1
|
Almeida-Ferreira C, Rodrigues F, Marto CM, Botelho MF, Laranjo M. Cold atmospheric plasma for breast cancer treatment: what next? Med Gas Res 2025; 15:110-111. [PMID: 39436174 PMCID: PMC11515082 DOI: 10.4103/mgr.medgasres-d-24-00043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 06/20/2024] [Accepted: 07/09/2024] [Indexed: 10/23/2024] Open
Affiliation(s)
- Catarina Almeida-Ferreira
- Univ Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Area of Environment Genetics and Oncobiology (CIMAGO), and Institute of Biophysics, Faculty of Medicine, Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal
- Univ Coimbra, Faculty of Pharmacy, Azinhaga de Santa Comba, Coimbra, Portugal
| | - Francisca Rodrigues
- Univ Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Area of Environment Genetics and Oncobiology (CIMAGO), and Institute of Biophysics, Faculty of Medicine, Coimbra, Portugal
| | - Carlos Miguel Marto
- Univ Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Area of Environment Genetics and Oncobiology (CIMAGO), and Institute of Biophysics, Faculty of Medicine, Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal
- Univ Coimbra, Institute of Integrated Clinical Practice and Laboratory for Evidence-Based Sciences and Precision Dentistry, Coimbra, Portugal; Univ Coimbra, Institute of Experimental Pathology, Faculty of Medicine, Coimbra, Portugal; Univ Coimbra, Centre for Mechanical Engineering, Materials and Processes (CEMMPRE), Advanced Production and Intelligent Systems (ARISE), Coimbra, Portugal
| | - Maria Filomena Botelho
- Univ Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Area of Environment Genetics and Oncobiology (CIMAGO), and Institute of Biophysics, Faculty of Medicine, Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal
| | - Mafalda Laranjo
- Univ Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Area of Environment Genetics and Oncobiology (CIMAGO), and Institute of Biophysics, Faculty of Medicine, Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal
| |
Collapse
|
2
|
Eggers B, Seher L, Marciniak J, Pauck T, Deschner J, Eick S, Stope MB, Kramer FJ, Küchler EC, Kirschneck C, Nokhbehsaim M, Beisel-Memmert S. Beneficial effects of non-invasive physical plasma on human periodontal ligament cells in vitro. Front Med (Lausanne) 2024; 11:1443368. [PMID: 39629237 PMCID: PMC11611554 DOI: 10.3389/fmed.2024.1443368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 10/29/2024] [Indexed: 12/07/2024] Open
Abstract
Introduction Periodontitis is a chronic inflammatory disease of the periodontium that can lead to the loss of affected teeth if left untreated. It is induced by a multifactorial process centered on microbial pathogens such as Fusobacterium nucleatum (F.n.). Non-invasive physical plasma (NIPP), a highly reactive gas, has become a focus of research, not only for its hemostatic, proliferation-enhancing and apoptotic properties, but also for its antimicrobial potential. The objective of this study was to examine the impact of NIPP on human periodontal ligament (PDL) cells that had been induced into a state of periodontal infection in vitro. Methods Initially, the solitary effect of NIPP was evaluated by measuring temperature and pH and analyzing reactive oxygen species (ROS). Additionally, DAPI and phalloidin staining were employed to investigate possible cytotoxic effects. The cells were pre-incubated with F.n. and treated with NIPP after 24 hours. Interleukin (IL)-6 and IL-8 were analyzed at mRNA and protein levels, respectively, by real-time PCR and ELISA. Results NIPP alone had no significant effect on PDL cells. However, the F.n.-induced upregulation of IL-6 and IL-8 was counteracted by NIPP. Discussion Thus, the utilization of NIPP may be regarded as a promising therapeutic strategy for the treatment of periodontal diseases.
Collapse
Affiliation(s)
- Benedikt Eggers
- Department of Oral, Maxillofacial and Plastic Surgery, University Hospital Bonn, Bonn, Germany
| | - Lennard Seher
- Department of Oral, Maxillofacial and Plastic Surgery, University Hospital Bonn, Bonn, Germany
- Department of Orthodontics, University Hospital Bonn, Bonn, Germany
| | - Jana Marciniak
- Department of Orthodontics, University Hospital Bonn, Bonn, Germany
| | - Tristan Pauck
- Department of Gynecology and Gynecological Oncology, University Hospital Bonn, Bonn, Germany
| | - James Deschner
- Department of Periodontology and Operative Dentistry, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Sigrun Eick
- Department of Periodontology, School of Dental Medicine, University of Bern, Bern, Switzerland
| | - Matthias Bernhard Stope
- Department of Gynecology and Gynecological Oncology, University Hospital Bonn, Bonn, Germany
| | - Franz-Josef Kramer
- Department of Oral, Maxillofacial and Plastic Surgery, University Hospital Bonn, Bonn, Germany
| | | | | | - Marjan Nokhbehsaim
- Section of Experimental Dento-Maxillo-Facial Medicine, University Hospital Bonn, Bonn, Germany
| | | |
Collapse
|
3
|
Sun T, Liu C, Kong L, Zha J, Ni G. Cold plasma irradiation inhibits skin cancer via ferroptosis. Biomed Phys Eng Express 2024; 10:065036. [PMID: 39390682 DOI: 10.1088/2057-1976/ad8200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 10/01/2024] [Indexed: 10/12/2024]
Abstract
Cold atmospheric plasma (CAP) has been extensively utilized in medical treatment, particularly in cancer therapy. However, the underlying mechanism of CAP in skin cancer treatment remains elusive. In this study, we established a skin cancer model using CAP treatmentin vitro. Also, we established the Xenograft experiment modelin vivo. The results demonstrated that treatment with CAP induced ferroptosis, resulting in a significant reduction in the viability, migration, and invasive capacities of A431 squamous cell carcinoma, a type of skin cancer. Mechanistically, the significant production of reactive oxygen species (ROS) by CAP induces DNA damage, which then activates Ataxia-telangiectasia mutated (ATM) and p53 through acetylation, while simultaneously suppressing the expression of Solute Carrier Family 7 Member 11 (SLC7A11). Consequently, this cascade led to the down-regulation of intracellular Glutathione peroxidase 4 (GPX4), ultimately resulting in ferroptosis. CAP exhibits a favorable impact on skin cancer treatment, suggesting its potential medical application in skin cancer therapy.
