1
|
Yeo H, Jung E, Kim TY, Shin SY. Therapeutic potential of a systemically applied humanized monoclonal antibody targeting Toll‑like receptor 2 in atopic‑dermatitis‑like skin lesions in a mouse model. Biomed Rep 2025; 22:41. [PMID: 39781040 PMCID: PMC11707563 DOI: 10.3892/br.2024.1919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Accepted: 12/16/2024] [Indexed: 01/11/2025] Open
Abstract
Atopic dermatitis (AD) is a prevalent, persistent inflammatory skin disorder distinguished by pruritic and irritated skin. Toll-like receptors (TLRs) are specialized receptors that recognize specific patterns associated with pathogens and tissue damage, triggering an innate immune response that protects the host from invading pathogens. Previously, it was demonstrated that intradermal injection of the humanized anti-TLR2 monoclonal antibody (Ab) Tomaralimab effectively relieved AD-like skin inflammation in BALB/c mouse models exposed to house dust mite extracts. However, it remains unclear whether allergenic hapten-induced AD can be effectively treated with systemically administered TLR2-targeting Abs. In the present study, it was observed that administrating Tomaralimab through intravenous injection alleviated AD-like skin lesions in BALB/c mice challenged with topical application of 2,4-dinitrochlorobenzene by reducing the infiltration of inflammatory cells into skin lesions and preventing the creation of various inflammatory cytokines, including thymic stromal lymphopoietin, interleukin (IL)-4, IL-13, IL-17 and IL-31, which are associated with the pathogenesis of AD. These findings support the feasibility of using a humanized anti-TLR2 monoclonal Ab as systemic therapy for AD.
Collapse
Affiliation(s)
- Hyunjin Yeo
- Department of Biological Sciences, Sanghuh College of Life Science, Konkuk University, Seoul 05029, Republic of Korea
| | - Euitaek Jung
- Department of Biological Sciences, Sanghuh College of Life Science, Konkuk University, Seoul 05029, Republic of Korea
| | - Tae Yoon Kim
- Department of Biological Sciences, Sanghuh College of Life Science, Konkuk University, Seoul 05029, Republic of Korea
| | - Soon Young Shin
- Department of Biological Sciences, Sanghuh College of Life Science, Konkuk University, Seoul 05029, Republic of Korea
- Cancer and Metabolism Institute, Konkuk University, Seoul 05029, Republic of Korea
| |
Collapse
|
2
|
Kim JH, Lee Y, Ahn S, Koh D, Lim Y, Lee YH, Bae DH, Shin SY. Design, Synthesis, and Biological Evaluation of Aryl Pyrazolopyrimidines as Toll-Like Receptor 7 Agonists. Chem Biol Drug Des 2025; 105:e70056. [PMID: 39887539 DOI: 10.1111/cbdd.70056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 01/07/2025] [Accepted: 01/10/2025] [Indexed: 02/01/2025]
Abstract
Compounds containing pyrazolopyrimidine scaffolds were designed and synthesized as toll-like receptor 7 (TLR7) agonists. Thirty-three compounds, including 22 novel compounds, were prepared, and their structures were identified using nuclear magnetic resonance spectroscopy and mass spectrometry. TLR7 agonist activity was determined in HEK-Blue hTLR7 reporter cells. Among the compounds tested, 2-((4-methoxyphenyl)amino)-7-(pyridin-2-yl)pyrazolo[1,5-a]pyrimidine-3-carbonitrile showed the highest activity, and further in vitro biological experiments were performed using this compound. Treatment with the title compound activated the TLR7-mediated NF-κB pathway, triggering the IRAK4-IKKα/β-IκBα-p65 NF-κB signaling cascade, which led to an increase in the expression of NF-κB-regulated innate cytokines such as TNFα and IL-1β in RAW264.7 macrophages. These findings suggest that the title compound acts as a TLR7 agonist and enhances the innate immune response.
