1
|
Tang YB, Wang LS, Wu YH, Zhang LX, Hu LY, Wu Q, Zhou ML, Liang ZX. Effect of exercise during pregnancy on offspring development through ameliorating high glucose and hypoxia in gestational diabetes mellitus. World J Diabetes 2024; 15:2203-2219. [PMID: 39582571 PMCID: PMC11580567 DOI: 10.4239/wjd.v15.i11.2203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 09/03/2024] [Accepted: 09/18/2024] [Indexed: 10/16/2024] Open
Abstract
BACKGROUND Gestational diabetes mellitus (GDM) women require prenatal care to minimize short- and long-term complications. The mechanism by which exercise during pregnancy affects organ development and whether glucose transporter (GLUT) 1 plays a role in GDM offspring organ development remains unknown. AIM To determine the effect of exercise during pregnancy on the cardiac, hepatic and renal development of GDM mother's offspring. METHODS Placenta samples were collected from humans and mice. GDM mouse models were created using streptozotocin along with a GDM with exercise group. The hearts, livers and kidneys of 3- and 8-week-old offspring were collected for body composition analysis and staining. The effects of high glucose levels and hypoxia were investigated using HTR8/SVneo. Transwell and wound-healing assays were performed to assess cell migration. Immunofluorescence accompanied with TUNEL and Ki67 staining was used to explore apoptosis and proliferation. RESULTS Exercise during pregnancy downregulated the GLUT1 and hypoxia inducible factor-1α expression in placenta from individuals with GDM. Cobalt chloride-induced hypoxia and high glucose levels also significantly decreased migration and apoptosis of HTR8/SVneo cells. In addition, exercise reduced inflammatory cell infiltration in the liver and decreased the tubular vacuolar area in the kidneys of offspring. CONCLUSION GDM affects the growth and development of organs in offspring. Exercise during pregnancy can reverse adverse effects of GDM on the development of the heart, liver, and kidney in offspring.
Collapse
Affiliation(s)
- Yi-Bo Tang
- Department of Obstetrics, Women's Hospital School of Medicine, Zhejiang University, Hangzhou 310006, Zhejiang Province, China
| | - Le-Sha Wang
- Department of Obstetrics, Shaoxing People’s Hospital, Shaoxing 312000, Zhejiang Province, China
| | - Yi-Hui Wu
- Department of Obstetrics, Women's Hospital School of Medicine, Zhejiang University, Hangzhou 310006, Zhejiang Province, China
| | - Li-Xia Zhang
- Department of Obstetrics, Women's Hospital School of Medicine, Zhejiang University, Hangzhou 310006, Zhejiang Province, China
| | - Lu-Yao Hu
- Department of Obstetrics, Women's Hospital School of Medicine, Zhejiang University, Hangzhou 310006, Zhejiang Province, China
| | - Qi Wu
- Department of Obstetrics, Women's Hospital School of Medicine, Zhejiang University, Hangzhou 310006, Zhejiang Province, China
| | - Meng-Lin Zhou
- Department of Obstetrics, Women's Hospital School of Medicine, Zhejiang University, Hangzhou 310006, Zhejiang Province, China
| | - Zhao-Xia Liang
- Department of Obstetrics, Women's Hospital School of Medicine, Zhejiang University, Hangzhou 310006, Zhejiang Province, China
| |
Collapse
|
2
|
Larenas PE, Cárdenas P, Aguirre-Delgadillo M, Moris C, Casarini DE, Vallotton Z, Prieto MC, Gonzalez AA. GLUT1 and prorenin receptor mediate differential regulation of TGF-β and CTGF in renal inner medullary collecting duct cells during high glucose conditions. Biol Res 2024; 57:81. [PMID: 39506854 PMCID: PMC11542404 DOI: 10.1186/s40659-024-00560-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 10/24/2024] [Indexed: 11/08/2024] Open
Abstract
BACKGROUND During diabetes, prorenin is highly produced by the renal collecting ducts. The binding of prorenin to (pro)renin receptor (PRR) on the apical plasma membrane triggers intracellular profibrotic genes, including TGF-β and CTGF. However, the underlying mechanisms contributing to the stimulation of these pathways remain unclear. Hence, we hypothesize that the glucose transporter-1 (GLUT1) favors the PRR-dependent stimulation of TGF-β and CTGF in the distal nephron segments during high glucose (HG) conditions. METHODS To test this hypothesis, primary cultured renal inner medullary collecting duct (IMCD) cells were treated with normal glucose (NG, 5 mM) or high glucose (HG, 25 mM) for 48 h in the presence or absence of the GLUT1-specific inhibitor BAY 876 (2 nM). Additionally, IMCD cells were treated with the PRR antagonist PRO20. The expression of TGF-β and CTGF was quantified by immunoblot and qRT-PCR. RESULTS HG increased GLUT1 mRNA and protein abundance, while BAY 876 inhibited these responses. HG treatment upregulated PRR, but the concomitant treatment with BAY 876 partially prevented this effect. TGF-β and CTGF expressions were augmented in IMCD cells treated with HG. However, PRO20 prevented the increases in TGF-β but not those of CTGF. GLUT1 inhibition partially prevented the increases in reactive oxygen species (ROS) during HG while PRO20 did not. ROS scavenging impaired CTGF upregulation during HG conditions. Additionally, long-term exposure to HG increases lipid peroxidation and reduced cell viability. CONCLUSIONS The data indicate that glucose transportation via GLUT1 is implicated in the PRR-dependent upregulation of TGF-β while CTGF is mediated mainly via a mechanism depending on ROS formation in renal medullary collecting duct cells.
