1
|
Bao H, Cui Y, Zheng X, Luo C, Li Y, Chen L. Decoding the role of OsPRX83 in enhancing osmotic stress tolerance in rice through ABA-dependent pathways and ROS scavenging. PLANT SIGNALING & BEHAVIOR 2024; 19:2391134. [PMID: 39676227 DOI: 10.1080/15592324.2024.2391134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/03/2024] [Accepted: 08/06/2024] [Indexed: 12/17/2024]
Abstract
Plant Class III peroxidases have diverse roles in controlling root hair growth, anther development, and abiotic and biotic stress responses. However, their abiotic stress response mechanism in rice remains elusive. Here, we identified a peroxidase precursor gene, OsPRX83, and investigated its role in enhancing osmotic stress tolerance in rice. We used OsPRX83 overexpression and CRISPR-Cas9-generated mutant lines to elucidate OsPRX83's function and expression patterns under stress conditions. The expression of OsPRX83 was induced by H2O2, PEG, NaCl, and ABA treatments. Using qRT-PCR, RNA sequencing, and physiological assays, we demonstrated that overexpression of OsPRX83 enhanced the osmotic and oxidative stress tolerance as compared to the wild-type and mutant seedlings, as evident from the higher survival rates, enhanced peroxidase (POD) and ascorbate peroxidase (APX) activities, and increased ABA sensitivity compared with mutants and wild-type plants. Transcriptome analysis further supported the involvement of OsPRX83 in the ROS scavenging, by modulating the expression of OsDREB1B, OsDREB1E, OsDREB1F, OsDREB1G in response to osmotic treatment. In summary, our study suggests that OsPRX83 plays a pivotal role in enhancing stress tolerance in rice through ABA-dependent pathways and ROS scavenging. Therefore, this study elucidates the function of a novel abiotic stress response gene in rice, thereby may contribute to a new genetic engineering resource for engineering drought-resistant rice varieties.
Collapse
Affiliation(s)
- Han Bao
- Xiamen Key Laboratory for Plant Genetics, School of Life Sciences, Xiamen University, Xiamen, China
- School of Life Sciences, Ningxia University, Yinchuan, China
| | - Yuchao Cui
- Xiamen Key Laboratory for Plant Genetics, School of Life Sciences, Xiamen University, Xiamen, China
| | - Xijun Zheng
- Xiamen Key Laboratory for Plant Genetics, School of Life Sciences, Xiamen University, Xiamen, China
| | - Chengke Luo
- School of Agricultural, Ningxia University, Yinchuan, China
| | - Yan Li
- Xiamen Key Laboratory for Plant Genetics, School of Life Sciences, Xiamen University, Xiamen, China
| | - Liang Chen
- Xiamen Key Laboratory for Plant Genetics, School of Life Sciences, Xiamen University, Xiamen, China
| |
Collapse
|
2
|
Yasin MU, Liu Y, Wu M, Chen N, Gan Y. Regulatory mechanisms of trichome and root hair development in Arabidopsis. PLANT MOLECULAR BIOLOGY 2024; 115:14. [PMID: 39739145 DOI: 10.1007/s11103-024-01534-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 11/03/2024] [Indexed: 01/02/2025]
Abstract
In plants, cell fate determination is regulated temporally and spatially via a complex of signals consisting of a large number of genetic interactions. Trichome and root hair formation are excellent models for studying cell fate determination in plants. Nowadays, the mysteries underlying the reprograming of trichome and root hair and how nature programs the development of trichome and root hair is an interesting topic in the scientific field. In this review, we discuss the spatial and temporal regulatory networks and cross-talk between phytohormones and epigenetic modifications in the regulation of trichome and root hair initiation in Arabidopsis. The discussion in this review provides a good model for understanding the regulatory mechanism of cell differentiation processes in plants. Moreover, we summarize recent advances in the modulation of trichome and root hair initiation in plants and compare different regulatory mechanisms to help illuminate key goals for future research.
