metabolic pathways. Western blotting showed that XGHP effectively regulated the expression of core proteins via multiple signaling pathways (downregulation of toll-like receptor 4 [TLR4] and upregulation of serine/threonine-protein kinase 1 [p-AKT1] and nitric oxide synthase 3 [NOS3]). Molecular docking results showed that the 10 potentially active components of XGHP have good affinity with tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), matrix metalloproteinase 9 (MMP-9), TLR4, p-AKT1, and NOS3. Our findings suggest that XGHP may regulate glucolipid metabolism, improve energy supply, and inhibit inflammatory responses (TNF-α, IL-6, and MMP-9) via the PI3K-Akt signaling pathway and HIF-1 signaling pathway in the management of COPD.
Collapse
Affiliation(s)
- Ping Huang
- Department of Rehabilitation Medicine, General Hospital of Central Theater Command, Wuhan, China
- College of Basic Medicine, Hubei University of Chinese Medicine, Wuhan, China
| | - Ting Xiang
- Department of Rehabilitation Medicine, General Hospital of Central Theater Command, Wuhan, China
| | - Qiong Wang
- College of Basic Medicine, Hubei University of Chinese Medicine, Wuhan, China
| | - Lintao Han
- Pharmacy School, Hubei University of Chinese Medicine, Wuhan, China
- Key Laboratory of Traditional Chinese Medicine Resource and Prescription, Ministry of Education, Wuhan, China
| | - Sili Zheng
- Pharmacy School, Hubei University of Chinese Medicine, Wuhan, China
| | - Dongning Zhang
- Pharmacy School, Hubei University of Chinese Medicine, Wuhan, China
| | - Fang Huang
- College of Basic Medicine, Hubei University of Chinese Medicine, Wuhan, China
| | - Bailu Duan
- College of Basic Medicine, Hubei University of Chinese Medicine, Wuhan, China
| | - Jingjing Li
- College of Basic Medicine, Hubei University of Chinese Medicine, Wuhan, China
| | - Huamao Li
- Department of Rehabilitation Medicine, General Hospital of Central Theater Command, Wuhan, China
| | - Tao Huang
- Department of Orthopedics, Wuhan Red Cross Hospital, Wuhan, China
| |
Collapse
|
7
|
Lv S, Huang J, Luo Y, Wen Y, Chen B, Qiu H, Chen H, Yue T, He L, Feng B, Yu Z, Zhao M, Yang Q, He M, Xiao W, Zou X, Gu C, Lu R. Gut microbiota is involved in male reproductive function: a review. Front Microbiol 2024; 15:1371667. [PMID: 38765683 PMCID: PMC11099273 DOI: 10.3389/fmicb.2024.1371667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 04/08/2024] [Indexed: 05/22/2024] Open
Abstract
Globally, ~8%-12% of couples confront infertility issues, male-related issues being accountable for 50%. This review focuses on the influence of gut microbiota and their metabolites on the male reproductive system from five perspectives: sperm quality, testicular structure, sex hormones, sexual behavior, and probiotic supplementation. To improve sperm quality, gut microbiota can secrete metabolites by themselves or regulate host metabolites. Endotoxemia is a key factor in testicular structure damage that causes orchitis and disrupts the blood-testis barrier (BTB). In addition, the gut microbiota can regulate sex hormone levels by participating in the synthesis of sex hormone-related enzymes directly and participating in the enterohepatic circulation of sex hormones, and affect the hypothalamic-pituitary-testis (HPT) axis. They can also activate areas of the brain that control sexual arousal and behavior through metabolites. Probiotic supplementation can improve male reproductive function. Therefore, the gut microbiota may affect male reproductive function and behavior; however, further research is needed to better understand the mechanisms underlying microbiota-mediated male infertility.
Collapse
Affiliation(s)
- Shuya Lv
- Laboratory Animal Centre, Southwest Medical University, Luzhou, China
- Model Animal and Human Disease Research of Luzhou Key Laboratory, Southwest Medical University, Luzhou, China
| | - Jingrong Huang
- Laboratory Animal Centre, Southwest Medical University, Luzhou, China
- Model Animal and Human Disease Research of Luzhou Key Laboratory, Southwest Medical University, Luzhou, China
| | - Yadan Luo
- Laboratory Animal Centre, Southwest Medical University, Luzhou, China
- Model Animal and Human Disease Research of Luzhou Key Laboratory, Southwest Medical University, Luzhou, China
| | - Yuhang Wen
- Laboratory Animal Centre, Southwest Medical University, Luzhou, China
- Model Animal and Human Disease Research of Luzhou Key Laboratory, Southwest Medical University, Luzhou, China
| | - Baoting Chen
- Laboratory Animal Centre, Southwest Medical University, Luzhou, China
- Model Animal and Human Disease Research of Luzhou Key Laboratory, Southwest Medical University, Luzhou, China
| | - Hao Qiu
- Laboratory Animal Centre, Southwest Medical University, Luzhou, China
- Model Animal and Human Disease Research of Luzhou Key Laboratory, Southwest Medical University, Luzhou, China
| | - Huanxin Chen
- Gastrointestinal Surgery, Suining First People's Hospital, Suining, China
| | - Tianhao Yue
- Laboratory Animal Centre, Southwest Medical University, Luzhou, China
- Model Animal and Human Disease Research of Luzhou Key Laboratory, Southwest Medical University, Luzhou, China
| | - Lvqin He
- Laboratory Animal Centre, Southwest Medical University, Luzhou, China
- Model Animal and Human Disease Research of Luzhou Key Laboratory, Southwest Medical University, Luzhou, China
| | - Baochun Feng
- Gastrointestinal Surgery, Suining First People's Hospital, Suining, China
| | - Zehui Yu
- Laboratory Animal Centre, Southwest Medical University, Luzhou, China
- Model Animal and Human Disease Research of Luzhou Key Laboratory, Southwest Medical University, Luzhou, China
| | - Mingde Zhao
- Laboratory Animal Centre, Southwest Medical University, Luzhou, China
- Model Animal and Human Disease Research of Luzhou Key Laboratory, Southwest Medical University, Luzhou, China
| | - Qian Yang
- Laboratory Animal Centre, Southwest Medical University, Luzhou, China
- Model Animal and Human Disease Research of Luzhou Key Laboratory, Southwest Medical University, Luzhou, China
| | - Manli He
- Laboratory Animal Centre, Southwest Medical University, Luzhou, China
- Model Animal and Human Disease Research of Luzhou Key Laboratory, Southwest Medical University, Luzhou, China
| | - Wudian Xiao
- Laboratory Animal Centre, Southwest Medical University, Luzhou, China
- Model Animal and Human Disease Research of Luzhou Key Laboratory, Southwest Medical University, Luzhou, China
| | - Xiaoxia Zou
- Gastrointestinal Surgery, Suining First People's Hospital, Suining, China
- Department of Gastroenterology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Congwei Gu
- Laboratory Animal Centre, Southwest Medical University, Luzhou, China
- Model Animal and Human Disease Research of Luzhou Key Laboratory, Southwest Medical University, Luzhou, China
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Ruilin Lu
- Gastrointestinal Surgery, Suining First People's Hospital, Suining, China
| |
Collapse
|
8
|
Zhang T, Zhao X, Zhang X, Liang X, Guan Z, Wang G, Liu G, Wu Z. Research on the metabolic regulation mechanism of Yangyin Qingfei decoction plus in severe pneumonia caused by Mycoplasma pneumoniae in mice. Front Pharmacol 2024; 15:1376812. [PMID: 38694915 PMCID: PMC11061391 DOI: 10.3389/fphar.2024.1376812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 03/04/2024] [Indexed: 05/04/2024] Open
Abstract
Introduction: With amazing clinical efficacy, Yangyin Qingfei Decoction Plus (YQDP), a well-known and age-old Chinese compound made of ten Chinese botanical drugs, is utilized in clinical settings to treat a range of respiratory conditions. This study examines the impact of Yangyin Qingfei Decoction (YQDP) on lung tissue metabolic products in severe Mycoplasma pneumoniae pneumonia (SMPP) model mice and examines the mechanism of YQDP in treating MP infection using UPLC-MS/MS technology. Methods: YQDP's chemical composition was ascertained by the use of Agilent 1260 Ⅱ high-performance liquid chromatography. By using a nasal drip of 1010 CCU/mL MP bacterial solution, an SMPP mouse model was created. The lung index, pathology and ultrastructural observation of lung tissue were utilized to assess the therapeutic effect of YQDP in SMPP mice. Lung tissue metabolites were found in the normal group, model group, and YQDP group using UPLC-MS/MS technology. Using an enzyme-linked immunosorbent test (ELISA), the amount of serum inflammatory factors, such as interleukin-6 (IL-6) and tumor necrosis factor α (TNF-α), was found. Additionally, the protein expression of PI3K, P-PI3K, AKT, P-AKT, NF-κB, and P-NF-κB was found using Western blot. Results: The contents of chlorogenic acid, paeoniflorin, forsythrin A, forsythrin, and paeonol in YQDP were 3.480 ± 0.051, 3.255 ± 0.040, 3.612 ± 0.017, 1.757 ± 0.031, and 1.080 ± 0.007 mg/g respectively. YQDP can considerably lower the SMPP mice's lung index (p < 0.05). In the lung tissue of YQDP groups, there has been a decrease (p < 0.05) in the infiltration of inflammatory cells at varying concentrations in the alveoli compared with the model group. A total of 47 distinct metabolites, including choline phosphate, glutamyl lysine, L-tyrosine, 6-thioinosine, Glu Trp, 5-hydroxydecanoate, etc., were linked to the regulation of YQDP, according to metabolomics study. By controlling the metabolism of porphyrins, pyrimidines, cholines, fatty acids, sphingolipids, glycerophospholipids, ferroptosis, steroid hormone biosynthesis, and unsaturated fatty acid biosynthesis, enrichment analysis suggested that YQDP may be used to treat SMPP. YQDP can lower the amount of TNF-α and IL-6 in model group mice as well as downregulate P-PI3K, P-AKT, and P-NF-κB expression (p < 0.05). Conclusion: A specific intervention effect of YQDP is observed in SMPP model mice. Through the PI3K/Akt/NF-κB signaling pathways, YQDP may have therapeutic benefits by regulating the body's metabolism of α-Linoleic acid, sphingolipids, glycerophospholipids, arachidonic acid, and the production of unsaturated fatty acids.