Collapse
Affiliation(s)
- Paulina E Larenas
- Instituto de Química, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Pilar Cárdenas
- Instituto de Química, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | | | - Carlos Moris
- Instituto de Química, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Dulce E Casarini
- Departamento de Medicina, Disciplina de Nefrología, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Zoe Vallotton
- Department of Physiology and Tulane Hypertension and Renal Center of Excellence, Tulane University School of Medicine, New Orleans, LA, USA
| | - Minolfa C Prieto
- Department of Physiology and Tulane Hypertension and Renal Center of Excellence, Tulane University School of Medicine, New Orleans, LA, USA
| | - Alexis A Gonzalez
- Instituto de Química, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile.
| |
Collapse
|
3
|
Zhang L, Wu M, Zhang J, Liu T, Fu S, Wang Y, Xu Z. The pivotal role of glucose transporter 1 in diabetic kidney disease. Life Sci 2024; 353:122932. [PMID: 39067659 DOI: 10.1016/j.lfs.2024.122932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 07/12/2024] [Accepted: 07/20/2024] [Indexed: 07/30/2024]
Abstract
Diabetes mellitus (DM) is a significant public health problem. Diabetic kidney disease (DKD) is the most common complication of DM, and its incidence has been increasing with the increasing prevalence of DM. Given the association between DKD and mortality in patients with DM, DKD is a significant burden on public health resources. Despite its significance in DM progression, the pathogenesis of DKD remains unclear. Aberrant glucose uptake by cells is an important pathophysiological mechanism underlying DKD renal injury. Glucose is transported across the bilayer cell membrane by a glucose transporter (GLUT) located on the cell membrane. Multiple GLUT proteins have been identified in the kidney, and GLUT1 is one of the most abundantly expressed isoforms. GLUT1 is a crucial regulator of intracellular glucose metabolism and plays a key pathological role in the phenotypic changes in DKD mesangial cells. In an attempt to understand the pathogenesis of DKD better, we here present a review of studies on the role of GLUT1 in the development and progression of DKD.
Collapse
Affiliation(s)
- Li Zhang
- Department of Nephrology, The First Hospital of Jilin University, Changchun, 130021, China
| | - Meiyan Wu
- Department of Nephrology, The First Hospital of Jilin University, Changchun, 130021, China
| | - Jizhou Zhang
- Department of Biochemistry, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Tingting Liu
- Department of Nephrology, The First Hospital of Jilin University, Changchun, 130021, China
| | - Shaojie Fu
- Department of Nephrology, The First Hospital of Jilin University, Changchun, 130021, China
| | - Yue Wang
- Department of Nephrology, The First Hospital of Jilin University, Changchun, 130021, China
| | - Zhonggao Xu
- Department of Nephrology, The First Hospital of Jilin University, Changchun, 130021, China.
| |
Collapse
|
4
|
Chen H, Zhou Y, Hao H, Xiong J. Emerging mechanisms of non-alcoholic steatohepatitis and novel drug therapies. Chin J Nat Med 2024; 22:724-745. [PMID: 39197963 DOI: 10.1016/s1875-5364(24)60690-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Indexed: 09/01/2024]
Abstract
Non-alcoholic fatty liver disease (NAFLD) has become a leading cause of chronic liver disease globally. It initiates with simple steatosis (NAFL) and can progress to the more severe condition of non-alcoholic steatohepatitis (NASH). NASH often advances to end-stage liver diseases such as liver fibrosis, cirrhosis, and hepatocellular carcinoma (HCC). Notably, the transition from NASH to end-stage liver diseases is irreversible, and the precise mechanisms driving this progression are not yet fully understood. Consequently, there is a critical need for the development of effective therapies to arrest or reverse this progression. This review provides a comprehensive overview of the pathogenesis of NASH, examines the current therapeutic targets and pharmacological treatments, and offers insights for future drug discovery and development strategies for NASH therapy.
Collapse
Affiliation(s)
- Hao Chen
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Yang Zhou
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Haiping Hao
- Jiangsu Provincial Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China.
| | - Jing Xiong
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
5
|
Soni P, Ammal Kaidery N, Sharma SM, Gazaryan I, Nikulin SV, Hushpulian DM, Thomas B. A critical appraisal of ferroptosis in Alzheimer's and Parkinson's disease: new insights into emerging mechanisms and therapeutic targets. Front Pharmacol 2024; 15:1390798. [PMID: 39040474 PMCID: PMC11260649 DOI: 10.3389/fphar.2024.1390798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 06/17/2024] [Indexed: 07/24/2024] Open
Abstract
Neurodegenerative diseases represent a pressing global health challenge, and the identification of novel mechanisms underlying their pathogenesis is of utmost importance. Ferroptosis, a non-apoptotic form of regulated cell death characterized by iron-dependent lipid peroxidation, has emerged as a pivotal player in the pathogenesis of neurodegenerative diseases. This review delves into the discovery of ferroptosis, the critical players involved, and their intricate role in the underlying mechanisms of neurodegeneration, with an emphasis on Alzheimer's and Parkinson's diseases. We critically appraise unsolved mechanistic links involved in the initiation and propagation of ferroptosis, such as a signaling cascade resulting in the de-repression of lipoxygenase translation and the role played by mitochondrial voltage-dependent anionic channels in iron homeostasis. Particular attention is given to the dual role of heme oxygenase in ferroptosis, which may be linked to the non-specific activity of P450 reductase in the endoplasmic reticulum. Despite the limited knowledge of ferroptosis initiation and progression in neurodegeneration, Nrf2/Bach1 target genes have emerged as crucial defenders in anti-ferroptotic pathways. The activation of Nrf2 and the inhibition of Bach1 can counteract ferroptosis and present a promising avenue for future therapeutic interventions targeting ferroptosis in neurodegenerative diseases.
