1
|
Honan LE, Fraser-Spears R, Daws LC. Organic cation transporters in psychiatric and substance use disorders. Pharmacol Ther 2024; 253:108574. [PMID: 38072333 PMCID: PMC11052553 DOI: 10.1016/j.pharmthera.2023.108574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/01/2023] [Accepted: 11/30/2023] [Indexed: 12/23/2023]
Abstract
Psychiatric and substance use disorders inflict major public health burdens worldwide. Their widespread burden is compounded by a dearth of effective treatments, underscoring a dire need to uncover novel therapeutic targets. In this review, we summarize the literature implicating organic cation transporters (OCTs), including three subtypes of OCTs (OCT1, OCT2, and OCT3) and the plasma membrane monoamine transporter (PMAT), in the neurobiology of psychiatric and substance use disorders with an emphasis on mood and anxiety disorders, alcohol use disorder, and psychostimulant use disorder. OCTs transport monoamines with a low affinity but high capacity, situating them to play a central role in regulating monoamine homeostasis. Preclinical evidence discussed here suggests that OCTs may serve as promising targets for treatment of psychiatric and substance use disorders and encourage future research into their therapeutic potential.
Collapse
Affiliation(s)
- Lauren E Honan
- The University of Texas Health Science Center at San Antonio, Department of Cellular & Integrative Physiology, USA
| | - Rheaclare Fraser-Spears
- University of the Incarnate Word, Feik School of Pharmacy, Department of Pharmaceutical Sciences, USA
| | - Lynette C Daws
- The University of Texas Health Science Center at San Antonio, Department of Cellular & Integrative Physiology, USA; The University of Texas Health Science Center at San Antonio, Department of Pharmacology, USA.
| |
Collapse
|
2
|
Weber BL, Nicodemus MM, Hite AK, Spalding IR, Beaver JN, Scrimshaw LR, Kassis SK, Reichert JM, Ford MT, Russell CN, Hallal EM, Gilman TL. Heterotypic Stressors Unmask Behavioral Influences of PMAT Deficiency in Mice. Int J Mol Sci 2023; 24:16494. [PMID: 38003684 PMCID: PMC10671398 DOI: 10.3390/ijms242216494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/16/2023] [Accepted: 11/16/2023] [Indexed: 11/26/2023] Open
Abstract
Certain life stressors having enduring physiological and behavioral consequences, in part by eliciting dramatic signaling shifts in monoamine neurotransmitters. High monoamine levels can overwhelm selective transporters like the serotonin transporter. This is when polyspecific transporters like plasma membrane monoamine transporter (PMAT, Slc29a4) are hypothesized to contribute most to monoaminergic signaling regulation. Here, we employed two distinct counterbalanced stressors-fear conditioning and swim stress-in mice to systematically determine how reductions in PMAT function affect heterotypic stressor responsivity. We hypothesized that male heterozygotes would exhibit augmented stressor responses relative to female heterozygotes. Decreased PMAT function enhanced context fear expression, an effect unexpectedly obscured by a sham stress condition. Impaired cued fear extinction retention and enhanced context fear expression in males were conversely unmasked by a sham swim condition. Abrogated corticosterone levels in male heterozygotes that underwent swim stress after context fear conditioning did not map onto any measured behaviors. In sum, male heterozygous mouse fear behaviors proved malleable in response to preceding stressor or sham stress exposure. Combined, these data indicate that reduced male PMAT function elicits a form of stress-responsive plasticity. Future studies should assess how PMAT is differentially affected across sexes and identify downstream consequences of the stress-shifted corticosterone dynamics.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - T. Lee Gilman
- Department of Psychological Sciences, Brain Health Research Institute, Healthy Communities Research Institute, Kent State University, Kent, OH 44240, USA
| |
Collapse
|
3
|
Weber BL, Nicodemus MM, Hite AK, Spalding IR, Beaver JN, Scrimshaw LR, Kassis SK, Reichert JM, Ford MT, Russell CN, Hallal EM, Gilman TL. Heterotypic stressors unmask behavioral influences of PMAT deficiency in mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.30.555632. [PMID: 37693400 PMCID: PMC10491137 DOI: 10.1101/2023.08.30.555632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Certain life stressors having enduring physiological and behavioral consequences, in part by eliciting dramatic signaling shifts in monoamine neurotransmitters. High monoamine levels can overwhelm selective transporters like the serotonin transporter. This is when polyspecific transporters like plasma membrane monoamine transporter (PMAT, Slc29a4) are hypothesized to contribute most to monoaminergic signaling regulation. Here, we employed two distinct counterbalanced stressors - fear conditioning, and swim stress - in mice to systematically determine how reductions in PMAT function affect heterotypic stressor responsivity. We hypothesized male heterozygotes would exhibit augmented stressor responses relative to female heterozygotes. Decreased PMAT function enhanced context fear expression, an effect unexpectedly obscured by a sham stress condition. Impaired cued fear extinction retention and enhanced context fear expression in males were conversely unmasked by a sham swim condition. Abrogated corticosterone levels in male heterozygotes that underwent swim stress after context fear conditioning did not map on to any measured behaviors. In sum, male heterozygous mouse fear behaviors proved malleable in response to preceding stressor or sham stress exposure. Combined, these data indicate reduced male PMAT function elicits a form of stress-responsive plasticity. Future studies should assess how PMAT is differentially affected across sexes and identify downstream consequences of the stress-shifted corticosterone dynamics.