Collapse
Affiliation(s)
- Tianyu Zhang
- The First Clinical College of Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Xiyu Zhao
- The First Clinical College of Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Xining Zhang
- The First Clinical College of Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Xiangyu Liang
- The First Clinical College of Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Zhenglong Guan
- The First Clinical College of Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Guanghan Wang
- The Second Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Guanghua Liu
- College of Traditional Chinese Medicine, Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Zhenqi Wu
- The Second Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang, China
| |
Collapse
|
9
|
Polverino F, Mora A. Alveolar Epithelial Cell Dysfunction in Idiopathic Pulmonary Fibrosis Linked to Lipid Alterations: Therapeutic Implications. Am J Respir Cell Mol Biol 2024; 70:233-234. [PMID: 38271680 PMCID: PMC11478126 DOI: 10.1165/rcmb.2023-0432ed] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 01/23/2024] [Indexed: 01/27/2024] Open
Affiliation(s)
| | - Ana Mora
- Division of Pulmonary, Critical Care, and Sleep Medicine Ohio State University Columbus, Ohio
| |
Collapse
|
10
|
Wieder C, Cooke J, Frainay C, Poupin N, Bowler R, Jourdan F, Kechris KJ, Lai RPJ, Ebbels T. PathIntegrate: Multivariate modelling approaches for pathway-based multi-omics data integration. PLoS Comput Biol 2024; 20:e1011814. [PMID: 38527092 PMCID: PMC10994553 DOI: 10.1371/journal.pcbi.1011814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 04/04/2024] [Accepted: 03/11/2024] [Indexed: 03/27/2024] Open
Abstract
As terabytes of multi-omics data are being generated, there is an ever-increasing need for methods facilitating the integration and interpretation of such data. Current multi-omics integration methods typically output lists, clusters, or subnetworks of molecules related to an outcome. Even with expert domain knowledge, discerning the biological processes involved is a time-consuming activity. Here we propose PathIntegrate, a method for integrating multi-omics datasets based on pathways, designed to exploit knowledge of biological systems and thus provide interpretable models for such studies. PathIntegrate employs single-sample pathway analysis to transform multi-omics datasets from the molecular to the pathway-level, and applies a predictive single-view or multi-view model to integrate the data. Model outputs include multi-omics pathways ranked by their contribution to the outcome prediction, the contribution of each omics layer, and the importance of each molecule in a pathway. Using semi-synthetic data we demonstrate the benefit of grouping molecules into pathways to detect signals in low signal-to-noise scenarios, as well as the ability of PathIntegrate to precisely identify important pathways at low effect sizes. Finally, using COPD and COVID-19 data we showcase how PathIntegrate enables convenient integration and interpretation of complex high-dimensional multi-omics datasets. PathIntegrate is available as an open-source Python package.
Collapse
Affiliation(s)
- Cecilia Wieder
- Section of Bioinformatics, Division of Systems Medicine, Department of Metabolism, Digestion, and Reproduction, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Juliette Cooke
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Clement Frainay
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Nathalie Poupin
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Russell Bowler
- National Jewish Health, Denver, Colorado, United States of America
| | - Fabien Jourdan
- MetaboHUB-Metatoul, National Infrastructure of Metabolomics and Fluxomics, Toulouse, France
| | - Katerina J. Kechris
- Department of Biostatistics and Informatics, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Rachel PJ Lai
- Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Timothy Ebbels
- Section of Bioinformatics, Division of Systems Medicine, Department of Metabolism, Digestion, and Reproduction, Faculty of Medicine, Imperial College London, London, United Kingdom
| |
Collapse
|
11
|
He X, Barnett LM, Jeon J, Zhang Q, Alqahtani S, Black M, Shannahan J, Wright C. Real-Time Exposure to 3D-Printing Emissions Elicits Metabolic and Pro-Inflammatory Responses in Human Airway Epithelial Cells. TOXICS 2024; 12:67. [PMID: 38251022 PMCID: PMC10818734 DOI: 10.3390/toxics12010067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/05/2024] [Accepted: 01/09/2024] [Indexed: 01/23/2024]
Abstract
Three-dimensional (3D) printer usage in household and school settings has raised health concerns regarding chemical and particle emission exposures during operation. Although the composition of 3D printer emissions varies depending on printer settings and materials, little is known about the impact that emissions from different filament types may have on respiratory health and underlying cellular mechanisms. In this study, we used an in vitro exposure chamber system to deliver emissions from two popular 3D-printing filament types, acrylonitrile butadiene styrene (ABS) and polylactic acid (PLA), directly to human small airway epithelial cells (SAEC) cultured in an air-liquid interface during 3D printer operation. Using a scanning mobility particle sizer (SMPS) and an optical particle sizer (OPS), we monitored 3D printer particulate matter (PM) emissions in terms of their particle size distribution, concentrations, and calculated deposited doses. Elemental composition of ABS and PLA emissions was assessed using scanning electron microscopy coupled with energy dispersive X-ray spectroscopy (SEM-EDX). Finally, we compared the effects of emission exposure on cell viability, inflammation, and metabolism in SAEC. Our results reveal that, although ABS filaments emitted a higher total concentration of particles and PLA filaments emitted a higher concentration of smaller particles, SAEC were exposed to similar deposited doses of particles for each filament type. Conversely, ABS and PLA emissions had distinct elemental compositions, which were likely responsible for differential effects on SAEC viability, oxidative stress, release of inflammatory mediators, and changes in cellular metabolism. Specifically, while ABS- and PLA-emitted particles both reduced cellular viability and total glutathione levels in SAEC, ABS emissions had a significantly greater effect on glutathione relative to PLA emissions. Additionally, pro-inflammatory cytokines including IL-1β, MMP-9, and RANTES were significantly increased due to ABS emissions exposure. While IL-6 and IL-8 were stimulated in both exposure scenarios, VEGF was exclusively increased due to PLA emissions exposures. Notably, ABS emissions induced metabolic perturbation on amino acids and energy metabolism, as well as redox-regulated pathways including arginine, methionine, cysteine, and vitamin B3 metabolism, whereas PLA emissions exposures caused fatty acid and carnitine dysregulation. Taken together, these results advance our mechanistic understanding of 3D-printer-emissions-induced respiratory toxicity and highlight the role that filament emission properties may play in mediating different respiratory outcomes.
