1
|
Khanum S, Gupta S, Maurya MR, Raja R, Aboulmouna L, Subramaniam S, Ramkrishna D. Modeling enzyme competition in Eicosanoid metabolism in macrophage cells using a cybernetic framework. J Lipid Res 2024:100666. [PMID: 39395792 DOI: 10.1016/j.jlr.2024.100666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 09/21/2024] [Accepted: 09/24/2024] [Indexed: 10/14/2024] Open
Abstract
Cellular metabolism is a complex process involving the consumption and production of metabolites, as well as the regulation of enzyme synthesis and activity. Modeling of metabolic processes is important to understand the underlying mechanisms, with a wide range of applications in metabolic engineering and health sciences. Cybernetic modeling is a powerful technique that accounts for unknown intricate regulatory mechanisms in complex cellular processes. It models regulation as goal-oriented, where the levels and activities of enzymes are modulated by the cybernetic control variables to achieve the cybernetic objective. This study employed cybernetic model to study the enzyme competition between arachidonic acid (AA) and eicosapentaenoic acid (EPA) metabolism in murine macrophages. AA and EPA compete for the shared enzyme cyclooxygenase (COX). Upon external stimuli, AA produces pro-inflammatory 2-series prostaglandins (PGs) and EPA metabolizes to anti-inflammatory 3-series PGs, where pro- and anti- inflammatory responses are necessary for homeostasis. The cybernetic model adequately captured the experimental data for control and EPA-supplemented conditions. The model is validated by performing an F-test, conducting leave-one-out-metabolite cross-validation, and predicting an unseen experimental condition. The cybernetic variables provide insights into the competition between AA and EPA for the COX enzyme. Predictions from our model suggest that the system undergoes a switch from a predominantly pro-inflammatory state in the control to an anti-inflammatory state with EPA-supplementation. The model can also be used to analytically determine the AA and EPA concentrations required for the switch to occur. The quantitative outcomes enhance understanding of pro- and anti-inflammatory metabolism in RAW 264.7 macrophages.
Collapse
Affiliation(s)
- Sana Khanum
- The Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Shakti Gupta
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA
| | - Mano R Maurya
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA
| | - Rubesh Raja
- The Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Lina Aboulmouna
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA
| | - Shankar Subramaniam
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA; Departments of Computer Science and Engineering, Cellular and Molecular Medicine, San Diego Supercomputer Center, and the Graduate Program in Bioinformatics and Systems Biology, University of California San Diego, La Jolla, CA 92093, USA.
| | - Doraiswami Ramkrishna
- The Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN 47907, USA.
| |
Collapse
|
2
|
Phong NV, Thao NP, Vinh LB, Luyen BTT, Minh CV, Yang SY. Inhibition of Soluble Epoxide Hydrolase by Cembranoid Diterpenes from Soft Coral Sinularia maxima: Enzyme Kinetics, Molecular Docking, and Molecular Dynamics. Mar Drugs 2024; 22:373. [PMID: 39195489 DOI: 10.3390/md22080373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/16/2024] [Accepted: 08/16/2024] [Indexed: 08/29/2024] Open
Abstract
Soluble epoxide hydrolase (sEH) is essential for converting epoxy fatty acids, such as epoxyeicosatrienoic acids (EETs), into their dihydroxy forms. EETs play a crucial role in regulating blood pressure, mediating anti-inflammatory responses, and modulating pain, making sEH a key target for therapeutic interventions. Current research is increasingly focused on identifying sEH inhibitors from natural sources, particularly marine environments, which are rich in bioactive compounds due to their unique metabolic adaptations. In this study, the sEH inhibitory activities of ten cembranoid diterpenes (1-10) isolated from the soft coral Sinularia maxima were evaluated. Among them, compounds 3 and 9 exhibited considerable sEH inhibition, with IC50 values of 70.68 μM and 78.83 μM, respectively. Enzyme kinetics analysis revealed that these two active compounds inhibit sEH through a non-competitive mode. Additionally, in silico approaches, including molecular docking and molecular dynamics simulations, confirmed their stability and interactions with sEH, highlighting their potential as natural therapeutic agents for managing cardiovascular and inflammatory diseases.
