1
|
Xie J, Mo Q, Chen L, Zhu Z, Liu X, Smagghe G, Ye M, Li S. Identification and functional study of Fib-L, a major silk fibroin gene component in rice leaf folders. INSECT MOLECULAR BIOLOGY 2025; 34:228-238. [PMID: 39466996 DOI: 10.1111/imb.12965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 10/08/2024] [Indexed: 10/30/2024]
Abstract
The rice leaf folder, Cnaphalocrocis medinalis (Lepidoptera: Pyralidae), is a major migratory pest in rice agriculture. This pest is characterised by its larvae's ability to fold rice leaves using silk, a behaviour that culminates in the formation of a silken cocoon during the pupal stage. The fibroin light chain (CmFib-L) gene is crucial for silk production, yet its specific function in C. medinalis has reminded elusive. This study presents a comprehensive analysis of the CmFib-L gene, revealing its complete open reading frame (ORF) and expression patterns. Notably, the gene is highly expressed in the fifth-instar larvae and the silk gland, which are critical stages for silk production. Our experiments demonstrate that silencing the CmFib-L gene leads to a reduction in pupal weight, an extension of the pupal stage and a disorganised silk cocoon. Furthermore, the larval behaviour of leaf folding and spinning is significantly impaired when the expression of CmFib-L is downregulated. These findings not only show the importance of fibroin light chain in silk production but also reveal a new target gene to regulate and control the behaviour and development of C. medinalis.
Collapse
Affiliation(s)
- Jing Xie
- Institute of Entomology, Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Guizhou University, Guiyang, Guizhou, China
| | - Qiyao Mo
- Institute of Entomology, Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Guizhou University, Guiyang, Guizhou, China
| | - Lina Chen
- Institute of Entomology, Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Guizhou University, Guiyang, Guizhou, China
| | - Zhongyan Zhu
- Institute of Entomology, Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Guizhou University, Guiyang, Guizhou, China
| | - Xiao Liu
- Institute of Entomology, Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Guizhou University, Guiyang, Guizhou, China
| | - Guy Smagghe
- Institute of Entomology, Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Guizhou University, Guiyang, Guizhou, China
| | - Mao Ye
- Institute of Entomology, Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Guizhou University, Guiyang, Guizhou, China
| | - Shangwei Li
- Institute of Entomology, Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Guizhou University, Guiyang, Guizhou, China
| |
Collapse
|
2
|
Mo M, Yang G, Du J, Zhou Y, Khan A, Li S, Hu C. Identification and functional analyses of the CmdsRNase5 and CmdsRNase6 genes in rice leaffolder Cnaphalocrocis medinalis. Int J Biol Macromol 2025; 301:140079. [PMID: 39863202 DOI: 10.1016/j.ijbiomac.2025.140079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 01/09/2025] [Accepted: 01/17/2025] [Indexed: 01/27/2025]
Abstract
RNA interference (RNAi) is a promising method for pest control; however, some studies have showed that the degradation of double-stranded RNA (dsRNA) by dsRNA-degrading nucleases (dsRNases) is one of the factors that may reduce RNAi efficiency in lepidopteran insects. In this study, we cloned two dsRNase genes named CmdsRNase5 and CmdsRNase6 from rice leaffolder Cnaphalocrocis medinalis, a notorious insect pest of rice. Open reading frames (ORFs) of CmdsRNase5 and CmdsRNase6 are 1317 and 1185 bp in length, encoding 438 and 394 amino acids, respectively. These two genes were expressed at the highest level in the third-instar larvae throughout developmental stages and highly expressed in the midgut and hemolymph of C. medinalis. RNAi efficiencies of CmdsRNase5 and CmdsRNase6 were 57.44 % and 63.94 % on day 3, respectively. The RNAi efficiency of a target gene CmCHS (chitin synthase from C. medinalis) was 58.70% on day 5 and this efficiency was 87.63 % after co-silencing of CmCHS + CmdsRNase5 + CmdsRNase6. The findings suggested that co-silencing of CmdsRNases alongside CmCHS mitigated the degradation of dsCmCHS and enhanced the RNAi efficiency in C. medinalis, leading to phenotypic deformities, increased mortality, and a significant reduction in both egg production and hatching rate. Transcriptome analysis indicated CmdsRNase5 or CmdsRNase6 knockdown affected the expression of many important functional genes, thereby hindering the growth and development of C. medinalis. The concurrent silencing of both CHS and dsRNases provides a novel strategy for RNAi-mediated green control of C. medinalis and other lepidopteran pests.
Collapse
Affiliation(s)
- Mengtiao Mo
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of Mountainous Regions, Institute of Entomology, Guizhou University, Guiyang, Guizhou 550025, China
| | - Guangming Yang
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of Mountainous Regions, Institute of Entomology, Guizhou University, Guiyang, Guizhou 550025, China; Guizhou Institute of Biology, Guiyang, Guizhou 550027, China
| | - Juan Du
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of Mountainous Regions, Institute of Entomology, Guizhou University, Guiyang, Guizhou 550025, China
| | - Ying Zhou
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of Mountainous Regions, Institute of Entomology, Guizhou University, Guiyang, Guizhou 550025, China
| | - Ashraf Khan
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of Mountainous Regions, Institute of Entomology, Guizhou University, Guiyang, Guizhou 550025, China
| | - Shangwei Li
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of Mountainous Regions, Institute of Entomology, Guizhou University, Guiyang, Guizhou 550025, China.
| | - Chaoxing Hu
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of Mountainous Regions, Institute of Entomology, Guizhou University, Guiyang, Guizhou 550025, China.
