1
|
Campos-Sánchez I, Navarrete-Muñoz EM, Hurtado-Pomares M, Júlvez J, Lertxundi N, Martens DS, Fernández-Somoano A, Riaño-Galán I, Guxens M, Ibarluzea JM, Nawrot T, Valera-Gran D. Association between telomere length and neuropsychological function at 4-5 years in children from the INMA project: a cross-sectional study. Eur Child Adolesc Psychiatry 2024; 33:2803-2812. [PMID: 38246982 PMCID: PMC11272730 DOI: 10.1007/s00787-023-02361-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 12/17/2023] [Indexed: 01/23/2024]
Abstract
Shortened telomere length (TL) has been associated with lower cognitive performance, different neurological diseases in adults, and certain neurodevelopmental disorders in children. However, the evidence about the association between TL and neuropsychological developmental outcomes in children from the general population is scarce. Therefore, this study aimed to explore the association between TL and neuropsychological function in children 4-5 years of age. We included 686 children from the INMA Project, a population-based birth cohort in Spain. Leucocyte TL was determined by quantitative PCR method, and neuropsychological outcomes were measured using the McCarthy Scales of Children's Abilities (MCSA). Multiple linear regression models were used to estimate associations adjusted for potential confounding variables. Main findings showed that a longer TL was associated with a higher mean working memory score (β = 4.55; 95% CI = 0.39, 8.71). In addition, longer TL was associated with a higher mean global quantitative score (β = 3.85; 95% CI = -0.19, 7.89), although the association was marginally significant. To our knowledge, this is the first study that shows a positive association between TL and better neuropsychological outcomes in children. Although further research is required to confirm these results, this study supports the hypothesis that TL is essential in protecting and maintaining a child's health, including cognitive functions such as working memory.
Collapse
Affiliation(s)
- Irene Campos-Sánchez
- Department of Surgery and Pathology, Miguel Hernandez University, Alicante, Spain
| | - Eva María Navarrete-Muñoz
- Department of Surgery and Pathology, Miguel Hernandez University, Alicante, Spain.
- Grupo de Investigación en Terapia Ocupacional (InTeO), Miguel Hernandez University, Alicante, Spain.
- Alicante Institute for Health and Biomedical Research, Alicante, Spain.
| | - Miriam Hurtado-Pomares
- Department of Surgery and Pathology, Miguel Hernandez University, Alicante, Spain
- Grupo de Investigación en Terapia Ocupacional (InTeO), Miguel Hernandez University, Alicante, Spain
| | - Jordi Júlvez
- Clinical and Epidemiological Neuroscience (NeuroÈpia), Institut d'Investigació Sanitària Pere Virgili (IISPV), Reus, Spain
- ISGlobal, Barcelona, Spain
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - Nerea Lertxundi
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain
- Environmental Epidemiology and Child Development Group, Biodonostia Health Research Institute, San Sebastian, Spain
- School of Psychology, University of the Basque Country, UPV/EHU, San Sebastián, Spain
| | - Dries S Martens
- Centre for Environmental Sciences, Hasselt University, Hasselt, Belgium
| | - Ana Fernández-Somoano
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain
- Instituto Universitario de Oncología Del Principado de Asturias (IUOPA) - Departamento de Medicina, Universidad de Oviedo, Oviedo, Asturias, Spain
- Instituto de Investigación Sanitaria Del Principado de Asturias (ISPA), Oviedo, Spain
| | - Isolina Riaño-Galán
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain
- Instituto de Investigación Sanitaria Del Principado de Asturias (ISPA), Oviedo, Spain
- Servicio de Pediatría, Endocrinología Pediátrica, HUCA, Oviedo, Asturias, Spain
| | - Mònica Guxens
- ISGlobal, Barcelona, Spain
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus MC, University Medical Centre, Rotterdam, The Netherlands
| | - Jesús María Ibarluzea