Collapse
Affiliation(s)
- Nguyen Viet Phong
- Department of Biology Education, Teachers College and Institute for Phylogenomics and Evolution, Kyungpook National University, Daegu 41566, Republic of Korea
- Institute of Marine Biochemistry, Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Cau Giay, Hanoi 10072, Vietnam
| | - Nguyen Phuong Thao
- Institute of Marine Biochemistry, Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Cau Giay, Hanoi 10072, Vietnam
| | - Le Ba Vinh
- Institute of Marine Biochemistry, Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Cau Giay, Hanoi 10072, Vietnam
| | - Bui Thi Thuy Luyen
- Faculty of Pharmaceutical Chemistry and Technology, Hanoi University of Pharmacy, 13-15 Le Thanh Tong, Hoan Kiem, Hanoi 11021, Vietnam
| | - Chau Van Minh
- Institute of Marine Biochemistry, Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Cau Giay, Hanoi 10072, Vietnam
| | - Seo Young Yang
- Department of Biology Education, Teachers College and Institute for Phylogenomics and Evolution, Kyungpook National University, Daegu 41566, Republic of Korea
| |
Collapse
|
3
|
Oguro A, Kaga Y, Sato H, Fujiyama T, Fujimoto S, Nagai S, Matsuyama M, Miyara M, Ishihara Y, Yamazaki T, Imaoka S, Kotake Y. Mice deficient in the phosphatase activity of sEH show decreased levels of the endocannabinoid 2-AG in the olfactory bulb and depressive-like behavior. FEBS Lett 2024. [PMID: 39034140 DOI: 10.1002/1873-3468.14984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 06/03/2024] [Accepted: 06/19/2024] [Indexed: 07/23/2024]
Abstract
Soluble epoxide hydrolase (sEH) is a bifunctional enzyme that has epoxide hydrolase activity and phosphatase activity. Our earlier study revealed that lysophosphatidic acids are a substrate of the phosphatase activity of sEH in vitro, but its physiological function remained unknown. Herein, we used the CRISPR/Cas9 system and i-GONAD method to generate mice that are deficient in sEH phosphatase activity. In the mouse brain, sEH was highly expressed in the olfactory bulb. Deletion of the sEH phosphatase activity resulted in decreased levels of the endocannabinoid 2-arachidonoyl glycerol (2-AG), which is a dephosphorylated form of 2-arachidonoyl-lysophosphatidic acid in the olfactory bulb. The sEH-deficient mice showed depressive-like behavior. These results indicate that sEH can regulate the production of 2-AG and brain function in vivo.
Collapse
Affiliation(s)
- Ami Oguro
- Graduate School of Biomedical and Health Sciences, Hiroshima University, Japan
| | - Yurino Kaga
- Graduate School of Biomedical and Health Sciences, Hiroshima University, Japan
| | - Hideaki Sato
- Graduate School of Biomedical and Health Sciences, Hiroshima University, Japan
| | - Taichi Fujiyama
- Graduate School of Biomedical and Health Sciences, Hiroshima University, Japan
| | - Shinji Fujimoto
- Graduate School of Biomedical and Health Sciences, Hiroshima University, Japan
| | - Saki Nagai
- Graduate School of Biomedical and Health Sciences, Hiroshima University, Japan
| | - Makoto Matsuyama
- Division of Molecular Genetics, Shigei Medical Research Institute, Okayama, Japan
| | - Masatsugu Miyara
- Graduate School of Biomedical and Health Sciences, Hiroshima University, Japan
| | - Yasuhiro Ishihara
- Graduate School of Integrated Sciences for Life, Hiroshima University, Japan
| | - Takeshi Yamazaki
- Graduate School of Integrated Sciences for Life, Hiroshima University, Japan
| | - Susumu Imaoka
- Department of Biomedical Sciences, School of Biological and Environmental Sciences, Kwansei Gakuin University, Hyogo, Japan
| | - Yaichiro Kotake
- Graduate School of Biomedical and Health Sciences, Hiroshima University, Japan
| |
Collapse
|
4
|
Dey S, Biradar R, Mane SS, Kunnath Shaji A, Das AP, Agarwal SM, Dengale SJ. Identification and characterization of the in-vivo metabolites of the novel soluble epoxide hydrolase inhibitor EC5026 using liquid chromatography quadrupole time of flight mass spectrometry. J Pharm Biomed Anal 2024; 244:116116. [PMID: 38537542 DOI: 10.1016/j.jpba.2024.116116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 02/28/2024] [Accepted: 03/15/2024] [Indexed: 04/29/2024]
Abstract
EC5026 is a novel soluble epoxide hydrolase inhibitor being developed clinically to treat neuropathic pain and inflammation. In the current study, we employed the LC-ESI-Q-TOF-MS/MS technique to identify four in-vivo phase-I metabolites of EC5026 in rat model, out of which three were found to be novel. The identified metabolites include aliphatic hydroxylation, di-hydroxylation, terminal desaturation, and carboxylation. No phase-II metabolites were found. The pharmacokinetic profile of identified metabolites was established after a single oral dose of EC5026 to Wistar rats. The Tmax of the drug and metabolites were found to be in the range of 1-2 hours and 4-12 hours, respectively. The major metabolites M1 and M2 were found to have more than 2-fold (263.87% AUC) and equivalent exposure (96.33% AUC) compared to the parent drug, respectively. Further, the docking study revealed that the mono-hydroxylated and terminally desaturated metabolites possess better binding affinity than the parent drug. Therefore, these metabolites may hold sEH inhibition potential and can be followed through future research.
Collapse
Affiliation(s)
- Shankha Dey
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Changsari 781101, India
| | - Rushikesh Biradar
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Changsari 781101, India
| | - Sayalee Sanjay Mane
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Changsari 781101, India
| | - Anandhu Kunnath Shaji
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Changsari 781101, India
| | - Agneesh Pratim Das
- ICMR-National Institute of Cancer Prevention and Research, I-7, Sector-39, Noida 201301, India
| | - Subhash Mohan Agarwal
- ICMR-National Institute of Cancer Prevention and Research, I-7, Sector-39, Noida 201301, India
| | - Swapnil Jayant Dengale
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Changsari 781101, India.