Collapse
Affiliation(s)
- Priyanka Soni
- Darby Children’s Research Institute, Medical University of South Carolina, Charleston, SC, United States
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC, United States
| | - Navneet Ammal Kaidery
- Darby Children’s Research Institute, Medical University of South Carolina, Charleston, SC, United States
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC, United States
| | - Sudarshana M. Sharma
- Department of Biochemistry and Molecular Biology and Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, United States
| | - Irina Gazaryan
- Department of Chemical Enzymology, School of Chemistry, M.V. Lomonosov Moscow State University, Moscow, Russia
- Department of Chemistry and Physical Sciences, Dyson College of Arts and Sciences, Pace University, Pleasantville, NY, United States
| | - Sergey V. Nikulin
- Faculty of Biology and Biotechnologies, Higher School of Economics, Moscow, Russia
| | - Dmitry M. Hushpulian
- Faculty of Biology and Biotechnologies, Higher School of Economics, Moscow, Russia
- A.N.Bach Institute of Biochemistry, Federal Research Center “Fundamentals of Biotechnology” of the Russian Academy of Sciences, Moscow, Russia
| | - Bobby Thomas
- Darby Children’s Research Institute, Medical University of South Carolina, Charleston, SC, United States
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC, United States
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, United States
- Department of Drug Discovery, Medical University of South Carolina, Charleston, SC, United States
| |
Collapse
|
6
|
Barbalho SM, de Alvares Goulart R, Minniti G, Bechara MD, de Castro MVM, Dias JA, Laurindo LF. Unraveling the rationale and conducting a comprehensive assessment of KD025 (Belumosudil) as a candidate drug for inhibiting adipogenic differentiation-a systematic review. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:2681-2699. [PMID: 37966572 DOI: 10.1007/s00210-023-02834-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 11/02/2023] [Indexed: 11/16/2023]
Abstract
Rho-associated kinases (ROCKs) are crucial during the adipocyte differentiation process. KD025 (Belumosudil) is a newly developed inhibitor that selectively targets ROCK2. It has exhibited consistent efficacy in impeding adipogenesis across a spectrum of in vitro models of adipogenic differentiation. Given the novelty of this treatment, a comprehensive systematic review has not been conducted yet. This systematic review aims to fill this knowledge void by providing readers with an extensive examination of the rationale behind KD025 and its impacts on adipogenesis. Preclinical evidence was gathered owing to the absence of clinical trials. The Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines were followed, and the study's quality was assessed using the Joanna Briggs Institute (JBI) Checklist Critical Appraisal Tool for Systematic Reviews. In various in vitro models, such as 3T3-L1 cells, human orbital fibroblasts, and human adipose-derived stem cells, KD025 demonstrated potent anti-adipogenic actions. At a molecular level, KD025 had significant effects, including decreasing fibronectin (Fn) expression, inhibiting ROCK2 and CK2 activity, suppressing lipid droplet formation, and reducing the expression of proadipogenic genes peroxisome proliferator-activated receptor gamma (PPARγ) and CCAAT/enhancer-binding protein α (C/EBPα). Additionally, KD025 resulted in the suppression of fatty acid-binding protein 4 (FABP4 or AP2) expression, a decrease in sterol regulatory element binding protein 1c (SREBP-1c) and Glut-4 expression. Emphasis must be placed on the fact that while KD025 shows potential in preclinical studies and experimental models, extensive research is crucial to assess its efficacy, safety, and potential therapeutic applications thoroughly and directly in human subjects.
Collapse
Affiliation(s)
- Sandra Maria Barbalho
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, 17525-902, Brazil
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, 17525-902, Brazil
- Department of Biochemistry and Nutrition, School of Food and Technology of Marília (FATEC), Marília, São Paulo, 17500-000, Brazil
| | - Ricardo de Alvares Goulart
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, 17525-902, Brazil
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, 17525-902, Brazil
| | - Giulia Minniti
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, 17525-902, Brazil
| | - Marcelo Dib Bechara
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, 17525-902, Brazil
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, 17525-902, Brazil
| | - Marcela Vialogo Marques de Castro
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, 17525-902, Brazil
| | - Jefferson Aparecido Dias
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, 17525-902, Brazil
| | - Lucas Fornari Laurindo
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, 17525-902, Brazil.