Collapse
Affiliation(s)
- Brady L Weber
- Department of Psychological Sciences, Brain Health Research Institute, Healthy Communities Research Institute, Kent State University, Kent, OH, USA
| | - Marissa M Nicodemus
- Department of Psychological Sciences, Brain Health Research Institute, Healthy Communities Research Institute, Kent State University, Kent, OH, USA
| | - Allianna K Hite
- Department of Psychological Sciences, Brain Health Research Institute, Healthy Communities Research Institute, Kent State University, Kent, OH, USA
| | - Isabella R Spalding
- Department of Psychological Sciences, Brain Health Research Institute, Healthy Communities Research Institute, Kent State University, Kent, OH, USA
| | - Jasmin N Beaver
- Department of Psychological Sciences, Brain Health Research Institute, Healthy Communities Research Institute, Kent State University, Kent, OH, USA
| | - Lauren R Scrimshaw
- Department of Psychological Sciences, Brain Health Research Institute, Healthy Communities Research Institute, Kent State University, Kent, OH, USA
| | - Sarah K Kassis
- Department of Psychological Sciences, Brain Health Research Institute, Healthy Communities Research Institute, Kent State University, Kent, OH, USA
| | - Julie M Reichert
- Department of Psychological Sciences, Brain Health Research Institute, Healthy Communities Research Institute, Kent State University, Kent, OH, USA
| | - Matthew T Ford
- Department of Psychological Sciences, Brain Health Research Institute, Healthy Communities Research Institute, Kent State University, Kent, OH, USA
| | - Cameron N Russell
- Department of Psychological Sciences, Brain Health Research Institute, Healthy Communities Research Institute, Kent State University, Kent, OH, USA
| | - Elayna M Hallal
- Department of Psychological Sciences, Brain Health Research Institute, Healthy Communities Research Institute, Kent State University, Kent, OH, USA
| | - T Lee Gilman
- Department of Psychological Sciences, Brain Health Research Institute, Healthy Communities Research Institute, Kent State University, Kent, OH, USA
| |
Collapse
|
4
|
Weber BL, Beaver JN, Gilman TL. Summarizing studies using constitutive genetic deficiency to investigate behavioural influences of uptake 2 monoamine transporters. Basic Clin Pharmacol Toxicol 2023; 133:439-458. [PMID: 36316031 PMCID: PMC10657738 DOI: 10.1111/bcpt.13810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 10/14/2022] [Accepted: 10/24/2022] [Indexed: 11/27/2022]
Abstract
Burgeoning literature demonstrates that monoamine transporters with high transport capacity but lower substrate affinity (i.e., uptake 2) contribute meaningfully to regulation of monoamine neurotransmitter signalling. However, studying behavioural influences of uptake 2 is hindered by an absence of selective inhibitors largely free of off-target, confounding effects. This contrasts with study of monoamine transporters with low transport capacity but high substrate affinity (i.e., uptake 1), for which there are many reasonably selective inhibitors. To circumvent this dearth of pharmacological tools for studying uptake 2, researchers have instead employed mice with constitutive genetic deficiency in three separate transporters. By studying baseline behavioural shifts, plus behavioural responses to environmental and pharmacological manipulations-the latter primarily targeting uptake 1-investigators have been creatively characterizing the behavioural, and often sex-specific, influences of uptake 2. This non-systematic mini review summarizes current uptake 2 behaviour literature, highlighting emphases on stress responsivity in organic cation transporter 2 (OCT2) work, psychostimulant responsivity in OCT3 and plasma membrane monoamine transporter (PMAT) investigations, and antidepressant responsivity in all three. Collectively, this small but growing body of work reiterates the necessity for development of selective uptake 2-inhibiting drugs, with reviewed studies suggesting that these might advance personalized treatment approaches.