Collapse
Affiliation(s)
- Muhammad Umair Yasin
- Zhejiang Key Lab of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Yihua Liu
- College of Agriculture and Forestry Sciences, Linyi University, Linyi, 276000, Shandong, China
| | - Minjie Wu
- Zhejiang Key Lab of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Nana Chen
- Zhejiang Key Lab of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Yinbo Gan
- Zhejiang Key Lab of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China.
| |
Collapse
|
3
|
Ibeas MA, Salinas-Grenet H, Johnson NR, Pérez-Díaz J, Vidal EA, Alvarez JM, Estevez JM. Filling the gaps on root hair development under salt stress and phosphate starvation using current evidence coupled with a meta-analysis approach. PLANT PHYSIOLOGY 2024; 196:2140-2149. [PMID: 38918899 DOI: 10.1093/plphys/kiae346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 05/21/2024] [Accepted: 05/22/2024] [Indexed: 06/27/2024]
Abstract
Population expansion is a global issue, especially for food production. Meanwhile, global climate change is damaging our soils, making it difficult for crops to thrive and lowering both production and quality. Poor nutrition and salinity stress affect plant growth and development. Although the impact of individual plant stresses has been studied for decades, the real stress scenario is more complex due to the exposure to multiple stresses at the same time. Here we investigate using existing evidence and a meta-analysis approach to determine molecular linkages between 2 contemporaneous abiotic stimuli, phosphate (Pi) deficiency and salinity, on a single plant cell model, the root hairs (RHs), which is the first plant cell exposed to them. Understanding how these 2 stresses work molecularly in RHs may help us build super-adaptable crops and sustainable agriculture in the face of global climate change.
Collapse
Affiliation(s)
- Miguel Angel Ibeas
- ANID-Millennium Science Initiative Program, Millennium Nucleus for the DeveIopment of Super Adaptable Plants (MN-SAP), Santiago 8331150, Chile
- Centro de Biotecnología Vegetal, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago 8370186, Chile
| | - Hernán Salinas-Grenet
- Centro de Biotecnología Vegetal, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago 8370186, Chile
- ANID-Millennium Science Initiative Program, Millennium Institute for Integrative Biology (iBio), Santiago 7500000, Chile
| | - Nathan R Johnson
- ANID-Millennium Science Initiative Program, Millennium Institute for Integrative Biology (iBio), Santiago 7500000, Chile
- Centro de Genómica y Bioinformática, Facultad de Ciencias, Ingeniería y Tecnología, Universidad Mayor, Santiago 8580745, Chile
| | - Jorge Pérez-Díaz
- ANID-Millennium Science Initiative Program, Millennium Nucleus for the DeveIopment of Super Adaptable Plants (MN-SAP), Santiago 8331150, Chile
- Centro de Biotecnología Vegetal, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago 8370186, Chile
| | - Elena A Vidal
- ANID-Millennium Science Initiative Program, Millennium Institute for Integrative Biology (iBio), Santiago 7500000, Chile
- Centro de Genómica y Bioinformática, Facultad de Ciencias, Ingeniería y Tecnología, Universidad Mayor, Santiago 8580745, Chile
| | - José Miguel Alvarez
- Centro de Biotecnología Vegetal, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago 8370186, Chile
- ANID-Millennium Science Initiative Program, Millennium Institute for Integrative Biology (iBio), Santiago 7500000, Chile
| | - José M Estevez
- ANID-Millennium Science Initiative Program, Millennium Nucleus for the DeveIopment of Super Adaptable Plants (MN-SAP), Santiago 8331150, Chile
- Centro de Biotecnología Vegetal, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago 8370186, Chile