Collapse
Affiliation(s)
- Ji Hwan Kim
- Division of Bioscience and Biotechnology, BMIC, Konkuk University, Seoul, Korea
| | - Youngshim Lee
- Division of Bioscience and Biotechnology, BMIC, Konkuk University, Seoul, Korea
| | - Seunghyun Ahn
- Department of Applied Chemistry, Dongduk Women's University, Seoul, Korea
| | - Dongsoo Koh
- Department of Applied Chemistry, Dongduk Women's University, Seoul, Korea
| | - Yoongho Lim
- Division of Bioscience and Biotechnology, BMIC, Konkuk University, Seoul, Korea
| | - Young Han Lee
- Department of Biological Sciences, Konkuk University, Seoul, Korea
| | - Dong-Ho Bae
- Department of Food Sciences and Biotechnology of Animal Resources, Konkuk University, Seoul, Korea
| | - Soon Young Shin
- Department of Biological Sciences, Konkuk University, Seoul, Korea
- Cancer and Metabolism Institute, Konkuk University, Seoul, Korea
| |
Collapse
|
3
|
Wang H, Yu W, Wang T, Fang D, Wang Z, Wang Y. Therapeutic potential and pharmacological insights of total glucosides of paeony in dermatologic diseases: a comprehensive review. Front Pharmacol 2025; 15:1423717. [PMID: 39822741 PMCID: PMC11735457 DOI: 10.3389/fphar.2024.1423717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 11/27/2024] [Indexed: 01/19/2025] Open
Abstract
Total glucosides of paeony (TGP) are a group of monoterpenes extracted from Paeonia lactiflora Pall., primarily including metabolites such as paeoniflorin and oxypaeoniflorin. Modern pharmacological studies have shown that TGP possesses a variety of biological effects, including immunomodulatory, anti-inflammatory, hepatoprotective, nephroprotective, antidepressant, and cell proliferation regulatory activities. In recent years, clinical research has demonstrated favorable therapeutic effects of TGP on disorders of the liver, cardiovascular, nervous, endocrine, and skeletal systems. Particularly in dermatological treatments, TGP has been found to significantly improve clinical symptoms and shorten the course of the disease. However, there are still certain limitations in the scientific rigor of existing studies and in its clinical application. To assess the potential of TGP in treating dermatologic diseases, this article provides a review of its botanical sources, preparation and extraction processes, quality control, and major chemical metabolites, as well as its pharmacological research and clinical applications in dermatology. Additionally, the mechanisms of action, research gaps, and future directions for TGP in the treatment of dermatologic diseases are discussed, offering valuable guidance for future clinical research on TGP in dermatology.
Collapse
Affiliation(s)
- Huige Wang
- Heilongjiang University of Chinese Medicine, Harbin, China
| | - Wenchao Yu
- Heilongjiang University of Chinese Medicine, Harbin, China
| | - Tong Wang
- Heilongjiang University of Chinese Medicine, Harbin, China
| | - Dianwei Fang
- Heilongjiang University of Chinese Medicine, Harbin, China
| | - Zeyun Wang
- Heilongjiang University of Chinese Medicine, Harbin, China
| | - Yuanhong Wang
- Department of Dermatology, The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
4
|
Sun XH, Chai YH, Bai XT, Li HX, Xi YM. Pharmacology, medical uses, and clinical translational challenges of Saikosaponin A: A review. Heliyon 2024; 10:e40427. [PMID: 39641011 PMCID: PMC11617869 DOI: 10.1016/j.heliyon.2024.e40427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 11/08/2024] [Accepted: 11/13/2024] [Indexed: 12/07/2024] Open
Abstract
Saikosaponin A (SSA), the primary active monomer derived from the Radix bupleuri, demonstrates a diverse array of pharmacological activities, including anti-inflammatory, antitumor, analgesic, anti-fibrotic, antidepressant, and immune-modulating properties. Despite its potential therapeutic impact on various human diseases, comprehensive studies exploring SSA's efficacy in these contexts remain limited. This review synthesizes the current research landscape regarding SSA's therapeutic applications across different diseases, highlighting critical insights to overcome existing limitations and clinical challenges. The findings underscore the importance of further investigations into SSA's mechanisms of action, facilitating the development of targeted therapeutic strategies and their translation into clinical practice.