Collapse
Affiliation(s)
- Tao Sun
- Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, People's Republic of China
- University of Science and Technology of China, Hefei 230026, People's Republic of China
| | - Changqing Liu
- Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, People's Republic of China
- University of Science and Technology of China, Hefei 230026, People's Republic of China
| | - Ling Kong
- Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, People's Republic of China
- University of Science and Technology of China, Hefei 230026, People's Republic of China
| | - Jingjing Zha
- Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, People's Republic of China
- Anhui Province Key Laboratory of Medical Physics and Technology, Hefei 230031, People's Republic of China
| | - Guohua Ni
- Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, People's Republic of China
- Anhui Province Key Laboratory of Medical Physics and Technology, Hefei 230031, People's Republic of China
| |
Collapse
|
4
|
di Giacomo V, Balaha M, Pinti M, Di Marcantonio MC, Cela I, Acharya TR, Kaushik NK, Choi EH, Mincione G, Sala G, Perrucci M, Locatelli M, Perrotti V. Cold atmospheric plasma activated media selectively affects human head and neck cancer cell lines. Oral Dis 2024. [PMID: 39314203 DOI: 10.1111/odi.15120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 07/24/2024] [Accepted: 08/11/2024] [Indexed: 09/25/2024]
Abstract
OBJECTIVE Cold atmospheric plasma (CAP) is a novel approach for cancer treatment. It can be used to treat liquids-plasma-activated media (PAM)-which are then transferred to the target as an exogenous source of reactive oxygen and nitrogen species (RONS). The present study aimed at chemically characterizing different PAM and assessing their in vitro selectivity against head and neck cancer cells (HNC). METHODS PAM were obtained by exposing 2 and 5 mL of cell culture medium to CAP for 5, 10 and 20 min at a 6 mm working distance. Anions kinetics was evaluated by ion chromatography. Cell proliferation inhibition, apoptosis occurrence, and cell cycle modifications were assessed by MTS and flow cytometry, on human epidermal keratinocyte (HaCaT) and HNC cell lines HSC3, HSC4 and A253. RESULTS The 2 mL conditions showed a significant reduction in cell proliferation whereas for the 5 mL the effect was milder, but the time-dependence was more evident. HaCaT were unaffected by the 5 mL PAM, indicating a selectivity for cancer cells. CONCLUSIONS The media chemical composition modified by CAP exposure influenced cell proliferation by modulating cell cycle and inducing apoptosis in cancer cells, without affecting normal cells.
Collapse
Affiliation(s)
- Viviana di Giacomo
- Department of Pharmacy, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
- UdA-TechLab, Research Center, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Marwa Balaha
- Department of Pharmacy, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafr El Sheikh, Egypt
| | - Morena Pinti
- Department of Pharmacy, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Maria Carmela Di Marcantonio
- Department of Innovative Technologies in Medicine and Dentistry, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Ilaria Cela
- Department of Innovative Technologies in Medicine and Dentistry, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
- Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Tirtha Raj Acharya
- Plasma Bioscience Research Center, Department of Electrical and Biological Physics, Kwangwoon University, Seoul, South Korea
| | - Nagendra Kumar Kaushik
- Plasma Bioscience Research Center, Department of Electrical and Biological Physics, Kwangwoon University, Seoul, South Korea
| | - Eun Ha Choi
- Plasma Bioscience Research Center, Department of Electrical and Biological Physics, Kwangwoon University, Seoul, South Korea
| | - Gabriella Mincione
- Department of Innovative Technologies in Medicine and Dentistry, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Gianluca Sala
- Department of Innovative Technologies in Medicine and Dentistry, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
- Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Miryam Perrucci
- Department of Pharmacy, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Marcello Locatelli
- Department of Pharmacy, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Vittoria Perrotti
- UdA-TechLab, Research Center, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
- Department of Innovative Technologies in Medicine and Dentistry, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| |
Collapse
|
5
|
Nitsch A, Qarqash S, Schulze F, Nonnenmacher L, Bekeschus S, Tzvetkov MV, Wassilew GI, Haralambiev L. Combined Application of Cold Physical Plasma and Chemotherapeutics against Chondrosarcoma Cells. Int J Mol Sci 2024; 25:6955. [PMID: 39000064 PMCID: PMC11241706 DOI: 10.3390/ijms25136955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 06/21/2024] [Accepted: 06/21/2024] [Indexed: 07/16/2024] Open
Abstract
Chondrosarcoma (CS) is a rare malignant bone sarcoma that primarily affects cartilage cells in the femur and pelvis. While most subtypes exhibit slow growth with a very good prognosis, some aggressive subtypes have a poorer overall survival. CS is known for its resistance to chemotherapy and radiotherapy, leaving surgery as the sole effective therapeutic option. Cold physical plasma (CPP) has been explored in vitro as a potential therapy, demonstrating positive anti-tumor effects on CS cells. This study investigated the synergistic effects of combining CPP with cytostatics on CS cells. The chemotherapeutic agents cisplatin, doxorubicin, and vincristine were applied to two CS cell lines (CAL-78 and SW1353). After determining their IC20 and IC50, they were combined with CPP in both cell lines to assess their impact on the cell proliferation, viability, metabolism, and apoptosis. This combined approach significantly reduced the cell proliferation and viability while increasing the apoptosis signals compared to cytostatic therapy alone. The combination of CPP and chemotherapeutic drugs shows promise in targeting chemoresistant CS cells, potentially improving the prognosis for patients in clinical settings.
Collapse
Affiliation(s)
- Andreas Nitsch
- Center for Orthopedics, Trauma Surgery and Rehabilitation Medicine, University Medicine Greifswald, Ferdinand-Sauerbruch-Str., 17475 Greifswald, Germany
| | - Sara Qarqash
- Center for Orthopedics, Trauma Surgery and Rehabilitation Medicine, University Medicine Greifswald, Ferdinand-Sauerbruch-Str., 17475 Greifswald, Germany
| | - Frank Schulze
- Center for Orthopedics, Trauma Surgery and Rehabilitation Medicine, University Medicine Greifswald, Ferdinand-Sauerbruch-Str., 17475 Greifswald, Germany
| | - Lars Nonnenmacher
- Center for Orthopedics, Trauma Surgery and Rehabilitation Medicine, University Medicine Greifswald, Ferdinand-Sauerbruch-Str., 17475 Greifswald, Germany
| | - Sander Bekeschus
- ZIK Plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Straße 2, 17489 Greifswald, Germany
- Clinic and Policlinic for Dermatology and Venerology, Rostock University Medical Center, Strempelstr. 13, 18057 Rostock, Germany
| | - Mladen V Tzvetkov
- Department of General Pharmacology, Institute of Pharmacology, Center of Drug Absorption and Transport (C_DAT), University Medicine Greifswald, 17487 Greifswald, Germany
| | - Georgi I Wassilew
- Center for Orthopedics, Trauma Surgery and Rehabilitation Medicine, University Medicine Greifswald, Ferdinand-Sauerbruch-Str., 17475 Greifswald, Germany
| | - Lyubomir Haralambiev
- Center for Orthopedics, Trauma Surgery and Rehabilitation Medicine, University Medicine Greifswald, Ferdinand-Sauerbruch-Str., 17475 Greifswald, Germany
| |
Collapse
|
6
|
Terefinko D, Dzimitrowicz A, Bielawska-Pohl A, Pohl P, Klimczak A, Jamroz P. Comprehensive studies on the biological activities of human metastatic (MDA-MB-231) and non-metastatic (MCF-7) breast cancer cell lines, directly or combinedly treated using non-thermal plasma-based approaches. Toxicol In Vitro 2024; 98:105846. [PMID: 38754599 DOI: 10.1016/j.tiv.2024.105846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/30/2024] [Accepted: 05/11/2024] [Indexed: 05/18/2024]
Abstract
Progressive incidence and a pessimistic survival rate of breast cancer in women worldwide remains one of the most concerning topics. Progressing research indicates a potentially high effectiveness of use cold atmospheric plasma (CAP) systems. The undoubted advantage seems its simplicity in combination with other anti-cancer modalities. Following observed trend of studies, one inventory CAP system was applied to directly treat human breast cancer cell lines and culturing in two different Plasma Activated Media (PAM) for combined utilization. Proposed CAP treatments on MCF-10 A, MCF-7, and MDA-MB-231 cell lines were studied in terms of impact on cell viability by MTT assay. Disturbances in cell motility following direct and combined CAP application were assessed by scratch test. Finally, the induction of apoptosis and necrosis was verified with annexin V and propidium iodide staining. Reactive species generated during CAP treatment were determined based on optical emission spectrometry analysis along with colorimetric methods to qualitatively assess the NO2-, NO3-, H2O2, and total ROS with free radicals concentration. The most effective approach for CAP utilization was combined treatment, leading to significant disruption in cell viability, motility and mostly apoptosis induction in breast cancer cell lines. Determined CAP dose allows for mild outcome, showing insignificant harm for the non-cancerous MCF-10 A cell line, while the highly aggressive MDA-MB-231 cell line shows the highest sensitivity on proposed CAP treatment. Direct CAP treatment seems to drive the cells into the sensitive state in which the effectiveness of PAM is boosted. Observed anti-cancer response of CAP treatment was mostly triggered by RNS (mostly NO2- ions) and ROS along with free radicals (such as H2O2, OH•, O2-•, 1O2, HO2•). The combined application of one CAP source represent a promising alternative in the development of new and effective modalities for breast cancer treatment.