- Department of Biochemistry and Pharmacology, School of Medicine, Faculdade de Medicina de Marília (FAMEMA), Marília, São Paulo, 17519-030, Brazil.
| |
Collapse
|
7
|
Wang Y, Liu T, Cai Y, Liu W, Guo J. SIRT6's function in controlling the metabolism of lipids and glucose in diabetic nephropathy. Front Endocrinol (Lausanne) 2023; 14:1244705. [PMID: 37876546 PMCID: PMC10591331 DOI: 10.3389/fendo.2023.1244705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 09/21/2023] [Indexed: 10/26/2023] Open
Abstract
Diabetic nephropathy (DN) is a complication of diabetes mellitus (DM) and the main cause of excess mortality in patients with type 2 DM. The pathogenesis and progression of DN are closely associated with disorders of glucose and lipid metabolism. As a member of the sirtuin family, SIRT6 has deacetylation, defatty-acylation, and adenosine diphosphate-ribosylation enzyme activities as well as anti-aging and anticancer activities. SIRT6 plays an important role in glucose and lipid metabolism and signaling, especially in DN. SIRT6 improves glucose and lipid metabolism by controlling glycolysis and gluconeogenesis, affecting insulin secretion and transmission and regulating lipid decomposition, transport, and synthesis. Targeting SIRT6 may provide a new therapeutic strategy for DN by improving glucose and lipid metabolism. This review elaborates on the important role of SIRT6 in glucose and lipid metabolism, discusses the potential of SIRT6 as a therapeutic target to improve glucose and lipid metabolism and alleviate DN occurrence and progression of DN, and describes the prospects for future research.
Collapse
Affiliation(s)
- Ying Wang
- Country Renal Research Institution of Beijing University of Chinese Medicine, Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Tongtong Liu
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuzi Cai
- Country Renal Research Institution of Beijing University of Chinese Medicine, Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Weijing Liu
- Country Renal Research Institution of Beijing University of Chinese Medicine, Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Jing Guo
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
8
|
Kong J, Li L, Yuan H, Bai F, Yang K, Zhao L, Xu S. In silico discovery of potential sodium-glucose cotransporter-2 inhibitors from natural products for treatment of heart failure via molecular docking and molecular dynamics simulation approach. J Biomol Struct Dyn 2023; 41:8109-8120. [PMID: 36200619 DOI: 10.1080/07391102.2022.2130983] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 09/24/2022] [Indexed: 10/10/2022]
Abstract
Heart failure (HF) is the end stage of cardiovascular disease. Because of its complex condition and poor prognosis, HF has become an important public health problem in the world. Sodium-glucose cotransporter-2 (SGLT2) is a member of the glucose transporter family. Recently, SGLT2 inhibitors have been applied to treat HF. In this study, the main aim was to discover natural SGLT2 inhibitor from Chinese herbs through docking-based virtual screening. Totally 113 natural compounds of potential SGLT2 inhibitor were identified, which displayed docking affinity higher than six approved inhibitors (dapagliflozin (IC50 = 4.9 nM), canagliflozin (IC50 = 4.4 nM 6.7), ipragliflozin (IC50 = 7.4 nM), empagliflozin (IC50 = 3.1 nM), tofogliflozin (IC50 = 4 nM) and luseogliflozin (IC50 = 2.3 nM)) through docking-based virtual screening. Then, the top three hits (ZINC70455591, ZINC85594065 and ZINC14588133) and six known inhibitors were selected for molecular dynamics simulation and the binding free energy calculation using molecular mechanics Poisson-Boltzmann surface area to demonstrate the stability and affinity of docked complexes. These results pointed out that the three docked complexes were stabilized and the chosen compounds were tightly adhering to the binding site of SGLT2. Besides, pharmacokinetic properties of the selected compounds showed those natural compounds may be potential drug candidates. This study may be contributed to further in vitro and in vivo validation and the development of novel SGLT2 inhibitor for treating HF.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Jiwu Kong
- Drug Clinical Trial Center, Gansu Wuwei Tumor Hospital, Wuwei, Gansu, China
| | - Ling Li
- Drug Clinical Trial Center, Gansu Wuwei Tumor Hospital, Wuwei, Gansu, China
| | - Huicheng Yuan
- Drug Clinical Trial Center, Gansu Wuwei Tumor Hospital, Wuwei, Gansu, China
| | - Feng Bai
- Drug Clinical Trial Center, Gansu Wuwei Tumor Hospital, Wuwei, Gansu, China
| | - Kai Yang
- Drug Clinical Trial Center, Gansu Wuwei Tumor Hospital, Wuwei, Gansu, China
| | - Liangcun Zhao
- Drug Clinical Trial Center, Gansu Wuwei Tumor Hospital, Wuwei, Gansu, China
| | - Shaohua Xu
- Drug Clinical Trial Center, Gansu Wuwei Tumor Hospital, Wuwei, Gansu, China
| |
Collapse
|
9
|
Feng J, Zhang X, Jiang Y, Ruan Q, Wang Q, Zhang J. Preparation and Bioevaluation of a Novel 99mTc-Labeled Glucose Derivative Containing Cyclohexane as a Promising Tumor Imaging Agent. Pharmaceuticals (Basel) 2023; 16:ph16040612. [PMID: 37111368 PMCID: PMC10144323 DOI: 10.3390/ph16040612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 04/06/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023] Open
Abstract
To develop novel tumor imaging agents with high tumor uptake and excellent tumor/non-target ratios, a glucose derivative containing cyclohexane (CNMCHDG) was synthesized and labeled with Tc-99m. [99mTc]Tc-CNMCHDG was prepared by a kit formulation that was straightforward to operate and fast. Without purification, [99mTc]Tc-CNMCHDG had a high radiochemical purity of over 95% and great in vitro stability and hydrophilicity (log P = -3.65 ± 0.10). In vitro cellular uptake studies showed that the uptake of [99mTc]Tc-CNMCHDG was significantly inhibited by pre-treatment with D-glucose and increased by pre-treatment with insulin. Preliminary cellular studies have demonstrated that the mechanism by which the complex enters into cells may be related to GLUTs. The results of biodistribution and SPECT imaging studies displayed high tumor uptake and good retention of [99mTc]Tc-CNMCHDG in A549 tumor-bearing mice (4.42 ± 0.36%ID/g at 120 min post-injection). Moreover, [99mTc]Tc-CNMCHDG exhibited excellent tumor-to-non-target ratios and a clean imaging background and is a potential candidate for clinical transformation.