Collapse
Affiliation(s)
- Xiao-Hong Sun
- The First Clinical Medical College of Lanzhou University, Lanzhou, 730000, China
| | - Yi-Hong Chai
- The First Clinical Medical College of Lanzhou University, Lanzhou, 730000, China
| | - Xiao-Teng Bai
- The First Clinical Medical College of Lanzhou University, Lanzhou, 730000, China
| | - Hong-Xing Li
- The First Clinical Medical College of Lanzhou University, Lanzhou, 730000, China
| | - Ya-Ming Xi
- Division of Hematology, The First Hospital of Lanzhou University, Lanzhou, 730000, China
| |
Collapse
|
5
|
Ahn SS, Yeo H, Jung E, Kim TY, Han J, Lee YH, Shin SY. Saikosaponin A Recovers Impaired Filaggrin Levels in Inflamed Skin by Downregulating the Expression of FRA1 and c-Jun. Molecules 2024; 29:4064. [PMID: 39274912 PMCID: PMC11396542 DOI: 10.3390/molecules29174064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/25/2024] [Accepted: 08/26/2024] [Indexed: 09/16/2024] Open
Abstract
Filaggrin (FLG) is an essential structural protein expressed in differentiated keratinocytes. Insufficient FLG expression contributes to the pathogenesis of chronic inflammatory skin diseases. Saikosaponin A (SSA), a bioactive oleanane-type triterpenoid, exerts anti-inflammatory activity. However, the effects of topically applied SSA on FLG expression in inflamed skin remain unclear. This study aimed to evaluate the biological activity of SSA in restoring reduced FLG expression. The effect of SSA on FLG expression in HaCaT cells was assessed through various biological methods, including reverse transcription PCR, quantitative real-time PCR, immunoblotting, and immunofluorescence staining. TNFα and IFNγ decreased FLG mRNA, cytoplasmic FLG protein levels, and FLG gene promoter-reporter activity compared to the control groups. However, the presence of SSA restored these effects. A series of FLG promoter-reporter constructs were generated to investigate the underlying mechanism of the effect of SSA on FLG expression. Mutation of the AP1-binding site (mtAP1) in the -343/+25 FLG promoter-reporter abrogated the decrease in reporter activities caused by TNFα + IFNγ, suggesting the importance of the AP1-binding site in reducing FLG expression. The SSA treatment restored FLG expression by inhibiting the expression and nuclear localization of FRA1 and c-Jun, components of AP1, triggered by TNFα + IFNγ stimulation. The ERK1/2 mitogen-activated protein kinase signaling pathway upregulates FRA1 and c-Jun expression, thereby reducing FLG levels. The SSA treatment inhibited ERK1/2 activation caused by TNFα + IFNγ stimulation and reduced the levels of FRA1 and c-Jun proteins in the nucleus, leading to a decrease in the binding of FRA1, c-Jun, p-STAT1, and HDAC1 to the AP1-binding site in the FLG promoter. The effect of SSA was evaluated in an animal study using a BALB/c mouse model, which induces human atopic-dermatitis-like skin lesions via the topical application of dinitrochlorobenzene. Topically applied SSA significantly reduced skin thickening, immune cell infiltration, and the expression of FRA1, c-Jun, and p-ERK1/2 compared to the vehicle-treated group. These results suggest that SSA can effectively recover impaired FLG levels in inflamed skin by preventing the formation of the repressor complex consisting of FRA1, c-Jun, HDAC1, and STAT1.
Collapse
Affiliation(s)
- Sung Shin Ahn
- Department of Biological Sciences, Sanghuh College of Lifesciences, Konkuk University, Seoul 05029, Republic of Korea; (S.S.A.); (H.Y.); (E.J.); (T.Y.K.); (J.H.); (Y.H.L.)
| | - Hyunjin Yeo
- Department of Biological Sciences, Sanghuh College of Lifesciences, Konkuk University, Seoul 05029, Republic of Korea; (S.S.A.); (H.Y.); (E.J.); (T.Y.K.); (J.H.); (Y.H.L.)
| | - Euitaek Jung
- Department of Biological Sciences, Sanghuh College of Lifesciences, Konkuk University, Seoul 05029, Republic of Korea; (S.S.A.); (H.Y.); (E.J.); (T.Y.K.); (J.H.); (Y.H.L.)
| | - Tae Yoon Kim
- Department of Biological Sciences, Sanghuh College of Lifesciences, Konkuk University, Seoul 05029, Republic of Korea; (S.S.A.); (H.Y.); (E.J.); (T.Y.K.); (J.H.); (Y.H.L.)
| | - Junekyu Han
- Department of Biological Sciences, Sanghuh College of Lifesciences, Konkuk University, Seoul 05029, Republic of Korea; (S.S.A.); (H.Y.); (E.J.); (T.Y.K.); (J.H.); (Y.H.L.)
| | - Young Han Lee
- Department of Biological Sciences, Sanghuh College of Lifesciences, Konkuk University, Seoul 05029, Republic of Korea; (S.S.A.); (H.Y.); (E.J.); (T.Y.K.); (J.H.); (Y.H.L.)
| | - Soon Young Shin
- Department of Biological Sciences, Sanghuh College of Lifesciences, Konkuk University, Seoul 05029, Republic of Korea; (S.S.A.); (H.Y.); (E.J.); (T.Y.K.); (J.H.); (Y.H.L.)
