1
|
Colov Tauby EP, Bojesen RD, Grube C, Miedzianogora REG, Buzquurz F, Fransgaard T, Knop FK, Gögenur I. Perioperative Metformin Treatment to Reduce Postoperative Hyperglycemia After Colon Cancer Surgery: A Randomized Clinical Trial. Dis Colon Rectum 2024; 67:1403-1412. [PMID: 39437217 DOI: 10.1097/dcr.0000000000003426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
BACKGROUND Surgery induces a stress response, causing insulin resistance that may result in postoperative hyperglycemia, which is associated with increased incidence of complications, longer hospitalization, and greater mortality. OBJECTIVE This study examined the effect of metformin treatment on the percentage of patients experiencing postoperative hyperglycemia after elective colon cancer surgery. DESIGN This was a randomized, double-blind, placebo-controlled trial. SETTINGS The study was conducted at Slagelse Hospital in Slagelse, Denmark. PATIENTS Patients without diabetes planned for elective surgery for colon cancer were included. INTERVENTIONS Patients received metformin (500 mg 3× per day) or placebo for 20 days before and 10 days after surgery. MAIN OUTCOME MEASURES Blood glucose levels were measured several times daily until the end of postoperative day 2. The main outcome measures were the percentage of patients who experienced at least 1 blood glucose measurement >7.7 and 10 mmol/L, respectively. Rates of complications within 30 days of surgery and Quality of Recovery-15 scores were also recorded. RESULTS Of the 48 included patients, 21 patients (84.0%) in the placebo group and 18 patients (78.3%) in the metformin group had at least 1 blood glucose measurement >7.7 mmol/L ( p = 0.72), and 13 patients (52.0%) in the placebo group had a measurement >10.0 mmol/L versus 5 patients (21.7%) in the metformin group ( p = 0.04). No differences in complication rates or Quality of Recovery-15 scores were seen. LIMITATIONS The number of patients in the study was too low to detect a possible difference in postoperative complications. Blood glucose was measured as spot measurements instead of continuous surveillance. CONCLUSIONS In patients without diabetes, metformin significantly reduced the percentage of patients experiencing postoperative hyperglycemia, as defined as spot blood glucose measurements >10 mmol/L after elective colon cancer surgery. See Video Abstract . TRATAMIENTO PERIOPERATORIO CON METFORMINA PARA REDUCIR LA HIPERGLUCEMIA POSOPERATORIA DESPUS DE LA CIRUGA DE CNCER DE COLON ENSAYO CLNICO ALEATORIZADO ANTECEDENTES:La cirugía induce una respuesta de estrés que causa resistencia a la insulina que puede resultar en hiperglucemia posoperatoria. La hiperglucemia posoperatoria se asocia con una mayor incidencia de complicaciones, una hospitalización más prolongada y una mayor mortalidad.OBJETIVO:Este estudio examinó el efecto del tratamiento con metformina en el porcentaje de pacientes que experimentaron hiperglucemia posoperatoria después de una cirugía electiva de cáncer de colon.DISEÑO:Este fue un ensayo aleatorio, doble ciego y controlado con placebo.AJUSTES:El estudio se realizó en el Hospital Slagelse, Slagelse, Dinamarca.PACIENTES:Se incluyeron pacientes sin diabetes planificados para cirugía electiva por cáncer de colon.INTERVENCIONES:Los pacientes recibieron 500 mg de metformina tres veces al día o placebo durante 20 días antes y 10 días después de la cirugía.PRINCIPALES MEDIDAS DE RESULTADO:Los niveles de glucosa en sangre se midieron varias veces al día hasta el final del segundo día postoperatorio. Las principales medidas de resultado fueron el porcentaje de pacientes que experimentaron al menos una medición de glucosa en sangre por encima de 7,7 y 10 mmol/l, respectivamente. También se registraron las tasas de complicaciones dentro de los 30 días posteriores a la cirugía y las puntuaciones de Calidad de recuperación-15.RESULTADOS:De los 48 pacientes incluidos, 21 (84,0%) en el grupo placebo y 18 (78,3%) en el grupo metformina tuvieron al menos una medición de glucosa en sangre superior a 7,7 mmol/l (p = 0,72), y 13 (52,0%) los pacientes del grupo de placebo tuvieron una medición superior a 10,0 mmol/l frente a 5 (21,7%) en el grupo de metformina (p = 0,04). No se observaron diferencias en las tasas de complicaciones ni en las puntuaciones de Calidad de recuperación-15.LIMITACIONES:El número de pacientes en el estudio fue demasiado bajo para detectar una posible diferencia en las complicaciones posoperatorias. La glucosa en sangre se midió mediante mediciones puntuales en lugar de vigilancia continua.CONCLUSIONES:En pacientes sin diabetes, la metformina redujo significativamente el porcentaje de pacientes que experimentaron hiperglucemia postoperatoria, definida como mediciones puntuales de glucosa en sangre por encima de 10 mmol/l después de una cirugía electiva de cáncer de colon . (Traducción-Dr Yolanda Colorado ).