Collapse
Affiliation(s)
- Junhong Feng
- Key Laboratory of Radiopharmaceuticals of Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Xuran Zhang
- Key Laboratory of Radiopharmaceuticals of Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Yuhao Jiang
- Key Laboratory of Radiopharmaceuticals of Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Qing Ruan
- Key Laboratory of Radiopharmaceuticals of Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Qianna Wang
- Key Laboratory of Radiopharmaceuticals of Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Junbo Zhang
- Key Laboratory of Radiopharmaceuticals of Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), College of Chemistry, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
10
|
Unno K, Taguchi K, Takagi Y, Hase T, Meguro S, Nakamura Y. Mouse Models with SGLT2 Mutations: Toward Understanding the Role of SGLT2 beyond Glucose Reabsorption. Int J Mol Sci 2023; 24:ijms24076278. [PMID: 37047250 PMCID: PMC10094282 DOI: 10.3390/ijms24076278] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/22/2023] [Accepted: 03/24/2023] [Indexed: 03/29/2023] Open
Abstract
The sodium–glucose cotransporter 2 (SGLT2) mainly carries out glucose reabsorption in the kidney. Familial renal glycosuria, which is a mutation of SGLT2, is known to excrete glucose in the urine, but blood glucose levels are almost normal. Therefore, SGLT2 inhibitors are attracting attention as a new therapeutic drug for diabetes, which is increasing worldwide. In fact, SGLT2 inhibitors not only suppress hyperglycemia but also reduce renal, heart, and cardiovascular diseases. However, whether long-term SGLT2 inhibition is completely harmless requires further investigation. In this context, mice with mutations in SGLT2 have been generated and detailed studies are being conducted, e.g., the SGLT2−/− mouse, Sweet Pee mouse, Jimbee mouse, and SAMP10-ΔSglt2 mouse. Biological changes associated with SGLT2 mutations have been reported in these model mice, suggesting that SGLT2 is not only responsible for sugar reabsorption but is also related to other functions, such as bone metabolism, longevity, and cognitive functions. In this review, we present the characteristics of these mutant mice. Moreover, because the relationship between diabetes and Alzheimer’s disease has been discussed, we examined the relationship between changes in glucose homeostasis and the amyloid precursor protein in SGLT2 mutant mice.
Collapse
|
11
|
Li Y, Wang W, Lim HY. Drosophila transmembrane protein 214 (dTMEM214) regulates midgut glucose uptake and systemic glucose homeostasis. Dev Biol 2023; 495:92-103. [PMID: 36657508 PMCID: PMC9905329 DOI: 10.1016/j.ydbio.2023.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 01/11/2023] [Accepted: 01/12/2023] [Indexed: 01/19/2023]
Abstract
The availability of glucose transporter in the small intestine critically determines the capacity for glucose uptake and consequently systemic glucose homeostasis. Hence a better understanding of the physiological regulation of intestinal glucose transporter is pertinent. However, the molecular mechanisms that regulate sodium-glucose linked transporter 1 (SGLT1), the primary glucose transporter in the small intestine, remain incompletely understood. Recently, the Drosophila SLC5A5 (dSLC5A5) has been found to exhibit properties consistent with a dietary glucose transporter in the Drosophila midgut, the equivalence of the mammalian small intestine. Hence, the fly midgut could serve as a suitable model system for the study of the in vivo molecular underpinnings of SGLT1 function. Here, we report the identification, through a genetic screen, of Drosophila transmembrane protein 214 (dTMEM214) that acts in the midgut enterocytes to regulate systemic glucose homeostasis and glucose uptake. We show that dTMEM214 resides in the apical membrane and cytoplasm of the midgut enterocytes, and that the proper subcellular distribution of dTMEM214 in the enterocytes is regulated by the Rab4 GTPase. As a corollary, Rab4 loss-of-function phenocopies dTMEM214 loss-of-function in the midgut as shown by a decrease in enterocyte glucose uptake and an alteration in systemic glucose homeostasis. We further show that dTMEM214 regulates the apical membrane localization of dSLC5A5 in the enterocytes, thereby revealing dTMEM214 as a molecular regulator of glucose transporter in the midgut.