| |
Collapse
|
3
|
Kang B, Liu L, Liu L, Liu M, Wu H, Peng B, Liang Z, Liu F, Zang Y, Gu Q. A Bifunctional Nuclease Promotes the Infection of Zucchini Yellow Mosaic Virus in Watermelon by Targeting P3. PLANTS (BASEL, SWITZERLAND) 2024; 13:3431. [PMID: 39683224 DOI: 10.3390/plants13233431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 12/03/2024] [Accepted: 12/03/2024] [Indexed: 12/18/2024]
Abstract
Potyviral P3 is involved in viral replication, movement, and pathogenicity; however, its biochemical function is unknown. In this study, the P3 of the zucchini yellow mosaic virus (ZYMV) interacted with ClBBD, a protein with high ortholog bifunctional nuclease activity, in watermelon. The binding site was shown via yeast two-hybrid screening and BiFC assay to be located at the N-terminus of P3 rather than P3N-PIPO. ClBBD localized predominantly to the chloroplast and plasma membrane. ZYMV P3 was also present in the nucleus and cytoplasm as aggregates. When co-expressed with P3 in tobacco, ClBBD formed aggregates with P3 in the cytoplasm. The knockdown of ClBBD using the VIGS vector pV190 and challenge with ZYMV revealed a positive correlation between viral accumulation and ClBBD expression, indicating that ClBBD reduces the resistance of watermelon to ZYMV. Furtherly, we found that when P3 and ClBBD were transiently co-expressed in tobacco, the level of P3 was significantly higher than that when it was expressed alone or co-expressed with GUS. It inferred that ClBBD may be able to stabilize the expression of P3. Overall, the results suggest that the interaction of P3 with ClBBD promotes virus infection, and ClBBD may be involved in stabilizing the expression level of P3.
Collapse
Affiliation(s)
- Baoshan Kang
- Henan Key Laboratory of Fruit and Cucurbit Biology, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Zhengzhou 450009, China
- Zhongyuan Research Center, Chinese Academy of Agricultural Sciences (CAAS), Xinxiang 453500, China
| | - Lifeng Liu
- Henan Key Laboratory of Fruit and Cucurbit Biology, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Zhengzhou 450009, China
| | - Liming Liu
- Henan Key Laboratory of Fruit and Cucurbit Biology, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Zhengzhou 450009, China
| | - Mei Liu
- Henan Key Laboratory of Fruit and Cucurbit Biology, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Zhengzhou 450009, China
| | - Huijie Wu
- Henan Key Laboratory of Fruit and Cucurbit Biology, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Zhengzhou 450009, China
| | - Bin Peng
- Henan Key Laboratory of Fruit and Cucurbit Biology, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Zhengzhou 450009, China
| | - Zhiling Liang
- Henan Key Laboratory of Fruit and Cucurbit Biology, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Zhengzhou 450009, China
| | - Fengnan Liu
- Henan Key Laboratory of Fruit and Cucurbit Biology, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Zhengzhou 450009, China
| | - Yaoxing Zang
- Henan Key Laboratory of Fruit and Cucurbit Biology, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Zhengzhou 450009, China
| | - Qinsheng Gu
- Henan Key Laboratory of Fruit and Cucurbit Biology, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Zhengzhou 450009, China
| |
Collapse
|
4
|
Li J, Shi Y, Xue Q, Smagghe G, De Schutter K, Taning CNT. Identification and functional analysis of gut dsRNases in the beet armyworm Spodoptera exigua. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2024; 175:104206. [PMID: 39454683 DOI: 10.1016/j.ibmb.2024.104206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 09/18/2024] [Accepted: 10/22/2024] [Indexed: 10/28/2024]
Abstract
RNA interference (RNAi)-based products have the potential to significantly contribute to insect pest control. However, RNAi efficiency varies widely among different insect orders, particularly in Lepidoptera, where it is often low. One key factor affecting RNAi efficiency is the presence of double-stranded ribonuclease (dsRNase) in the digestive tract, which can degrade dsRNA prior to uptake by gut cells. In this study, four dsRNases were identified in the beet armyworm, Spdoptera exigua, of which two were highly expressed gut dsRNases, SedsRNase1 and SedsRNase2. To assess their effect on dsRNA degradation activity via the oral route, CRISPR/Cas9-based gene editing was employed to knock out these gut dsRNases. The results indicate that all mutant strains, including SeKO1 (knockout SedsRNase1), SeKO2 (knockout SedsRNase2), and SeKO1KO2 (knockout SedsRNase1 and SedsRNase2), showed significantly decreased dsRNA degradation activity, particularly in the SeKO1KO2 mutant strain, where the weakest degradation occurred in both the gut and whole body. Additionally, we noticed that the lack of gut SedsRNases led to a slight extended developmental period and reduced reproductive capacity in S. exigua. Collectively, these findings deepen our understanding of gut SedsRNases and how they can impact the biology of the beet armyworm and can support the exploration dsRNA-based approaches for pest control.