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain
- Environmental Epidemiology and Child Development Group, Biodonostia Health Research Institute, San Sebastian, Spain
- School of Psychology, University of the Basque Country, UPV/EHU, San Sebastián, Spain
- Sub-Directorate for Public Health and Addictions of Gipuzkoa, Ministry of Health of the Basque Government, Donostia-San Sebastian, Spain
| | - Tim Nawrot
- Centre for Environmental Sciences, Hasselt University, Hasselt, Belgium
| | - Desirée Valera-Gran
- Department of Surgery and Pathology, Miguel Hernandez University, Alicante, Spain
- Grupo de Investigación en Terapia Ocupacional (InTeO), Miguel Hernandez University, Alicante, Spain
| |
Collapse
|
2
|
Vacy K, Thomson S, Moore A, Eisner A, Tanner S, Pham C, Saffery R, Mansell T, Burgner D, Collier F, Vuillermin P, O'Hely M, Boon WC, Meikle P, Burugupalli S, Ponsonby AL. Cord blood lipid correlation network profiles are associated with subsequent attention-deficit/hyperactivity disorder and autism spectrum disorder symptoms at 2 years: a prospective birth cohort study. EBioMedicine 2024; 100:104949. [PMID: 38199043 PMCID: PMC10825361 DOI: 10.1016/j.ebiom.2023.104949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 12/18/2023] [Accepted: 12/18/2023] [Indexed: 01/12/2024] Open
Abstract
BACKGROUND Attention-deficit/hyperactivity disorder (ADHD) and autism spectrum disorder (ASD) are neurodevelopmental conditions with early life origins. Alterations in blood lipids have been linked to ADHD and ASD; however, prospective early life data are limited. This study examined (i) associations between the cord blood lipidome and ADHD/ASD symptoms at 2 years of age, (ii) associations between prenatal and perinatal predictors of ADHD/ASD symptoms and cord blood lipidome, and (iii) mediation by the cord blood lipidome. METHODS From the Barwon Infant Study cohort (1074 mother-child pairs, 52.3% male children), child circulating lipid levels at birth were analysed using ultra-high-performance liquid chromatography-tandem mass spectrometry. These were clustered into lipid network modules via Weighted Gene Correlation Network Analysis. Associations between lipid modules and ADHD/ASD symptoms at 2 years, assessed with the Child Behavior Checklist, were explored via linear regression analyses. Mediation analysis identified indirect effects of prenatal and perinatal risk factors on ADHD/ASD symptoms through lipid modules. FINDINGS The acylcarnitine lipid module is associated with both ADHD and ASD symptoms at 2 years of age. Risk factors of these outcomes such as low income, Apgar score, and maternal inflammation were partly mediated by higher birth acylcarnitine levels. Other cord blood lipid profiles were also associated with ADHD and ASD symptoms. INTERPRETATION This study highlights that elevated cord blood birth acylcarnitine levels, either directly or as a possible marker of disrupted cell energy metabolism, are on the causal pathway of prenatal and perinatal risk factors for ADHD and ASD symptoms in early life. FUNDING The foundational work and infrastructure for the BIS was sponsored by the Murdoch Children's Research Institute, Deakin University, and Barwon Health. Subsequent funding was secured from the Minderoo Foundation, the European Union's Horizon 2020 research and innovation programme (ENDpoiNTs: No 825759), National Health and Medical Research Council of Australia (NHMRC) and Agency for Science, Technology and Research Singapore [APP1149047], The William and Vera Ellen Houston Memorial Trust Fund (via HOMER Hack), The Shepherd Foundation, The Jack Brockhoff Foundation, the Scobie & Claire McKinnon Trust, the Shane O'Brien Memorial Asthma Foundation, the Our Women Our Children's Fund Raising Committee Barwon Health, the Rotary Club of Geelong, the Ilhan Food Allergy Foundation, Geelong Medical and Hospital Benefits Association, Vanguard Investments Australia Ltd, the Percy Baxter Charitable Trust, and Perpetual Trustees.