Collapse
Affiliation(s)
- Emilie Palmgren Colov Tauby
- Department of Surgery, Slagelse Hospital, Slagelse, Denmark
- Center for Surgical Science, Zealand University Hospital, Køge, Denmark
| | - Rasmus D Bojesen
- Department of Surgery, Slagelse Hospital, Slagelse, Denmark
- Center for Surgical Science, Zealand University Hospital, Køge, Denmark
- Department of Surgery, Zealand University Hospital, Køge, Denmark
| | - Camilla Grube
- Department of Surgery, Slagelse Hospital, Slagelse, Denmark
- Center for Surgical Science, Zealand University Hospital, Køge, Denmark
| | - Rebecca E G Miedzianogora
- Department of Surgery, Slagelse Hospital, Slagelse, Denmark
- Center for Surgical Science, Zealand University Hospital, Køge, Denmark
| | - Fatima Buzquurz
- Department of Surgery, Slagelse Hospital, Slagelse, Denmark
- Center for Surgical Science, Zealand University Hospital, Køge, Denmark
| | - Tina Fransgaard
- Department of Surgery, Slagelse Hospital, Slagelse, Denmark
- Department of Surgery, Zealand University Hospital, Køge, Denmark
| | - Filip K Knop
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Steno Diabetes Center Copenhagen, Herlev, Denmark
| | - Ismail Gögenur
- Department of Surgery, Slagelse Hospital, Slagelse, Denmark
- Department of Surgery, Zealand University Hospital, Køge, Denmark
| |
Collapse
|
2
|
Pinheiro CG, Motta BP, Oliveira JO, Cardoso FN, Figueiredo ID, Machado RTA, da Silva PB, Chorilli M, Brunetti IL, Baviera AM. Bixin Combined with Metformin Ameliorates Insulin Resistance and Antioxidant Defenses in Obese Mice. Pharmaceuticals (Basel) 2024; 17:1202. [PMID: 39338363 PMCID: PMC11434661 DOI: 10.3390/ph17091202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/07/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024] Open
Abstract
Bixin (C25H30O4; 394.51 g/mol) is the main apocarotenoid found in annatto seeds. It has a 25-carbon open chain structure with a methyl ester group and carboxylic acid. Bixin increases the expression of antioxidant enzymes, which may be interesting for counteracting oxidative stress. This study investigated whether bixin-rich annatto extract combined with metformin was able to improve the disturbances observed in high-fat diet (HFD)-induced obesity in mice, with an emphasis on markers of oxidative damage and antioxidant defenses. HFD-fed mice were treated for 8 weeks with metformin (50 mg/kg) plus bixin-rich annatto extract (5.5 and 11 mg/kg). This study assessed glucose tolerance, insulin sensitivity, lipid profile and paraoxonase 1 (PON-1) activity in plasma, fluorescent AGEs (advanced glycation end products), TBARSs (thiobarbituric acid-reactive substances), and the activities of superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH-Px) in the liver and kidneys. Treatment with bixin plus metformin decreased body weight gain, improved insulin sensitivity, and decreased AGEs and TBARSs in the plasma, liver, and kidneys. Bixin plus metformin increased the activities of PON-1, SOD, CAT, and GSH-Px. Bixin combined with metformin improved the endogenous antioxidant defenses in the obese mice, showing that this combined therapy may have the potential to contrast the metabolic complications resulting from oxidative stress.