Collapse
Affiliation(s)
- Jiangjie Li
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, B-9000 Ghent, Belgium
| | - Yan Shi
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, B-9000 Ghent, Belgium
| | - Qi Xue
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, B-9000 Ghent, Belgium
| | - Guy Smagghe
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, B-9000 Ghent, Belgium
| | - Kristof De Schutter
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, B-9000 Ghent, Belgium.
| | - Clauvis Nji Tizi Taning
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, B-9000 Ghent, Belgium.
| |
Collapse
|
5
|
Shakeel M, Khan A, Du J, Basit A, Yang G, Haddi K, Abbas S, Alam A, Li S. Knockdown of the glucosamine-6-phosphate N-acetyltransferase gene by RNA interference enhances the virulence of entomopathogenic fungi against rice leaffolder Cnaphalocrocis medinalis. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 205:106119. [PMID: 39477580 DOI: 10.1016/j.pestbp.2024.106119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 09/01/2024] [Accepted: 09/03/2024] [Indexed: 11/07/2024]
Abstract
Insect cuticle acts as a first line of defense and a physical protective barrier against entomopathogens. Chitin biosynthesis pathway plays a crucial role in chitin formation in the cuticle of insects. Glucosamine-6-phosphate N-acetyltransferase (GNA) is a key enzyme in insect chitin biosynthesis that regulate the chitin formation. However, how GNA-mediated cuticle metabolism influences virulence of entomopathogenic fungi is still unknown. In this study, CmGNA gene was cloned and characterized from the rice leaffolder Cnaphalocrocis medinalis. The CmGNA contains an open read frame (ORF) 600 nucleotides, encoding 199 amino acids with an isoelectric point of 8.65 and a molecular weight of 22.30 kDa. The expression profile showed that CmGNA was highly expressed in 4th instar larvae and in the cuticle. Here, we also reported the impact of CmGNA gene and entomopathogenic fungi, Metarhizium anisopliae and Beauveria bassiana, on expression pattern of chitin biosynthesis genes, feeding behavior, survival rate and average body weight of infected larvae, phenotypic deformities, rate of pupation, and adult emergence. Our results showed that knockdown of CmGNA and application of M. anisopliae and B. bassiana three days after RNA interference (RNAi) significantly decreased the expression of CmGNA and other associated genes, reduced feeding efficiency and survival rate, and caused loss of average body weight, less rate of pupation and adult emergence of infected larvae. Knockdown of CmGNA gene also increased the lethality of larvae caused by M. anisopliae and B. bassiana and resulted in significantly phenotypic deformities of infected larvae. Our findings illustrated that RNAi-mediated CmGNA knockdown disturbed the chitin synthesis genes that led to enhancing the virulence of M. anisopliae and B. bassiana, which can provide us new insights to develop novel biocontrol strategies against C. medinalis.
Collapse
Affiliation(s)
- Muhammad Shakeel
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of Mountainous Regions, Institute of Entomology, Guizhou University, Guiyang 550025, Guizhou, China
| | - Ashraf Khan
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of Mountainous Regions, Institute of Entomology, Guizhou University, Guiyang 550025, Guizhou, China
| | - Juan Du
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of Mountainous Regions, Institute of Entomology, Guizhou University, Guiyang 550025, Guizhou, China
| | - Abdul Basit
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of Mountainous Regions, Institute of Entomology, Guizhou University, Guiyang 550025, Guizhou, China
| | - Guangming Yang
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of Mountainous Regions, Institute of Entomology, Guizhou University, Guiyang 550025, Guizhou, China
| | - Khalid Haddi
- Departamento de Entomologia, Universidade Federal de Lavras (UFLA), Lavras 37200-900, MG, Brazil
| | - Sohail Abbas
- Agricultural Entomology and Pest Control, College of Plant Protection, Jilin Agricultural University, Changchun 130117, Jilin, China
| | - Aleena Alam
- Agricultural Entomology and Pest Control, College of Plant Protection, Jilin Agricultural University, Changchun 130117, Jilin, China
| | - Shangwei Li
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of Mountainous Regions, Institute of Entomology, Guizhou University, Guiyang 550025, Guizhou, China.
| |
Collapse
|
6
|
Wang Y, Li X, Zhu C, Yi S, Zhang Y, Hong Z. Plant-derived artificial miRNA effectively reduced the proliferation of aphid (Aphidoidea) through spray-induced gene silencing. PEST MANAGEMENT SCIENCE 2024; 80:4322-4332. [PMID: 38647144 DOI: 10.1002/ps.8138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 04/02/2024] [Accepted: 04/22/2024] [Indexed: 04/25/2024]
Abstract
BACKGROUND Aphids (Hemiptera: Aphididae) are notorious sap-sucking insects that rampantly threaten agricultural production worldwide. Current management against aphids in the field heavily relies on chemical pesticides, which makes economical and eco-friendly methods urgently needed. Spray-induced gene silencing (SIGS) offers a powerful and precise approach to pest management. However, the high costs and instability of double-stranded RNA (dsRNA) regulators applied for downstream RNA interference (RNAi) still limit this strategy. It remains uncertain if RNAi regulators applied in SIGS could extend to small RNA (sRNA), especially miRNA. RESULTS We chose two sRNA sequences, miR-9b and miR-VgR, whose corresponding targets ABCG4 and VgR are both essential for aphid growth and development. The efficacy of these sequences was initially verified by chemically synthetic single-stranded RNA (syn-ssRNA). Through spray treatment, we observed a significantly decreased survival number and increased abnormality rate of green peach aphids fed on the host under laboratory conditions. Based on our previous study, we generated transgenic plants expressing artificial miR-9b (amiR-9b) and miR-VgR (amiR-VgR). Remarkably, plant-derived amiRNA exerted potent and long-lasting inhibitory efficacy with merely one percent concentration of chemical synthetics. Notably, the simultaneous application of amiR-9b and amiR-VgR exhibited superior inhibitory efficacy. CONCLUSION We explored the potential use of sRNA-based biopesticide through SIGS while investigating the dosage requirements. To optimize this strategy, the utilization of plant-derived amiRNA was proposed. The results suggested that attributed to stability and durability, deploying amiRNA in pest management is a potential and promising solution for the field application. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yuan Wang
- State Key Laboratory of Pharmaceutical Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), School of Life Sciences, Nanjing University, Nanjing, China
| | - Xuanlin Li
- State Key Laboratory of Pharmaceutical Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), School of Life Sciences, Nanjing University, Nanjing, China
| | - Chenghong Zhu
- State Key Laboratory of Analytical Chemistry for Life Sciences, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Chemistry, and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, China