Collapse
Affiliation(s)
- Yue Li
- Department of Physiology, University of Oklahoma Health Science Center, Oklahoma City, OK, USA
| | - Weidong Wang
- Department of Medicine, Section of Endocrinology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Hui-Ying Lim
- Department of Physiology, University of Oklahoma Health Science Center, Oklahoma City, OK, USA.
| |
Collapse
|
12
|
Xu S, Zhang P, Heing-Becker I, Zhang J, Tang P, Bej R, Bhatia S, Zhong Y, Haag R. Dual tumor- and subcellular-targeted photodynamic therapy using glucose-functionalized MoS 2 nanoflakes for multidrug-resistant tumor ablation. Biomaterials 2022; 290:121844. [PMID: 36302305 DOI: 10.1016/j.biomaterials.2022.121844] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 09/20/2022] [Accepted: 09/29/2022] [Indexed: 11/19/2022]
Abstract
Photodynamic therapy (PDT) is emerging as an efficient strategy to combat multidrug-resistant (MDR) cancer. However, the short half-life and limited diffusion of reactive oxygen species (ROS) undermine the therapeutic outcomes of this therapy. To address this issue, a tumor-targeting nanoplatform was developed to precisely deliver mitochondria- and endoplasmic reticulum (ER)-targeting PDT agents to desired sites for dual organelle-targeted PDT. The nanoplatform is constructed by functionalizing molybdenum disulfide (MoS2) nanoflakes with glucose-modified hyperbranched polyglycerol (hPG), and then loading the organelle-targeting PDT agents. The resultant nanoplatform Cy7.5-TG@GPM is demonstrated to mediate both greatly enhanced internalization within MDR cells and precise subcellular localization of PDT agents, facilitating in situ near-infrared (NIR)-triggered ROS generation for augmented PDT and reversal of MDR, causing impressive tumor shrinkage in a HeLa multidrug-resistant tumor mouse model. As revealed by mechanistic studies of the synergistic mitochondria- and ER-targeted PDT, ROS-induced ER stress not only activates the cytosine-cytosine-adenosine-adenosine thymidine/enhancer-binding protein homologous protein (CHOP) pro-apoptotic signaling pathway, but also cooperates with ROS-induced mitochondrial dysfunction to trigger cytochrome C release from the mitochondria and induce subsequent cell death. Furthermore, the mitochondrial dysfunction reduces ATP production and thereby contributes to the reversal of MDR. This nanoplatform, with its NIR-responsive properties and ability to target tumors and subcellular organelles, offers a promising strategy for effective MDR cancer therapy.
Collapse
Affiliation(s)
- Shaohui Xu
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustraße 3, 14195, Berlin, Germany
| | - Pan Zhang
- School of Engineering, China Pharmaceutical University, 639 Longmian Avenue, 211198, Nanjing, China
| | - Isabelle Heing-Becker
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustraße 3, 14195, Berlin, Germany
| | - Junmei Zhang
- School of Engineering, China Pharmaceutical University, 639 Longmian Avenue, 211198, Nanjing, China
| | - Peng Tang
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustraße 3, 14195, Berlin, Germany
| | - Raju Bej
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustraße 3, 14195, Berlin, Germany
| | - Sumati Bhatia
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustraße 3, 14195, Berlin, Germany
| | - Yinan Zhong
- School of Engineering, China Pharmaceutical University, 639 Longmian Avenue, 211198, Nanjing, China.
| | - Rainer Haag
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustraße 3, 14195, Berlin, Germany.
| |
Collapse
|
13
|
Sharari S, Kabeer B, Mohammed I, Haris B, Pavlovski I, Hawari I, Bhat AA, Toufiq M, Tomei S, Mathew R, Syed N, Nisar S, Maacha S, Grivel JC, Chaussabel D, Ericsson J, Hussain K. Understanding the Role of GLUT2 in Dysglycemia Associated with Fanconi-Bickel Syndrome. Biomedicines 2022; 10:biomedicines10092114. [PMID: 36140215 PMCID: PMC9495670 DOI: 10.3390/biomedicines10092114] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/14/2022] [Accepted: 08/15/2022] [Indexed: 12/04/2022] Open
Abstract
Fanconi−Bickel Syndrome (FBS) is a rare disorder of carbohydrate metabolism that is characterized by the accumulation of glycogen mainly in the liver. It is inherited in an autosomal recessive manner due to mutations in the SLC2A2 gene. SLC2A2 encodes for the glucose transporter GLUT2 and is expressed in tissues that are involved in glucose homeostasis. The molecular mechanisms of dysglycemia in FBS are still not clearly understood. In this study, we report two cases of FBS with classical phenotypes of FBS associated with dysglycemia. Genomic DNA was extracted and analyzed by whole-genome and Sanger sequencing, and patient PBMCs were used for molecular analysis. One patient had an exonic SLC2A2 mutation (c.1093C>T in exon 9, R365X), while the other patient had a novel intronic SLC2A2 mutation (c.613-7T>G). Surprisingly, the exonic mutation resulted in the overexpression of dysfunctional GLUT2, resulting in the dysregulated expression of other glucose transporters. The intronic mutation did not affect the coding sequence of GLUT2, its expression, or glucose transport activity. However, it was associated with the expression of miRNAs correlated with type 1 diabetes mellitus, with a particular significant overexpression of hsa-miR-29a-3p implicated in insulin production and secretion. Our findings suggest that SLC2A2 mutations cause dysglycemia in FBS either by a direct effect on GLUT2 expression and/or activity or, indirectly, by the dysregulated expression of miRNAs implicated in glucose homeostasis.