Collapse
Affiliation(s)
- Kristina Vacy
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville 3010, Australia; Melbourne School of Population and Global Health, University of Melbourne, Parkville 3010, Australia
| | - Sarah Thomson
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville 3010, Australia
| | - Archer Moore
- Melbourne School of Mathematics and Statistics, University of Melbourne, Parkville 3010, Australia
| | - Alex Eisner
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville 3010, Australia
| | - Sam Tanner
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville 3010, Australia
| | - Cindy Pham
- Murdoch Children's Research Institute, Royal Children's Hospital, Parkville 3010, Australia; Department of Paediatrics, University of Melbourne, Parkville 3010, Australia
| | - Richard Saffery
- Murdoch Children's Research Institute, Royal Children's Hospital, Parkville 3010, Australia; Department of Paediatrics, University of Melbourne, Parkville 3010, Australia
| | - Toby Mansell
- Murdoch Children's Research Institute, Royal Children's Hospital, Parkville 3010, Australia; Department of Paediatrics, University of Melbourne, Parkville 3010, Australia
| | - David Burgner
- Murdoch Children's Research Institute, Royal Children's Hospital, Parkville 3010, Australia; Department of Paediatrics, University of Melbourne, Parkville 3010, Australia; Department of Paediatrics, Monash University, Clayton 3168, Australia
| | - Fiona Collier
- Child Health Research Unit, Barwon Health, Geelong 3220, Australia; School of Medicine, Deakin University, Geelong 3220, Australia
| | - Peter Vuillermin
- Child Health Research Unit, Barwon Health, Geelong 3220, Australia
| | - Martin O'Hely
- Murdoch Children's Research Institute, Royal Children's Hospital, Parkville 3010, Australia; School of Medicine, Deakin University, Geelong 3220, Australia
| | - Wah Chin Boon
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville 3010, Australia
| | - Peter Meikle
- Metabolomics Laboratory, Baker Heart and Diabetes Institute, Melbourne 3004, Australia; Baker Department of Cardiovascular Research, Translation and Implementation, La Trobe University, Bundoora, VIC 3086, Australia
| | - Satvika Burugupalli
- Metabolomics Laboratory, Baker Heart and Diabetes Institute, Melbourne 3004, Australia
| | - Anne-Louise Ponsonby
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville 3010, Australia; Murdoch Children's Research Institute, Royal Children's Hospital, Parkville 3010, Australia; Department of Paediatrics, University of Melbourne, Parkville 3010, Australia.
| |
Collapse
|
3
|
Randell Z, Dehghanbanadaki H, Fendereski K, Jimbo M, Aston K, Hotaling J. Sperm telomere length in male-factor infertility and reproduction. Fertil Steril 2024; 121:12-25. [PMID: 37949346 DOI: 10.1016/j.fertnstert.2023.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/02/2023] [Accepted: 11/03/2023] [Indexed: 11/12/2023]
Abstract
The underlying reasons for male-factor infertility are often unknown. 30% of all men have unexplained semen analysis abnormalities. Moreover, 15%-40% of infertile men have normal semen analyses. There have been increasing efforts to identify causes and associations that may explain idiopathic male-factor infertility. Telomeres have become an area of considerable interest in the field because of the essential roles they have in cellular division and genome integrity. Research to date most consistently supports that men with infertility have shorter sperm telomere length (STL); however, associations between shorter STL and meaningful reproductive health outcomes are less consistent. There is a major need for additional studies to better identify the role of STL in male reproductive health and use the information to improve the counseling and treatment of couples with idiopathic male-factor infertility.
Collapse
Affiliation(s)
- Zane Randell
- Division of Urology, Department of Surgery, University of Utah, Salt Lake City, Utah.