| | - Shijie Yi
- State Key Laboratory of Pharmaceutical Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), School of Life Sciences, Nanjing University, Nanjing, China
| | - Yan Zhang
- State Key Laboratory of Analytical Chemistry for Life Sciences, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Chemistry, and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, China
| | - Zhi Hong
- State Key Laboratory of Pharmaceutical Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), School of Life Sciences, Nanjing University, Nanjing, China
| |
Collapse
|
7
|
Sun T, Yang F, Zhang H, Yang Y, Lu Z, Zhai B, Xu H, Lu J, Lu Y, Wang Y, Guo J, Hu G. CRY1 is involved in the take-off behaviour of migratory Cnaphalocrocis medinalis individuals. BMC Biol 2024; 22:169. [PMID: 39135045 PMCID: PMC11320853 DOI: 10.1186/s12915-024-01964-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 07/25/2024] [Indexed: 08/15/2024] Open
Abstract
BACKGROUND Numerous insect species undertake long-distance migrations on an enormous scale, with great implications for ecosystems. Given that take-off is the point where it all starts, whether and how the external light and internal circadian rhythm are involved in regulating the take-off behaviour remains largely unknown. Herein, we explore this issue in a migratory pest, Cnaphalocrocis medinalis, via behavioural observations and RNAi experiments. RESULTS The results showed that C. medinalis moths took off under conditions where the light intensity gradually weakened to 0.1 lx during the afternoon or evening, and the take-off proportions under full spectrum or blue light were significantly higher than that under red and green light. The ultraviolet-A/blue light-sensitive type 1 cryptochrome gene (Cmedcry1) was significantly higher in take-off moths than that of non-take-off moths. In contrast, the expression of the light-insensitive CRY2 (Cmedcry2) and circadian genes (Cmedtim and Cmedper) showed no significant differences. After silencing Cmedcry1, the take-off proportion significantly decreased. Thus, Cmedcry1 is involved in the decrease in light intensity induced take-off behaviour in C. medinalis. CONCLUSIONS This study can help further explain the molecular mechanisms behind insect migration, especially light perception and signal transmission during take-off phases.
Collapse
Affiliation(s)
- Tianyi Sun
- College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Fan Yang
- Institute of Vegetables, Wuhan Academy of Agricultural Sciences, Wuhan, 430345, China
| | - Haiyan Zhang
- Station of Plant Protection and Plant Inspection, Agricultural Technology Extension Centre of Jiangyan District, Taizhou, 225529, China
| | - Yajun Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Zhongxian Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Baoping Zhai
- College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Hongxing Xu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Jiahao Lu
- Songjiang Agriculture Technology Extension Centre, Shanghai, 201600, China
| | - Yanhui Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Yumeng Wang
- College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jiawen Guo
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China.
| | - Gao Hu
- College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China.
- Guizhou Provincial Key Laboratory for Rare Animal and Economic Insect of the Mountainous Region, Guiyang University, Guiyang, 550005, China.
| |
Collapse
|
8
|
Koo J, Palli SR. Recent advances in understanding of the mechanisms of RNA interference in insects. INSECT MOLECULAR BIOLOGY 2024:10.1111/imb.12941. [PMID: 38957135 PMCID: PMC11695441 DOI: 10.1111/imb.12941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 06/20/2024] [Indexed: 07/04/2024]
Abstract
We highlight the recent 5 years of research that contributed to our understanding of the mechanisms of RNA interference (RNAi) in insects. Since its first discovery, RNAi has contributed enormously as a reverse genetic tool for functional genomic studies. RNAi is also being used in therapeutics, as well as agricultural crop and livestock production and protection. Yet, for the wider application of RNAi, improvement of its potency and delivery technologies is needed. A mechanistic understanding of every step of RNAi, from cellular uptake of RNAi trigger molecules to targeted mRNA degradation, is key for developing an efficient strategy to improve RNAi technology. Insects provide an excellent model for studying the mechanism of RNAi due to species-specific variations in RNAi efficiency. This allows us to perform comparative studies in insect species with different RNAi sensitivity. Understanding the mechanisms of RNAi in different insects can lead to the development of better strategies to improve RNAi and its application to manage agriculturally and medically important insects.
Collapse
Affiliation(s)
- Jinmo Koo
- Department of Entomology, Gatton-Martin College of Agriculture, University of Kentucky, Lexington, KY 40546, USA
- Current address: Department of Entomology, University of California, Riverside, CA 92521, USA
| | - Subba Reddy Palli
- Department of Entomology, Gatton-Martin College of Agriculture, University of Kentucky, Lexington, KY 40546, USA
| |
Collapse
|
9
|
Shu Q, Liu GC, He JW, Hu P, Dong ZW, Zhao RP, Zhang HR, Li XY. RNAi efficiency is enhanced through knockdown of double-stranded RNA-degrading enzymes in butterfly Papilio xuthus. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2024; 115:e22113. [PMID: 38628056 DOI: 10.1002/arch.22113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 03/27/2024] [Accepted: 04/08/2024] [Indexed: 04/19/2024]
Abstract
The efficiency of RNA interference (RNAi) has always limited the research on the phenotype innovation of Lepidoptera insects. Previous studies have found that double-stranded RNA-degrading enzyme (dsRNase) is an important factor in RNAi efficiency, but there have been no relevant reports in butterflies (Papilionoidea). Papilio xuthus is one of the important models in butterflies with an extensive experimental application value. To explore the effect of dsRNase in the RNAi efficiency on butterflies, six dsRNase genes (PxdsRNase 1-6) were identified in P. xuthus genome, and their dsRNA-degrading activities were subsequently detected by ex vivo assays. The result shows that the dsRNA-degrading ability of gut content (<1 h) was higher than hemolymph content (>12 h). We then investigated the expression patterns of these PxdsRNase genes during different tissues and developmental stages, and related RNAi experiments were carried out. Our results show that different PxdsRNase genes had different expression levels at different developmental stages and tissues. The expression of PxdsRNase2, PxdsRNase3, and PxdsRNase6 were upregulated significantly through dsGFP injection, and PxdsRNase genes can be silenced effectively by injecting their corresponding dsRNA. RNAi-of-RNAi studies with PxEbony, which acts as a reporter gene, observed that silencing PxdsRNase genes can increase RNAi efficiency significantly. These results confirm that silencing dsRNase genes can improve RNAi efficiency in P. xuthus significantly, providing a reference for the functional study of insects such as butterflies with low RNAi efficiency.