- Cancer and Metabolism Institute, Konkuk University, Seoul 05029, Republic of Korea
| |
Collapse
|
6
|
Chen X, Wu H, Li P, Peng W, Wang Y, Zhang X, Zhang A, Li J, Meng F, Wang W, Su W. Unraveling the Mechanism of Xiaochaihu Granules in Alleviating Yeast-Induced Fever Based on Network Analysis and Experimental Validation. Pharmaceuticals (Basel) 2024; 17:475. [PMID: 38675434 PMCID: PMC11053540 DOI: 10.3390/ph17040475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 03/30/2024] [Accepted: 04/06/2024] [Indexed: 04/28/2024] Open
Abstract
Xiaochaihu granules (XCHG) are extensively used to treat fever. Nevertheless, the underlying mechanism remains elusive. This study aimed to explore the potential of XCHG in mitigating yeast-induced fever and the underlying metabolic pathways. The chemical composition of XCHG was ascertained using ultra-fast liquid chromatography/quadrupole-time-of-flight tandem mass spectrometry (UFLC-Q-TOF-MS/MS), followed by integrated network analysis to predict potential targets. We then conducted experimental validation using pharmacological assays and metabolomics analysis in a yeast-induced mouse fever model. The study identified 133 compounds in XCHG, resulting in the development of a comprehensive network of herb-compound-biological functional modules. Subsequently, molecular dynamic (MD) simulations confirmed the stability of the complexes, including γ-aminobutyric acid B receptor 2 (GABBR2)-saikosaponin C, prostaglandin endoperoxide synthases (PTGS2)-lobetyolin, and NF-κB inhibitor IκBα (NFKBIA)-glycyrrhizic acid. Animal experiments demonstrated that XCHG reduced yeast-induced elevation in NFKBIA's downstream regulators [interleukin (IL)-1β and IL-8], inhibited PTGS2 activity, and consequently decreased prostaglandin E2 (PGE2) levels. XCHG also downregulated the levels of 5-hydroxytryptamine (5-HT), γ-aminobutyric acid (GABA), corticotropin releasing hormone (CRH), and adrenocorticotrophin (ACTH). These corroborated the network analysis results indicating XCHG's effectiveness against fever in targeting NFKBIA, PTGS2, and GABBR2. The hypothalamus metabolomics analysis identified 14 distinct metabolites as potential antipyretic biomarkers of XCHG. In conclusion, our findings suggest that XCHG alleviates yeast-induced fever by regulating inflammation/immune responses, neuromodulation, and metabolism modules, providing a scientific basis for the anti-inflammatory and antipyretic properties of XCHG.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Weiwei Su
- Guangdong Engineering & Technology Research Center for Quality and Efficacy Reevaluation of Post-Market Traditional Chinese Medicine, Guangdong Provincial Key Laboratory of Plant Resources, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|
7
|
Teng L, Guo X, Ma Y, Xu L, Wei J, Xiao P. A comprehensive review on traditional and modern research of the genus Bupleurum (Bupleurum L., Apiaceae) in recent 10 years. JOURNAL OF ETHNOPHARMACOLOGY 2023; 306:116129. [PMID: 36638855 DOI: 10.1016/j.jep.2022.116129] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/10/2022] [Accepted: 12/30/2022] [Indexed: 06/17/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The genus Bupleurum (family Apiaceae), comprising approximately 248 accepted species, is widely distributed and used in China, Japan, India, Central Asia, North Africa and some European countries as traditional herbal medicines. Certain species have been reported to have significant therapeutic effects in fever, inflammatory disorders, cancer, gastric ulcer, virus infection and other diseases. AIM OF THE REVIEW we performed a comprehensive review of the ten-year research progress in phytochemistry, pharmacology, toxicity, along with bibliometrics research of the genus Bupleurum, aiming to identify knowledge gaps for future research. MATERIALS AND METHODS All the literatures are retrieved from library and electronic sources including Web of Science, PubMed, Elsevier, Google Scholar, CNKI and Baidu Scholar. These papers cover studies of the traditional use, phytochemistry, pharmacology, and toxicology of the genus Bupleurum. RESULTS There is a long history of using the genus Bupleurum in traditional herbal medicine that dated back to over 2000 years ago. Twenty-five species and 8 varieties with 3 variants within this genus have been reported to be effective to treat fever, pain, liver disease, inflammation, thoracolumbar pain, irregular menstruation and rectal prolapse. The main phytochemicals found in these plants are triterpene saponins, volatile oil, flavonoid, lignans, and polysaccharides. Many of these compounds have also been shown to have anti-inflammatory, anti-tumor, antimicrobial, immunoregulation, neuroregulation, hepatoprotective and antidiabetic activities. Meanwhile, improper usage of Bupleurum may induce cytotoxic effects, and polyacetylenes may be the main poisonous compounds. CONCLUSIONS This article summarized recent findings about Bupleurum research from many different aspects. While a small number of Bupleurum species have been investigated through modern pharmacology methods, there are still major knowledge gaps due to inadequate studies and ambiguous findings. Future research could focus on more specific phytochemistry studies combined with mechanistic analysis to provide better guidance to utilize Bupleurum as medicinal resources.