Collapse
Affiliation(s)
- Xiaojia He
- Chemical Insights Research Institute, UL Research Institutes, Marietta, GA 30067, USA; (X.H.); (L.M.B.); (J.J.); (Q.Z.); (M.B.)
| | - Lillie Marie Barnett
- Chemical Insights Research Institute, UL Research Institutes, Marietta, GA 30067, USA; (X.H.); (L.M.B.); (J.J.); (Q.Z.); (M.B.)
| | - Jennifer Jeon
- Chemical Insights Research Institute, UL Research Institutes, Marietta, GA 30067, USA; (X.H.); (L.M.B.); (J.J.); (Q.Z.); (M.B.)
| | - Qian Zhang
- Chemical Insights Research Institute, UL Research Institutes, Marietta, GA 30067, USA; (X.H.); (L.M.B.); (J.J.); (Q.Z.); (M.B.)
| | - Saeed Alqahtani
- School of Health Sciences, Purdue University, West Lafayette, IN 47907, USA; (S.A.); (J.S.)
- Advanced Diagnostic and Therapeutics Technologies Institute, Health Sector, King Abdulaziz City for Science and Technology (KACST), Riyadh 12354, Saudi Arabia
| | - Marilyn Black
- Chemical Insights Research Institute, UL Research Institutes, Marietta, GA 30067, USA; (X.H.); (L.M.B.); (J.J.); (Q.Z.); (M.B.)
| | - Jonathan Shannahan
- School of Health Sciences, Purdue University, West Lafayette, IN 47907, USA; (S.A.); (J.S.)
| | - Christa Wright
- Chemical Insights Research Institute, UL Research Institutes, Marietta, GA 30067, USA; (X.H.); (L.M.B.); (J.J.); (Q.Z.); (M.B.)
| |
Collapse
|
12
|
Wieder C, Cooke J, Frainay C, Poupin N, Bowler R, Jourdan F, Kechris KJ, Lai RP, Ebbels T. PathIntegrate: Multivariate modelling approaches for pathway-based multi-omics data integration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.09.574780. [PMID: 38260498 PMCID: PMC10802464 DOI: 10.1101/2024.01.09.574780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
As terabytes of multi-omics data are being generated, there is an ever-increasing need for methods facilitating the integration and interpretation of such data. Current multi-omics integration methods typically output lists, clusters, or subnetworks of molecules related to an outcome. Even with expert domain knowledge, discerning the biological processes involved is a time-consuming activity. Here we propose PathIntegrate, a method for integrating multi-omics datasets based on pathways, designed to exploit knowledge of biological systems and thus provide interpretable models for such studies. PathIntegrate employs single-sample pathway analysis to transform multi-omics datasets from the molecular to the pathway-level, and applies a predictive single-view or multi-view model to integrate the data. Model outputs include multi-omics pathways ranked by their contribution to the outcome prediction, the contribution of each omics layer, and the importance of each molecule in a pathway. Using semi-synthetic data we demonstrate the benefit of grouping molecules into pathways to detect signals in low signal-to-noise scenarios, as well as the ability of PathIntegrate to precisely identify important pathways at low effect sizes. Finally, using COPD and COVID-19 data we showcase how PathIntegrate enables convenient integration and interpretation of complex high-dimensional multi-omics datasets. The PathIntegrate Python package is available at https://github.com/cwieder/PathIntegrate.
Collapse
Affiliation(s)
- Cecilia Wieder
- Section of Bioinformatics, Division of Systems Medicine, Department of Metabolism, Digestion, and Reproduction, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Juliette Cooke
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Clement Frainay
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Nathalie Poupin
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Russell Bowler
- National Jewish Health, 1400 Jackson Street, Denver, CO, 80206, USA
| | - Fabien Jourdan
- MetaboHUB-Metatoul, National Infrastructure of Metabolomics and Fluxomics, Toulouse, France
| | - Katerina J Kechris
- Department of Biostatistics and Informatics, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO, United States of America
| | - Rachel Pj Lai
- Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Timothy Ebbels
- Section of Bioinformatics, Division of Systems Medicine, Department of Metabolism, Digestion, and Reproduction, Faculty of Medicine, Imperial College London, London, United Kingdom
| |
Collapse
|
13
|
Kotlyarov S. Identification of Important Genes Associated with the Development of Atherosclerosis. Curr Gene Ther 2024; 24:29-45. [PMID: 36999180 DOI: 10.2174/1566523223666230330091241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 12/06/2022] [Accepted: 01/26/2023] [Indexed: 04/01/2023]
Abstract
Atherosclerosis is one of the most important medical problems due to its prevalence and significant contribution to the structure of temporary and permanent disability and mortality. Atherosclerosis is a complex chain of events occurring in the vascular wall over many years. Disorders of lipid metabolism, inflammation, and impaired hemodynamics are important mechanisms of atherogenesis. A growing body of evidence strengthens the understanding of the role of genetic and epigenetic factors in individual predisposition and development of atherosclerosis and its clinical outcomes. In addition, hemodynamic changes, lipid metabolism abnormalities, and inflammation are closely related and have many overlapping links in regulation. A better study of these mechanisms may improve the quality of diagnosis and management of such patients.
Collapse
Affiliation(s)
- Stanislav Kotlyarov
- Department of Nursing, Ryazan State Medical University Named After Academician I.P. Pavlov, Russian Federation
| |
Collapse
|
14
|
He Z, Zeng J, Wang M, Liu H, Zhou X, Zhang S, He J. Effects of lysolecithins on performance, egg quality, blood profiles and liver histopathology in late-phase laying hens. Br Poult Sci 2023; 64:718-725. [PMID: 37610322 DOI: 10.1080/00071668.2023.2248006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 03/13/2023] [Accepted: 06/21/2023] [Indexed: 08/24/2023]
Abstract
1. This study investigated the effects of lysolecithins (LL) on performance, egg quality, blood profiles, relative organ weight and liver histopathology in laying hens.2. A total of 480 healthy 65-week-old Lohmann laying hens were randomly allocated into four treatments in a 2 × 2 factorial arrangement design with two levels of energy (AMEn, 11.08 MJ/kg and 12.94 MJ/kg) and two levels of LL (0 and 0.05%).3. Birds fed high energy diets had lower (P < 0.05) average daily intake and feed conversion rate during weeks 0-4, 5-8 and 0-8, but higher (P < 0.05) average egg weight (AEW) during trial weeks 0-4. There was an interaction in (P < 0.05) AEW during trial weeks 0-14 and 0-8 for energy and LL. The high energy diets increased yolk colour at the end of weeks 2 and 4, while addition of LL increased albumen height at the end of week 2. There was an interaction (P < 0.05) in yolk colour between energy and LL at the end of week 2. There was an interaction (P < 0.05) in serum superoxide dismutase and LDL-C throughout the experiment.4. The high energy diets increased (P < 0.05) the relative weight of abdominal fat compared with low energy diets. The high energy diets increased (P < 0.05) liver ether extract content and liver pathological injury score compared with low energy diets at the end of week 8, while the addition of LL decreased (P < 0.05) liver pathological injury score.5. The supplementation of LL in high energy diets could alleviate some negative effects on liver injury in late laying hens.