Collapse
Affiliation(s)
- Qian Shu
- Yunnan Agricultural University College of Plant Protection, Kunming, Yunnan, China
| | - Gui-Chun Liu
- Key Laboratory of Genetic Evolution & Animal Models, Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Jin-Wu He
- Key Laboratory of Genetic Evolution & Animal Models, Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Ping Hu
- Key Laboratory of Genetic Evolution & Animal Models, Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Zhi-Wei Dong
- Key Laboratory of Genetic Evolution & Animal Models, Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Ruo-Ping Zhao
- Key Laboratory of Genetic Evolution & Animal Models, Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Hong-Rui Zhang
- Yunnan Agricultural University College of Plant Protection, Kunming, Yunnan, China
| | - Xue-Yan Li
- Key Laboratory of Genetic Evolution & Animal Models, Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| |
Collapse
|
10
|
Huang M, Meng JY, Tang X, Shan LL, Yang CL, Zhang CY. Identification, expression analysis, and functional verification of three opsin genes related to the phototactic behaviour of Ostrinia furnacalis. Mol Ecol 2024:e17323. [PMID: 38506493 DOI: 10.1111/mec.17323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/23/2023] [Accepted: 03/12/2024] [Indexed: 03/21/2024]
Abstract
Ostrinia furnacalis is a disreputable herbivorous pest that poses a serious threat to corn crops. Phototaxis in nocturnal moths plays a crucial role in pest prediction and control. Insect opsins are the main component of insect visual system. However, the inherent molecular relationship between phototactic behaviour and vision of insects remains a mystery. Herein, three opsin genes were identified and cloned from O. furnacalis (OfLW, OfBL, and OfUV). Bioinformatics analysis revealed that all opsin genes had visual pigment (opsin) retinal binding sites and seven transmembrane domains. Opsin genes were distributed across different developmental stages and tissues, with the highest expression in adults and compound eyes. The photoperiod-induced assay elucidated that the expression of three opsin genes in females were higher during daytime, while their expression in males tended to increase at night. Under the sustained darkness, the expression of opsin genes increased circularly, although the increasing amplitude in males was lower when compared with females. Furthermore, the expression of OfLW, OfBL, and OfUV was upregulated under green, blue, and ultraviolet light, respectively. The results of RNA interference showed that the knockout of opsin genes decreased the phototaxis efficiency of female and male moths to green, blue, and ultraviolet light. Our results reveal that opsin genes are involved in the phototactic behaviour of moths, providing a potential target gene for pest control and a basis for further investigation on the phototactic behaviour of Lepidoptera insects.
Collapse
Affiliation(s)
- Mei Huang
- Institute of Entomology, Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Guizhou University, Guiyang, Guizhou, China
| | - Jian-Yu Meng
- Guizhou Tobacco Science Research Institute, Guiyang, Guizhou, China
| | - Xue Tang
- Institute of Entomology, Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Guizhou University, Guiyang, Guizhou, China
| | - Long-Long Shan
- Institute of Entomology, Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Guizhou University, Guiyang, Guizhou, China
| | - Chang-Li Yang
- Institute of Entomology, Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Guizhou University, Guiyang, Guizhou, China
| | - Chang-Yu Zhang
- Institute of Entomology, Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Guizhou University, Guiyang, Guizhou, China
| |
Collapse
|
11
|
Ortolá B, Urbaneja A, Eiras M, Pérez-Hedo M, Daròs JA. RNAi-mediated silencing of Mediterranean fruit fly (Ceratitis capitata) endogenous genes using orally-supplied double-stranded RNAs produced in Escherichia coli. PEST MANAGEMENT SCIENCE 2024; 80:1087-1098. [PMID: 37851867 DOI: 10.1002/ps.7839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 09/15/2023] [Accepted: 10/15/2023] [Indexed: 10/20/2023]
Abstract
BACKGROUND The Mediterranean fruit fly (medfly), Ceratitis capitata Wiedemann, is a major pest affecting fruit and vegetable production worldwide, whose control is mainly based on insecticides. Double-stranded RNA (dsRNA) able to down-regulate endogenous genes, thus affecting essential vital functions via RNA interference (RNAi) in pests and pathogens, is envisioned as a more specific and environmentally-friendly alternative to traditional insecticides. However, this strategy has not been explored in medfly yet. RESULTS Here, we screened seven candidate target genes by injecting in adult medflies gene-specific dsRNA hairpins transcribed in vitro. Several genes were significantly down-regulated, resulting in increased insect mortality compared to flies treated with a control dsRNA targeting the green fluorescent protein (GFP) complementary DNA (cDNA). Three of the dsRNAs, homologous to the beta subunit of adenosine triphosphate (ATP) synthase (ATPsynbeta), a vacuolar ATPase (V-ATPase), and the ribosomal protein S13 (RPS13), were able to halve the probability of survival in only 48 h after injection. We then produced new versions of these three dsRNAs and that of the GFP control as circular molecules in Escherichia coli using a two-self-splicing-intron-based expression system and tested them as orally-delivered insecticidal compounds against medfly adults. We observed a significant down-regulation of V-ATPase and RPS13 messenger RNAs (mRNAs) (approximately 30% and 90%, respectively) compared with the control medflies after 3 days of treatment. No significant mortality was recorded in medflies, but egg laying and hatching reduction was achieved by silencing V-ATPase and RPS13. CONCLUSION In sum, we report the potential of dsRNA molecules as oral insecticide in medfly. © 2023 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Beltrán Ortolá