| |
Collapse
|
5
|
Chen W, Hu J, Chen J, Guo Y, Hong Y, Xia H. Spatio-temporal analysis of toxigenic genes expression in the growing Bufo gargarizans based on RNA sequencing data. Genomics 2024; 116:110847. [PMID: 38685287 DOI: 10.1016/j.ygeno.2024.110847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 03/26/2024] [Accepted: 04/19/2024] [Indexed: 05/02/2024]
Abstract
BACKGROUND Bufo gargarizans Cantor, a widely distributed amphibian species in Asia, produces and releases toxins through its retroauricular and granular glands. Although various tissues have been sequenced, the molecular mechanisms underlying the toxin production remain unclear. To elucidate these mechanisms, abdominal skin (non-toxic secretory glands) and retroauricular gland (toxic secreting glands) samples were collected at different time points (3, 6, 12, 24, and 36 months) for RNA sequencing (RNA-seq) and analysis. RESULTS In comparison to the S group during the same period, a total of 3053, 3026, 1516, 1028, and 2061 differentially expressed genes (DEGs) were identified across five developmental stages. Gene Ontology (GO) analysis revealed that DEGs were primarily enriched in biological processes including cellular processes, single-organism processes, metabolic processes, and biological regulation. In terms of cellular components, the DEGs were predominantly localized in the cell and cell parts, whereas molecular function indicated significant enrichment in binding and catalytic activity. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis showed that the metabolism and synthesis of various substances, such as lipid metabolism, cofactor and vitamin metabolism, tryptophan metabolism, steroid biosynthesis, and primary bile acid biosynthesis, were accompanied by the development of toads. Additionally, using trend analysis, we discovered candidate genes that were upregulated in the retroauricular glands during development, and the abundance of these genes in the abdominal skin was extremely low. Finally, we identified 26 genes that are likely to be involved in toxin production and that are likely to be involved in toxin anabolism. CONCLUSION Overall, these results provide new insights into the genes involved in toxin production in B. gargarizans, which will improve our understanding of the molecular mechanisms underlying toxigenic gene expression.
Collapse
Affiliation(s)
- Wenxiao Chen
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Jinghong Hu
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; Shandong Provincial Collaborative Innovation Center for Quality Control and Construction of the Whole Industrial Chain of Traditional Chinese Medicine, Jinan 250355, China.
| | - Jing Chen
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Yuanyuan Guo
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Yongjian Hong
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Houkai Xia
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; Shandong Kang Yuan Tang Pharmaceutical Co., Ltd, College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| |
Collapse
|
6
|
Burmistrov VV, Morisseau C, Danilov DV, Gladkikh BP, D’yachenko VS, Zefirov NA, Zefirova ON, Butov GM, Hammock BD. Fluorine and chlorine substituted adamantyl-urea as molecular tools for inhibition of human soluble epoxide hydrolase with picomolar efficacy. J Enzyme Inhib Med Chem 2023; 38:2274797. [PMID: 37975322 PMCID: PMC11003477 DOI: 10.1080/14756366.2023.2274797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 10/16/2023] [Indexed: 11/19/2023] Open
Abstract
Series of 1,3-disubstituted ureas and diadamantyl disubstituted diureas with fluorinated and chlorinated adamantane residues were shown to inhibit human soluble epoxide hydrolase (sEH) with inhibition potency ranging from 40 pM to 9.2 nM. The measured IC50 values for some molecules were below the accuracy limit of the existing in vitro assays. Such an increase in activity was achieved by minimal structural modifications to the molecules of known inhibitors, including 4-[trans-4-(1-adamantylcarbamoylamino)cyclohexyl]oxybenzoic acid. For the chlorinated homologue of the latter the sharp jump in inhibitory activity can be (according to molecular dynamics data) the result of interactions - Cl-π interaction. Considering the extremely high inhibitory activity, acceptable solubility and partial blockage of metabolically sensitive centres in their structures, some compounds are of interest for further in vivo biotesting.
Collapse
Affiliation(s)
- Vladimir V. Burmistrov
- Volgograd State Technical University, Volgograd, Russia
- Department of Entomology and Nematology, and Comprehensive Cancer Center, University of California, Davis, CA, USA
- Department of Chemistry, Technology and Equipment of Chemical Industry, Volzhsky Polytechnic Institute (branch) Volgograd State Technical University, Volzhsky, Russia
| | - Christophe Morisseau
- Department of Entomology and Nematology, and Comprehensive Cancer Center, University of California, Davis, CA, USA
| | | | | | - Vladimir S. D’yachenko
- Volgograd State Technical University, Volgograd, Russia
- Department of Entomology and Nematology, and Comprehensive Cancer Center, University of California, Davis, CA, USA
| | - Nikolay A. Zefirov
- Department of Chemistry, M. V. Lomonosov Moscow State University, Moscow, Russia
| | - Olga N. Zefirova
- Department of Chemistry, M. V. Lomonosov Moscow State University, Moscow, Russia
| | - Gennady M. Butov
- Volgograd State Technical University, Volgograd, Russia
- Department of Chemistry, Technology and Equipment of Chemical Industry, Volzhsky Polytechnic Institute (branch) Volgograd State Technical University, Volzhsky, Russia