Collapse
Affiliation(s)
- Z He
- College of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan, P. R. China
| | - J Zeng
- College of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan, P. R. China
| | - M Wang
- College of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan, P. R. China
| | - H Liu
- College of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan, P. R. China
| | - X Zhou
- Tie Qi Li Shi Group. Co., Mianyang, Sichuan, P. R. China
| | - S Zhang
- Kemin Industries (Zhuhai) Co., Ltd., Zhuhai, Guangdong, P. R. China
| | - J He
- College of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan, P. R. China
| |
Collapse
|
15
|
Jiang C, Peng M, Dai Z, Chen Q. Screening of Lipid Metabolism-Related Genes as Diagnostic Indicators in Chronic Obstructive Pulmonary Disease. Int J Chron Obstruct Pulmon Dis 2023; 18:2739-2754. [PMID: 38046983 PMCID: PMC10693249 DOI: 10.2147/copd.s428984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 11/11/2023] [Indexed: 12/05/2023] Open
Abstract
Objective It has been observed that local and systemic disorders of lipid metabolism occur during the development of chronic obstructive pulmonary disease (COPD), but no specific mechanism has yet been identified. Methods The mRNA microarray dataset GSE76925 of COPD patients was downloaded from the Gene Expression Omnibus database and screened for differentially expressed genes (DEGs). Lipid metabolism-related genes (LMRGs) were extracted from the Kyoto Encyclopedia of Genes and Genomes database and Molecular Signature Database. The DEGs were intersected with LMRGs to obtain differentially expressed lipid metabolism-related genes (DeLMRGs). GO enrichment analysis and KEGG pathway analysis were performed on DeLMRGs, and protein-protein interaction networks were constructed and screened to identify hub genes. The GSE8581 validation set and further ELISA experiments were used to validate key DeLMRG expression. Results Differential analysis of dataset GSE76925 identified 587 DEGs, of which 62 genes were up-regulated and 525 were down-regulated. Taking the intersection of 587 DEGs with 1102 LMRGs, 20 DeLMRGs were obtained, including 1 up-regulated gene and 19 down-regulated genes. 10 hub genes were screened by cytohubba plugin, including 9 down-regulated genes PLA2G4A, HPGDS, LEP, PTGES3, LEPR, PLA2G2D, MED21, SPTLC1 and BCHE, as well as the only up-regulated gene PLA2G7. Validation of the identified 10 DeLMRGs using the validation set GSE8581 revealed that BCHE and PLA2G7 expression levels differed between the two groups. We further constructed the ceRNA network of BCHE and PLA2G7. Cell experiments also showed that PLA2G7 expression was up-regulated and BCHE expression was down-regulated in CSE-treated RAW264.7 and THP-1 cells. Conclusion Based on a comprehensive bioinformatic analysis of lipid metabolism genes, we identified BCHE and PLA2G7 as potentially significant biomarkers of COPD. These biomarkers may represent promising targets for COPD diagnosis and treatment.
Collapse
Affiliation(s)
- Chen Jiang
- Department of Geriatrics, Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Meijuan Peng
- Department of Geriatrics, Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Ziyu Dai
- Department of Geriatrics, Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Qiong Chen
- Department of Geriatrics, Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| |
Collapse
|
16
|
Zailani H, Satyanarayanan SK, Liao WC, Hsu YT, Huang SY, Gałecki P, Su KP, Chang JPC. Roles of Omega-3 Polyunsaturated Fatty Acids in Managing Cognitive Impairment in Chronic Obstructive Pulmonary Disease: A Review. Nutrients 2023; 15:4363. [PMID: 37892438 PMCID: PMC10609799 DOI: 10.3390/nu15204363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/08/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) contributes significantly to the death of people worldwide, especially the elderly. An essential feature of COPD is pulmonary inflammation, which results from long-term exposure to noxious substances from cigarette smoking and other environmental pollutants. Pulmonary inflammatory mediators spill over to the blood, leading to systemic inflammation, which is believed to play a significant role in the onset of a host of comorbidities associated with COPD. A substantial comorbidity of concern in COPD patients that is often overlooked in COPD management is cognitive impairment. The exact pathophysiology of cognitive impairment in COPD patients remains a mystery; however, hypoxia, oxidative stress, systemic inflammation, and cerebral manifestations of these conditions are believed to play crucial roles. Furthermore, the use of medications to treat cognitive impairment symptomatology in COPD patients has been reported to be associated with life-threatening adverse effects, hence the need for alternative medications with reduced side effects. In this Review, we aim to discuss the impact of cognitive impairment in COPD management and the potential mechanisms associated with increased risk of cognitive impairment in COPD patients. The promising roles of omega-3 polyunsaturated fatty acids (ω-3 PUFAs) in improving cognitive deficits in COPD patients are also discussed. Interestingly, ω-3 PUFAs can potentially enhance the cognitive impairment symptomatology associated with COPD because they can modulate inflammatory processes, activate the antioxidant defence system, and promote amyloid-beta clearance from the brain. Thus, clinical studies are crucial to assess the efficacy of ω-3 PUFAs in managing cognitive impairment in COPD patients.
Collapse
Grants
- MOST 109-2320-B-038-057-MY3, 109-2320-B-039-066, 110-2321-B-006-004, 111-2321-B-006-008, 110-2811-B-039-507, 110-2320-B-039-048-MY2, and 110-2320-B-039-047-MY3, 110-2813-C-039-327-B, 110-2314-B-039-029-MY3, 111-2314-B-039-041-MY3 Ministry of Science and Technology, Taiwan
- ANHRF 109-31, 109-40, 110-13, 110-26, 110-44, 110-45, 111-27, and 111-28 An-Nan Hospital, China Medical University, Tainan, Taiwan
- CMRC-CMA-2 Higher Education Sprout Project by the Ministry of Education (MOE), Taiwan
- CMU 110-AWARD-02, CMU108-SR-106, CMU110-N-17, CMU110-SR-73 China Medical University, Taichung, Taiwan
- CRS-108-048, DMR-105-053, DMR-109-102, DMR-109-244, DMR-HHC-109-11, DMR-HHC-109-12, DMR-HHC-110-10, DMR-110-124, DMR-111-245 and DMR-HHC-111-8 China Medical University Hospital, Taichung, Taiwan
Collapse
Affiliation(s)
- Halliru Zailani
- Mind-Body Interface Laboratory (MBI-Lab), Department of Psychiatry, China Medical University Hospital, Taichung 404327, Taiwan; (H.Z.); (S.K.S.)
- Graduate Institute of Nutrition, China Medical University, Taichung 404, Taiwan
- Department of Biochemistry, Ahmadu Bello University, Zaria 810106, Nigeria
| | - Senthil Kumaran Satyanarayanan
- Mind-Body Interface Laboratory (MBI-Lab), Department of Psychiatry, China Medical University Hospital, Taichung 404327, Taiwan; (H.Z.); (S.K.S.)
| | - Wei-Chih Liao
- Division of Pulmonary and Critical Medicine, Department of Internal Medicine, China Medical University Hospital, Taichung 404327, Taiwan
| | - Yi-Ting Hsu
- Department of Neurology, China Medical University Hospital, Taichung 404327, Taiwan;
| | - Shih-Yi Huang
- School of Nutrition and Health Sciences, Taipei Medical University, Taipei 11031, Taiwan
- Nutrition Research Centre, Taipei Medical University Hospital, Taipei 110, Taiwan
| | - Piotr Gałecki
- Department of Adult Psychiatry, Medical University of Lodz, 91-229 Lodz, Poland;
| | - Kuan-Pin Su
- Mind-Body Interface Laboratory (MBI-Lab), Department of Psychiatry, China Medical University Hospital, Taichung 404327, Taiwan; (H.Z.); (S.K.S.)
- College of Medicine, China Medical University, Taichung 404, Taiwan
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 404, Taiwan
- An-Nan Hospital, China Medical University, Tainan 717, Taiwan
| | - Jane Pei-Chen Chang
- Mind-Body Interface Laboratory (MBI-Lab), Department of Psychiatry, China Medical University Hospital, Taichung 404327, Taiwan; (H.Z.); (S.K.S.)