| | - Hojat Dehghanbanadaki
- Division of Urology, Department of Surgery, University of Utah, Salt Lake City, Utah
| | - Kiarad Fendereski
- Division of Urology, Department of Surgery, University of Utah, Salt Lake City, Utah
| | - Masaya Jimbo
- Division of Urology, Department of Surgery, University of Utah, Salt Lake City, Utah
| | - Kenneth Aston
- Division of Urology, Department of Surgery, University of Utah, Salt Lake City, Utah
| | - James Hotaling
- Division of Urology, Department of Surgery, University of Utah, Salt Lake City, Utah
| |
Collapse
|
4
|
Naudé PJW, Stein DJ, Lin J, Zar HJ. Investigating the association of prenatal psychological adversities with mother and child telomere length and neurodevelopment. J Affect Disord 2023; 340:675-685. [PMID: 37591348 DOI: 10.1016/j.jad.2023.08.074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 07/24/2023] [Accepted: 08/14/2023] [Indexed: 08/19/2023]
Abstract
BACKGROUND Exposure to prenatal maternal psychological adversities can negatively affect the offspring's developing brain. Shortened telomere length (TL) has been implicated as a mechanism for the transgenerational effects of maternal psychological adversities on offspring. This study aimed to determine associations between prenatal psychological stressors and distress with maternal and early life TL, and associations between maternal, newborn and child TL with neurodevelopmental outcomes at 2 years of age. METHODS Follow-up TL was measured in a subgroup of African mothers (n = 138) and their newborns (n = 142) and children (n = 96) at 2-years in the Drakenstein Child Health Study. Prenatal symptoms of depression, distress, intimate partner violence, posttraumatic stress-disorder and childhood trauma were measured at 27 weeks gestation. Neurodevelopment was assessed at 2 years using the Bayley Scales of Infant and Toddler Development III. TLs were measured in whole bloods from mothers and their children at 2-years, and cord bloods in newborns. RESULTS Maternal prenatal stressors and distress were not significantly associated with TL in mothers or their children at birth or at 2-years. Furthermore, maternal psychological measures were not associated with early-life attrition of TL. Longer TL in children at 2-years was associated (p = 0.04) with higher motor functioning. LIMITATIONS Limited numbers of participants and single time-point psychological measures. CONCLUSIONS This study is the first to provide information on the association of early life TL with prenatal psychological adversities and neurodevelopmental outcomes in a population of low-income African mothers and their children.
Collapse
Affiliation(s)
- Petrus J W Naudé
- Department of Psychiatry and Mental Health, University of Cape Town, South Africa; Neuroscience Institute, University of Cape Town, South Africa.
| | - Dan J Stein
- Department of Psychiatry and Mental Health, University of Cape Town, South Africa; Neuroscience Institute, University of Cape Town, South Africa; MRC Unit on Risk and Resilience in Mental Disorders, University of Cape Town, South Africa
| | - Jue Lin
- Department of Biochemistry & Biophysics, University of California, San Francisco, CA, USA
| | - Heather J Zar
- Department of Paediatrics and Child Health, Red Cross War Memorial Children's Hospital, University of Cape Town, South Africa; SA-MRC Unit on Child and Adolescent Health, University of Cape Town, South Africa
| |
Collapse
|
5
|
Pham C, Thomson S, Chin ST, Vuillermin P, O'Hely M, Burgner D, Tanner S, Saffery R, Mansell T, Bong S, Holmes E, Sly PD, Gray N, Ponsonby AL. Maternal oxidative stress during pregnancy associated with emotional and behavioural problems in early childhood: implications for foetal programming. Mol Psychiatry 2023; 28:3760-3768. [PMID: 37845496 PMCID: PMC10730421 DOI: 10.1038/s41380-023-02284-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 09/10/2023] [Accepted: 09/21/2023] [Indexed: 10/18/2023]
Abstract