Collapse
Affiliation(s)
- Camila Graça Pinheiro
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-903, SP, Brazil; (C.G.P.); (B.P.M.); (J.O.O.); (F.N.C.); (I.D.F.); (I.L.B.)
| | - Bruno Pereira Motta
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-903, SP, Brazil; (C.G.P.); (B.P.M.); (J.O.O.); (F.N.C.); (I.D.F.); (I.L.B.)
| | - Juliana Oriel Oliveira
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-903, SP, Brazil; (C.G.P.); (B.P.M.); (J.O.O.); (F.N.C.); (I.D.F.); (I.L.B.)
| | - Felipe Nunes Cardoso
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-903, SP, Brazil; (C.G.P.); (B.P.M.); (J.O.O.); (F.N.C.); (I.D.F.); (I.L.B.)
| | - Ingrid Delbone Figueiredo
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-903, SP, Brazil; (C.G.P.); (B.P.M.); (J.O.O.); (F.N.C.); (I.D.F.); (I.L.B.)
| | - Rachel Temperani Amaral Machado
- Department of Drugs and Medicines, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-903, SP, Brazil; (R.T.A.M.); (P.B.d.S.); (M.C.)
| | - Patrícia Bento da Silva
- Department of Drugs and Medicines, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-903, SP, Brazil; (R.T.A.M.); (P.B.d.S.); (M.C.)
| | - Marlus Chorilli
- Department of Drugs and Medicines, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-903, SP, Brazil; (R.T.A.M.); (P.B.d.S.); (M.C.)
| | - Iguatemy Lourenço Brunetti
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-903, SP, Brazil; (C.G.P.); (B.P.M.); (J.O.O.); (F.N.C.); (I.D.F.); (I.L.B.)
| | - Amanda Martins Baviera
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-903, SP, Brazil; (C.G.P.); (B.P.M.); (J.O.O.); (F.N.C.); (I.D.F.); (I.L.B.)
| |
Collapse
|
3
|
Petakh P, Kamyshna I, Oksenych V, Kamyshnyi O. Metformin Alters mRNA Expression of FOXP3, RORC, and TBX21 and Modulates Gut Microbiota in COVID-19 Patients with Type 2 Diabetes. Viruses 2024; 16:281. [PMID: 38400056 PMCID: PMC10893440 DOI: 10.3390/v16020281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/24/2024] [Accepted: 02/09/2024] [Indexed: 02/25/2024] Open
Abstract
COVID-19 remains a significant global concern, particularly for individuals with type 2 diabetes who face an elevated risk of hospitalization and mortality. Metformin, a primary treatment for type 2 diabetes, demonstrates promising pleiotropic properties that may substantially mitigate disease severity and expedite recovery. Our study of the gut microbiota and the mRNA expression of pro-inflammatory and anti-inflammatory T-lymphocyte subpopulations showed that metformin increases bacterial diversity while modulating gene expression related to T-lymphocytes. This study found that people who did not take metformin had a downregulated expression of FOXP3 by 6.62-fold, upregulated expression of RORC by 29.0-fold, and upregulated TBX21 by 1.78-fold, compared to the control group. On the other hand, metformin patients showed a 1.96-fold upregulation in FOXP3 expression compared to the control group, along with a 1.84-fold downregulation in RORC expression and an 11.4-fold downregulation in TBX21 expression. Additionally, we found a correlation with gut microbiota (F/B ratio and alpha-diversity index) and pro-inflammatory biomarkers. This novel observation of metformin's impact on T-cells and gut microbiota opens new horizons for further exploration through clinical trials to validate and confirm our data. The potential of metformin to modulate immune responses and enhance gut microbiota diversity suggests a promising avenue for therapeutic interventions in individuals with type 2 diabetes facing an increased risk of severe outcomes from COVID-19.