- Instituto de Biología Molecular y Celular de Plantas (Consejo Superior de Investigaciones Científicas-Universitat Politècnica de València), Valencia, Spain
| | - Alberto Urbaneja
- Instituto Valenciano de Investigaciones Agrarias (IVIA), Centro de Protección Vegetal y Biotecnología, Moncada, Valencia, Spain
| | - Marcelo Eiras
- Instituto de Biología Molecular y Celular de Plantas (Consejo Superior de Investigaciones Científicas-Universitat Politècnica de València), Valencia, Spain
- Laboratório de Fitovirologia e Fisiopatologia, Instituto Biológico, Sao Paulo, Brazil
| | - Meritxell Pérez-Hedo
- Instituto Valenciano de Investigaciones Agrarias (IVIA), Centro de Protección Vegetal y Biotecnología, Moncada, Valencia, Spain
| | - José-Antonio Daròs
- Instituto de Biología Molecular y Celular de Plantas (Consejo Superior de Investigaciones Científicas-Universitat Politècnica de València), Valencia, Spain
| |
Collapse
|
12
|
Ortolá B, Daròs JA. RNA Interference in Insects: From a Natural Mechanism of Gene Expression Regulation to a Biotechnological Crop Protection Promise. BIOLOGY 2024; 13:137. [PMID: 38534407 DOI: 10.3390/biology13030137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/14/2024] [Accepted: 02/19/2024] [Indexed: 03/28/2024]
Abstract
Insect pests rank among the major limiting factors in agricultural production worldwide. In addition to direct effect on crops, some phytophagous insects are efficient vectors for plant disease transmission. Large amounts of conventional insecticides are required to secure food production worldwide, with a high impact on the economy and environment, particularly when beneficial insects are also affected by chemicals that frequently lack the desired specificity. RNA interference (RNAi) is a natural mechanism gene expression regulation and protection against exogenous and endogenous genetic elements present in most eukaryotes, including insects. Molecules of double-stranded RNA (dsRNA) or highly structured RNA are the substrates of cellular enzymes to produce several types of small RNAs (sRNAs), which play a crucial role in targeting sequences for transcriptional or post-transcriptional gene silencing. The relatively simple rules that underlie RNAi regulation, mainly based in Watson-Crick complementarity, have facilitated biotechnological applications based on these cellular mechanisms. This includes the promise of using engineered dsRNA molecules, either endogenously produced in crop plants or exogenously synthesized and applied onto crops, as a new generation of highly specific, sustainable, and environmentally friendly insecticides. Fueled on this expectation, this article reviews current knowledge about the RNAi pathways in insects, and some other applied questions such as production and delivery of recombinant RNA, which are critical to establish RNAi as a reliable technology for insect control in crop plants.
Collapse
Affiliation(s)
- Beltrán Ortolá
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universitat Politècnica de València, 46022 Valencia, Spain
| | - José-Antonio Daròs
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universitat Politècnica de València, 46022 Valencia, Spain
| |
Collapse
|
13
|
Zhang JY, Zhao J, Zhu-Salzman K, Ji QQ, Jiang YP, Xiao LB, Xu DJ, Xu GC, Ge LQ, Tan YA. Gene cloning, protein expression, and enzymatic characterization of a double-stranded RNA degrading enzyme in Apolygus lucorum. INSECT SCIENCE 2024; 31:119-133. [PMID: 37287390 DOI: 10.1111/1744-7917.13211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 03/27/2023] [Accepted: 04/02/2023] [Indexed: 06/09/2023]
Abstract
RNA interference (RNAi) is a powerful tool that post-transcriptionally silences target genes in eukaryotic cells. However, silencing efficacy varies greatly among different insect species. Recently, we met with little success when attempting to knock down genes in the mirid bug Apolygus lucorum via dsRNA injection. The disappearance of double-stranded RNA (dsRNA) could be a potential factor that restricts RNAi efficiency. Here, we found that dsRNA can be degraded in midgut fluids, and a dsRNase of A. lucorum (AldsRNase) was identified and characterized. Sequence alignment indicated that its 6 key amino acid residues and the Mg2+ -binding site were similar to those of other insects' dsRNases. The signal peptide and endonuclease non-specific domain shared high sequence identity with the brown-winged green stinkbug Plautia stali dsRNase. AldsRNase showed high salivary gland and midgut expression and was continuously expressed through the whole life cycle, with peaks at the 4th instar ecdysis in the whole body. The purified AldsRNase protein obtained by heterologously expressed can rapidly degrade dsRNA. When comparing the substrate specificity of AldsRNase, 3 specific substrates (dsRNA, small interfering RNA, and dsDNA) were all degraded, and the most efficient degradation is dsRNA. Subsequently, immunofluorescence revealed that AldsRNase was expressed in the cytoplasm of midgut cells. Through cloning and functional study of AldsRNase, the enzyme activity and substrate specificity of the recombinant protein, as well as the subcellular localization of nuclease, the reason for the disappearance of dsRNA was explained, which was useful in improving RNAi efficiency in A. lucorum and related species.