| | - Bruce D. Hammock
- Department of Entomology and Nematology, and Comprehensive Cancer Center, University of California, Davis, CA, USA
| |
Collapse
|
7
|
Pan J, Lu Y, Wang S, Ma T, Xue X, Zhang Z, Mao Q, Guo D, Ma K. Synergistic neuroprotective effects of two natural medicinal plants against CORT-induced nerve cell injury by correcting neurotransmitter deficits and inflammation imbalance. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 121:155102. [PMID: 37748389 DOI: 10.1016/j.phymed.2023.155102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 08/30/2023] [Accepted: 09/17/2023] [Indexed: 09/27/2023]
Abstract
BACKGROUND Lilium henryi Baker (Liliaceae) and Rehmannia glutinosa (Gaertn.) DC. (Plantaginaceae) were the traditional natural medicinal plants for the treatment of depression, but the antidepression mechanism of two plants co-decoction (Also known as Lily bulb and Rehmannia decoction (LBRD) drug-containing serum (LBRDDS) has not been elucidated in the in vitro model of depression. MATERIAL AND METHODS Here, UHPLC-Q-TOF/MS was used to identify the active components of LBRDDS and the potential effector substance was identified by bioinformatics analysis. CORT-induced nerve cells cytotoxicity was used to investigate the neuroprotection effect of LBRDDS and the underlying pharmacological mechanisms were explored by multiple experimental methods such as molecular docking, immunofluorescence, gain- or loss-of function experiments. RESULTS Bioactive compounds in LBRDDS absorbed from intestinal tract were transformed or metabolized by the gut microbiota including palmitic acid, adrenic acid, linoleic acid, arachidonic acid and docosapentaenoic acid. Network pharmacology analysis and molecular docking of showed fatty acid metabolism, neurotransmitter synthesis and neuroinflammation may be potential therapeutic targets of LBRDDS. LBRDDS can improve the activity of model cells, reduce cytotoxicity of lactate dehydrogenase, recover neurotransmitter imbalance, relieve inflammatory damage, down-regulate the expression of miRNA-144-3p, increase the mRNAs and protein expression level of Gad-67 and VGAT, and promote the synthesis and transport of GABA. CONCLUSION Therefore, LBRDDS exerts neuroprotective effects by correcting neurotransmitter deficits and inflammation imbalance in the CORT-induced nerve cell injury model.
Collapse
Affiliation(s)
- Jin Pan
- College of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China
| | - Yanting Lu
- College of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China
| | - Sijia Wang
- College of Acupuncture and Tuina, Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China
| | - Ting Ma
- College of Rehabilitation, Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China
| | - Xiaoyan Xue
- College of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China
| | - Zhe Zhang
- College of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China
| | - Qiancheng Mao
- College of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China
| | - Dongjing Guo
- College of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China
| | - Ke Ma
- College of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China.
| |
Collapse
|
8
|
Pu Y, Cheng R, Zhang Q, Huang T, Lu C, Tang Z, Zhong Y, Wu L, Hammock BD, Hashimoto K, Luo Y, Liu Y. Role of soluble epoxide hydrolase in the abnormal activation of fibroblast-like synoviocytes from patients with rheumatoid arthritis. Clin Immunol 2023; 257:109850. [PMID: 38013165 PMCID: PMC10872286 DOI: 10.1016/j.clim.2023.109850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 11/09/2023] [Accepted: 11/14/2023] [Indexed: 11/29/2023]
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease characterized by enigmatic pathogenesis. Polyunsaturated fatty acids (PUFAs) are implicated in RA's development and progression, yet their exact mechanisms of influence are not fully understood. Soluble epoxide hydrolase (sEH) is an enzyme that metabolizes anti-inflammatory epoxy fatty acids (EpFAs), derivatives of PUFAs. In this study, we report elevated sEH expression in the joints of CIA (collagen-induced arthritis) rats, concomitant with diminished levels of two significant EpFAs. Additionally, increased sEH expression was detected in both the synovium of CIA rats and in the synovium and fibroblast-like synoviocytes (FLS) of RA patients. The sEH inhibitor TPPU attenuated the migration and invasion capabilities of FLS derived from RA patients and to reduce the secretion of inflammatory factors by these cells. Our findings indicate a pivotal role for sEH in RA pathogenesis and suggest that sEH inhibitors offer a promising new therapeutic strategy for managing RA.
Collapse
Affiliation(s)
- Yaoyu Pu
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Ruijuan Cheng
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Qiuping Zhang
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Tianwen Huang
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Chenyang Lu
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Zhigang Tang
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yutong Zhong
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Liang Wu
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Bruce D Hammock
- Department of Entomology and Nematology and UC Davis Comprehensive Cancer Center, University of California, Davis, CA 95616, United States of America.
| | - Kenji Hashimoto
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba 260-8670, Japan.
| | - Yubin Luo
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China.
| | - Yi Liu
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China.