Collapse
Affiliation(s)
- Pavlo Petakh
- Department of Biochemistry and Pharmacology, Uzhhorod National University, 88000 Uzhhorod, Ukraine
- Department of Microbiology, Virology, and Immunology, I. Horbachevsky Ternopil National Medical University, 46001 Ternopil, Ukraine
| | - Iryna Kamyshna
- Department of Medical Rehabilitation, I. Horbachevsky Ternopil National Medical University, 46001 Ternopil, Ukraine;
| | - Valentyn Oksenych
- Broegelmann Research Laboratory, Department of Clinical Science, University of Bergen, 5020 Bergen, Norway
| | - Oleksandr Kamyshnyi
- Department of Microbiology, Virology, and Immunology, I. Horbachevsky Ternopil National Medical University, 46001 Ternopil, Ukraine
| |
Collapse
|
4
|
Petakh P, Kamyshna I, Kamyshnyi A. Gene expression of protein kinase AMP-activated catalytic subunit alpha 1 (PRKAA1), solute carrier family 2 member 1 (SLC2A1) and mechanistic target of rapamycin (MTOR) in metformin-treated type 2 diabetes patients with COVID-19: impact on inflammation markers. Inflammopharmacology 2024; 32:885-891. [PMID: 37773574 DOI: 10.1007/s10787-023-01341-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 09/11/2023] [Indexed: 10/01/2023]
Abstract
The COVID-19 pandemic has resulted in a global health crisis that has severely impacted patients with type 2 diabetes (T2D). T2D patients have a higher risk of experiencing severe COVID-19 symptoms, hospitalization, and mortality compared to patients without diabetes. The dysregulated immune response in T2D patients can exacerbate the severity of COVID-19 symptoms. Insulin therapy, a common treatment for T2D patients, has been linked to increased mortality in COVID-19 patients with T2D. However, metformin, an anti-diabetic medication, has been shown to have anti-inflammatory properties that may mitigate the cytokine storm observed in severe COVID-19 cases. In this study, we investigated how the PRKAA1, SLC2A1, and MTOR genes contribute to inflammation markers in COVID-19 patients with T2D, who were receiving either insulin or metformin therapy. Our findings revealed that metformin treatment was associated with reduced expression of genes involved in Th1/Th17 cell differentiation. These results suggest that metformin could be a potential treatment option for T2D patients with COVID-19 due to its anti-inflammatory properties, which may improve patient outcomes.
Collapse
Affiliation(s)
- Pavlo Petakh
- Department of Biochemistry and Pharmacology, Uzhhorod National University, Uzhhorod, Ukraine.
- Department of Microbiology, Virology, and Immunology, I. Horbachevsky Ternopil National Medical University, Ternopil, 46001, Ukraine.
| | - Iryna Kamyshna
- Department of Medical Rehabilitation, I. Horbachevsky Ternopil National Medical University, Ternopil, Ukraine
| | - Aleksandr Kamyshnyi
- Department of Microbiology, Virology, and Immunology, I. Horbachevsky Ternopil National Medical University, Ternopil, 46001, Ukraine.
| |
Collapse
|
5
|
Scisciola L, Olivieri F, Ambrosino C, Barbieri M, Rizzo MR, Paolisso G. On the wake of metformin: Do anti-diabetic SGLT2 inhibitors exert anti-aging effects? Ageing Res Rev 2023; 92:102131. [PMID: 37984626 DOI: 10.1016/j.arr.2023.102131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/30/2023] [Accepted: 11/15/2023] [Indexed: 11/22/2023]
Abstract
Here we propose that SGLT2 inhibitors (SGLT2i), a class of drugs primarily used to treat type 2 diabetes, could also be repositioned as anti-aging senomorphic drugs (agents that prevent the extrinsic harmful effects of senescent cells). As observed for metformin, another anti-diabetic drug with established anti-aging potential, increasing evidence suggests that SGLT2i can modulate some relevant pathways associated with the aging process, such as free radical production, cellular energy regulation through AMP-activated protein kinase (AMPK), autophagy, and the activation of nuclear factor (NF)-kB/inflammasome. Some interesting pro-healthy effects were also observed on human microbiota. All these mechanisms converge on fueling a systemic proinflammatory condition called inflammaging, now recognized as the main risk factor for accelerated aging and increased risk of age-related disease development and progression. Inflammaging can be worsened by cellular senescence and immunosenescence, which contributes to the increased burden of senescent cells during aging, perpetuating the proinflammatory condition. Interestingly, increasing evidence suggested the direct effects of SGLT-2i against senescent cells, chronic activation of immune cells, and metabolic alterations induced by overnutrition (meta-inflammation). In this framework, we analyzed and discussed the multifaceted impact of SGLT2i, compared with metformin effects, as a potential anti-aging drug beyond diabetes management. Despite promising results in experimental studies, rigorous investigations with well-designed cellular and clinical investigations will need to validate SGLT2 inhibitors' anti-aging effects.
Collapse
Affiliation(s)
- Lucia Scisciola
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy.
| | - Fabiola Olivieri
- Department of Clinical and Molecular Sciences, DISCLIMO, Università Politecnica delle Marche, Ancona, Italy; Center of Clinical Pathology and Innovative Therapy, IRCCS INRCA, Ancona, Italy.