- ANID-Millennium Science Initiative Program, Millennium Institute for Integrative Biology (iBio), Santiago 7500000, Chile
- Fundación Instituto Leloir and IIBBA-CONICET, Av. Patricias Argentinas 435, Buenos Aires C1405BWE, Argentina
| |
Collapse
|
4
|
Morcillo RJL, Leal-López J, Férez-Gómez A, López-Serrano L, Baroja-Fernández E, Gámez-Arcas S, Tortosa G, López LE, Estevez JM, Doblas VG, Frías-España L, García-Pedrajas MD, Sarmiento-Villamil J, Pozueta-Romero J. RAPID ALKALINIZATION FACTOR 22 is a key modulator of the root hair growth responses to fungal ethylene emissions in Arabidopsis. PLANT PHYSIOLOGY 2024; 196:2890-2904. [PMID: 39283986 DOI: 10.1093/plphys/kiae484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 08/15/2024] [Indexed: 12/14/2024]
Abstract
In Arabidopsis (Arabidopsis thaliana (L.) Heynh), exposure to volatile compounds (VCs) emitted by Penicillium aurantiogriseum promotes root hair (RH) proliferation and hyper-elongation through mechanisms involving ethylene, auxin, and photosynthesis signaling. In addition, this treatment enhances the levels of the small signaling peptide RAPID ALKALINIZATION FACTOR 22 (RALF22). Here, we used genetics to address the role of RALF22 in fungal VC-promoted RH growth and to identify the bioactive fungal VC. We found that RHs of ralf22 and feronia (fer-4) plants impaired in the expression of RALF22 and its receptor FERONIA, respectively, responded weakly to fungal VCs. Unlike in wild-type roots, fungal VC exposure did not enhance RALF22 transcript levels in roots of fer-4 and ethylene- and auxin-insensitive mutants. In ralf22 and fer-4 roots, this treatment did not enhance the levels of ERS2 transcripts encoding one member of the ethylene receptor family and those of some RH-related genes. RHs of ers2-1 and the rsl2rsl4 double mutants impaired in the expression of ERS2 and the ethylene- and auxin-responsive ROOT HAIR DEFECTIVE 6-LIKE 2 and 4 transcription factors, respectively, weakly responded to fungal VCs. Moreover, roots of plants defective in photosynthetic responsiveness to VCs exhibited weak RALF22 expression and RH growth responses to fungal VCs. VCs of ΔefeA strains of P. aurantiogriseum cultures impaired in ethylene synthesis weakly promoted RH proliferation and elongation in exposed plants. We conclude that RALF22 simultaneously functions as a transcriptionally regulated signaling molecule that participates in the ethylene, auxin, and photosynthesis signaling-mediated RH growth response to fungal ethylene emissions and regulation of ethylene perception in RHs.
Collapse
Affiliation(s)
- Rafael Jorge León Morcillo
- Institute for Mediterranean and Subtropical Horticulture "La Mayora" (IHSM), CSIC-UMA, Campus de Teatinos, Avda. Louis Pasteur, 49, 29010 Málaga, Spain
| | - Jesús Leal-López
- Institute for Mediterranean and Subtropical Horticulture "La Mayora" (IHSM), CSIC-UMA, Campus de Teatinos, Avda. Louis Pasteur, 49, 29010 Málaga, Spain
| | - Alberto Férez-Gómez
- Institute for Mediterranean and Subtropical Horticulture "La Mayora" (IHSM), CSIC-UMA, Campus de Teatinos, Avda. Louis Pasteur, 49, 29010 Málaga, Spain
| | - Lidia López-Serrano
- Institute for Mediterranean and Subtropical Horticulture "La Mayora" (IHSM), CSIC-UMA, Campus de Teatinos, Avda. Louis Pasteur, 49, 29010 Málaga, Spain
| | - Edurne Baroja-Fernández
- Instituto de Agrobiotecnología (IdAB), CSIC-Gobierno de Navarra, Iruñako etorbidea 123, 31192 Mutiloabeti, Nafarroa, Spain
| | - Samuel Gámez-Arcas
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas (CSIC)-Universidad de Sevilla, Sevilla, Spain
| | - Germán Tortosa
- Department of Soil and Plant Microbiology, Estación Experimental del Zaidín (EEZ-CSIC), Profesor Albareda, 1, 18008 Granada, Spain