| |
Collapse
|
9
|
Zhou C, Chen Y, Xue S, Shi Q, Guo L, Yu H, Xue F, Cai M, Wang H, Peng Z. rTMS ameliorates depressive-like behaviors and regulates the gut microbiome and medium- and long-chain fatty acids in mice exposed to chronic unpredictable mild stress. CNS Neurosci Ther 2023; 29:3549-3566. [PMID: 37269082 PMCID: PMC10580350 DOI: 10.1111/cns.14287] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 04/18/2023] [Accepted: 05/23/2023] [Indexed: 06/04/2023] Open
Abstract
INTRODUCTION Repetitive transcranial magnetic stimulation (rTMS) is a clinically useful therapy for depression. However, the effects of rTMS on the metabolism of fatty acids (FAs) and the composition of gut microbiota in depression are not well established. METHODS Mice received rTMS (15 Hz, 1.26 T) for seven consecutive days after exposure to chronic unpredictable mild stress (CUMS). The subsequent depressive-like behaviors, the composition of gut microbiota of stool samples, as well as medium- and long-chain fatty acids (MLCFAs) in the plasma, prefrontal cortex (PFC), and hippocampus (HPC) were evaluated. RESULTS CUMS induced remarkable changes in gut microbiotas and fatty acids, specifically in community diversity of gut microbiotas and PUFAs in the brain. 15 Hz rTMS treatment alleviates depressive-like behaviors and partially normalized CUMS induced alterations of microbiotas and MLCFAs, especially the abundance of Cyanobacteria, Actinobacteriota, and levels of polyunsaturated fatty acids (PUFAs) in the hippocampus and PFC. CONCLUSION These findings revealed that the modulation of gut microbiotas and PUFAs metabolism might partly contribute to the antidepressant effect of rTMS.
Collapse
Affiliation(s)
- Cui‐Hong Zhou
- Department of Psychiatry, Xijing HospitalAir Force Medical UniversityXi'anChina
| | - Yi‐Huan Chen
- Department of Psychiatry, Xijing HospitalAir Force Medical UniversityXi'anChina
| | - Shan‐Shan Xue
- Department of Psychiatry, Xijing HospitalAir Force Medical UniversityXi'anChina
| | - Qing‐Qing Shi
- Department of Psychiatry, Xijing HospitalAir Force Medical UniversityXi'anChina
| | - Lin Guo
- Department of PsychiatryChang'an HospitalXi'anChina
| | - Huan Yu
- Department of Psychiatry, Xijing HospitalAir Force Medical UniversityXi'anChina
| | - Fen Xue
- Department of Psychiatry, Xijing HospitalAir Force Medical UniversityXi'anChina
| | - Min Cai
- Department of Psychiatry, Xijing HospitalAir Force Medical UniversityXi'anChina
| | - Hua‐Ning Wang
- Department of Psychiatry, Xijing HospitalAir Force Medical UniversityXi'anChina
| | - Zheng‐Wu Peng
- Department of Psychiatry, Xijing HospitalAir Force Medical UniversityXi'anChina
| |
Collapse
|
10
|
Norman JE, Nuthikattu S, Milenkovic D, Rutledge JC, Villablanca AC. Sex-Specific Response of the Brain Free Oxylipin Profile to Soluble Epoxide Hydrolase Inhibition. Nutrients 2023; 15:1214. [PMID: 36904213 PMCID: PMC10005333 DOI: 10.3390/nu15051214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 02/22/2023] [Accepted: 02/25/2023] [Indexed: 03/04/2023] Open
Abstract
Oxylipins are the oxidation products of polyunsaturated fatty acids and have been implicated in neurodegenerative disorders, including dementia. Soluble epoxide hydrolase (sEH) converts epoxy-fatty acids to their corresponding diols, is found in the brain, and its inhibition is a treatment target for dementia. In this study, male and female C57Bl/6J mice were treated with an sEH inhibitor (sEHI), trans-4-[4-(3-adamantan-1-yl-ureido)-cyclohexyloxy]-benzoic acid (t-AUCB), for 12 weeks to comprehensively study the effect of sEH inhibition on the brain oxylipin profile, and modulation by sex. Ultra-high-performance liquid chromatography-tandem mass spectrometry was used to measure the profile of 53 free oxylipins in the brain. More oxylipins were modified by the inhibitor in males than in females (19 versus 3, respectively) and favored a more neuroprotective profile. Most were downstream of lipoxygenase and cytochrome p450 in males, and cyclooxygenase and lipoxygenase in females. The inhibitor-associated oxylipin changes were unrelated to serum insulin, glucose, cholesterol, or female estrous cycle. The inhibitor affected behavior and cognitive function as measured by open field and Y-maze tests in males, but not females. These findings are novel and important to our understanding of sexual dimorphism in the brain's response to sEHI and may help inform sex-specific treatment targets.