| | - Concetta Ambrosino
- Biogem Institute of Molecular Biology and Genetics, Ariano Irpino, Italy; Department of Science and Technology, University of Sannio, Benevento, Italy
| | - Michelangela Barbieri
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Maria Rosaria Rizzo
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Giuseppe Paolisso
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy; UniCamillus, International Medical University, Rome, Italy
| |
Collapse
|
6
|
Habibi-Kavashkohie MR, Scorza T, Oubaha M. Senescent Cells: Dual Implications on the Retinal Vascular System. Cells 2023; 12:2341. [PMID: 37830555 PMCID: PMC10571659 DOI: 10.3390/cells12192341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/12/2023] [Accepted: 09/19/2023] [Indexed: 10/14/2023] Open
Abstract
Cellular senescence, a state of permanent cell cycle arrest in response to endogenous and exogenous stimuli, triggers a series of gradual alterations in structure, metabolism, and function, as well as inflammatory gene expression that nurtures a low-grade proinflammatory milieu in human tissue. A growing body of evidence indicates an accumulation of senescent neurons and blood vessels in response to stress and aging in the retina. Prolonged accumulation of senescent cells and long-term activation of stress signaling responses may lead to multiple chronic diseases, tissue dysfunction, and age-related pathologies by exposing neighboring cells to the heightened pathological senescence-associated secretory phenotype (SASP). However, the ultimate impacts of cellular senescence on the retinal vasculopathies and retinal vascular development remain ill-defined. In this review, we first summarize the molecular players and fundamental mechanisms driving cellular senescence, as well as the beneficial implications of senescent cells in driving vital physiological processes such as embryogenesis, wound healing, and tissue regeneration. Then, the dual implications of senescent cells on the growth, hemostasis, and remodeling of retinal blood vessels are described to document how senescent cells contribute to both retinal vascular development and the severity of proliferative retinopathies. Finally, we discuss the two main senotherapeutic strategies-senolytics and senomorphics-that are being considered to safely interfere with the detrimental effects of cellular senescence.
Collapse
Affiliation(s)
- Mohammad Reza Habibi-Kavashkohie
- Department of Biological Sciences, Université du Québec à Montréal (UQAM), Montréal, QC H2L 2C4, Canada; (M.R.H.-K.); (T.S.)
- The Center of Excellence in Research on Orphan Diseases, Courtois Foundation (CERMO-FC), Montreal, QC H3G 1E8, Canada
| | - Tatiana Scorza
- Department of Biological Sciences, Université du Québec à Montréal (UQAM), Montréal, QC H2L 2C4, Canada; (M.R.H.-K.); (T.S.)
- The Center of Excellence in Research on Orphan Diseases, Courtois Foundation (CERMO-FC), Montreal, QC H3G 1E8, Canada
| | - Malika Oubaha
- Department of Biological Sciences, Université du Québec à Montréal (UQAM), Montréal, QC H2L 2C4, Canada; (M.R.H.-K.); (T.S.)
- The Center of Excellence in Research on Orphan Diseases, Courtois Foundation (CERMO-FC), Montreal, QC H3G 1E8, Canada
| |
Collapse
|
7
|
Merce AP, Ionică LN, Bînă AM, Popescu S, Lighezan R, Petrescu L, Borza C, Sturza A, Muntean DM, Creţu OM. Monoamine oxidase is a source of cardiac oxidative stress in obese rats: the beneficial role of metformin. Mol Cell Biochem 2023; 478:59-67. [PMID: 35723772 DOI: 10.1007/s11010-022-04490-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 05/31/2022] [Indexed: 01/17/2023]
Abstract
Diet-induced metabolic diseases, such as obesity, metabolic syndrome, and type 2 diabetes (T2DM) are the global threatening epidemics that share cardiovascular oxidative stress as common denominator. Monoamine oxidase (MAO) has recently emerged as a constant source of reactive oxygen species (ROS) in DM. Metformin, the first-line drug in T2DM, elicits cardiovascular protection via pleiotropic effects. The present study was aimed to assess the contribution of MAO to the early cardiac oxidative stress in a rat model of high-calorie junk food (HCJF) diet-induced obesity and prediabetes and whether metformin can alleviate it. After 6 months of HCJF, rats developed obesity and hyperglycemia. Hearts were isolated and used for the evaluation of MAO expression and ROS production. Experiments were performed in the presence vs absence of metformin (10 µM) and MAO-A and B inhibitors (clorgyline and selegiline, 10 µM), respectively. Both MAO isoforms were overexpressed and led to increased ROS generation in cardiac samples harvested from the obese animals. Acute treatment with metformin and MAO inhibitors was able to mitigate oxidative stress. More important, metformin downregulated MAO expression in the diseased samples. In conclusion, MAO contributes to oxidative stress in experimental obesity and can be targeted with metformin.