| | - Leonel E López
- Fundación Instituto Leloir and IIBBA-CONICET, Av. Patricias Argentinas 435, Buenos Aires CP C1405BWE, Argentina
| | - José Manuel Estevez
- Fundación Instituto Leloir and IIBBA-CONICET, Av. Patricias Argentinas 435, Buenos Aires CP C1405BWE, Argentina
- Centro de Biotecnología Vegetal (CBV), Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
- ANID-Millennium Science Initiative Program-Millennium Institute for Integrative Biology (iBio), Santiago, Chile
| | - Verónica G Doblas
- Institute for Mediterranean and Subtropical Horticulture "La Mayora" (IHSM), CSIC-UMA, Campus de Teatinos, Avda. Louis Pasteur, 49, 29010 Málaga, Spain
| | - Laura Frías-España
- Institute for Mediterranean and Subtropical Horticulture "La Mayora" (IHSM), CSIC-UMA, Campus de Teatinos, Avda. Louis Pasteur, 49, 29010 Málaga, Spain
| | - María Dolores García-Pedrajas
- Institute for Mediterranean and Subtropical Horticulture "La Mayora" (IHSM), CSIC-UMA, Campus de Teatinos, Avda. Louis Pasteur, 49, 29010 Málaga, Spain
| | - Jorge Sarmiento-Villamil
- Institute for Mediterranean and Subtropical Horticulture "La Mayora" (IHSM), CSIC-UMA, Campus de Teatinos, Avda. Louis Pasteur, 49, 29010 Málaga, Spain
| | - Javier Pozueta-Romero
- Institute for Mediterranean and Subtropical Horticulture "La Mayora" (IHSM), CSIC-UMA, Campus de Teatinos, Avda. Louis Pasteur, 49, 29010 Málaga, Spain
| |
Collapse
|
5
|
Li S, Zheng H, Sui N, Zhang F. Class III peroxidase: An essential enzyme for enhancing plant physiological and developmental process by maintaining the ROS level: A review. Int J Biol Macromol 2024; 283:137331. [PMID: 39549790 DOI: 10.1016/j.ijbiomac.2024.137331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 10/31/2024] [Accepted: 11/05/2024] [Indexed: 11/18/2024]
Abstract
Since plants are sessile organisms, they are inevitably exposed to various environmental stresses, and the accumulation of reactive oxygen species (ROS) could affect the growth and development of plants. ROS play either positive or negative roles in various plant life activities as a two-edge sword. Class III peroxidase (CIII PRX) is a highly conserved antioxidant enzyme family specifically identified in plants, which is involved in maintaining ROS homeostasis in the cell and plays multiple functions in plant growth metabolism and stress response. In this review, the classification and structure of CIII PRXs are represented, and the roles of CIII PRXs in physiological and developmental processes such as plant growth, cell wall modification, loosening and stiffening, and lignin biosynthesis are described in detail. The molecular mechanisms of CIII PRXs in response to abiotic stress such as salt and drought, and biological stress such as pathogens invasion are introduced, with emphasis on the research results of PRX related genes in signal transduction. Furthermore, we summarize the difficulty in exploring the function of individual CIII PRX gene due to functional redundancy and promising technique that may break this research bottleneck.
Collapse
Affiliation(s)
- Simin Li
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Hongxiang Zheng
- Laboratory of Plant Molecular Genetics and Crop Gene Editing, School of Life Sciences, Linyi University, Linyi 276000, China
| | - Na Sui
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan 250014, China; Dongying Key Laboratory of Salt Tolerance Mechanism and Application of Halophytes, Dongying Institute, Shandong Normal University, No. 2 Kangyang Road, Dongying 257000, China.
| | - Fangning Zhang
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan 250014, China; National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, China.