Collapse
Affiliation(s)
- Jennifer E. Norman
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of California, Davis, CA 95616, USA
| | - Saivageethi Nuthikattu
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of California, Davis, CA 95616, USA
| | - Dragan Milenkovic
- Department of Nutrition, University of California, Davis, CA 95616, USA
| | - John C. Rutledge
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of California, Davis, CA 95616, USA
| | - Amparo C. Villablanca
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of California, Davis, CA 95616, USA
| |
Collapse
|
11
|
Zheng S, Guo J, Xin Q, Galfalvy H, Ye Y, Yan N, Qian R, Mann JJ, Li E, Xue X, Yin H. Association of adenosine triphosphate-related genes to major depression and suicidal behavior: Cognition as a potential mediator. J Affect Disord 2023; 323:131-139. [PMID: 36442653 DOI: 10.1016/j.jad.2022.11.042] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/31/2022] [Accepted: 11/18/2022] [Indexed: 11/27/2022]
Abstract
BACKGROUND Soluble epoxide hydrolase (sEH, encoded by EPHX2) and P2X2 (a subtype of ATP receptors) may mediate the antidepressant-like effects of ATP. We sought to determine whether polymorphisms and mRNA expression of EPHX2 and P2X2 are associated with depression and suicidal behavior and how cognition may mediate such associations. METHOD We examined 83 single nucleotide polymorphisms (SNPs) of EPHX2 and P2X2. Subjects were MDD suicide attempters (N = 143), MDD non-suicide attempters (N = 248), and healthy volunteers (HV, N = 110). Data on demographics, depression severity, and suicide attempts were collected. Participants completed a set of cognitive tasks. Polymorphisms were genotyped using MALDI-TOF MS within the MassARRAY system. The expression of mRNA was measured using real-time polymerase chain reaction (RT-PCR). RESULTS Cognitive function was a significant mediator (p = 0.006) of the genetic effect on depression. Allele C of rs202059124 was associated with depression risk (OR = 11.57, 95%CI: 2.33-209.87, p = 0.0181). A significant relationship was found between P2X2 mRNA expression and depression (OR = 0.68, 95%CI: 0.49-0.94, p = 0.0199). One haploblock (rs9331942 and rs2279590) was associated with suicide attempts: subjects with haplotype GC (frequency = 19.8 %, p = 0.017) and AT (frequency = 35.2 %, p < 0.001) had a lower rate of suicide attempts. CONCLUSIONS Our results confirmed that cognitive impairment plays a role in the effect of rs9331949 on depression. Moreover, we confirmed a relationship between P2X2, EPHX2, and MDD in humans and presented preliminary haplotype-based evidence that implicates EPHX2 in suicide. LIMITATIONS The main limitation of this study is the limited sample size. More comprehensive and multi-domain cognition tasks and different assessment measures are required in further study.
Collapse
Affiliation(s)
- Shuqiong Zheng
- Department of Psychiatry, Nanfang Hospital, Southern Medical University, Guangzhou, China; Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, China
| | - Jia Guo
- Department of Biostatistics, Columbia University, New York, NY, United States
| | - Qianqian Xin
- Department of Psychiatry, Nanfang Hospital, Southern Medical University, Guangzhou, China; Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, China
| | - Hanga Galfalvy
- Department of Biostatistics, Columbia University, New York, NY, United States
| | - Youran Ye
- Department of Psychiatry, Nanfang Hospital, Southern Medical University, Guangzhou, China; Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, China
| | - Na Yan
- Department of Psychiatry, Nanfang Hospital, Southern Medical University, Guangzhou, China; Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, China
| | - Rongrong Qian
- Department of Psychiatry, Nanfang Hospital, Southern Medical University, Guangzhou, China; Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, China
| | - J John Mann
- Department of Psychiatry, Columbia University, New York, NY, United States; Division of Molecular Imaging and Neuropathology, New York State Psychiatric Institute, New York, NY, United States
| | - Enze Li
- Department of Psychiatry, Nanfang Hospital, Southern Medical University, Guangzhou, China; Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, China
| | - Xiang Xue
- Department of Psychiatry, Nanfang Hospital, Southern Medical University, Guangzhou, China; Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, China
| | - Honglei Yin
- Department of Psychiatry, Nanfang Hospital, Southern Medical University, Guangzhou, China; Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, China.
| |
Collapse
|
12
|
Abdalla HB, Van Dyke TE. The impact of the soluble epoxide hydrolase cascade on periodontal tissues. FRONTIERS IN DENTAL MEDICINE 2023. [DOI: 10.3389/fdmed.2023.1129371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Periodontitis is a chronic inflammatory disease with complex pathogenesis. Uncontrolled inflammation is driven by the immune system in response to accumulation of oral biofilm that leads to alveolar bone loss, bleeding, increased periodontal probing depth with loss of attachment of the connective tissues to the tooth, and ultimately, tooth loss. Soluble epoxide hydrolase (sEH) is an enzyme that converts epoxy fatty acids (EpFAs) produced by cytochrome P450 (CYP450) to an inactive diol. It has been shown that EpFAs display important features to counteract an exaggerated inflammatory process. Based upon this observation, inhibitors of sEH have been developed and are being proposed as a strategy to regulate proinflammatory inflammatory lipid mediator production and the chronicity of inflammation. This mini review focuses on the impact of sEH inhibition on periodontal tissues focusing on the mechanisms involved. The interaction between Specialized Pro-Resolving Mediators and sEH inhibition emerges as a significant mechanism of action of sEH inhibitors that was not formerly appreciated and provides new insight into the role SPMs may play in prevention and treatment of periodontitis.