Collapse
Affiliation(s)
- Lili Teng
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100193, PR China; Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, 100193, PR China.
| | - Xinwei Guo
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100193, PR China; Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, 100193, PR China.
| | - Yuzhi Ma
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100193, PR China; Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, 100193, PR China.
| | - Lijia Xu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100193, PR China; Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, 100193, PR China.
| | - Jianhe Wei
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100193, PR China; Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, 100193, PR China.
| | - Peigen Xiao
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100193, PR China; Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, 100193, PR China.
| |
Collapse
|
8
|
β-Caryophyllene Ameliorates 2,4-Dinitrochlorobenzene-Induced Atopic Dermatitis through the Downregulation of Mitogen-Activated Protein Kinase/EGR1/TSLP Signaling Axis. Int J Mol Sci 2022; 23:ijms232314861. [PMID: 36499191 PMCID: PMC9740728 DOI: 10.3390/ijms232314861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/21/2022] [Accepted: 11/25/2022] [Indexed: 12/02/2022] Open
Abstract
Atopic dermatitis (AD) is one of the most common inflammatory skin diseases accompanied by severe itching. β-caryophyllene (BCP), which displays anti-inflammatory activity, is a natural agonist of cannabinoid receptor 2. However, the therapeutic effects of BCP on atopic dermatitis (AD) remain poorly understood. The current study aimed to evaluate the topical therapeutic efficacy of BCP in an AD-like mouse model. Thymic Stromal Lymphopoietin (TSLP) is a keratinocyte-derived cytokine that drives AD pathogenesis. This study also investigated the effect of BCP on the interleukin 4 (IL-4)-induced expression of TSLP in HaCaT keratinocytes. We found that the topical application of BCP alleviated AD-like skin inflammation and inhibited the infiltration of proinflammatory cells into skin lesions. Moreover, the topical application of BCP reduced EGR1 (Early Growth Response 1) and TSLP expression in AD-like skin lesions. We also found that BCP inhibited IL-4-induced TSLP expression by downregulating mitogen-activated protein kinase (MAPK)-mediated EGR1 expression in HaCaT keratinocytes. These findings demonstrate that BCP ameliorates DNCB-induced AD-like skin lesions through the downregulation of the MAPK/EGR1/TSLP signaling axis. BCP may be applicable for developing topical therapeutic agents for chronic skin inflammatory diseases, such as AD.
Collapse
|
9
|
FRA1:c-JUN:HDAC1 complex down-regulates filaggrin expression upon TNFα and IFNγ stimulation in keratinocytes. Proc Natl Acad Sci U S A 2022; 119:e2123451119. [PMID: 36067301 PMCID: PMC9477237 DOI: 10.1073/pnas.2123451119] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Filaggrin (FLG), an essential structural protein for skin barrier function, is down-regulated under chronic inflammatory conditions, leading to disruption of the skin barrier. However, the detailed molecular mechanisms of how FLG changes in the context of chronic inflammation are poorly understood. Here, we identified the molecular mechanisms by which inflammatory cytokines inhibit FLG expression in the skin. We found that the AP1 response element within the -343/+25 of the FLG promoter was necessary for TNFα + IFNγ-induced down-regulation of FLG promoter activity. Using DNA affinity precipitation assay, we observed that AP1 subunit composition binding to the FLG promoter was altered from c-FOS:c-JUN (at the early time) to FRA1:c-JUN (at the late time) in response to TNFα + IFNγ stimulation. Knockdown of FRA1 or c-JUN abrogated TNFα + IFNγ-induced FLG suppression. Histone deacetylase (HDAC) 1 interacted with FRA1:c-JUN under TNFα + IFNγ stimulation. Knockdown of HDAC1 abrogated the inhibitory effect of TNFα + IFNγ on FLG expression. The altered expression of FLG, FRA1, c-JUN, and HDAC1 was confirmed in mouse models of 2,4-dinitrochlorobenzene-induced atopic dermatitis and imiquimod-induced psoriasis. Thus, the current study demonstrates that TNFα + IFNγ stimulation suppresses FLG expression by promoting the FRA1:c-JUN:HDAC1 complex. This study provides insight into future therapeutic strategies targeting the FRA1:c-JUN:HDAC1 complex to restore impaired FLG expression in chronic skin inflammation.
Collapse
|