Collapse
Affiliation(s)
- Dominik Terefinko
- Wroclaw University of Science and Technology, Department of Analytical Chemistry and Chemical Metallurgy, Wybrzeze St. Wyspianskiego 27, 50-370 Wroclaw, Poland.
| | - Anna Dzimitrowicz
- Wroclaw University of Science and Technology, Department of Analytical Chemistry and Chemical Metallurgy, Wybrzeze St. Wyspianskiego 27, 50-370 Wroclaw, Poland
| | - Aleksandra Bielawska-Pohl
- Laboratory of Biology of Stem and Neoplastic Cells, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, R. Weigla 12, 53-114 Wroclaw, Poland
| | - Pawel Pohl
- Wroclaw University of Science and Technology, Department of Analytical Chemistry and Chemical Metallurgy, Wybrzeze St. Wyspianskiego 27, 50-370 Wroclaw, Poland
| | - Aleksandra Klimczak
- Laboratory of Biology of Stem and Neoplastic Cells, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, R. Weigla 12, 53-114 Wroclaw, Poland
| | - Piotr Jamroz
- Wroclaw University of Science and Technology, Department of Analytical Chemistry and Chemical Metallurgy, Wybrzeze St. Wyspianskiego 27, 50-370 Wroclaw, Poland
| |
Collapse
|
7
|
Ni LY, Ding CB, Deng JM, Wu ZW, Zhou Y. Cold Air Plasma Inhibiting Tumor-Like Biological Behavior of Rheumatoid Arthritis Fibroblast-Like Synovial Cells via G2/M Cell Cycle Arrest. Open Access Rheumatol 2024; 16:75-85. [PMID: 38756916 PMCID: PMC11096841 DOI: 10.2147/oarrr.s438536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 02/16/2024] [Indexed: 05/18/2024] Open
Abstract
Background Rheumatoid arthritis fibroblast-like synovial cells (RA-FLS) have become the core effector cells for the progression of rheumatoid arthritis due to their "tumor-like cell" characteristics, such as being able to break free from growth restrictions caused by contact inhibition, promoting angiogenesis, invading surrounding tissues, and leading to uncontrolled synovial growth. In recent years, cold air plasma (CAP) has been widely recognized for its clear anticancer effect. Inspired by this, this study investigated the inhibitory effect of CAP on the tumor-like biological behavior of RA-FLS through in vitro experiments. Methods Treatment of RA-FLS with CAP at different time doses (0s, 30s, 60s, 120s). 5-ethynyl-2'-deoxyuridine (EdU) proliferation assay was used to determine the cell viability. Analysis of cell migration and invasion was performed by wound-healing assay, transwell assay and immunofluorescent staining for f-actin, respectively. Flow cytometry technique was used for analysis of cell cycle and determination of reactive oxygen species (ROS). Hoechst staining was used for analysis of cell apoptosis. Protein expression was analyzed by Western blot analysis. Results Molecular and cellular level mechanisms have revealed that CAP blocks RA-FLS in the G2/M phase by increasing intracellular reactive oxygen species (ROS), leading to increased apoptosis and significantly reduced migration and invasion ability of RA-FLS. Conclusion Overall, CAP has significant anti proliferative, migratory, and invasive effects on RA-FLS. This study reveals a new targeted treatment strategy for RA.
Collapse
Affiliation(s)
- Le-Ying Ni
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, People’s Republic of China
- Research Center for Translational Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230601, People’s Republic of China
- Department of Rehabilitation Medicine, Maanshan People’s Hospital, Maanshan, Anhui, People’s Republic of China
| | - Cheng-Biao Ding
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, People’s Republic of China
- Research Center for Translational Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230601, People’s Republic of China
- School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, People’s Republic of China
| | - Ji-Min Deng
- Anhui institute for Food and Drug Control, Hefei, People’s Republic of China
| | - Zheng-Wei Wu
- School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, People’s Republic of China
- CAS Key Laboratory of Geospace Environment, University of Science and Technology of China, Hefei, People’s Republic of China
- Institute of Advanced Technology, University of Science and Technology of China, Hefei, People’s Republic of China
| | - Yun Zhou
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, People’s Republic of China
- Research Center for Translational Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230601, People’s Republic of China
| |
Collapse
|
8
|
Wang W, Zheng P, Yan L, Chen X, Wang Z, Liu Q. Mechanism of non-thermal atmospheric plasma in anti-tumor: influencing intracellular RONS and regulating signaling pathways. Free Radic Res 2024; 58:333-353. [PMID: 38767976 DOI: 10.1080/10715762.2024.2358026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 05/13/2024] [Indexed: 05/22/2024]
Abstract
Non-thermal atmospheric plasma (NTAP) has been proven to be an effective anti-tumor tool, with various biological effects such as inhibiting tumor proliferation, metastasis, and promoting tumor cell apoptosis. At present, the main conclusion is that ROS and RNS are the main effector components of NTAP, but the mechanisms of which still lack systematic summary. Therefore, in this review, we first summarized the mechanism by which NTAP directly or indirectly causes an increase in intracellular RONS concentration, and the multiple pathways dysregulation (i.e. NRF2, PI3K, MAPK, NF-κB) induced by intracellular RONS. Then, we generalized the relationship between NTAP induced pathways dysregulation and the various biological effects it brought. The summary of the anti-tumor mechanism of NTAP is helpful for its further research and clinical transformation.