Collapse
|
13
|
A role of gut-microbiota-brain axis via subdiaphragmatic vagus nerve in depression-like phenotypes in Chrna7 knock-out mice. Prog Neuropsychopharmacol Biol Psychiatry 2023; 120:110652. [PMID: 36191806 DOI: 10.1016/j.pnpbp.2022.110652] [Citation(s) in RCA: 31] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 09/26/2022] [Accepted: 09/27/2022] [Indexed: 11/21/2022]
Abstract
The α7 subtype of the nicotinic acetylcholine receptor (α7 nAChR: coded by Chrna7) is known to regulate the cholinergic ascending anti-inflammatory pathway. We previously reported that Chrna7 knock-out (KO) mice show depression-like behaviors through abnormal composition of gut microbiota and systemic inflammation. Given the role of subdiaphragmatic vagus nerve in gut-microbiota-brain axis, we investigated whether subdiaphragmatic vagotomy (SDV) could affect depression-like behaviors, abnormal composition of gut microbiota, and microbes-derived metabolites in Chrna7 KO mice. SDV blocked depression-like behaviors and reduced expression of synaptic proteins in the medial prefrontal cortex (mPFC) of Chrna7 KO mice. LEfSe (linear discriminant analysis effect size) analysis revealed that the species Lactobacillus sp. BL302, the species Lactobacillus hominis, and the species Lactobacillus reuteri, were identified as potential microbial markers in the KO + SDV group. There were several genus and species altered among the three groups [wild-type (WT) + sham group, KO + sham group, KO + SDV group]. Furthermore, there were several plasma metabolites altered among the three groups. Moreover, there were correlations between relative abundance of several microbiome and behavioral data (or synaptic proteins). Network analysis showed correlations between relative abundance of several microbiome and plasma metabolites (or behavioral data). These data suggest that Chrna7 KO mice produce depression-like behaviors and reduced expression of synaptic proteins in the mPFC through gut-microbiota-brain axis via subdiaphragmatic vagus nerve.
Collapse
|
14
|
Lipid mediators generated by the cytochrome P450—Epoxide hydrolase pathway. ADVANCES IN PHARMACOLOGY 2023; 97:327-373. [DOI: 10.1016/bs.apha.2022.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
15
|
Hu L, Zeng X, Yang K, Peng H, Chen J. n-3 polyunsaturated fatty acids improve depression-like behavior by inhibiting hippocampal neuroinflammation in mice via reducing TLR4 expression. Immun Inflamm Dis 2022; 10:e707. [PMID: 36301036 PMCID: PMC9552990 DOI: 10.1002/iid3.707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/04/2022] [Accepted: 09/06/2022] [Indexed: 11/05/2022] Open
Abstract
INTRODUCTION n-3 polyunsaturated fatty acids (PUFAs) are believed to be implicated in the pathogenesis of many inflammation-related diseases, including depression. METHODS The mouse model of depression was established through chronic unpredictable mild stress (CUMS), the mice were intervened with n-3 PUFAs, and then the expression of toll-like receptor 4 (TLR4) was stimulated with lipopolysaccharides (LPS). Tail suspension test (TST), forced swimming test (FST) and sucrose preference test were performed to monitor the depression behavior of mice. Microglia activation was detected by Iba1 immunofluorescence, and neuronal injury was detected by Nissl staining. Concentrations of tumor necrosis factor (TNF)-α, Interleukin (IL)-6 and IL-1β in the hippocampus were assessed via enzyme linked immunosorbent assay (ELISA). Quantitative real time polymerase chain reaction was used to detect IL-6, IL-1β and TNF-α messenger RNA levels. Western blot was utilized for detection of TLR4 protein expression. RESULTS CUMS significantly reduced the sucrose preference in mice, while increased the immobility time in FST and TST. Moreover, CUMS significantly aggravated microglia activation and neuronal damage in mice and increased the levels of IL-6, IL-1β and TNF-α in hippocampal tissues, however, intervention with n-3 PUFAs could improve the above effects. Further, the increased TLR4 induced by LPS partially reversed the inhibition of n-3 PUFAs on depression-like behaviors, microglial activation and inflammatory injury of hippocampal neurons. CONCLUSION n-3 PUFAs may ameliorate depression-like behaviors via reducing hippocampal neuroinflammation in CUMS-induced mice by regulating TLR4 expression, suggesting that n-3 PUFAs may be an effective antidepressant, which provides evidence for future treatment of depression.
Collapse
Affiliation(s)
- Li Hu
- Department of Sleep Disorders and NeurosesBrain Hospital of Hunan ProvinceChangshaHunan ProvinceChina
| | - Xianxiang Zeng
- Department of Sleep Disorders and NeurosesBrain Hospital of Hunan ProvinceChangshaHunan ProvinceChina
| | - Kai Yang
- Department of Sleep Disorders and NeurosesBrain Hospital of Hunan ProvinceChangshaHunan ProvinceChina
| | - Hongli Peng
- Department of Clinlical PsychologyBrain Hospital of Hunan ProvinceChangshaHunan ProvinceChina
| | - Jinhong Chen
- Department of Sleep Disorders and NeurosesBrain Hospital of Hunan ProvinceChangshaHunan ProvinceChina
| |
Collapse
|
16
|
Bailly C. Pharmacological Properties and Molecular Targets of Alisol Triterpenoids from Alismatis Rhizoma. Biomedicines 2022; 10:biomedicines10081945. [PMID: 36009492 PMCID: PMC9406200 DOI: 10.3390/biomedicines10081945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/09/2022] [Accepted: 08/10/2022] [Indexed: 11/16/2022] Open
Abstract
More than 100 protostane triterpenoids have been isolated from the dried rhizomes of Alisma species, designated Alismatis rhizoma (AR), commonly used in Asian traditional medicine to treat inflammatory and vascular diseases. The main products are the alisols, with the lead compounds alisol-A/-B and their acetate derivatives being the most abundant products in the plant and the best-known bioactive products. The pharmacological effects of Ali-A, Ali-A 24-acetate, Ali-B, Ali-B 23-acetate, and derivatives have been analyzed to provide an overview of the medicinal properties, signaling pathways, and molecular targets at the origin of those activities. Diverse protein targets have been proposed for these natural products, including the farnesoid X receptor, soluble epoxide hydrolase, and other enzymes (AMPK, HCE-2) and functional proteins (YAP, LXR) at the origin of the anti-atherosclerosis, anti-inflammatory, antioxidant, anti-fibrotic, and anti-proliferative activities. Activities were classified in two groups. The lipid-lowering and anti-atherosclerosis effects benefit from robust in vitro and in vivo data (group 1). The anticancer effects of alisols have been largely reported, but, essentially, studies using tumor cell lines and solid in vivo data are lacking (group 2). The survey shed light on the pharmacological properties of alisol triterpenoids frequently found in traditional phytomedicines.