Childhood mental disorders, including emotional and behavioural problems (EBP) are increasingly prevalent. Higher maternal oxidative stress (OS) during pregnancy (matOSpreg) is linked to offspring mental disorders. Environmental factors contribute to matOSpreg. However, the role of matOSpreg in childhood EBP is unclear. We investigated the associations between (i) matOSpreg and offspring EBP; (ii) social and prenatal environmental factors and matOSpreg; and (iii) social and prenatal factors and childhood EBP and evaluated whether matOSpreg mediated these associations. Maternal urinary OS biomarkers, 8-hydroxyguanosine (8-OHGua; an oxidative RNA damage marker) and 8-hydroxy-2'-deoxyguanosine (8-OHdG; an oxidative DNA damage marker), at 36 weeks of pregnancy were quantified by liquid chromatography-mass spectrometry in a population-derived birth cohort, Barwon Infant Study (n = 1074 mother-infant pairs). Social and prenatal environmental factors were collected by mother-reported questionnaires. Offspring total EBP was measured by Child Behavior Checklist Total Problems T-scores at age two (n = 675) and Strengths and Difficulties Questionnaire Total Difficulties score at age four (n = 791). Prospective associations were examined by multivariable regression analyses adjusted for covariates. Mediation effects were evaluated using counterfactual-based mediation analysis. Higher maternal urinary 8-OHGua at 36 weeks (mat8-OHGua36w) was associated with greater offspring total EBP at age four (β = 0.38, 95% CI (0.07, 0.69), P = 0.02) and age two (β = 0.62, 95% CI (-0.06, 1.30), P = 0.07). Weaker evidence of association was detected for 8-OHdG. Five early-life factors were associated with both mat8-OHGua36w and childhood EBP (P-range < 0.001-0.05), including lower maternal education, socioeconomic disadvantage and prenatal tobacco smoking. These risk factor-childhood EBP associations were partly mediated by higher mat8-OHGua36w (P-range = 0.01-0.05). Higher matOSpreg, particularly oxidant RNA damage, is associated with later offspring EBP. Effects of some social and prenatal lifestyle factors on childhood EBP were partly mediated by matOSpreg. Future studies are warranted to further elucidate the role of early-life oxidant damage in childhood EBP.
Collapse
Affiliation(s)
- Cindy Pham
- Murdoch Children's Research Institute, Royal Children's Hospital, University of Melbourne, Parkville, VIC, 3052, Australia
- Florey Institute, University of Melbourne, Parkville, VIC, 3052, Australia
- Melbourne School of Population and Global Health, University of Melbourne, Parkville, VIC, 3052, Australia
| | - Sarah Thomson
- Florey Institute, University of Melbourne, Parkville, VIC, 3052, Australia
| | - Sung-Tong Chin
- Australian National Phenome Centre, Health Futures Institute, Harry Perkins Institute, Murdoch University, Perth, WA, 6150, Australia
| | - Peter Vuillermin
- School of Medicine, Deakin University, Geelong, VIC, 3220, Australia
- Barwon Health, Geelong, VIC, 3220, Australia
| | - Martin O'Hely
- Murdoch Children's Research Institute, Royal Children's Hospital, University of Melbourne, Parkville, VIC, 3052, Australia
- School of Medicine, Deakin University, Geelong, VIC, 3220, Australia
| | - David Burgner
- Murdoch Children's Research Institute, Royal Children's Hospital, University of Melbourne, Parkville, VIC, 3052, Australia
- Department of Paediatrics, University of Melbourne, Parkville, VIC, 3052, Australia
| | - Samuel Tanner
- Florey Institute, University of Melbourne, Parkville, VIC, 3052, Australia
| | - Richard Saffery
- Murdoch Children's Research Institute, Royal Children's Hospital, University of Melbourne, Parkville, VIC, 3052, Australia
- Department of Paediatrics, University of Melbourne, Parkville, VIC, 3052, Australia
| | - Toby Mansell
- Murdoch Children's Research Institute, Royal Children's Hospital, University of Melbourne, Parkville, VIC, 3052, Australia
- Department of Paediatrics, University of Melbourne, Parkville, VIC, 3052, Australia
| | - Sze Bong
- Australian National Phenome Centre, Health Futures Institute, Harry Perkins Institute, Murdoch University, Perth, WA, 6150, Australia
| | - Elaine Holmes
- Australian National Phenome Centre, Health Futures Institute, Harry Perkins Institute, Murdoch University, Perth, WA, 6150, Australia
| | - Peter D Sly
- School of Medicine, Deakin University, Geelong, VIC, 3220, Australia
- Child Health Research Centre, University of Queensland, South Brisbane, QLD, 4101, Australia
| | - Nicola Gray
- Australian National Phenome Centre, Health Futures Institute, Harry Perkins Institute, Murdoch University, Perth, WA, 6150, Australia
| | - Anne-Louise Ponsonby
- Murdoch Children's Research Institute, Royal Children's Hospital, University of Melbourne, Parkville, VIC, 3052, Australia.