Collapse
Affiliation(s)
- Jie-Yu Zhang
- College of Plant Protection, Yangzhou University, Yangzhou, Jiangsu Province, China
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu Province, China
| | - Jing Zhao
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu Province, China
| | - Keyan Zhu-Salzman
- Department of Entomology, Texas A&M University, College Station, TX, USA
| | - Qin-Qin Ji
- Taizhou Customs of the People's Republic of China, Taizhou, Jiangsu Province, China
| | - Yi-Ping Jiang
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu Province, China
| | - Liu-Bin Xiao
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu Province, China
| | - De-Jin Xu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu Province, China
| | - Guang-Chun Xu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu Province, China
| | - Lin-Quan Ge
- College of Plant Protection, Yangzhou University, Yangzhou, Jiangsu Province, China
| | - Yong-An Tan
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu Province, China
| |
Collapse
|
14
|
Dalaisón-Fuentes LI, Pascual A, Crespo M, Andrada NL, Welchen E, Catalano MI. Knockdown of double-stranded RNases (dsRNases) enhances oral RNA interference (RNAi) in the corn leafhopper, Dalbulus maidis. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 196:105618. [PMID: 37945254 DOI: 10.1016/j.pestbp.2023.105618] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/05/2023] [Accepted: 09/09/2023] [Indexed: 11/12/2023]
Abstract
The leafhopper Dalbulus maidis is a harmful pest that causes severe damage to corn crops. Conventional chemical pesticides have negative environmental impacts, emphasizing the need for alternative solutions. RNA interference (RNAi) is a more specific and environmentally friendly method for controlling pests and reducing the negative impacts of current pest management practices. Previous studies have shown that orally administered double-stranded RNA (dsRNA) is less effective than injection protocols in silencing genes. This study focuses on identifying and understanding the role of double-stranded ribonucleases (dsRNases) in limiting the efficiency of oral RNAi in D. maidis. Three dsRNases were identified and characterized, with Dmai-dsRNase-2 being highly expressed in the midgut and salivary glands. An ex vivo degradation assay revealed significant nuclease activity, resulting in high instability of dsRNA when exposed to tissue homogenates. Silencing Dmai-dsRNase-2 improved the insects' response to the dsRNA targeting the gene of interest, providing evidence of dsRNases involvement in oral RNAi efficiency. Therefore, administering both dsRNase-specific and target gene-specific-dsRNAs simultaneously is a promising approach to increase the efficiency of oral RNAi and should be considered in future control strategies.
Collapse
Affiliation(s)
- Lucía I Dalaisón-Fuentes
- Centro de BioInvestigaciones (Universidad Nacional del Noroeste de la Provincia de Buenos Aires-CICBA), Avenida Presidente Frondizi 2650 (2700), Pergamino, Argentina; Centro de Investigaciones y Transferencias del Noroeste de la provincia de Buenos Aires (CITNOBA-CONICET), Monteagudo 2772 (2700), Pergamino, Argentina
| | - Agustina Pascual
- Centro de BioInvestigaciones (Universidad Nacional del Noroeste de la Provincia de Buenos Aires-CICBA), Avenida Presidente Frondizi 2650 (2700), Pergamino, Argentina; Centro de Investigaciones y Transferencias del Noroeste de la provincia de Buenos Aires (CITNOBA-CONICET), Monteagudo 2772 (2700), Pergamino, Argentina.
| | - Mariana Crespo
- Centro de BioInvestigaciones (Universidad Nacional del Noroeste de la Provincia de Buenos Aires-CICBA), Avenida Presidente Frondizi 2650 (2700), Pergamino, Argentina; Centro de Investigaciones y Transferencias del Noroeste de la provincia de Buenos Aires (CITNOBA-CONICET), Monteagudo 2772 (2700), Pergamino, Argentina
| | - Nicolás L Andrada
- Centro de BioInvestigaciones (Universidad Nacional del Noroeste de la Provincia de Buenos Aires-CICBA), Avenida Presidente Frondizi 2650 (2700), Pergamino, Argentina; Centro de Investigaciones y Transferencias del Noroeste de la provincia de Buenos Aires (CITNOBA-CONICET), Monteagudo 2772 (2700), Pergamino, Argentina
| | - Elina Welchen
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - María I Catalano
- Centro de BioInvestigaciones (Universidad Nacional del Noroeste de la Provincia de Buenos Aires-CICBA), Avenida Presidente Frondizi 2650 (2700), Pergamino, Argentina; Centro de Investigaciones y Transferencias del Noroeste de la provincia de Buenos Aires (CITNOBA-CONICET), Monteagudo 2772 (2700), Pergamino, Argentina
| |
Collapse
|
15
|
Huang M, Meng JY, Zhou L, Yu C, Zhang CY. Expression and function of opsin genes associated with phototaxis in Zeugodacus cucurbitae Coquillett (Diptera: Tephritidae). PEST MANAGEMENT SCIENCE 2023; 79:4490-4500. [PMID: 37418556 DOI: 10.1002/ps.7651] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 06/06/2023] [Accepted: 07/07/2023] [Indexed: 07/09/2023]
Abstract
BACKGROUND Zeugodacus cucuribitae is a major agricultural pest that causes significant damage to varieties of plants. Vision plays a critical role in phototactic behavior of herbivorous insects. However, the effect of opsin on the phototactic behavior in Z. cucuribitae remains unknown. The aim of this research is to explore the key opsin genes that associate with phototaxis behavior of Z. cucurbitae. RESULTS Five opsin genes were identified and their expression patterns were analyzed. The relative expression levels of ZcRh1, ZcRh4 and ZcRh6 were highest in 4-day-old larvae, ZcRh2 and ZcRh3 were highest in 3rd-instar larvae and 5-day-old pupae, respectively. Furthermore, five opsin genes had the highest expression levels in compound eyes, followed by the antennae and head, whereas the lower occurred in other tissues. The expression of the long-wavelength-sensitive (LW) opsins first decreased and then increased under green light exposure. In contrast, the expression of ultraviolet-sensitive (UV) opsins first increased and then decreased with the duration of UV exposure. Silencing of LW opsin (dsZcRh1, dsZcRh2, and dsZcRh6) and UV opsin (dsZcRh3 and dsZcRh4) reduced the phototactic efficiency of Z. cucurbitae to green light by 52.27%, 60.72%, and 67.89%, and to UV light by 68.59% and 61.73%, respectively. CONCLUSION The results indicate that RNAi inhibited the expression of opsin, thereby inhibiting the phototaxis of Z. cucurbitae. This result provides theoretical support for the physical control of Z. cucurbitae and lays the foundation for further exploration of the mechanism of insect phototaxis. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Mei Huang