Collapse
Affiliation(s)
- Sanaa Sharari
- Division of Biological and Biomedical Sciences, College of Health and Life Sciences, Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha 34110, Qatar
- Department of Pediatric Medicine, Division of Endocrinology, Sidra Medicine, Doha 26999, Qatar
| | | | - Idris Mohammed
- Division of Biological and Biomedical Sciences, College of Health and Life Sciences, Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha 34110, Qatar
- Department of Pediatric Medicine, Division of Endocrinology, Sidra Medicine, Doha 26999, Qatar
| | - Basma Haris
- Department of Pediatric Medicine, Division of Endocrinology, Sidra Medicine, Doha 26999, Qatar
| | | | - Iman Hawari
- Division of Biological and Biomedical Sciences, College of Health and Life Sciences, Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha 34110, Qatar
- Department of Pediatric Medicine, Division of Endocrinology, Sidra Medicine, Doha 26999, Qatar
| | | | | | - Sara Tomei
- Research Branch, Sidra Medicine, Doha 26999, Qatar
| | | | - Najeeb Syed
- Research Branch, Sidra Medicine, Doha 26999, Qatar
| | - Sabah Nisar
- Research Branch, Sidra Medicine, Doha 26999, Qatar
| | - Selma Maacha
- Research Branch, Sidra Medicine, Doha 26999, Qatar
| | | | | | - Johan Ericsson
- Division of Biological and Biomedical Sciences, College of Health and Life Sciences, Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha 34110, Qatar
- School of Medicine and Medical Science, University College Dublin, Belfield, 4 D4 Dublin, Ireland
| | - Khalid Hussain
- Department of Pediatric Medicine, Division of Endocrinology, Sidra Medicine, Doha 26999, Qatar
- Correspondence:
| |
Collapse
|
14
|
Othman NS, Che Roos NA, Aminuddin A, Murthy JK, A. Hamid A, Ugusman A. Effects of Piper sarmentosum Roxb. on hypertension and diabetes mellitus: A systematic review and meta-analysis. Front Pharmacol 2022; 13:976247. [PMID: 36091787 PMCID: PMC9453491 DOI: 10.3389/fphar.2022.976247] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 07/20/2022] [Indexed: 12/09/2022] Open
Abstract
Hypertension and diabetes mellitus are among the most prevalent diseases affecting people from all walks of life. Medicinal herbs have garnered interest as potential agents for the prevention and treatment of diabetes mellitus and hypertension due to their multiple beneficial effects. Piper sarmentosum Roxb. (PS) is an edible medicinal plant that has been traditionally used in Asia for treating hypertension and diabetes mellitus. This review is aimed to provide comprehensive information from the literature on the effects of PS on hypertension and diabetes mellitus. A computerized database search was performed on Scopus, PubMed and Web of Science databases with the following set of keywords: Piper sarmentosum AND diabetes mellitus OR diabetic OR diabetes OR hyperglyc*emia OR blood glucose OR HbA1c OR glycated h*emoglobin OR h*emoglobin A1c OR hyperten* OR blood pressure. A total of 47 articles were screened and 14 articles published between the years 1998 until 2021 were included for data extraction, comprising of six articles on antihypertensive and eight articles on antidiabetic effects of PS. These studies consist of two in vitro studies and eleven in vivo animal studies. Meta-analysis of three studies on hypertension showed that PS versus no treatment significantly lowered the systolic blood pressure with mean difference (MD) -39.84 mmHg (95% confidence interval (CI) -45.05, -34.62; p < 0.01), diastolic blood pressure with MD -26.68 mmHg (95% CI -31.48, -21.88; p < 0.01), and mean arterial pressure with MD -30.56 mmHg (95% CI -34.49, -26.63; p < 0.01). Most of the studies revealed positive effects of PS against hypertension and diabetes mellitus, suggesting the potential of PS as a natural source of antidiabetic and antihypertensive agents.
Collapse
Affiliation(s)
- Nur Syakirah Othman
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Nur Aishah Che Roos
- Faculty of Medicine and Defence Health, National Defence University of Malaysia, Kuala Lumpur, Malaysia
| | - Amilia Aminuddin
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Jaya Kumar Murthy
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Adila A. Hamid
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Azizah Ugusman
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| |
Collapse
|
15
|
Sibiak R, Ozegowska K, Wender-Ozegowska E, Gutaj P, Mozdziak P, Kempisty B. Fetomaternal Expression of Glucose Transporters (GLUTs)-Biochemical, Cellular and Clinical Aspects. Nutrients 2022; 14:2025. [PMID: 35631166 PMCID: PMC9146575 DOI: 10.3390/nu14102025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/28/2022] [Accepted: 05/11/2022] [Indexed: 12/10/2022] Open
Abstract
Several types of specialized glucose transporters (GLUTs) provide constant glucose transport from the maternal circulation to the developing fetus through the placental barrier from the early stages of pregnancy. GLUT1 is a prominent protein isoform that regulates placental glucose transfer via glucose-facilitated diffusion. The GLUT1 membrane protein density and permeability of the syncytial basal membrane (BM) are the main factors limiting the rate of glucose diffusion in the fetomaternal compartment in physiological conditions. Besides GLUT1, the GLUT3 and GLUT4 isoforms are widely expressed across the human placenta. Numerous medical conditions and molecules, such as hormones, adipokines, and xenobiotics, alter the GLUT's mRNA and protein expression. Diabetes upregulates the BM GLUT's density and promotes fetomaternal glucose transport, leading to excessive fetal growth. However, most studies have found no between-group differences in GLUTs' placental expression in macrosomic and normal control pregnancies. The fetomaternal GLUTs expression may also be influenced by several other conditions, such as chronic hypoxia, preeclampsia, and intrahepatic cholestasis of pregnancy.