- Florey Institute, University of Melbourne, Parkville, VIC, 3052, Australia.
- Melbourne School of Population and Global Health, University of Melbourne, Parkville, VIC, 3052, Australia.
| |
Collapse
|
6
|
Reimann B, Martens DS, Wang C, Ghantous A, Herceg Z, Plusquin M, Nawrot TS. Interrelationships and determinants of aging biomarkers in cord blood. J Transl Med 2022; 20:353. [PMID: 35945616 PMCID: PMC9361565 DOI: 10.1186/s12967-022-03541-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 07/17/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Increasing evidence supports the concept of prenatal programming as an early factor in the aging process. DNA methylation age (DNAm age), global genome-wide DNA methylation (global methylation), telomere length (TL), and mitochondrial DNA content (mtDNA content) have independently been shown to be markers of aging, but their interrelationship and determinants at birth remain uncertain. METHODS We assessed the inter-correlation between the aging biomarkers DNAm age, global methylation, TL and mtDNA content using Pearson's correlation in 190 cord blood samples of the ENVIRONAGE birth cohort. TL and mtDNA content was measured via qPCR, while the DNA methylome was determined using the human 450K methylation Illumina microarray. Subsequently, DNAm age was calculated according to Horvath's epigenetic clock, and mean global, promoter, gene-body, and intergenic DNA methylation were determined. Path analysis, a form of structural equation modeling, was performed to disentangle the complex causal relationships among the aging biomarkers and their potential determinants. RESULTS DNAm age was inversely correlated with global methylation (r = -0.64, p < 0.001) and mtDNA content (r = - 0.16, p = 0.027). Cord blood TL was correlated with mtDNA content (r = 0.26, p < 0.001) but not with global methylation or DNAm age. Path analysis showed the strongest effect for global methylation on DNAm age with a decrease of 0.64 standard deviations (SD) in DNAm age for each SD (0.01%) increase in global methylation (p < 0.001). Among the applied covariates, newborn sex and season of delivery were the strongest determinants of aging biomarkers. CONCLUSIONS We provide insight into molecular aging signatures at the start of life, including their interrelations and determinants, showing that cord blood DNAm age is inversely associated with global methylation and mtDNA content but not with newborn telomere length. Our findings demonstrate that cord blood TL and DNAm age relate to different pathways/mechanisms of biological aging and can be influenced by environmental factors already at the start of life. These findings are relevant for understanding fetal programming and for the early prevention of noncommunicable diseases.
Collapse
Affiliation(s)
- Brigitte Reimann
- Centre for Environmental Sciences, Hasselt University, Hasselt, Belgium
| | - Dries S Martens
- Centre for Environmental Sciences, Hasselt University, Hasselt, Belgium
| | - Congrong Wang
- Centre for Environmental Sciences, Hasselt University, Hasselt, Belgium
| | - Akram Ghantous
- Epigenomics and Mechanisms Branch, International Agency for Research On Cancer (IARC), Lyon, France
| | - Zdenko Herceg
- Epigenomics and Mechanisms Branch, International Agency for Research On Cancer (IARC), Lyon, France
| | - Michelle Plusquin
- Centre for Environmental Sciences, Hasselt University, Hasselt, Belgium.