- College of Medicine, China Medical University, Taichung 404, Taiwan
| |
Collapse
|
17
|
Zheng A, Huang N, Bean D, Rayapaneni S, Deeney J, Sagar M, Hamilton JA. Resolvin E1 heals injured cardiomyocytes: Therapeutic implications and H-FABP as a readout for cardiovascular disease & systemic inflammation. Prostaglandins Leukot Essent Fatty Acids 2023; 197:102586. [PMID: 37604082 PMCID: PMC11203388 DOI: 10.1016/j.plefa.2023.102586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 08/07/2023] [Accepted: 08/08/2023] [Indexed: 08/23/2023]
Abstract
The purpose of this study is to investigate heart-fatty acid binding protein (H-FABP) leakage from cardiomyocytes as a quantitative measure of cell membrane damage and to test healing by Resolvin E1 (RVE1) as a potential therapeutic for patients with inflammatory diseases (cardiovascular disease and comorbidities) with high morbidity and mortality. Our quantitative ELISA assays demonstrated H-FABP as a sensitive and reliable biomarker for measuring cardiomyocyte damage induced by lipopolysaccharide (LPS) and healing by RvE1, a specialized pro-resolving mediator (SPM) derived from the Omega-3 fatty acid, eicosapentaenoic acid (EPA), a dietary nutrient that balances inflammation to restore homeostasis. RvE1 reduced leakage of H-FABP by up to 86%, which supports our hypothesis that inflammation as a mechanism of injury can be targeted for therapy. H-FABP as a blood biomarker was tested in 40 patients admitted to Boston Medical Center for respiratory distress, (20 patients with and 20 patients without COVID infection). High levels of H-FABP correlated with clinically diagnosed CVD, diabetes, and end-stage renal disease (ESRD) in both patient groups. The level of H-FABP indicates not only CVD damage but is a valuable measure for patients with increased inflammation disease comorbidities.
Collapse
Affiliation(s)
- A Zheng
- Boston University, United States of America
| | - N Huang
- Boston University School of Medicine, United States of America
| | - D Bean
- Boston University School of Medicine, United States of America
| | | | - Jude Deeney
- Boston University School of Medicine, United States of America
| | - M Sagar
- Boston Medical Center, United States of America
| | | |
Collapse
|
18
|
Zhang PH, Wu DB, Liu J, Wen JT, Chen ES, Xiao CH. Proteomics analysis of lung tissue reveals protein makers for the lung injury of adjuvant arthritis rats. Mol Med Rep 2023; 28:163. [PMID: 37449522 PMCID: PMC10407615 DOI: 10.3892/mmr.2023.13051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 06/15/2023] [Indexed: 07/18/2023] Open
Abstract
Lung injury is one of the common extra‑articular lesions in rheumatoid arthritis (RA). Due to its insidious onset and no obvious clinical symptoms, it can be easily dismissed in the early stage of diagnosis, which is one of the reasons that leads to a decline of the quality of life and subsequent death of patients with RA. However, its pathogenesis is still unclear and there is a lack of effective therapeutic targets. In the present study, tandem mass tag‑labeled proteomics was used to research the lung tissue proteins in RA model (adjuvant arthritis, AA) rats that had secondary lung injury. The aim of the present study was to identify the differentially expressed proteins related to RA‑lung injury, determine their potential role in the pathogenesis of RA‑lung injury and provide potential targets for clinical treatment. Lung tissue samples were collected from AA‑lung injury and normal rats. The differentially expressed proteins (DEPs) were identified by tandem mass spectrometry. Bioinformatic analysis was used to assess the biological processes and signaling pathways associated with these DEPs. A total of 310 DEPs were found, of which 244 were upregulated and 66 were downregulated. KEGG anlysis showed that 'fatty acid degradation', 'fatty acid metabolism', 'fatty acid elongation', 'complement and coagulation cascades', 'peroxisome proliferator‑activated receptor signaling pathway' and 'hypoxia‑inducible factor signaling pathway' were significantly upregulated in the lung tissues of AA‑lung injury. Immunofluorescence staining confirmed the increased expression of clusterin, serine protease inhibitors and complement 1qc in lung tissue of rats with AA lung injury. In the present study, the results revealed the significance of certain DEPs (for example, C9, C1qc and Clu) in the occurrence and development of RA‑lung injury and provided support through experiments to identify potential biomarkers for the early diagnosis and prevention of RA‑lung injury.
Collapse
Affiliation(s)
- Ping-Heng Zhang
- Rheumatology and Immunology Department, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong 510315, P.R. China
- Department of Rheumatology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China
| | - Dan-Bin Wu
- Department of Traditional Chinese Medicine, School of Medicine, First Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Jian Liu
- Department of Rheumatology and Immunology, First Affiliated Hospital of Anhui University of Traditional Chinese Medicine, Hefei, Anhui 230038, P.R. China
| | - Jian-Ting Wen
- Department of Rheumatology and Immunology, First Affiliated Hospital of Anhui University of Traditional Chinese Medicine, Hefei, Anhui 230038, P.R. China
| | - En-Sheng Chen
- Rheumatology and Immunology Department, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong 510315, P.R. China
| | - Chang-Hong Xiao
- Rheumatology and Immunology Department, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong 510315, P.R. China
| |
Collapse
|
19
|
Chi J, Cheng J, Wang S, Li C, Chen M. Promising Anti-Inflammatory Tools: Biomedical Efficacy of Lipoxins and Their Synthetic Pathways. Int J Mol Sci 2023; 24:13282. [PMID: 37686088 PMCID: PMC10487465 DOI: 10.3390/ijms241713282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/11/2023] [Accepted: 08/15/2023] [Indexed: 09/10/2023] Open
Abstract
Lipoxins (LXs) have attracted widespread attention as a class of anti-inflammatory lipid mediators that are produced endogenously by the organism. LXs are arachidonic acid (ARA) derivatives that include four different structures: lipoxin A4 (LXA4), lipoxin B4 (LXB4), and the aspirin-induced differential isomers 15-epi-LXA4 and 15-epi-LXB4. Because of their unique biological activity of reducing inflammation in the body, LXs have great potential for neuroprotection, anti-inflammatory treatment of COVID-19, and other related diseases. The synthesis of LXs in vivo is achieved through the action of lipoxygenase (LO). As a kind of important enzyme, LO plays a major role in the physiological processes of living organisms in mammals and functions in some bacteria and fungi. This suggests new options for the synthesis of LXs in vitro. Meanwhile, there are other chemical and biochemical methods to synthesize LXs. In this review, the recent progress on physiological activity and synthetic pathways of LXs is summarized, and new insights into the synthesis of LXs in vitro are provided.
Collapse
Affiliation(s)
| | | | | | | | - Ming Chen
- School of Biological Engineering, Dalian Polytechnic University, Dalian 116034, China
| |
Collapse
|
20
|
Zhang R, Chen S, Wang Z, Ye L, Jiang Y, Li M, Jiang X, Peng H, Guo Z, Chen L, Zhang R, Niu Y, Aschner M, Li D, Chen W. Assessing the Effects of Nicotinamide Mononucleotide Supplementation on Pulmonary Inflammation in Male Mice Subchronically Exposed to Ambient Particulate Matter. ENVIRONMENTAL HEALTH PERSPECTIVES 2023; 131:77006. [PMID: 37458712 PMCID: PMC10351503 DOI: 10.1289/ehp12259] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 03/27/2023] [Accepted: 06/16/2023] [Indexed: 07/20/2023]
Abstract
BACKGROUND Chronic lung injury and dysregulated cellular homeostasis in response to particulate matter (PM) exposure are closely associated with adverse health effects. However, an effective intervention for preventing the adverse health effects has not been developed. OBJECTIVES This study aimed to evaluate the protective effects of nicotinamide mononucleotide (NMN) supplementation on lung injury and elucidate the mechanism by which NMN improved immune function following subchronic PM exposure. METHODS Six-week-old male C57BL/6J mice were placed in a real-ambient PM exposure system or filtered air-equipped chambers (control) for 16 wk with or without NMN supplementation in drinking water (regarded as Con-H2O, Exp-H2O, Con-NMN and Exp-NMN groups, respectively) in Shijiazhuang City, China (n=20/group). The effects of NMN supplementation (500mg/kg) on PM-induced chronic pulmonary inflammation were assessed, and its mechanism was characterized using single-cell transcriptomic sequencing (scRNA-seq) analysis of whole lung cells. RESULTS The NMN-treated mice exhibited higher NAD+ levels in multiple tissues. Following 16-wk PM exposure, slightly less pulmonary inflammation and less collagen deposition were noted in mice with NMN supplementation in response to real-ambient PM exposure (Exp-NMN group) compared with the Exp-H2O group (all p<0.05). Mouse lung tissue isolated from the Exp-NMN group was characterized by fewer neutrophils, monocyte-derived cells, fibroblasts, and myeloid-derived suppressor cells induced by subchronic PM exposure as detected by scRNA-seq transcriptomic analysis. The improved immune functions were further characterized by interleukin-17 signaling pathway inhibition and lower secretion of profibrotic cytokines in the Exp-NMN group compared with the Exp-H2O group. In addition, reduced proportions of differentiated myofibroblasts and profibrotic interstitial macrophages were identified in the NMN-supplemented mice in response to PM exposure. Furthermore, less immune function suppression and altered differentiation of pathological cell phenotypes NMN was related to intracellular lipid metabolism activation. DISCUSSION Our novel findings suggest that NMN supplementation mitigated PM-induced lung injury by regulating immune functions and improving lipid metabolism in male mice, providing a putative intervention method for prevention of human health effects associated with PM exposure. https://doi.org/10.1289/EHP12259.