Collapse
Affiliation(s)
- Wenjie Wang
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- School of Stomatology, Southern Medical University, Guangzhou, China
| | - Peijia Zheng
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- School of Stomatology, Southern Medical University, Guangzhou, China
| | - Liang Yan
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- School of Stomatology, Southern Medical University, Guangzhou, China
| | - Xiaoman Chen
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- School of Stomatology, Southern Medical University, Guangzhou, China
| | - Zhicheng Wang
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- School of Stomatology, Southern Medical University, Guangzhou, China
| | - Qi Liu
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
9
|
Almeida-Ferreira C, Marto CM, Carmo C, Almeida-Ferreira J, Frutuoso C, Carvalho MJ, Botelho MF, Laranjo M. Efficacy of Cold Atmospheric Plasma vs. Chemotherapy in Triple-Negative Breast Cancer: A Systematic Review. Int J Mol Sci 2024; 25:3254. [PMID: 38542225 PMCID: PMC10970295 DOI: 10.3390/ijms25063254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/05/2024] [Accepted: 03/06/2024] [Indexed: 04/09/2024] Open
Abstract
Breast cancer is a growing disease, with a high worldwide incidence and mortality rate among women. Among the various types, the treatment of triple-negative breast cancer (TNBC) remains a challenge. Considering the recent advances in cold atmospheric plasma (CAP) cancer research, our goal was to evaluate efficacy data from studies based on chemotherapy and CAP in TNBC cell lines and animal models. A search of the literature was carried out in the PubMed, Web of Science, Cochrane Library, and Embase databases. Of the 10,999 studies, there were fifty-four in vitro studies, three in vivo studies, and two in vitro and in vivo studies included. MDA-MB-231 cells were the most used. MTT, MTS, SRB, annexin-V/propidium iodide, trypan blue, and clonogenic assay were performed to assess efficacy in vitro, increasing the reliability and comprehensiveness of the data. There was found to be a decrease in cell proliferation after both chemotherapy and CAP; however, different protocol settings, including an extensive range of drug doses and CAP exposure times, were reported. For both therapies, a considerable reduction in tumor volume was observed in vivo compared with that of the untreated group. The treatment of TNBC cell lines with CAP proved successful, with apoptosis emerging as the predominant type of cellular death. This systematic review presents a comprehensive overview of the treatment landscape in chemotherapy and CAP regarding their efficacy in TNBC cell lines.
Collapse
Affiliation(s)
- Catarina Almeida-Ferreira
- Institute for Clinical and Biomedical Research (iCBR), Area of Environment Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (C.A.-F.); (C.M.M.); (C.C.); (C.F.); (M.J.C.); (M.F.B.)
- Institute of Biophysics, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), 3000-548 Coimbra, Portugal
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Carlos Miguel Marto
- Institute for Clinical and Biomedical Research (iCBR), Area of Environment Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (C.A.-F.); (C.M.M.); (C.C.); (C.F.); (M.J.C.); (M.F.B.)
- Institute of Biophysics, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), 3000-548 Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), University of Coimbra, 3000-354 Coimbra, Portugal
- Institute of Integrated Clinical Practice, Faculty of Medicine, University of Coimbra, 3000-354 Coimbra, Portugal
- Laboratory for Evidence-Based Sciences and Precision Dentistry, Faculty of Medicine, University of Coimbra, 3000-075 Coimbra, Portugal
- Institute of Experimental Pathology, Faculty of Medicine, University of Coimbra, 3000-354 Coimbra, Portugal
| | - Chrislaura Carmo
- Institute for Clinical and Biomedical Research (iCBR), Area of Environment Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (C.A.-F.); (C.M.M.); (C.C.); (C.F.); (M.J.C.); (M.F.B.)
- Institute of Biophysics, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
- Coimbra Chemistry Center (CQC), Department of Chemistry, Faculty of Sciences and Technology, University of Coimbra, 3004-535 Coimbra, Portugal
| | | | - Cristina Frutuoso
- Institute for Clinical and Biomedical Research (iCBR), Area of Environment Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (C.A.-F.); (C.M.M.); (C.C.); (C.F.); (M.J.C.); (M.F.B.)
- Institute of Biophysics, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
- Gynecology Service, Coimbra Hospital and University Centre, Coimbra Health Local Unit, 3004-561 Coimbra, Portugal
| | - Maria João Carvalho
- Institute for Clinical and Biomedical Research (iCBR), Area of Environment Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (C.A.-F.); (C.M.M.); (C.C.); (C.F.); (M.J.C.); (M.F.B.)
- Institute of Biophysics, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), 3000-548 Coimbra, Portugal
- Gynecology Service, Coimbra Hospital and University Centre, Coimbra Health Local Unit, 3004-561 Coimbra, Portugal
- Universitary Clinic of Gynecology, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Maria Filomena Botelho
- Institute for Clinical and Biomedical Research (iCBR), Area of Environment Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (C.A.-F.); (C.M.M.); (C.C.); (C.F.); (M.J.C.); (M.F.B.)
- Institute of Biophysics, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), 3000-548 Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), University of Coimbra, 3000-354 Coimbra, Portugal
| | - Mafalda Laranjo
- Institute for Clinical and Biomedical Research (iCBR), Area of Environment Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (C.A.-F.); (C.M.M.); (C.C.); (C.F.); (M.J.C.); (M.F.B.)
- Institute of Biophysics, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), 3000-548 Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), University of Coimbra, 3000-354 Coimbra, Portugal
| |
Collapse
|
10
|
Jiang L, Zheng H, Ishida M, Lyu Q, Akatsuka S, Motooka Y, Sato K, Sekido Y, Nakamura K, Tanaka H, Ishikawa K, Kajiyama H, Mizuno M, Hori M, Toyokuni S. Elaborate cooperation of poly(rC)-binding proteins 1/2 and glutathione in ferroptosis induced by plasma-activated Ringer's lactate. Free Radic Biol Med 2024; 214:28-41. [PMID: 38325565 DOI: 10.1016/j.freeradbiomed.2024.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/29/2024] [Accepted: 02/01/2024] [Indexed: 02/09/2024]
Abstract
Reactive species are involved in various aspects of neoplastic diseases, including carcinogenesis, cancer-specific metabolism and therapeutics. Non-thermal plasma (NTP) can directly provide reactive species, by integrating atmospheric and interjacent molecules as substrates, to represent a handy strategy to load oxidative stress in situ. NTP causes apoptosis and/or ferroptosis specifically in cancer cells of various types. Plasma-activated Ringer's lactate (PAL) is another modality at the preclinical stage as cancer therapeutics, based on more stable reactive species. PAL specifically kills malignant mesothelioma (MM) cells, employing lysosomal ·NO as a switch from autophagy to ferroptosis. However, the entire molecular mechanisms have not been elucidated yet. Here we studied cytosolic iron regulations in MM and other cancer cells in response to PAL exposure. We discovered that cells with higher catalytic Fe(II) are more susceptible to PAL-induced ferroptosis. PAL caused a cytosolic catalytic Fe(II)-associated pathology through iron chaperones, poly (rC)-binding proteins (PCBP)1/2, inducing a disturbance in glutathione-regulated iron homeostasis. PCBP1/NCOA4-mediated ferritinophagy started at a later phase, further increasing cytosolic catalytic Fe(II), ending in ferroptosis. In contrast, PCBP2 after PAL exposure contributed to iron loading to mitochondria, leading to mitochondrial dysfunction. Therapeutic effect of PAL was successfully applied to an orthotopic MM xenograft model in mice. In conclusion, PAL can selectively sensitize MM cells to ferroptosis by remodeling cytoplasmic iron homeostasis, where glutathione and PCBPs play distinct roles, resulting in lethal ferritinophagy and mitochondrial dysfunction. Our findings indicate the clinical application of PAL as a ferroptosis-inducer and the potential of PCBPs as novel targets in cancer therapeutics.