Collapse
Affiliation(s)
- Brady L Weber
- Department of Psychological Sciences & Brain Health Research Institute, Kent State University, Kent, Ohio, USA
| | - Jasmin N Beaver
- Department of Psychological Sciences & Brain Health Research Institute, Kent State University, Kent, Ohio, USA
| | - T Lee Gilman
- Department of Psychological Sciences & Brain Health Research Institute, Kent State University, Kent, Ohio, USA
| |
Collapse
|
5
|
Camacho-Hernandez GA, Jahan K, Newman AH. Illuminating the monoamine transporters: Fluorescently labelled ligands to study dopamine, serotonin and norepinephrine transporters. Basic Clin Pharmacol Toxicol 2023; 133:473-484. [PMID: 36527444 PMCID: PMC11309735 DOI: 10.1111/bcpt.13827] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/14/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022]
Abstract
Fluorescence microscopy has revolutionized the visualization of physiological processes in live-cell systems. With the recent innovations in super resolution microscopy, these events can be examined with high precision and accuracy. The development of fluorescently labelled small molecules has provided a significant advance in understanding the physiological relevance of targeted proteins that can now be visualized at the cellular level. One set of physiologically important target proteins are the monoamine transporters (MATs) that play an instrumental role in maintaining monoamine signalling homeostasis. Understanding the mechanisms underlying their regulation and dysregulation is fundamental to treating several neuropsychiatric conditions such as attention deficit hyperactivity disorder (ADHD), anxiety, depression and substance use disorders. Herein, we describe the rationale behind the small molecule design of fluorescently labelled ligands (FLL) either as MAT substrates or inhibitors as well as their applications to advance our understanding of this class of transporters in health and disease.
Collapse
Affiliation(s)
- Gisela Andrea Camacho-Hernandez
- Medicinal Chemistry Section, Molecular Targets and Medications Discovery Branch, National Institutes on Drug Abuse - Intramural Research Program, Baltimore, Maryland, USA
| | - Khorshada Jahan
- Medicinal Chemistry Section, Molecular Targets and Medications Discovery Branch, National Institutes on Drug Abuse - Intramural Research Program, Baltimore, Maryland, USA
| | - Amy Hauck Newman
- Medicinal Chemistry Section, Molecular Targets and Medications Discovery Branch, National Institutes on Drug Abuse - Intramural Research Program, Baltimore, Maryland, USA
| |
Collapse
|
6
|
Hersey M, Bartole MK, Jones CS, Newman AH, Tanda G. Are There Prevalent Sex Differences in Psychostimulant Use Disorder? A Focus on the Potential Therapeutic Efficacy of Atypical Dopamine Uptake Inhibitors. Molecules 2023; 28:5270. [PMID: 37446929 PMCID: PMC10343811 DOI: 10.3390/molecules28135270] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/23/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
Psychostimulant use disorders (PSUD) affect a growing number of men and women and exert sizable public health and economic burdens on our global society. Notably, there are some sex differences in the onset of dependence, relapse rates, and treatment success with PSUD observed in preclinical and clinical studies. The subtle sex differences observed in the behavioral aspects of PSUD may be associated with differences in the neurochemistry of the dopaminergic system between sexes. Preclinically, psychostimulants have been shown to increase synaptic dopamine (DA) levels and may downregulate the dopamine transporter (DAT). This effect is greatest in females during the high estradiol phase of the estrous cycle. Interestingly, women have been shown to be more likely to begin drug use at younger ages and report higher levels of desire to use cocaine than males. Even though there is currently no FDA-approved medication, modafinil, a DAT inhibitor approved for use in the treatment of narcolepsy and sleep disorders, has shown promise in the treatment of PSUD among specific populations of affected individuals. In this review, we highlight the therapeutic potential of modafinil and other atypical DAT inhibitors focusing on the lack of sex differences in the actions of these agents.
Collapse
Affiliation(s)
| | | | | | | | - Gianluigi Tanda
- Medication Development Program, NIDA IRP, Baltimore, MD 21224, USA; (M.H.); (M.K.B.); (C.S.J.); (A.H.N.)