| | - Tim S Nawrot
- Centre for Environmental Sciences, Hasselt University, Hasselt, Belgium
- School of Public Health, Occupational and Environmental Medicine, KU Leuven, Leuven, Belgium
| |
Collapse
|
7
|
Pham C, Bekkering S, O'Hely M, Burgner D, Thomson S, Vuillermin P, Collier F, Marx W, Mansell T, Symeonides C, Sly PD, Tang MLK, Saffery R, Ponsonby AL. Infant inflammation predicts childhood emotional and behavioral problems and partially mediates socioeconomic disadvantage. Brain Behav Immun 2022; 104:83-94. [PMID: 35618227 DOI: 10.1016/j.bbi.2022.05.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 04/14/2022] [Accepted: 05/20/2022] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND Emotional and behavioral problems (EBP) are common in children. Environmental factors like socioeconomic disadvantage influence EBP pathogenesis and can trigger inflammation. However, the link between early inflammation-EBP in children is unclear. We investigated the associations between i) infant inflammatory biomarkers and subsequent EBP and ii) early life environmental factors and EBP and assessed whether infant inflammation mediated these associations. METHODS Inflammatory biomarkers glycoprotein acetyls (GlycA) and high-sensitivity C-reactive protein (hsCRP) were quantified at birth and 12 months in a population-derived birth cohort, the Barwon Infant Study. Early life factors including demographic, prenatal, and perinatal factors were collected from antenatal to the two-year period. Internalizing and externalizing problems at age two were measured by the Child Behavior Checklist. Prospective associations were examined by multivariable regression analyses adjusted for potential confounders. Indirect effects of early life factors on EBP through inflammation were identified using mediation analyses. RESULTS Elevated GlycA levels at birth (GlycAbirth) were associated with greater internalizing problems at age two (β = 1.32 per SD increase in GlycA; P = 0.001). Inflammation at birth had a stronger magnitude of effect with later EBP than at 12 months. GlycAbirth partially mediated the associations between lower household income (6%), multiparity (12%) and greater number of older siblings (13%) and EBP. Patterns were less evident for hsCRP or externalizing problems. CONCLUSIONS GlycAbirth was positively associated with EBP at age two and partially mediated the association between several indicators of socioeconomic disadvantage and EBP. Prenatal and perinatal inflammation may be relevant to early neurodevelopment and emotional health.
Collapse
Affiliation(s)
- Cindy Pham
- Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, VIC 3052, Australia; Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC 3052, Australia; Melbourne School of Population and Global Health, University of Melbourne, Parkville, VIC 3052, Australia
| | - Siroon Bekkering
- Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, VIC 3052, Australia; Department of Internal Medicine, Radboud University Medical Center, Nijmegen, GA 6625, the Netherlands
| | - Martin O'Hely
- Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, VIC 3052, Australia; School of Medicine, Deakin University, Geelong, VIC 3220, Australia
| | - David Burgner
- Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, VIC 3052, Australia; Department of Paediatrics, University of Melbourne, Parkville, VIC 3052, Australia
| | - Sarah Thomson
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC 3052, Australia
| | - Peter Vuillermin
- School of Medicine, Deakin University, Geelong, VIC 3220, Australia; Barwon Health, Geelong, VIC 3220, Australia
| | - Fiona Collier
- School of Medicine, Deakin University, Geelong, VIC 3220, Australia; Barwon Health, Geelong, VIC 3220, Australia
| | - Wolfgang Marx
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC 3052, Australia; School of Medicine, Deakin University, Geelong, VIC 3220, Australia
| | - Toby Mansell
- Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, VIC 3052, Australia; Department of Paediatrics, University of Melbourne, Parkville, VIC 3052, Australia
| | - Christos Symeonides
- Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, VIC 3052, Australia; Department of Paediatrics, University of Melbourne, Parkville, VIC 3052, Australia
| | - Peter D Sly
- Child Health Research Centre, University of Queensland, South Brisbane, QLD 4101, Australia
| | - Mimi L K Tang
- Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, VIC 3052, Australia; Department of Paediatrics, University of Melbourne, Parkville, VIC 3052, Australia
| | - Richard Saffery
- Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, VIC 3052, Australia; Department of Paediatrics, University of Melbourne, Parkville, VIC 3052, Australia
| | - Anne-Louise Ponsonby
- Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, VIC 3052, Australia; Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC 3052, Australia; Melbourne School of Population and Global Health, University of Melbourne, Parkville, VIC 3052, Australia.
| |
Collapse
|