Collapse
Affiliation(s)
- Li Jiang
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Hao Zheng
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Moe Ishida
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Qinying Lyu
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Shinya Akatsuka
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Yashiro Motooka
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Kotaro Sato
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan; Department of Oral and Maxillofacial Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-Ku, Nagoya, 466-8550, Japan
| | - Yoshitaka Sekido
- Division of Cancer Biology, Aichi Cancer Center Research Institute, 1-1 Kanokoden, Chikusa-ku, Nagoya, 464-8681, Japan
| | - Kae Nakamura
- Center for Low-temperature Plasma Sciences, Nagoya University, Furo-cho, Chikusa, Nagoya, 464-8603, Japan; Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-Ku, Nagoya, 466-8550, Japan
| | - Hiromasa Tanaka
- Center for Low-temperature Plasma Sciences, Nagoya University, Furo-cho, Chikusa, Nagoya, 464-8603, Japan; Center for Advanced Medicine and Clinical Research, Nagoya University Hospital, 65 Tsurumai-cho, Showa-Ku, Nagoya, 466-8550, Japan
| | - Kenji Ishikawa
- Center for Low-temperature Plasma Sciences, Nagoya University, Furo-cho, Chikusa, Nagoya, 464-8603, Japan
| | - Hiroaki Kajiyama
- Center for Low-temperature Plasma Sciences, Nagoya University, Furo-cho, Chikusa, Nagoya, 464-8603, Japan; Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-Ku, Nagoya, 466-8550, Japan
| | - Masaaki Mizuno
- Center for Advanced Medicine and Clinical Research, Nagoya University Hospital, 65 Tsurumai-cho, Showa-Ku, Nagoya, 466-8550, Japan
| | - Masaru Hori
- Center for Low-temperature Plasma Sciences, Nagoya University, Furo-cho, Chikusa, Nagoya, 464-8603, Japan
| | - Shinya Toyokuni
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan; Center for Low-temperature Plasma Sciences, Nagoya University, Furo-cho, Chikusa, Nagoya, 464-8603, Japan; Center for Integrated Sciences of Low-temperature Plasma Core Research (iPlasma Core), Tokai National Higher Education and Research System, Furo-Cho, Chikusa-ku, Nagoya, 464-8603, Japan.
| |
Collapse
|
11
|
Espona-Noguera A, Tampieri F, Canal C. Engineering alginate-based injectable hydrogels combined with bioactive polymers for targeted plasma-derived oxidative stress delivery in osteosarcoma therapy. Int J Biol Macromol 2024; 257:128841. [PMID: 38104678 DOI: 10.1016/j.ijbiomac.2023.128841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 11/20/2023] [Accepted: 12/14/2023] [Indexed: 12/19/2023]
Abstract
Reactive Oxygen and Nitrogen Species (RONS) in biological systems display hormetic effects, capable of either promoting cell regenerative effects or inducing cell death. Recently, hydrogels have emerged as a promising delivery platform for RONS generated from Cold Atmospheric Plasmas (CAP), known as Plasma-Treated Hydrogels (PTH). PTH have been proposed as an alternative therapy to conventional cancer treatments, offering reduced side effects through the controlled and localized delivery of plasma-derived RONS. In this work, we have developed alginate-based PTH with dual therapeutic action provided by plasma-derived RONS acting as selective anticancer agents for osteosarcoma treatment, and biomolecules (hyaluronic acid and gelatin) to promote stem cell-mediated bone regeneration. For this purpose, we designed a novel manufacturing process to maximize the load of plasma-derived RONS within the PTH. Then, we assessed the PTH bioactivity on osteosarcoma MG-63 cells, and human mesenchymal stem cells (hMSCs). The results showed that the PTH composed of 0.25 % alginate +1 % hyaluronic acid is the most promising formulation in osteosarcoma treatment, showing a dual-action bioactivity as a selective cytotoxic anticancer agent, and as promoter of the proliferation and osteogenic differentiation of hMSCs. These findings provide strong evidence of the significant potential of PTH in the oncological field.
Collapse
Affiliation(s)
- Albert Espona-Noguera
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Engineering and Research Centre for Biomedical Engineering, Universitat Politècnica de Catalunya, BarcelonaTech (UPC), Av. Eduard Maristany 10-14, 08019 Barcelona, Spain; Barcelona Research Center in Multiscale Science and Engineering, Universitat Politècnica de Catalunya, BarcelonaTech (UPC), Barcelona, Spain; Institut de Recerca Sant Joan de Déu, Santa Rosa 39-57, 08950 Esplugues de Llobregat, Spain.
| | - Francesco Tampieri
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Engineering and Research Centre for Biomedical Engineering, Universitat Politècnica de Catalunya, BarcelonaTech (UPC), Av. Eduard Maristany 10-14, 08019 Barcelona, Spain; Barcelona Research Center in Multiscale Science and Engineering, Universitat Politècnica de Catalunya, BarcelonaTech (UPC), Barcelona, Spain; Institut de Recerca Sant Joan de Déu, Santa Rosa 39-57, 08950 Esplugues de Llobregat, Spain
| | - Cristina Canal
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Engineering and Research Centre for Biomedical Engineering, Universitat Politècnica de Catalunya, BarcelonaTech (UPC), Av. Eduard Maristany 10-14, 08019 Barcelona, Spain; Barcelona Research Center in Multiscale Science and Engineering, Universitat Politècnica de Catalunya, BarcelonaTech (UPC), Barcelona, Spain; Institut de Recerca Sant Joan de Déu, Santa Rosa 39-57, 08950 Esplugues de Llobregat, Spain.
| |
Collapse
|
12
|
Marto CM, Laranjo M, Gonçalves AC, Paula A, Jorge J, Caetano-Oliveira R, Sousa MI, Oliveiros B, Ramalho-Santos J, Sarmento-Ribeiro AB, Marques-Ferreira M, Cabrita A, Botelho MF, Carrilho E. In Vitro Characterization of Reversine-Treated Gingival Fibroblasts and Their Safety Evaluation after In Vivo Transplantation. Pharmaceutics 2024; 16:207. [PMID: 38399261 PMCID: PMC10892828 DOI: 10.3390/pharmaceutics16020207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/18/2024] [Accepted: 01/25/2024] [Indexed: 02/25/2024] Open
Abstract
Reversine is a purine derivative that has been investigated with regard to its biological effects, such as its anticancer properties and, mostly, its ability to induce the dedifferentiation of adult cells, increasing their plasticity. The obtained dedifferentiated cells have a high potential for use in regenerative procedures, such as regenerative dentistry (RD). Instead of replacing the lost or damaged oral tissues with synthetic materials, RD uses stem cells combined with matrices and an appropriate microenvironment to achieve tissue regeneration. However, the currently available stem cell sources present limitations, thus restricting the potential of RD. Based on this problem, new sources of stem cells are fundamental. This work aims to characterize mouse gingival fibroblasts (GFs) after dedifferentiation with reversine. Different administration protocols were tested, and the cells obtained were evaluated regarding their cell metabolism, protein and DNA contents, cell cycle changes, morphology, cell death, genotoxicity, and acquisition of stem cell characteristics. Additionally, their teratoma potential was evaluated after in vivo transplantation. Reversine caused toxicity at higher concentrations, with decreased cell metabolic activity and protein content. The cells obtained displayed polyploidy, a cycle arrest in the G2/M phase, and showed an enlarged size. Additionally, apoptosis and genotoxicity were found at higher reversine concentrations. A subpopulation of the GFs possessed stem properties, as supported by the increased expression of CD90, CD105, and TERT, the existence of a CD106+ population, and their trilineage differentiation capacity. The dedifferentiated cells did not induce teratoma formation. The extensive characterization performed shows that significant functional, morphological, and genetic changes occur during the dedifferentiation process. The dedifferentiated cells have some stem-like characteristics, which are of interest for RD.