| |
Collapse
|
7
|
Clauss NJ, Mayer FP, Owens WA, Vitela M, Clarke KM, Bowman MA, Horton RE, Gründemann D, Schmid D, Holy M, Gould GG, Koek W, Sitte HH, Daws LC. Ethanol inhibits dopamine uptake via organic cation transporter 3: Implications for ethanol and cocaine co-abuse. Mol Psychiatry 2023; 28:2934-2945. [PMID: 37308680 PMCID: PMC10615754 DOI: 10.1038/s41380-023-02064-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 12/20/2022] [Accepted: 03/29/2023] [Indexed: 06/14/2023]
Abstract
Concurrent cocaine and alcohol use is among the most frequent drug combination, and among the most dangerous in terms of deleterious outcomes. Cocaine increases extracellular monoamines by blocking dopamine (DA), norepinephrine (NE) and serotonin (5-HT) transporters (DAT, NET and SERT, respectively). Likewise, ethanol also increases extracellular monoamines, however evidence suggests that ethanol does so independently of DAT, NET and SERT. Organic cation transporter 3 (OCT3) is an emergent key player in the regulation of monoamine signaling. Using a battery of in vitro, in vivo electrochemical, and behavioral approaches, as well as wild-type and constitutive OCT3 knockout mice, we show that ethanol's actions to inhibit monoamine uptake are dependent on OCT3. These findings provide a novel mechanistic basis whereby ethanol enhances the neurochemical and behavioral effects of cocaine and encourage further research into OCT3 as a target for therapeutic intervention in the treatment of ethanol and ethanol/cocaine use disorders.
Collapse
Affiliation(s)
- N J Clauss
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - F P Mayer
- Center for Physiology and Pharmacology, Medical University of Vienna, 1090, Vienna, Austria
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, DK-2200, Denmark
| | - W A Owens
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - M Vitela
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - K M Clarke
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - M A Bowman
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - R E Horton
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - D Gründemann
- Department of Pharmacology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931, Cologne, Germany
| | - D Schmid
- Center for Physiology and Pharmacology, Medical University of Vienna, 1090, Vienna, Austria
| | - M Holy
- Center for Physiology and Pharmacology, Medical University of Vienna, 1090, Vienna, Austria
| | - G G Gould
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - W Koek
- Department of Cell Systems and Anatomy, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - H H Sitte
- Center for Physiology and Pharmacology, Medical University of Vienna, 1090, Vienna, Austria
- Center for Addiction Research and Science, Medical University Vienna, Waehringerstrasse 13 A, 1090, Vienna, Austria
| | - L C Daws
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA.
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA.
| |
Collapse
|
8
|
The Role of Organic Cation Transporters in the Pharmacokinetics, Pharmacodynamics and Drug-Drug Interactions of Tyrosine Kinase Inhibitors. Int J Mol Sci 2023; 24:ijms24032101. [PMID: 36768423 PMCID: PMC9917293 DOI: 10.3390/ijms24032101] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/13/2023] [Accepted: 01/16/2023] [Indexed: 01/21/2023] Open
Abstract
Tyrosine kinase inhibitors (TKIs) decisively contributed in revolutionizing the therapeutic approach to cancer, offering non-invasive, tolerable therapies for a better quality of life. Nonetheless, degree and duration of the response to TKI therapy vary depending on cancer molecular features, the ability of developing resistance to the drug, on pharmacokinetic alterations caused by germline variants and unwanted drug-drug interactions at the level of membrane transporters and metabolizing enzymes. A great deal of approved TKIs are inhibitors of the organic cation transporters (OCTs). A handful are also substrates of them. These transporters are polyspecific and highly expressed in normal epithelia, particularly the intestine, liver and kidney, and are, hence, arguably relevant sites of TKI interactions with other OCT substrates. Moreover, OCTs are often repressed in cancer cells and might contribute to the resistance of cancer cells to TKIs. This article reviews the OCT interactions with approved and in-development TKIs reported in vitro and in vivo and critically discusses the potential clinical ramifications thereof.