Collapse
Affiliation(s)
- Adrian P Merce
- Department of Functional Sciences - Pathophysiology, "Victor Babeş" University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041, Timişoara, Romania.,Center for Translational Research and Systems Medicine, "Victor Babeş" University of Medicine and Pharmacy, EftimieMurgu Sq. No. 2, 300041, Timişoara, Romania
| | - Loredana N Ionică
- Department of Functional Sciences - Pathophysiology, "Victor Babeş" University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041, Timişoara, Romania.,Center for Translational Research and Systems Medicine, "Victor Babeş" University of Medicine and Pharmacy, EftimieMurgu Sq. No. 2, 300041, Timişoara, Romania
| | - Anca M Bînă
- Department of Functional Sciences - Pathophysiology, "Victor Babeş" University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041, Timişoara, Romania.,Center for Translational Research and Systems Medicine, "Victor Babeş" University of Medicine and Pharmacy, EftimieMurgu Sq. No. 2, 300041, Timişoara, Romania
| | - Simona Popescu
- Department of Internal Medicine VII - Diabetes, Nutrition, Metabolic Diseases, "Victor Babeş" University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041, Timişoara, Romania
| | - Rodica Lighezan
- Department of Infectious Diseases-Parasitology, "Victor Babeş" University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041, Timişoara, Romania
| | - Lucian Petrescu
- Department of Cardiology - Cardiology II, "Victor Babeş" University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041, Timişoara, Romania
| | - Claudia Borza
- Department of Functional Sciences - Pathophysiology, "Victor Babeş" University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041, Timişoara, Romania.,Center for Translational Research and Systems Medicine, "Victor Babeş" University of Medicine and Pharmacy, EftimieMurgu Sq. No. 2, 300041, Timişoara, Romania
| | - Adrian Sturza
- Department of Functional Sciences - Pathophysiology, "Victor Babeş" University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041, Timişoara, Romania. .,Center for Translational Research and Systems Medicine, "Victor Babeş" University of Medicine and Pharmacy, EftimieMurgu Sq. No. 2, 300041, Timişoara, Romania. .,Department of Functional Sciences III - Pathophysiology, Center for Translational Research and Systems Medicine, "Victor Babeş" University of Medicine and Pharmacy of Timişoara , Eftimie Murgu Sq. No. 2, 300041, Timişoara, Romania.
| | - Danina M Muntean
- Department of Functional Sciences - Pathophysiology, "Victor Babeş" University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041, Timişoara, Romania. .,Center for Translational Research and Systems Medicine, "Victor Babeş" University of Medicine and Pharmacy, EftimieMurgu Sq. No. 2, 300041, Timişoara, Romania. .,Department of Functional Sciences III - Pathophysiology, Center for Translational Research and Systems Medicine, "Victor Babeş" University of Medicine and Pharmacy of Timişoara , Eftimie Murgu Sq. No. 2, 300041, Timişoara, Romania.
| | - Octavian M Creţu
- Department of Surgery - Surgical Semiotics, "Victor Babeş" University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041, Timişoara, Romania.,Center for Hepato‑Biliary and Pancreatic Surgery, "Victor Babeş" University of Medicine and Pharmacy Timişoara, Eftimie Murgu Sq. No. 2, 300041, Timişoara, Romania
| |
Collapse
|
8
|
Bhatt IS, Wilson N, Dias R, Torkamani A. A genome-wide association study of tinnitus reveals shared genetic links to neuropsychiatric disorders. Sci Rep 2022; 12:22511. [PMID: 36581688 PMCID: PMC9800371 DOI: 10.1038/s41598-022-26413-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 12/14/2022] [Indexed: 12/30/2022] Open
Abstract
Tinnitus, a phantom perception of sound in the absence of any external sound source, is a prevalent health condition often accompanied by psychiatric comorbidities. Recent genome-wide association studies (GWAS) highlighted a polygenic nature of tinnitus susceptibility. A shared genetic component between tinnitus and psychiatric conditions remains elusive. Here we present a GWAS using the UK Biobank to investigate the genetic processes linked to tinnitus and tinnitus-related distress, followed by gene-set enrichment analyses. The UK Biobank sample comprised 132,438 individuals with tinnitus and genotype data. Among the study sample, 38,525 individuals reported tinnitus, and 26,889 participants mentioned they experienced tinnitus-related distress in daily living. The genome-wide association analyses were conducted on tinnitus and tinnitus-related distress. We conducted enrichment analyses using FUMA to further understand the genetic processes linked to tinnitus and tinnitus-related distress. A genome-wide significant locus (lead SNP: rs71595470) for tinnitus was obtained in the vicinity of GPM6A. Nineteen independent loci reached suggestive association with tinnitus. Fifteen independent loci reached suggestive association with tinnitus-related distress. The enrichment analysis revealed a shared genetic component between tinnitus and psychiatric traits, such as bipolar disorder, feeling worried, cognitive ability, fast beta electroencephalogram, and sensation seeking. Metabolic, cardiovascular, hematological, and pharmacological gene sets revealed a significant association with tinnitus. Anxiety and stress-related gene sets revealed a significant association with tinnitus-related distress. The GWAS signals for tinnitus were enriched in the hippocampus and cortex, and for tinnitus-related distress were enriched in the brain and spinal cord. This study provides novel insights into genetic processes associated with tinnitus and tinnitus-related distress and demonstrates a shared genetic component underlying tinnitus and psychiatric conditions. Further collaborative attempts are necessary to identify genetic components underlying the phenotypic heterogeneity in tinnitus and provide biological insight into the etiology.