Collapse
Affiliation(s)
- Carlos Miguel Marto
- Institute of Experimental Pathology, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
- Institute of Biophysics, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
- Institute of Integrated Clinical Practice and Laboratory of Evidence-Based and Precision Dentistry, Faculty of Medicine, University of Coimbra, 3000-075 Coimbra, Portugal (E.C.)
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Area of Environment, Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (A.C.G.); (B.O.); (M.M.-F.)
- Centre for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), 3004-561 Coimbra, Portugal
| | - Mafalda Laranjo
- Institute of Biophysics, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Area of Environment, Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (A.C.G.); (B.O.); (M.M.-F.)
- Centre for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), 3004-561 Coimbra, Portugal
| | - Ana Cristina Gonçalves
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Area of Environment, Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (A.C.G.); (B.O.); (M.M.-F.)
- Centre for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), 3004-561 Coimbra, Portugal
- Laboratory of Oncobiology and Hematology (LOH) and University Clinic of Hematology, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Anabela Paula
- Institute of Integrated Clinical Practice and Laboratory of Evidence-Based and Precision Dentistry, Faculty of Medicine, University of Coimbra, 3000-075 Coimbra, Portugal (E.C.)
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Area of Environment, Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (A.C.G.); (B.O.); (M.M.-F.)
- Centre for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), 3004-561 Coimbra, Portugal
| | - Joana Jorge
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Area of Environment, Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (A.C.G.); (B.O.); (M.M.-F.)
- Centre for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), 3004-561 Coimbra, Portugal
- Laboratory of Oncobiology and Hematology (LOH) and University Clinic of Hematology, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Rui Caetano-Oliveira
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Area of Environment, Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (A.C.G.); (B.O.); (M.M.-F.)
- Pathology Department, Centro Hospitalar e Universitário de Coimbra, 3000-075 Coimbra, Portugal
- Germano de Sousa—Centro de Diagnóstico Histopatológico CEDAP, University of Coimbra, 3000-377 Coimbra, Portugal
| | - Maria Inês Sousa
- Centre for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal
- Department of Life Sciences, University of Coimbra, 3000-456 Coimbra, Portugal
- CNC—Center for Neuroscience and Cell Biology, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Bárbara Oliveiros
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Area of Environment, Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (A.C.G.); (B.O.); (M.M.-F.)
- Centre for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), 3004-561 Coimbra, Portugal
- Laboratory of Biostatistics and Medical Informatics, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
| | - João Ramalho-Santos
- Centre for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal
- Department of Life Sciences, University of Coimbra, 3000-456 Coimbra, Portugal
- CNC—Center for Neuroscience and Cell Biology, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Ana Bela Sarmento-Ribeiro
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Area of Environment, Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (A.C.G.); (B.O.); (M.M.-F.)
- Centre for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), 3004-561 Coimbra, Portugal
- Laboratory of Oncobiology and Hematology (LOH) and University Clinic of Hematology, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Manuel Marques-Ferreira
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Area of Environment, Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (A.C.G.); (B.O.); (M.M.-F.)
- Centre for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), 3004-561 Coimbra, Portugal
- Institute of Endodontics, Faculty of Medicine, University of Coimbra, 3000-075 Coimbra, Portugal
| | - António Cabrita
- Institute of Experimental Pathology, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Maria Filomena Botelho
- Institute of Biophysics, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Area of Environment, Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (A.C.G.); (B.O.); (M.M.-F.)
- Centre for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), 3004-561 Coimbra, Portugal
| | - Eunice Carrilho
- Institute of Integrated Clinical Practice and Laboratory of Evidence-Based and Precision Dentistry, Faculty of Medicine, University of Coimbra, 3000-075 Coimbra, Portugal (E.C.)
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Area of Environment, Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (A.C.G.); (B.O.); (M.M.-F.)
- Centre for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), 3004-561 Coimbra, Portugal
| |
Collapse
|
13
|
Ma Y, Sun T, Ren K, Min T, Xie X, Wang H, Xu G, Dang C, Zhang H. Applications of cold atmospheric plasma in immune-mediated inflammatory diseases via redox homeostasis: evidence and prospects. Heliyon 2023; 9:e22568. [PMID: 38107323 PMCID: PMC10724573 DOI: 10.1016/j.heliyon.2023.e22568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 09/28/2023] [Accepted: 11/15/2023] [Indexed: 12/19/2023] Open
Abstract
As a representative technology in plasma medicine, cold atmospheric plasma (CAP) has beneficial outcomes in surface disinfection, wound repair, tissue regeneration, solid tumor therapy. Impact on immune response and inflammatory conditions was also observed in the process of CAP treatment. Relevant literatures were collected to assess efficacy and summarize possible mechanisms of the innovation. CAP mediates alteration in local immune microenvironment mainly through two ways. One is to down-regulate the expression level of several cytokines, impeding further conduction of immune or inflammatory signals. Intervening the functional phenotype of cells through different degree of oxidative stress is the other approach to manage the immune-mediated inflammatory disorders. A series of preclinical and clinical studies confirmed the therapeutic effect and side effects free of CAP. Moreover, several suggestions proposed in this manuscript might help to find directions for future investigation.