Collapse
Affiliation(s)
- Rui Zhang
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Shen Chen
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Ziwei Wang
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Lizhu Ye
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Yue Jiang
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Miao Li
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Xinhang Jiang
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Hui Peng
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Zhanyu Guo
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Liping Chen
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Rong Zhang
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang, China
| | - Yujie Niu
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang, China
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Daochuan Li
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Wen Chen
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
21
|
Cao E, Xu J, Gong Y, Yuan J, Chen A, Liu J, Fan Y, Fan X, Kuang X. Effect of the Lipoxin Receptor Agonist BML-111 on Cigarette Smoke Extract-Induced Macrophage Polarization and Inflammation in RAW264.7 Cells. Int J Chron Obstruct Pulmon Dis 2023; 18:919-932. [PMID: 37229441 PMCID: PMC10204758 DOI: 10.2147/copd.s395569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 04/29/2023] [Indexed: 05/27/2023] Open
Abstract
Background Macrophages are known to play a crucial role in the chronic inflammation associated with Chronic Obstructive Pulmonary Disease (COPD). BML-111, acting as a lipoxin A4 (LXA4) receptor agonist, has shown to be effective in protecting against COPD. However, the precise mechanism by which BML-111 exerts its protective effect remains unclear. Methods In order to establish a cell model of inflammation, cigarette smoke extract (CSE) was used on the RAW264.7 cell line. Afterwards, an Enzyme-linked immunosorbent assay (ELISA) kit was employed to measure concentrations of tumor necrosis factor-α (TNF-α), interleukin-1beta (IL-1β), interleukin-18 (IL-18), and interleukin-10 (IL-10) in the cell supernatants of the RAW264.7 cells.In this study, we examined the markers of macrophage polarization using two methods: quantitative real-time polymerase chain reaction (qRT-PCR) and Western blot analysis. Additionally, we detected the expression of Notch-1 and Hes-1 through Western blotting. Results BML-111 effectively suppressed the expression of pro-inflammatory cytokines TNF-α, IL-1β, and IL-18, as well as inflammasome factors NLRP3 and Caspase-1, while simultaneously up-regulating the expression of the anti-inflammatory cytokine IL-10 induced by CSE. Moreover, BML-111 reduced the expression of iNOS, which is associated with M1 macrophage polarization, and increased the expression of Arg-1, which is associated with M2 phenotype. Additionally, BML-111 downregulated the expression of Hes-1 and the ratio of activated Notch-1 to Notch-1 induced by CSE. The effect of BML-111 on inflammation and macrophage polarization was reversed upon administration of the Notch-1 signaling pathway agonist Jagged1. Conclusion BML-111 has the potential to suppress inflammation and modulate M1/M2 macrophage polarization in RAW264.7 cells. The underlying mechanism may involve the Notch-1 signaling pathway.
Collapse
Affiliation(s)
- En Cao
- Department of Pathology, Basic Medical College of Nanchang University, Nanchang, Jiangxi, People’s Republic of China
| | - Jun Xu
- Department of Pathology, Basic Medical College of Nanchang University, Nanchang, Jiangxi, People’s Republic of China
| | - Yuanqi Gong
- Department of Critical Care Medicine/ICU (Intensive Care Unit), Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, People’s Republic of China
| | - Jingjing Yuan
- Department of Physiology, School of Basic Medicine, Nanchang University, Nanchang, Jiangxi, People’s Republic of China
| | - Anbang Chen
- Department of Pathology, Basic Medical College of Nanchang University, Nanchang, Jiangxi, People’s Republic of China
| | - Jiayi Liu
- The Basic Medical School of Nanchang University, Nanchang, Jiangxi, People’s Republic of China
| | - Yunfei Fan
- The Basic Medical School of Nanchang University, Nanchang, Jiangxi, People’s Republic of China
| | - Xiangyang Fan
- The Basic Medical School of Nanchang University, Nanchang, Jiangxi, People’s Republic of China
| | - Xiaodong Kuang
- Department of Pathology, Basic Medical College of Nanchang University, Nanchang, Jiangxi, People’s Republic of China
| |
Collapse
|
22
|
Zhou E, Wang Q, Li X, Zhu D, Niu Q, Li Q, Wu L. Effects of Bee Pollen Derived from Acer mono Maxim. or Phellodendron amurense Rupr. on the Lipid Composition of Royal Jelly Secreted by Honeybees. Foods 2023; 12:foods12030625. [PMID: 36766159 PMCID: PMC9914857 DOI: 10.3390/foods12030625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/13/2023] [Accepted: 01/20/2023] [Indexed: 02/05/2023] Open
Abstract
Royal jelly is a specific product secreted by honeybees, and has been sought after to maintain health because of its valuable bioactive substances, e.g., lipids and vitamins. The lipids in royal jelly come from the bee pollen consumed by honeybees, and different plant source of bee pollen affects the lipid composition of royal jelly. However, the effect of bee pollen consumption on the lipid composition of royal jelly remains unclear. Herein, we examined the influence of two factors on the lipid composition of royal jelly: first, two plant sources of bee pollen, i.e., Acer mono Maxim. (BP-Am) and Phellodendron amurense Rupr. (BP-Pa); secondly, different feeding times. Lipidomic analyses were conducted on the royal jelly produced by honeybees fed BP-Am or BP-Pa using ultra-high performance liquid chromatography (UPLC)-Q-Exactive Orbitrap mass spectrometry. The results showed that the phospholipid and fatty acid contents differed in royal jelly produced by honeybees fed BP-Am compared to those fed BP-Pa. There were also differences between timepoints, with many lipid compounds decreasing in abundance soon after single-pollen feeding began, slowly increasing over time, then decreasing again after 30 days of single-pollen feeding. The single bee pollen diet destroyed the nutritional balance of bee colonies and affected the development of hypopharyngeal and maxillary glands, resulting in differences in royal jelly quality. This study provides guidance for optimal selection of honeybee feed for the production of high-quality royal jelly.
Collapse
Affiliation(s)
- Enning Zhou
- Apiculture Science Institute of Jilin Province, Jilin 132011, China
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
| | - Qi Wang
- Apiculture Science Institute of Jilin Province, Jilin 132011, China
| | - Xiangxin Li
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
| | - Dan Zhu
- Department of Food Science, University of Otago, Dunedin 9016, New Zealand
| | - Qingsheng Niu
- Apiculture Science Institute of Jilin Province, Jilin 132011, China
- Correspondence: (Q.N.); (Q.L.); Tel.: +86-13943233663 (Q.N.); +86-13269495300 (Q.L.)
| | - Qiangqiang Li
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
- Correspondence: (Q.N.); (Q.L.); Tel.: +86-13943233663 (Q.N.); +86-13269495300 (Q.L.)