Collapse
Affiliation(s)
- Christian Bailly
- OncoWitan, Scientific Consulting Office, 59290 Lille (Wasquehal), France
| |
Collapse
|
17
|
Jarne-Ferrer J, Griñán-Ferré C, Bellver-Sanchis A, Vázquez S, Muñoz-Torrero D, Pallàs M. A Combined Chronic Low-Dose Soluble Epoxide Hydrolase and Acetylcholinesterase Pharmacological Inhibition Promotes Memory Reinstatement in Alzheimer’s Disease Mice Models. Pharmaceuticals (Basel) 2022; 15:ph15080908. [PMID: 35893732 PMCID: PMC9394299 DOI: 10.3390/ph15080908] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/18/2022] [Accepted: 07/20/2022] [Indexed: 12/04/2022] Open
Abstract
Alzheimer’s disease (AD) is a progressive neurological disorder with multifactorial and heterogeneous causes. AD involves several etiopathogenic mechanisms such as aberrant protein accumulation, neurotransmitter deficits, synaptic dysfunction and neuroinflammation, which lead to cognitive decline. Unfortunately, the currently available anti-AD drugs only alleviate the symptoms temporarily and provide a limited therapeutic effect. Thus, new therapeutic strategies, including multitarget approaches, are urgently needed. It has been demonstrated that a co-treatment of acetylcholinesterase (AChE) inhibitor with other neuroprotective agents has beneficial effects on cognition. Here, we have assessed the neuroprotective effects of chronic dual treatment with a soluble epoxide hydrolase (sEH) inhibitor (TPPU) and an AChE inhibitor (6-chlorotacrine or rivastigmine) in in vivo studies. Interestingly, we have found beneficial effects after chronic low-dose co-treatment with TPPU and 6-chlorotacrine in the senescence-accelerated mouse prone 8 (SAMP8) mouse model as well as with TPPU and rivastigmine co-treatment in the 5XFAD mouse model, in comparison with the corresponding monotherapy treatments. In the SAMP8 model, no substantial improvements in synaptic plasticity markers were found, but the co-treatment of TPPU and 6-chlorotacrine led to a significantly reduced gene expression of neuroinflammatory markers, such as interleukin 6 (Il-6), triggering receptor expressed on myeloid cell 2 (Trem2) and glial fibrillary acidic protein (Gfap). In 5XFAD mice, chronic low-dose co-treatment of TPPU and rivastigmine led to enhanced protein levels of synaptic plasticity markers, such as the phospho-cAMP response element-binding protein (p-CREB) ratio, brain-derived neurotrophic factor (BDNF) and postsynaptic density protein 95 (PSD95), and also to a reduction in neuroinflammatory gene expression. Collectively, these results support the neuroprotectant role of chronic low-dose co-treatment strategy with sEH and AChE inhibitors in AD mouse models, opening new avenues for effective AD treatment.
Collapse
Affiliation(s)
- Júlia Jarne-Ferrer
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Institut de Neurociències-Universitat de Barcelona, Avenida Joan XXIII, 27-31, E-08028 Barcelona, Spain; (J.J.-F.); (C.G.-F.); (A.B.-S.)
| | - Christian Griñán-Ferré
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Institut de Neurociències-Universitat de Barcelona, Avenida Joan XXIII, 27-31, E-08028 Barcelona, Spain; (J.J.-F.); (C.G.-F.); (A.B.-S.)
| | - Aina Bellver-Sanchis
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Institut de Neurociències-Universitat de Barcelona, Avenida Joan XXIII, 27-31, E-08028 Barcelona, Spain; (J.J.-F.); (C.G.-F.); (A.B.-S.)
| | - Santiago Vázquez
- CSIC Associated Unit, Laboratory of Medicinal Chemistry, Faculty of Pharmacy and Food Sciences, Institute of Biomedicine (IBUB), University of Barcelona, Avenida Joan XXIII, 27-31, E-08028 Barcelona, Spain; (S.V.); (D.M.-T.)
| | - Diego Muñoz-Torrero
- CSIC Associated Unit, Laboratory of Medicinal Chemistry, Faculty of Pharmacy and Food Sciences, Institute of Biomedicine (IBUB), University of Barcelona, Avenida Joan XXIII, 27-31, E-08028 Barcelona, Spain; (S.V.); (D.M.-T.)
| | - Mercè Pallàs
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Institut de Neurociències-Universitat de Barcelona, Avenida Joan XXIII, 27-31, E-08028 Barcelona, Spain; (J.J.-F.); (C.G.-F.); (A.B.-S.)
- Correspondence:
| |
Collapse
|