Collapse
Affiliation(s)
- Yuyi Ma
- Department of Surgical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Tuanhe Sun
- Department of Surgical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Kaijie Ren
- Department of Surgical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Tianhao Min
- Department of Surgical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Xin Xie
- Department of Nuclear Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Haonan Wang
- Department of Surgical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Guimin Xu
- State Key Laboratory of Electrical Insulation and Power Equipment, School of Electrical Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Chengxue Dang
- Department of Surgical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Hao Zhang
- Department of Surgical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| |
Collapse
|
14
|
Wang Y, Mang X, Li D, Chen Y, Cai Z, Tan F. Piezoeletric cold atmospheric plasma induces apoptosis and autophagy in human hepatocellular carcinoma cells through blocking glycolysis and AKT/mTOR/HIF-1α pathway. Free Radic Biol Med 2023; 208:134-152. [PMID: 37543168 DOI: 10.1016/j.freeradbiomed.2023.07.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/12/2023] [Accepted: 07/31/2023] [Indexed: 08/07/2023]
Abstract
Hepatocellular carcinoma (HCC) is the sixth most prevalent cancer and the fourth leading cause of cancer-related death worldwide. Advanced or metastatic HCC is currently managed using systemic drug therapy with unsatisfactory patient survival. Cold atmospheric plasma has emerged as a promising, physicochemical, and broad-spectrum oncotherapy. In this preclinical study, we investigated the anti-neoplastic functions and mechanism of piezoelectric direct discharge technology-based CAP, Piezo-CAP, on HCC in vitro and in vivo. Various HCC cells lines, such as SMMC7721, HepG2 and LM3, were used as in vitro cancer model for the phenotypic and mechanistic studies. Specifically, the cell counting Kit-8 and colony formation assay, flow cytometry, Transwell assay, Western blot, reactive oxygen species (ROS) assay, and glutathione to oxidized glutathione ratio (GSH/GSSG) assay were used to demonstrate plasma-induced changes in HCC cell proliferation, cell cycle progression, migration and invasion, epithelial-to-mesenchymal transition, intracellular ROS, and antioxidant capacity, respectively. In addition, the Acridine orange and ethidium bromide (AO/EB) staining and transmission electron microscopy were performed for cellular and subcellular assessment of HCC cell apoptosis. The Ad-mCherry-RFP-LC3B fluorescent double-labeled lentiviral system was used to detect autophagic flux. On the other hand, RNA-sequencing, quantitative real-time PCR, and Western blot were used to demonstrate plasma-induced metabolic and molecular disruption of tumor glycolysis and oncogenic proliferation, respectively. In vivo experiments using a human cell-line-derived xenograft model and immunohistochemistry (IHC) were utilized to investigate the mechanism. Piezo-CAP exerted anti-neoplastic functions through inhibiting cell proliferation, migration and invasion, and promote cell apoptosis and autophagy. Treatment of Piezo-CAP could suppress proliferation and induce autophagy of HCC cells through simultaneously disrupts cancer survival pathways of redox deregulation, glycolytic pathway, and PI3K/AKT/mTOR/HIF1α pathway signaling. Moreover, upon translation of these in vitro results into the tissue level, Piezo-CAP significantly suppressed in situ tumor growth. These findings collectively suggest that Piezo-CAP-induced apoptosis and autophagy of HCC cells though a multitargeted blockade of major cancer survival pathways of deregulated redox balance, glycolysis, and PI3K/AKT/mTOR/HIF-1α signaling.
Collapse
Affiliation(s)
- Yanhong Wang
- Department of ORL-HNS, Shanghai Fourth People's Hospital, and School of Medicine, Tongji University, Shanghai 200432, China; Department of Pharmacy, People's Hospital of Gansu Province, Lanzhou 730000, Gansu, China
| | - Xinyu Mang
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, And School of Basic Medicine Peking Union Medical College, Beijing 100005, China
| | - Danni Li
- Department of ORL-HNS, Shanghai Fourth People's Hospital, and School of Medicine, Tongji University, Shanghai 200432, China
| | - Yiliang Chen
- Department of Biochemistry and Molecular Biology, School of Medicine, Tongji University, Shanghai 200072, China
| | - Zhenyu Cai
- Department of Biochemistry and Molecular Biology, School of Medicine, Tongji University, Shanghai 200072, China
| | - Fei Tan
- Department of ORL-HNS, Shanghai Fourth People's Hospital, and School of Medicine, Tongji University, Shanghai 200432, China; The Royal College of Surgeons in Ireland, Dublin, Ireland; The Royal College of Surgeons of England, London, UK.
| |
Collapse
|
15
|
Bekeschus S. Medical gas plasma technology: Roadmap on cancer treatment and immunotherapy. Redox Biol 2023; 65:102798. [PMID: 37556976 PMCID: PMC10433236 DOI: 10.1016/j.redox.2023.102798] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 06/21/2023] [Accepted: 06/24/2023] [Indexed: 08/11/2023] Open
Abstract
Despite continuous therapeutic progress, cancer remains an often fatal disease. In the early 2010s, first evidence in rodent models suggested promising antitumor action of gas plasma technology. Medical gas plasma is a partially ionized gas depositing multiple physico-chemical effectors onto tissues, especially reactive oxygen and nitrogen species (ROS/RNS). Today, an evergrowing body of experimental evidence suggests multifaceted roles of medical gas plasma-derived therapeutic ROS/RNS in targeting cancer alone or in combination with oncological treatment schemes such as ionizing radiation, chemotherapy, and immunotherapy. Intriguingly, gas plasma technology was recently unraveled to have an immunological dimension by inducing immunogenic cell death, which could ultimately promote existing cancer immunotherapies via in situ or autologous tumor vaccine schemes. Together with first clinical evidence reporting beneficial effects in cancer patients following gas plasma therapy, it is time to summarize the main concepts along with the chances and limitations of medical gas plasma onco-therapy from a biological, immunological, clinical, and technological point of view.
Collapse
Affiliation(s)
- Sander Bekeschus
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489, Greifswald, Germany; Clinic and Policlinic for Dermatology and Venerology, Rostock University Medical Center, Strempelstr. 13, 18057, Rostock, Germany.
| |
Collapse
|
16
|
Dai X, Wu J, Lu L, Chen Y. Current Status and Future Trends of Cold Atmospheric Plasma as an Oncotherapy. Biomol Ther (Seoul) 2023; 31:496-514. [PMID: 37641880 PMCID: PMC10468422 DOI: 10.4062/biomolther.2023.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/12/2023] [Accepted: 04/25/2023] [Indexed: 08/31/2023] Open
Abstract
Cold atmospheric plasma (CAP), a redox modulation tool, is capable of inhibiting a wide spectrum of cancers and has thus been proposed as an emerging onco-therapy. However, with incremental successes consecutively reported on the anticancer efficacy of CAP, no consensus has been made on the types of tumours sensitive to CAP due to the different intrinsic characteristics of the cells and the heterogeneous design of CAP devices and their parameter configurations. These factors have substantially hindered the clinical use of CAP as an oncotherapy. It is thus imperative to clarify the tumour types responsive to CAP, the experimental models available for CAP-associated investigations, CAP administration strategies and the mechanisms by which CAP exerts its anticancer effects with the aim of identifying important yet less studied areas to accelerate the process of translating CAP into clinical use and fostering the field of plasma oncology.
Collapse
Affiliation(s)
- Xiaofeng Dai
- The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
- Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China
| | - Jiale Wu
- The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Lianghui Lu
- The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Yuyu Chen
- The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| |
Collapse
|
17
|
Chupradit S, Widjaja G, Radhi Majeed B, Kuznetsova M, Ansari MJ, Suksatan W, Turki Jalil A, Ghazi Esfahani B. Recent advances in cold atmospheric plasma (CAP) for breast cancer therapy. Cell Biol Int 2023; 47:327-340. [PMID: 36342241 DOI: 10.1002/cbin.11939] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 08/29/2022] [Accepted: 10/11/2022] [Indexed: 11/09/2022]
Abstract
The serious problems of conventional breast cancer therapy strategies such as drug resistance, severe side effects, and lack of selectivity prompted the development of various cold atmospheric plasma (CAP) devices. Due to its advanced technology, CAP can produce a unique environment rich in reactive oxygen and nitrogen species (RONS), photons, charged ions, and an electric field, making it a promising revolutionary platform for cancer therapy. Despite substantial technological successes, CAP-based therapeutic systems are encounter with distinct limitations, including low control of the generated RONS, poor knowledge about its anticancer mechanisms, and challenges concerning designing, manufacturing, clinical translation, and commercialization, which must be resolved. The latest developments in CAP-based therapeutic systems for breast cancer treatment are discussed in this review. More significantly, the integration of CAP-based medicine approaches with other breast cancer therapies, including chemo- and nanotherapy is thoroughly addressed.