| | - Liming Wu
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
| |
Collapse
|
23
|
Gao J, Liu H, Wang X, Wang L, Gu J, Wang Y, Yang Z, Liu Y, Yang J, Cai Z, Shu Y, Min L. Associative analysis of multi-omics data indicates that acetylation modification is widely involved in cigarette smoke-induced chronic obstructive pulmonary disease. Front Med (Lausanne) 2023; 9:1030644. [PMID: 36714109 PMCID: PMC9877466 DOI: 10.3389/fmed.2022.1030644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 12/22/2022] [Indexed: 01/14/2023] Open
Abstract
We aimed to study the molecular mechanisms of chronic obstructive pulmonary disease (COPD) caused by cigarette smoke more comprehensively and systematically through different perspectives and aspects and to explore the role of protein acetylation modification in COPD. We established the COPD model by exposing C57BL/6J mice to cigarette smoke for 24 weeks, then analyzed the transcriptomics, proteomics, and acetylomics data of mouse lung tissue by RNA sequencing (RNA-seq) and liquid chromatography-tandem mass spectrometry (LC-MS/MS), and associated these omics data through unique algorithms. This study demonstrated that the differentially expressed proteins and acetylation modification in the lung tissue of COPD mice were co-enriched in pathways such as oxidative phosphorylation (OXPHOS) and fatty acid degradation. A total of 19 genes, namely, ENO3, PFKM, ALDOA, ACTN2, FGG, MYH1, MYH3, MYH8, MYL1, MYLPF, TTN, ACTA1, ATP2A1, CKM, CORO1A, EEF1A2, AKR1B8, MB, and STAT1, were significantly and differentially expressed at all the three levels of transcription, protein, and acetylation modification simultaneously. Then, we assessed the distribution and expression in different cell subpopulations of these 19 genes in the lung tissues of patients with COPD by analyzing data from single-cell RNA sequencing (scRNA-seq). Finally, we carried out the in vivo experimental verification using mouse lung tissue through quantitative real-time PCR (qRT-PCR), Western blotting (WB), immunofluorescence (IF), and immunoprecipitation (IP). The results showed that the differential acetylation modifications of mouse lung tissue are widely involved in cigarette smoke-induced COPD. ALDOA is significantly downregulated and hyperacetylated in the lung tissues of humans and mice with COPD, which might be a potential biomarker for the diagnosis and/or treatment of COPD.
Collapse
Affiliation(s)
- Junyin Gao
- Department of Pulmonary and Critical Care Medicine, Northern Jiangsu People's Hospital, Clinical Medical College, Yangzhou University, Yangzhou, China
| | - Hongjun Liu
- Department of Pulmonary and Critical Care Medicine, Northern Jiangsu People's Hospital, Clinical Medical College, Yangzhou University, Yangzhou, China
| | - Xiaolin Wang
- Department of Thoracic Surgery, Northern Jiangsu People's Hospital, Clinical Medical College, Yangzhou University, Yangzhou, China
| | - Liping Wang
- Clinical Medical College, Yangzhou University, Yangzhou, China
| | - Jianjun Gu
- Department of Cardiology, Institute of Translational Medicine, Clinical Medical College, Yangzhou University, Yangzhou, China
| | - Yuxiu Wang
- Department of Pulmonary and Critical Care Medicine, Northern Jiangsu People's Hospital, Clinical Medical College, Yangzhou University, Yangzhou, China
| | - Zhiguang Yang
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, China
| | - Yunpeng Liu
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, China
| | - Jingjing Yang
- Department of Pulmonary and Critical Care Medicine, Northern Jiangsu People's Hospital, Clinical Medical College, Yangzhou University, Yangzhou, China
| | - Zhibin Cai
- Department of Pulmonary and Critical Care Medicine, Northern Jiangsu People's Hospital, Clinical Medical College, Yangzhou University, Yangzhou, China
| | - Yusheng Shu
- Department of Thoracic Surgery, Northern Jiangsu People's Hospital, Clinical Medical College, Yangzhou University, Yangzhou, China,Yusheng Shu ✉
| | - Lingfeng Min
- Department of Pulmonary and Critical Care Medicine, Northern Jiangsu People's Hospital, Clinical Medical College, Yangzhou University, Yangzhou, China,*Correspondence: Lingfeng Min ✉
| |
Collapse
|
24
|
De Nuccio F, Piscitelli P, Toraldo DM. Gut-lung Microbiota Interactions in Chronic Obstructive Pulmonary Disease (COPD): Potential Mechanisms Driving Progression to COPD and Epidemiological Data. Lung 2022; 200:773-781. [PMID: 36241745 DOI: 10.1007/s00408-022-00581-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 09/30/2022] [Indexed: 12/30/2022]
Abstract
This paper focuses on the gut-lung axis in the context of Inflammatory Bowel Disease (IBD) and Chronic Obstructive Pulmonary Disease (COPD), highlighting the key role played by microbial dysbiosis and the impact of environmental and genetic factors on the innate and acquired immune system and on chronic inflammation in the intestinal and pulmonary tracts. Recent evidence indicates that Antigen-Presenting Cells (APCs) perform regulatory activity influencing the composition of the microbiota. APCs (macrophages, dendritic cells, B cells) possess membrane receptors known as Pattern Recognition Receptors (PRRs), a category of toll-like receptors (TLRs). PRRs recognise distinct microbial structures and microbial metabolites called Signals, which modulate the saprophytic microbial equilibrium of the healthy microbiota by recognising molecular profiles associated with commensal microbes (Microbe-Associated Molecular Patterns, MAMPs). During dysbiosis, pathogenic bacteria can prompt an inflammatory response, producing PAMPs (Pathogen-Associated Molecular Patterns) thereby activating the proliferation of inflammatory response cells, both local and systemic. This series of regulatory and immune-response events is responsible (together with chronic infection, incorrect diet, obesity, etc.) for the systemic chronic inflammation (SCI) known as "low-grade inflammation" typical of COPD and IBD. This review looks at immunological research and explores the role of the microbiota, looking at two recent clinical studies, SPIROMICS and AERIS. There is a need for further clinical studies to characterize the pulmonary microbiota and to obtain new information about the pathogenesis of lung disease to improve our knowledge and treatment strategies and identify new therapeutic targets.
Collapse
Affiliation(s)
- Francesco De Nuccio
- Laboratory Human Anatomy, Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy
| | | | | |
Collapse
|
25
|
Marzec JM, Nadadur SS. Inflammation resolution in environmental pulmonary health and morbidity. Toxicol Appl Pharmacol 2022; 449:116070. [PMID: 35618031 PMCID: PMC9872158 DOI: 10.1016/j.taap.2022.116070] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 05/04/2022] [Accepted: 05/14/2022] [Indexed: 02/07/2023]
Abstract
Inflammation and resolution are dynamic processes comprised of inflammatory activation and neutrophil influx, followed by mediator catabolism and efferocytosis. These critical pathways ensure a return to homeostasis and promote repair. Over the past decade research has shown that diverse mediators play a role in the active process of resolution. Specialized pro-resolving mediators (SPMs), biosynthesized from fatty acids, are released during inflammation to facilitate resolution and are deficient in a variety of lung disorders. Failed resolution results in remodeling and cellular deposition through pro-fibrotic myofibroblast expansion that irreversibly narrows the airways and worsens lung function. Recent studies indicate environmental exposures may perturb and deregulate critical resolution pathways. Environmental xenobiotics induce lung inflammation and generate reactive metabolites that promote oxidative stress, injuring the respiratory mucosa and impairing gas-exchange. This warrants recognition of xenobiotic associated molecular patterns (XAMPs) as new signals in the field of inflammation biology, as many environmental chemicals generate free radicals capable of initiating the inflammatory response. Recent studies suggest that unresolved, persistent inflammation impacts both resolution pathways and endogenous regulatory mediators, compromising lung function, which over time can progress to chronic lung disease. Chronic ozone (O3) exposure overwhelms successful resolution, and in susceptible individuals promotes asthma onset. The industrial contaminant cadmium (Cd) bioaccumulates in the lung to impair resolution, and recurrent inflammation can result in chronic obstructive pulmonary disease (COPD). Persistent particulate matter (PM) exposure increases systemic cardiopulmonary inflammation, which reduces lung function and can exacerbate asthma, COPD, and idiopathic pulmonary fibrosis (IPF). While recurrent inflammation underlies environmentally induced pulmonary morbidity and may drive the disease process, our understanding of inflammation resolution in this context is limited. This review aims to explore inflammation resolution biology and its role in chronic environmental lung disease(s).