| |
Collapse
|
6
|
Tsang I, Atkinson JA, Rawsthorne S, Cockram J, Leigh F. Root hairs: an underexplored target for sustainable cereal crop production. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:5484-5500. [PMID: 38894654 PMCID: PMC11427827 DOI: 10.1093/jxb/erae275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 06/17/2024] [Indexed: 06/21/2024]
Abstract
To meet the demands of a rising human population, plant breeders will need to develop improved crop varieties that maximize yield in the face of increasing pressure on crop production. Historically, the optimization of crop root architecture has represented a challenging breeding target due to the inaccessibility of the root systems. Root hairs, single cell projections from the root epidermis, are perhaps the most overlooked component of root architecture traits. Root hairs play a central role in facilitating water, nutrient uptake, and soil cohesion. Current root hair architectures may be suboptimal under future agricultural production regimes, coupled with an increasingly variable climate. Here, we review the genetic control of root hair development in the world's three most important crops-rice, maize, and wheat-and highlight conservation of gene function between monocots and the model dicot species Arabidopsis. Advances in genomic techniques including gene editing combined with traditional plant breeding methods have the potential to overcome many inherent issues associated with the design of improved root hair architectures. Ultimately, this will enable detailed characterization of the effects of contrasting root hair morphology strategies on crop yield and resilience, and the development of new varieties better adapted to deliver future food security.
Collapse
Affiliation(s)
- Ian Tsang
- NIAB, 93 Lawrence Weaver Road, Cambridge CB3 0LE, UK
- University of Nottingham, Plant Sciences Building, Sutton Bonnington Campus, Nottingham LE12 5RD, UK
| | - Jonathan A Atkinson
- University of Nottingham, Plant Sciences Building, Sutton Bonnington Campus, Nottingham LE12 5RD, UK
| | - Stephen Rawsthorne
- The Morley Agricultural Foundation, Morley Business Centre, Deopham Road, Morley St Botolph, Wymondham NR18 9DF, UK
| | - James Cockram
- NIAB, 93 Lawrence Weaver Road, Cambridge CB3 0LE, UK
| | - Fiona Leigh
- NIAB, 93 Lawrence Weaver Road, Cambridge CB3 0LE, UK
| |
Collapse
|
7
|
Luo W, Liu J, Xu W, Zhi S, Wang X, Sun Y. Molecular Characterization of Peroxidase ( PRX) Gene Family in Cucumber. Genes (Basel) 2024; 15:1245. [PMID: 39457369 PMCID: PMC11507654 DOI: 10.3390/genes15101245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/21/2024] [Accepted: 09/23/2024] [Indexed: 10/28/2024] Open
Abstract
Background: The Peroxidase (PRX) gene family is essential for plant growth and significantly contributes to defense against stresses. However, information about PRX genes in cucumber (Cucumis sativus L.) remains limited. Methods: In this present study, CsPRX genes were identified and characterized using bioinformatics analysis. The expression pattern analysis of CsPRX genes were examined utilizing the RNA-seq data of cucumber from public databases and real-time quantitative PCR (qRT-PCR) analysis. Results: Here, we identified 60 CsPRX genes and mapped them onto seven chromosomes of cucumber. The CsPRX proteins exhibited the presence of 10 conserved motifs, with motif 8, motif 2, motif 5, and motif 3 consistently appearing across all 60 CsPRX protein sequences, indicating the conservation of CsPRX proteins. Furthermore, RNA-seq analysis revealed that differential expression of CsPRX genes in various tissues. Notably, a majority of the CsPRX genes exhibited significantly higher expression levels in the root compared to the other plant tissues, suggesting a potential specialization of these genes in root function. In addition, qRT-PCR analysis for four selected CsPRX genes under different stress conditions indicated that these selected CsPRX genes demonstrated diverse expression levels when subjected to NaCl, CdCl2, and PEG treatments, and the CsPRX17 gene was significantly induced by NaCl, CdCl2, and PEG stresses, suggesting a vital role of the CsPRX17 gene in response to environmental stresses. Conclusions: These findings will contribute valuable insights for future research into the functions and regulatory mechanisms associated with CsPRX genes in cucumber.