Collapse
Affiliation(s)
- Supat Chupradit
- Department of Occupational Therapy, Faculty of Associated Medical Sciences, Chiang Mai University, Suthep, Chiang Mai, Thailand
| | - Gunawan Widjaja
- Universitas Krisnadwipayana, Universitas Indonesia, Jakarta, Indonesia
| | | | - Maria Kuznetsova
- Department of Propaedeutics of Dental Diseases, I.M. Sechenov First Moscow State Medical University, Moskva, Russia
| | - Mohammad Javed Ansari
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-kharj, Saudi Arabia
| | - Wanich Suksatan
- HRH Princess Chulabhorn College of Medical Science, Chulabhorn Royal Academy, Faculty of Nursing, Bangkok, Thailand
| | - Abduladheem Turki Jalil
- Faculty of Biology and Ecology, Yanka Kupala State University of Grodno, Grodno, Belarus.,College of Technical Engineering, The Islamic University, Najaf, Iraq.,Department of Dentistry, Kut University College, Kut, Wasit, Iraq
| | - Bahar Ghazi Esfahani
- Department of Biological Sciences and Technologies, University of Isfahan, Iran, Isfahan
| |
Collapse
|
18
|
Microwave Radiation and the Brain: Mechanisms, Current Status, and Future Prospects. Int J Mol Sci 2022; 23:ijms23169288. [PMID: 36012552 PMCID: PMC9409438 DOI: 10.3390/ijms23169288] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/16/2022] [Accepted: 08/16/2022] [Indexed: 12/12/2022] Open
Abstract
Modern humanity wades daily through various radiations, resulting in frequent exposure and causing potentially important biological effects. Among them, the brain is the organ most sensitive to electromagnetic radiation (EMR) exposure. Despite numerous correlated studies, critical unknowns surround the different parameters used, including operational frequency, power density (i.e., energy dose), and irradiation time that could permit reproducibility and comparability between analyses. Furthermore, the interactions of EMR with biological systems and its precise mechanisms remain poorly characterized. In this review, recent approaches examining the effects of microwave radiations on the brain, specifically learning and memory capabilities, as well as the mechanisms of brain dysfunction with exposure as reported in the literature, are analyzed and interpreted to provide prospective views for future research directed at this important and novel medical technology for developing preventive and therapeutic strategies on brain degeneration caused by microwave radiation. Additionally, the interactions of microwaves with biological systems and possible mechanisms are presented in this review. Treatment with natural products and safe techniques to reduce harm to organs have become essential components of daily life, and some promising techniques to treat cancers and their radioprotective effects are summarized as well. This review can serve as a platform for researchers to understand the mechanism and interactions of microwave radiation with biological systems, the present scenario, and prospects for future studies on the effect of microwaves on the brain.
Collapse
|
19
|
Eggers B, Stope MB, Marciniak J, Götz W, Mustea A, Deschner J, Nokhbehsaim M, Kramer FJ. Non-Invasive Physical Plasma Generated by a Medical Argon Plasma Device Induces the Expression of Regenerative Factors in Human Gingival Keratinocytes, Fibroblasts, and Tissue Biopsies. Biomedicines 2022; 10:biomedicines10040889. [PMID: 35453639 PMCID: PMC9028866 DOI: 10.3390/biomedicines10040889] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/07/2022] [Accepted: 04/11/2022] [Indexed: 02/06/2023] Open
Abstract
After oral surgery, intraoral wound healing and tissue regeneration is an important factor for the success of the entire therapy. In recent years, non-invasive medical plasma (NIPP) has been shown to accelerate wound healing, which would be particularly beneficial for patients with wound healing disorders. Since the application of NIPP in dentistry has not been sufficiently understood, the aim of the present study was to investigate the effect of a medical argon plasma device on gingival cells. Human gingival fibroblasts, keratinocytes, and tissue biopsies were treated with NIPP for different durations. Crucial markers associated with wound healing were examined at the mRNA and protein levels by real-time PCR, ELISA and immunohistochemistry. NIPP treatment led to an increase in Ki67 and MMP1 at mRNA and protein levels. NIPP application lasting longer than 60 s resulted in an increase in apoptotic genes at mRNA level and superficial damage to the epithelium in the tissue biopsies. Overall, our experimental setup demonstrated that NIPP application times of 30 s were most suitable for the treatment of gingival cells and tissue biopsies. Our study provides evidence for potential use of NIPP in dentistry, which would be a promising treatment option for oral surgery.
Collapse
Affiliation(s)
- Benedikt Eggers
- Department of Oral, Maxillofacial and Plastic Surgery, University Hospital Bonn, 53111 Bonn, Germany;
- Correspondence: ; Tel.: +49-0228-287-22407
| | - Matthias Bernhard Stope
- Department of Gynecology and Gynecological Oncology, University Hospital Bonn, 53127 Bonn, Germany; (M.B.S.); (A.M.)
| | - Jana Marciniak
- Department of Orthodontics, University Hospital Bonn, 53111 Bonn, Germany; (J.M.); (W.G.)
| | - Werner Götz
- Department of Orthodontics, University Hospital Bonn, 53111 Bonn, Germany; (J.M.); (W.G.)
| | - Alexander Mustea
- Department of Gynecology and Gynecological Oncology, University Hospital Bonn, 53127 Bonn, Germany; (M.B.S.); (A.M.)
| | - James Deschner
- Department of Periodontology and Operative Dentistry, University Medical Center of the Johannes Gutenberg University, 55131 Mainz, Germany;
| | - Marjan Nokhbehsaim
- Section of Experimental Dento-Maxillo-Facial Medicine, University Hospital Bonn, 53111 Bonn, Germany;
| | - Franz-Josef Kramer
- Department of Oral, Maxillofacial and Plastic Surgery, University Hospital Bonn, 53111 Bonn, Germany;
| |
Collapse
|
20
|
Sakudo A, Yagyu Y. Plasma Biology 2.0. Int J Mol Sci 2022; 23:ijms23073684. [PMID: 35409044 PMCID: PMC8998895 DOI: 10.3390/ijms23073684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 03/24/2022] [Indexed: 02/04/2023] Open
Abstract
Plasma biology is a cutting-edge research field that involves plasma technology [...].
Collapse
Affiliation(s)
- Akikazu Sakudo
- School of Veterinary Medicine, Okayama University of Science, Imabari 794-8555, Japan
- Correspondence:
| | - Yoshihito Yagyu
- Department of Electrical and Electric Engineering, National Institute of Technology, Sasebo College, Nagasaki 857-1193, Japan;
| |
Collapse
|