Collapse
Affiliation(s)
- Rafal Sibiak
- Department of Histology and Embryology, Poznan University of Medical Sciences, 60-701 Poznan, Poland;
- Doctoral School, Poznan University of Medical Sciences, 60-701 Poznan, Poland
| | - Katarzyna Ozegowska
- Department of Infertility and Reproductive Endocrinology, Poznan University of Medical Sciences, 61-701 Poznan, Poland;
| | - Ewa Wender-Ozegowska
- Department of Reproduction, Poznan University of Medical Sciences, 61-701 Poznan, Poland; (E.W.-O.); (P.G.)
| | - Pawel Gutaj
- Department of Reproduction, Poznan University of Medical Sciences, 61-701 Poznan, Poland; (E.W.-O.); (P.G.)
| | - Paul Mozdziak
- Prestage Department of Poultry Science, North Carolina State University, Raleigh, NC 27695, USA;
| | - Bartosz Kempisty
- Department of Histology and Embryology, Poznan University of Medical Sciences, 60-701 Poznan, Poland;
- Prestage Department of Poultry Science, North Carolina State University, Raleigh, NC 27695, USA;
- Department of Anatomy, Poznan University of Medical Sciences, 60-701 Poznan, Poland
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland
| |
Collapse
|
16
|
Mitochondria-Mediated Cardiovascular Benefits of Sodium-Glucose Co-Transporter 2 Inhibitors. Int J Mol Sci 2022; 23:ijms23105371. [PMID: 35628174 PMCID: PMC9140946 DOI: 10.3390/ijms23105371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/04/2022] [Accepted: 05/10/2022] [Indexed: 11/23/2022] Open
Abstract
Several recent cardiovascular trials of SGLT 2 (sodium-glucose cotransporter 2) inhibitors revealed that they could reduce adverse cardiovascular events in patients with T2DM (type 2 diabetes mellitus). However, the exact molecular mechanism underlying the beneficial effects that SGLT2 inhibitors have on the cardiovascular system is still unknown. In this review, we focus on the molecular mechanisms of the mitochondria-mediated beneficial effects of SGLT2 inhibitors on the cardiovascular system. The application of SGLT2 inhibitors ameliorates mitochondrial dysfunction, dynamics, bioenergetics, and ion homeostasis and reduces the production of mitochondrial reactive oxygen species, which results in cardioprotective effects. Herein, we present a comprehensive overview of the impact of SGLT2 inhibitors on mitochondria and highlight the potential application of these medications to treat both T2DM and cardiovascular diseases.
Collapse
|
17
|
Wei X, Hou Y, Long M, Jiang L, Du Y. Molecular mechanisms underlying the role of hypoxia-inducible factor-1 α in metabolic reprogramming in renal fibrosis. Front Endocrinol (Lausanne) 2022; 13:927329. [PMID: 35957825 PMCID: PMC9357883 DOI: 10.3389/fendo.2022.927329] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 06/30/2022] [Indexed: 11/13/2022] Open
Abstract
Renal fibrosis is the result of renal tissue damage and repair response disorders. If fibrosis is not effectively blocked, it causes loss of renal function, leading to chronic renal failure. Metabolic reprogramming, which promotes cell proliferation by regulating cellular energy metabolism, is considered a unique tumor cell marker. The transition from oxidative phosphorylation to aerobic glycolysis is a major feature of renal fibrosis. Hypoxia-inducible factor-1 α (HIF-1α), a vital transcription factor, senses oxygen status, induces adaptive changes in cell metabolism, and plays an important role in renal fibrosis and glucose metabolism. This review focuses on the regulation of proteins related to aerobic glycolysis by HIF-1α and attempts to elucidate the possible regulatory mechanism underlying the effects of HIF-1α on glucose metabolism during renal fibrosis, aiming to provide new ideas for targeted metabolic pathway intervention in renal fibrosis.
Collapse
Affiliation(s)
- Xuejiao Wei
- Department of Nephrology, The First Hospital of Jilin University, Changchun, China
| | - Yue Hou
- Department of Nephrology, The First Hospital of Jilin University, Changchun, China
| | - Mengtuan Long
- Department of Nephrology, The First Hospital of Jilin University, Changchun, China
| | - Lili Jiang
- Department of Physical Examination Center, The First Hospital of Jilin University, Changchun, China
| | - Yujun Du
- Department of Nephrology, The First Hospital of Jilin University, Changchun, China
- *Correspondence: Yujun Du,
| |
Collapse
|