Collapse
Affiliation(s)
- Jacqui M Marzec
- National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Srikanth S Nadadur
- National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA.
| |
Collapse
|
26
|
Collodel G, Moretti E, Noto D, Corsaro R, Signorini C. Oxidation of Polyunsaturated Fatty Acids as a Promising Area of Research in Infertility. Antioxidants (Basel) 2022; 11:antiox11051002. [PMID: 35624866 PMCID: PMC9137497 DOI: 10.3390/antiox11051002] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/16/2022] [Accepted: 05/18/2022] [Indexed: 02/01/2023] Open
Abstract
In this review, the role of fatty acids (FA) in human pathological conditions, infertility in particular, was considered. FA and FA-derived metabolites modulate cell membrane composition, membrane lipid microdomains and cell signaling. Moreover, such molecules are involved in cell death, immunological responses and inflammatory processes. Human health and several pathological conditions are specifically associated with both dietary and cell membrane lipid profiles. The role of FA metabolism in human sperm and spermatogenesis has recently been investigated. Cumulative findings indicate F2 isoprostanes (oxygenated products from arachidonic acid metabolism) and resolvins (lipid mediators of resolution of inflammation) as promising biomarkers for the evaluation of semen and follicular fluid quality. Advanced knowledge in this field could lead to new scenarios in the treatment of infertility.
Collapse
|
27
|
Kotlyarov S, Kotlyarova A. Molecular Pharmacology of Inflammation Resolution in Atherosclerosis. Int J Mol Sci 2022; 23:ijms23094808. [PMID: 35563200 PMCID: PMC9104781 DOI: 10.3390/ijms23094808] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/18/2022] [Accepted: 04/25/2022] [Indexed: 02/01/2023] Open
Abstract
Atherosclerosis is one of the most important problems of modern medicine as it is the leading cause of hospitalizations, disability, and mortality. The key role in the development and progression of atherosclerosis is the imbalance between the activation of inflammation in the vascular wall and the mechanisms of its control. The resolution of inflammation is the most important physiological mechanism that is impaired in atherosclerosis. The resolution of inflammation has complex, not fully known mechanisms, in which lipid mediators derived from polyunsaturated fatty acids (PUFAs) play an important role. Specialized pro-resolving mediators (SPMs) represent a group of substances that carry out inflammation resolution and may play an important role in the pathogenesis of atherosclerosis. SPMs include lipoxins, resolvins, maresins, and protectins, which are formed from PUFAs and regulate many processes related to the active resolution of inflammation. Given the physiological importance of these substances, studies examining the possibility of pharmacological effects on inflammation resolution are of interest.
Collapse
Affiliation(s)
- Stanislav Kotlyarov
- Department of Nursing, Ryazan State Medical University, 390026 Ryazan, Russia
- Correspondence:
| | - Anna Kotlyarova
- Department of Pharmacology and Pharmacy, Ryazan State Medical University, 390026 Ryazan, Russia;
| |
Collapse
|
28
|
Kotlyarov S. Role of Short-Chain Fatty Acids Produced by Gut Microbiota in Innate Lung Immunity and Pathogenesis of the Heterogeneous Course of Chronic Obstructive Pulmonary Disease. Int J Mol Sci 2022; 23:4768. [PMID: 35563159 PMCID: PMC9099629 DOI: 10.3390/ijms23094768] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/20/2022] [Accepted: 04/22/2022] [Indexed: 02/06/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a widespread socially significant disease. The development of COPD involves the innate immune system. Interestingly, the regulation of the innate lung immune system is related to the gut microbiota. This connection is due to the production by gut microorganisms of short-chain fatty acids (SCFAs) such as acetate, propionate, and butyrate. Nutritional disturbances and changes in the structure of the intestinal microbiota lead to a decrease in SCFAs production and their effect on pulmonary immunity. The presence of a metabolic and immune axis linking the lungs and gut plays an important role in the pathogenesis of COPD. In addition, the nature of nutrition and SCFAs may participate in the development of the clinically heterogeneous course of COPD.
Collapse
Affiliation(s)
- Stanislav Kotlyarov
- Department of Nursing, Ryazan State Medical University, 390026 Ryazan, Russia
| |
Collapse
|
29
|
Kotlyarov S. Analysis of differentially expressed genes and signaling pathways involved in atherosclerosis and chronic obstructive pulmonary disease. Biomol Concepts 2022; 13:34-54. [PMID: 35189051 DOI: 10.1515/bmc-2022-0001] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 02/02/2022] [Indexed: 11/15/2022] Open
Abstract
Atherosclerosis is an important medical and social problem, and the keys to solving this problem are still largely unknown. A common situation in real clinical practice is the comorbid course of atherosclerosis with chronic obstructive pulmonary disease (COPD). Diseases share some common risk factors and may be closely linked pathogenetically. METHODS Bioinformatics analysis of datasets from Gene Expression Omnibus (GEO) was performed to examine the gene ontology (GO) of common differentially expressed genes (DEGs) in COPD and peripheral arterial atherosclerosis. DEGs were identified using the limma R package with the settings p < 0.05, corrected using the Benjamini & Hochberg algorithm and ǀlog 2FCǀ > 1.0. The GO, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment, and the protein-protein interaction (PPI) network analysis were performed with the detected DEGs. RESULTS The biological processes and signaling pathways involving common DEGs from airway epithelial datasets in COPD and tissue in peripheral atherosclerosis were identified. A total of 15 DEGs were identified, comprising 12 upregulated and 3 downregulated DEGs. The GO enrichment analysis demonstrated that the upregulated hub genes were mainly involved in the inflammatory response, reactive oxygen species metabolic process, cell adhesion, lipid metabolic process, regulation of angiogenesis, icosanoid biosynthetic process, and cellular response to a chemical stimulus. The KEGG pathway enrichment analysis demonstrated that the common pathways were Toll-like receptor signaling pathway, NF-kappa B signaling pathway, lipid and atherosclerosis, and cytokine-cytokine receptor interaction. CONCLUSIONS Biological processes and signaling pathways associated with the immune response may link the development and progression of COPD and atherosclerosis.
Collapse
Affiliation(s)
- Stanislav Kotlyarov
- Department of Nursing, Ryazan State Medical University, 390026, Ryazan, Russian Federation
| |
Collapse
|
30
|
Kotlyarov S. Involvement of the Innate Immune System in the Pathogenesis of Chronic Obstructive Pulmonary Disease. Int J Mol Sci 2022; 23:985. [PMID: 35055174 PMCID: PMC8778852 DOI: 10.3390/ijms23020985] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 01/14/2022] [Accepted: 01/15/2022] [Indexed: 01/27/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a common, socially significant disease characterized by progressive airflow limitation due to chronic inflammation in the bronchi. Although the causes of COPD are considered to be known, the pathogenesis of the disease continues to be a relevant topic of study. Mechanisms of the innate immune system are involved in various links in the pathogenesis of COPD, leading to persistence of chronic inflammation in the bronchi, their bacterial colonization and disruption of lung structure and function. Bronchial epithelial cells, neutrophils, macrophages and other cells are involved in the development and progression of the disease, demonstrating multiple compromised immune mechanisms.
Collapse
Affiliation(s)
- Stanislav Kotlyarov
- Department of Nursing, Ryazan State Medical University, 390026 Ryazan, Russia
| |
Collapse
|
31
|
Gut Microbiome and Organ Fibrosis. Nutrients 2022; 14:nu14020352. [PMID: 35057530 PMCID: PMC8781069 DOI: 10.3390/nu14020352] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/07/2022] [Accepted: 01/08/2022] [Indexed: 02/07/2023] Open
Abstract
Fibrosis is a pathological process associated with most chronic inflammatory diseases. It is defined by an excessive deposition of extracellular matrix proteins and can affect nearly every tissue and organ system in the body. Fibroproliferative diseases, such as intestinal fibrosis, liver cirrhosis, progressive kidney disease and cardiovascular disease, often lead to severe organ damage and are a leading cause of morbidity and mortality worldwide, for which there are currently no effective therapies available. In the past decade, a growing body of evidence has highlighted the gut microbiome as a major player in the regulation of the innate and adaptive immune system, with severe implications in the pathogenesis of multiple immune-mediated disorders. Gut microbiota dysbiosis has been associated with the development and progression of fibrotic processes in various organs and is predicted to be a potential therapeutic target for fibrosis management. In this review we summarize the state of the art concerning the crosstalk between intestinal microbiota and organ fibrosis, address the relevance of diet in different fibrotic diseases and discuss gut microbiome-targeted therapeutic approaches that are current being explored.
Collapse
|