Collapse
|
9
|
Gould GG, Barba-Escobedo PA, Horton RE, Daws LC. High Affinity Decynium-22 Binding to Brain Membrane Homogenates and Reduced Dorsal Camouflaging after Acute Exposure to it in Zebrafish. Front Pharmacol 2022; 13:841423. [PMID: 35754508 PMCID: PMC9218599 DOI: 10.3389/fphar.2022.841423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 03/29/2022] [Indexed: 11/13/2022] Open
Abstract
Organic cation transporters (OCTs) are expressed in the mammalian brain, kidney, liver, placenta, and intestines, where they facilitate the transport of cations and other substrates between extracellular fluids and cells. Despite increasing reliance on ectothermic vertebrates as alternative toxicology models, properties of their OCT homologs transporting many drugs and toxins remain poorly characterized. Recently, in zebrafish (Danio rerio), two proteins with functional similarities to human OCTs were shown to be highly expressed in the liver, kidney, eye, and brain. This study is the first to characterize in vivo uptake to the brain and the high-affinity brain membrane binding of the mammalian OCT blocker 1-1'-diethyl-2,2'cyanine iodide (decynium-22 or D-22) in zebrafish. Membrane saturation binding of [3H] D-22 in pooled zebrafish whole brain versus mouse hippocampal homogenates revealed a high-affinity binding site with a KD of 5 ± 2.5 nM and Bmax of 1974 ± 410 fmol/mg protein in the zebrafish brain, and a KD of 3.3 ± 2.3 and Bmax of 704 ± 182 fmol/mg protein in mouse hippocampus. The binding of [3H] D-22 to brain membrane homogenates was partially blocked by the neurotoxic cation 1-methyl-4-phenylpyridinium (MPP+), a known OCT substrate. To determine if D-22 bath exposures reach the brain, zebrafish were exposed to 25 nM [3H] D-22 for 10 min, and 736 ± 68 ng/g wet weight [3H] D-22 was bound. Acute behavioral effects of D-22 in zebrafish were characterized in two anxiety-relevant tests. In the first cohort of zebrafish, 12.5, 25, or 50 mg/L D-22 had no effect on their height in the dive tank or entries and time spent in white arms of a light/dark plus maze. By contrast, 25 mg/L buspirone increased zebrafish dive tank top-dwelling (p < 0.05), an anticipated anxiolytic effect. However, a second cohort of zebrafish treated with 50 mg/L D-22 made more white arm entries, and females spent more time in white than controls. Based on these findings, it appears that D-22 bath treatments reach the zebrafish brain and have partial anxiolytic properties, reducing anti-predator dorsal camouflaging, without increasing vertical exploration. High-affinity binding of [3H] D-22 in zebrafish brain and mouse brain was similar, with nanomolar affinity, possibly at conserved OCT site(s).
Collapse
Affiliation(s)
- Georgianna G Gould
- Center for Biomedical Neuroscience, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States.,Department of Cellular and Integrative Physiology, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Priscilla A Barba-Escobedo
- Center for Biomedical Neuroscience, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States.,Department of Endodontics, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Rebecca E Horton
- Center for Biomedical Neuroscience, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States.,Department of Cellular and Integrative Physiology, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Lynette C Daws
- Center for Biomedical Neuroscience, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States.,Department of Cellular and Integrative Physiology, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States.,Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| |
Collapse
|
10
|
Beaver JN, Weber BL, Ford MT, Anello AE, Kassis SK, Gilman TL. Uncovering Functional Contributions of PMAT ( Slc29a4) to Monoamine Clearance Using Pharmacobehavioral Tools. Cells 2022; 11:cells11121874. [PMID: 35741002 PMCID: PMC9220966 DOI: 10.3390/cells11121874] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/01/2022] [Accepted: 06/07/2022] [Indexed: 11/16/2022] Open
Abstract
Plasma membrane monoamine transporter (PMAT, Slc29a4) transports monoamine neurotransmitters, including dopamine and serotonin, faster than more studied monoamine transporters, e.g., dopamine transporter (DAT), or serotonin transporter (SERT), but with ~400–600-fold less affinity. A considerable challenge in understanding PMAT’s monoamine clearance contributions is that no current drugs selectively inhibit PMAT. To advance knowledge about PMAT’s monoamine uptake role, and to circumvent this present challenge, we investigated how drugs that selectively block DAT/SERT influence behavioral readouts in PMAT wildtype, heterozygote, and knockout mice of both sexes. Drugs typically used as antidepressants (escitalopram, bupropion) were administered acutely for readouts in tail suspension and locomotor tests. Drugs with psychostimulant properties (cocaine, D-amphetamine) were administered repeatedly to assess initial locomotor responses plus psychostimulant-induced locomotor sensitization. Though we hypothesized that PMAT-deficient mice would exhibit augmented responses to antidepressant and psychostimulant drugs due to constitutively attenuated monoamine uptake, we instead observed sex-selective responses to antidepressant drugs in opposing directions, and subtle sex-specific reductions in psychostimulant-induced locomotor sensitization. These results suggest that PMAT functions differently across sexes, and support hypotheses that PMAT’s monoamine clearance contribution emerges when frontline transporters (e.g., DAT, SERT) are absent, saturated, and/or blocked. Thus, known human polymorphisms that reduce PMAT function could be worth investigating as contributors to varied antidepressant and psychostimulant responses.
Collapse
|
11
|
Physiology, Biochemistry and Pharmacology of Transporters for Organic Cations 2.0. Int J Mol Sci 2022; 23:ijms23116328. [PMID: 35683007 PMCID: PMC9181480 DOI: 10.3390/ijms23116328] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 05/30/2022] [Indexed: 11/16/2022] Open
|