- Institute of Entomology, Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, College of Agriculture, Guizhou University, Guiyang, China
| | - Jian-Yu Meng
- Guizhou Tobacco Science Research Institute, Guiyang, China
| | - Lv Zhou
- Institute of Entomology, Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, College of Agriculture, Guizhou University, Guiyang, China
| | - Chun Yu
- Institute of Entomology, Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, College of Agriculture, Guizhou University, Guiyang, China
| | - Chang-Yu Zhang
- Institute of Entomology, Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, College of Agriculture, Guizhou University, Guiyang, China
| |
Collapse
|
16
|
Quan PQ, Li JR, Liu XD. Glucose Dehydrogenases-Mediated Acclimation of an Important Rice Pest to Global Warming. Int J Mol Sci 2023; 24:10146. [PMID: 37373294 DOI: 10.3390/ijms241210146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/09/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023] Open
Abstract
Global warming is posing a threat to animals. As a large group of widely distributed poikilothermal animals, insects are liable to heat stress. How insects deal with heat stress is worth highlighting. Acclimation may improve the heat tolerance of insects, but the underlying mechanism remains vague. In this study, the high temperature of 39 °C was used to select the third instar larvae of the rice leaf folder Cnaphalocrocis medinalis, an important insect pest of rice, for successive generations to establish the heat-acclimated strain (HA39). The molecular mechanism of heat acclimation was explored using this strain. The HA39 larvae showed stronger tolerance to 43 °C than the unacclimated strain (HA27) persistently reared at 27 °C. The HA39 larvae upregulated a glucose dehydrogenase gene, CmGMC10, to decrease the reactive oxygen species (ROS) level and increase the survival rate under heat stress. The HA39 larvae maintained a higher activity of antioxidases than the HA27 when confronted with an exogenous oxidant. Heat acclimation decreased the H2O2 level in larvae under heat stress which was associated with the upregulation of CmGMC10. The rice leaf folder larvae may acclimate to global warming via upregulating CmGMC10 to increase the activity of antioxidases and alleviate the oxidative damage of heat stress.
Collapse
Affiliation(s)
- Peng-Qi Quan
- Department of Entomology, Nanjing Agricultural University, Nanjing 210095, China
| | - Jia-Rong Li
- Department of Entomology, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiang-Dong Liu
- Department of Entomology, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
17
|
Niu Y, Zhao Y, Shi F, Li M, Zhang S, Yang J, Zong S, Tao J. An Efficient and Simple Method for Collecting Haemolymph of Cerambycidae (Insecta: Coleoptera) Adults. INSECTS 2022; 14:29. [PMID: 36661957 PMCID: PMC9863847 DOI: 10.3390/insects14010029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/23/2022] [Accepted: 12/23/2022] [Indexed: 06/17/2023]
Abstract
Cerambycid beetles (Cerambycidae) are major forest pests, posing a serious threat to the security of forest resources worldwide. Extensive research has focused on the control of cerambycid beetles from physiological and biochemical perspectives. Despite the important roles of insect haemolymph in physiological processes, efficient collection methods for Cerambycidae are lacking. For the efficient and easy collection of large amounts of pure haemolymph from adult cerambycid beetles, a new method, named net centrifugation, was developed. Three species of cerambycid beetles with large differences in size, Anoplophora chinensis, Monochamus saltuarius and Saperda populnea, were selected for the study. Haemolymph was collected by the newly developed net centrifugation method-in which an inner nylon net is used during centrifugation under optimised conditions, and a relatively small wound is generated on the insect-as well as the traditional tearing method and double centrifugation method. Among the three methods evaluated, the net centrifugation method caused the least damage to cerambycid beetles during the whole operation. This method resulted in the most haemolymph from a single beetle, with the lowest turbidity, mostly pure haemocytes in the precipitate, the clearest haemolymph smears by microscopy and the highest quality of RNA extracted from haemocytes. The net centrifugation method has a high collection efficiency, providing important technical support for haemolymph extraction and entomological research.
Collapse
Affiliation(s)
- Yiming Niu
- Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, Beijing 100083, China
| | - Yuxuan Zhao
- Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, Beijing 100083, China
| | - Fengming Shi
- Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, Beijing 100083, China
| | - Meng Li
- Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, Beijing 100083, China
| | - Sainan Zhang
- Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, Beijing 100083, China
| | - Jinglin Yang
- Mentougou Forestry Station, Beijing 102308, China
| | - Shixiang Zong
- Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, Beijing 100083, China
| | - Jing Tao
- Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|