Collapse
Affiliation(s)
- Ishan Sunilkumar Bhatt
- grid.214572.70000 0004 1936 8294Department of Communication Sciences & Disorders, University of Iowa, 250 Hawkins Dr, Iowa City, IA 52242 USA
| | - Nicholas Wilson
- Department of Integrative Structural and Computational Biology Scripps Science Institute, La Jolla, CA 92037 USA
| | - Raquel Dias
- grid.15276.370000 0004 1936 8091Department of Microbiology and Cell Science, University of Florida, Gainesville, FL 32608 USA
| | - Ali Torkamani
- Department of Integrative Structural and Computational Biology Scripps Science Institute, La Jolla, CA 92037 USA
| |
Collapse
|
9
|
Banerjee A, Ray A, Barpanda A, Dash A, Gupta I, Nissa MU, Zhu H, Shah A, Duttagupta SP, Goel A, Srivastava S. Evaluation of autoantibody signatures in pituitary adenoma patients using human proteome arrays. Proteomics Clin Appl 2022; 16:e2100111. [PMID: 35939377 DOI: 10.1002/prca.202100111] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 07/08/2022] [Accepted: 08/03/2022] [Indexed: 12/30/2022]
Abstract
PURPOSE To identify the specific diagnostic biomarkers related to pituitary adenomas (PAs), we performed serological antibody profiles for three types of PAs, namely Acromegaly, Cushing's and Nonfunctional Pituitary Adenomas (NFPAs), using the human proteome (HuProt) microarray. This is the first study describing the serum autoantibody profile of PAs. EXPERIMENTAL DESIGN We performed serological autoantibody profiling of four healthy controls, four Acromegaly, three Cushing's and three NFPAs patient samples to obtain their autoantibody profiles, which were used for studying expression, interaction and altered biological pathways. Further, significant autoantibodies of PAs were compared with data available for glioma, meningioma and AAgAtlas for their specificity. RESULTS Autoantibody profile of PAs led to the identification of differentially expressed significant proteins such as AKNAD1 (AT-Hook Transcription Factor [AKNA] Domain Containing 1), NINJ1 (Nerve injury-induced protein 1), L3HYPDH (Trans-3-hydroxy-L-proline dehydratase), RHOG (Rho-related GTP-binding protein) and PTP4A1 (Protein Tyrosine Phosphatase Type IVA 1) in Acromegaly. Protein ABR (Active breakpoint cluster region-related protein), ST6GALNAC6 (ST6 N-acetylgalactosaminide alpha-2, 6-sialyltransferase 6), NOL3 (Nucleolar protein 3), ANXA8 (Annexin A8) and POLR2H (RNA polymerase II, I and III subunit H) showed an antigenic response in Cushing's patient's serum samples. Protein dipeptidyl peptidase 3 (DPP3) and reticulon-4 (RTN4) exhibited a very high antigenic response in NFPA patients. These proteins hold promise as potential autoantibody biomarkers in PAs.
Collapse
Affiliation(s)
- Arghya Banerjee
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, India
| | - Arka Ray
- Centre for Research in Nanotechnology & Science (CRNTS), Indian Institute of Technology Bombay, Powai, Mumbai, India
| | - Abhilash Barpanda
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, India
| | - Ankita Dash
- Miranda House, University of Delhi, University Enclave, New Delhi, Delhi, India
| | - Ishika Gupta
- Department of Biotechnology Engineering, University Institute of Engineering and Technology, Panjab University, Chandigarh, India
| | - Mehar Un Nissa
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, India
| | - Heng Zhu
- Department of Pharmacology and Molecular Sciences/High-Throughput Biology Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Abhidha Shah
- Department of Neurosurgery at King Edward Memorial Hospital and Seth G. S. Medical College, Parel, Mumbai, India
| | - Siddhartha P Duttagupta
- Department of Electrical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai, India
| | - Atul Goel
- Department of Neurosurgery at King Edward Memorial Hospital and Seth G. S. Medical College, Parel, Mumbai, India
| | - Sanjeeva Srivastava
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, India
| |
Collapse
|
10
|
Derkach KV, Bondareva VM, Sharova TS, Shpakov AO. Efficacy of Various Metformin Doses for the Restoration of Metabolic Indices and Hormonal Status in Early Weaned Male Rats. J EVOL BIOCHEM PHYS+ 2022. [DOI: 10.1134/s0022093022040275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
11
|
Wen W, Huang B, Ye S. Metformin Ameliorates Epithelial-Mesenchymal Transition of Renal Tubular Epithelial Cells in Diabetes by Increasing Vitamin D Receptor Expression. Diabetes Metab Syndr Obes 2022; 15:4001-4010. [PMID: 36582506 PMCID: PMC9792813 DOI: 10.2147/dmso.s389918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 11/15/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Metformin is used as a first-line drug for the treatment of type 2 diabetes. Epithelial-mesenchymal transition (EMT) plays a significant role in the development of renal tubular damage in diabetic kidney disease. However, the underlying mechanisms of EMT in diabetic kidney disease are unclear and how to inhibit this process remains to be explored. METHODS C57 mice were randomly divided into four groups, including the normal control group (NC group), the Type 2 diabetes group (T2DM group), the metformin group (MET group), and glibenclamide group (GLIB). Fasting blood glucose (FBG), glycated hemoglobin (HbA1c), urinary albumin, RBP, PCX, and creatinine were measured. Renal pathology was observed with HE staining. Molecular mechanism of VDR expression are regulated by metformin through wound healing assay, and Western blot analysis of VDR, Ecad, and SMA in HK2 cells. RESULTS In animal experiments, compared with the NC group, the T2DM group showed decreased body weight, increased levels of FBG, HbA1c, UAlb/UCR, URBP/UCR, and UPCX/UCR, decreased levels of VDR protein and mRNA expression in renal tissues (P < 0.05), and significantly increased renal pathological damage in mice in the T2DM group. Compared with the T2DM group, mice in the GLIB and MET groups had higher body weight and lower FBG, HbA1c, UAlb/UCR, URBP/UCR, and UPCX/UCR (P < 0.05). In addition, renal pathological damage was significantly reduced in the MET group compared to the GLIB group. In HK2 cells, high glucose promoted the reduction of VDR and the development of EMT compared to the NC group. In addition, we found that Metformin can up-regulate VDR and inhibit EMT. CONCLUSION Our study shows that the renoprotective effect of metformin is independent of glycemic control and metformin is involved in the progression of EMT by regulating VDR expression.
Collapse
Affiliation(s)
- Wenjie Wen
- Department of Endocrinology and Laboratory for Diabetes, The First Affiliated Hospital of University of Science and Technology of China (USTC), Department of Life Sciences and Medicine, University of Science and Technology of China, Hefei, People’s Republic of China
- Department of Life Sciences and Medicine, University of Science and Technology of China, Hefei, People’s Republic of China
| | - Bin Huang
- Department of Endocrinology and Laboratory for Diabetes, The First Affiliated Hospital of University of Science and Technology of China (USTC), Department of Life Sciences and Medicine, University of Science and Technology of China, Hefei, People’s Republic of China
- Department of Life Sciences and Medicine, University of Science and Technology of China, Hefei, People’s Republic of China
| | - Shandong Ye
- Department of Endocrinology and Laboratory for Diabetes, The First Affiliated Hospital of University of Science and Technology of China (USTC), Department of Life Sciences and Medicine, University of Science and Technology of China, Hefei, People’s Republic of China
- Department of Life Sciences and Medicine, University of Science and Technology of China, Hefei, People’s Republic of China
- Correspondence: Shandong Ye, University of Science and Technology of China, No. 96 Jinzhai Road, Hefei, Anhui Province, 230026, People’s Republic of China, Email
| |
Collapse
|