Collapse
Affiliation(s)
- Weirong Luo
- School of Horticulture and Landscape Architecture, Henan Institute of Science and Technology, Xinxiang 453003, China
- Henan Province Engineering Research Center of Horticultural Plant Resource Utilization and Germplasm Enhancement, Xinxiang 453003, China
| | - Junjun Liu
- School of Horticulture and Landscape Architecture, Henan Institute of Science and Technology, Xinxiang 453003, China
- Henan Province Engineering Research Center of Horticultural Plant Resource Utilization and Germplasm Enhancement, Xinxiang 453003, China
| | - Wenchen Xu
- School of Horticulture and Landscape Architecture, Henan Institute of Science and Technology, Xinxiang 453003, China
- Henan Province Engineering Research Center of Horticultural Plant Resource Utilization and Germplasm Enhancement, Xinxiang 453003, China
| | - Shenshen Zhi
- School of Horticulture and Landscape Architecture, Henan Institute of Science and Technology, Xinxiang 453003, China
- Henan Province Engineering Research Center of Horticultural Plant Resource Utilization and Germplasm Enhancement, Xinxiang 453003, China
| | - Xudong Wang
- School of Horticulture and Landscape Architecture, Henan Institute of Science and Technology, Xinxiang 453003, China
- Henan Province Engineering Research Center of Horticultural Plant Resource Utilization and Germplasm Enhancement, Xinxiang 453003, China
| | - Yongdong Sun
- School of Horticulture and Landscape Architecture, Henan Institute of Science and Technology, Xinxiang 453003, China
- Henan Province Engineering Research Center of Horticultural Plant Resource Utilization and Germplasm Enhancement, Xinxiang 453003, China
| |
Collapse
|
8
|
Tong B, Liu Y, Wang Y, Li Q. PagMYB180 regulates adventitious rooting via a ROS/PCD-dependent pathway in poplar. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 346:112115. [PMID: 38768868 DOI: 10.1016/j.plantsci.2024.112115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/18/2024] [Accepted: 05/07/2024] [Indexed: 05/22/2024]
Abstract
The formation of adventitious roots (AR) is an essential step in the vegetative propagation of economically woody species. Reactive oxygen species (ROS) function as signaling molecules in regulating root growth and development. Here, we identified an R2R3-MYB transcription factor PagMYB180 as a regulator of AR formation in hybrid poplar (Populus alba × Populus glandulosa). PagMYB180 was specifically expressed in the vascular tissues of poplar roots, stems and leaves, and its protein was localized in the nucleus and acted as a transcriptional repressor. Both dominant repression and overexpression of PagMYB180 resulted in a significant reduction of AR quantity, a substantial increase of AR length, and an elevation of both the quantity and length of lateral roots (LR) compared to the wild type (WT) plants. Furthermore, PagMYB180 regulates programmed cell death (PCD) in root cortex cells, which is associated with elevated levels of ROS. Transcriptome and reverse transcription-quantitative PCR (RT-qPCR) analyses revealed that a series of differentially expressed genes are related to ROS, PCD and ethylene synthesis. Taken together, these results suggest that PagMYB180 may regulate AR development via a ROS/PCD-dependent pathway in poplar.
Collapse
Affiliation(s)
- Botong Tong
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University and Chinese Academy of Forestry, Harbin 150040, China
| | - Yingli Liu
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China.
| | - Yucheng Wang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Quanzi Li
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China
| |
Collapse
|
9
|
Lopez LE, Ibeas MA, Diaz Dominguez G, Estevez JM. Exploring the puzzle of reactive oxygen species acting on root hair cells. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:4589-4598. [PMID: 38833316 DOI: 10.1093/jxb/erae260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 06/03/2024] [Indexed: 06/06/2024]
Abstract
Reactive oxygen species (ROS) are essential signaling molecules that enable cells to respond rapidly to a range of stimuli. The ability of plants to recognize various stressors, incorporate a variety of environmental inputs, and initiate stress-response networks depends on ROS. Plants develop resilience and defensive systems as a result of these processes. Root hairs are central components of root biology since they increase the surface area of the root, anchor it in the soil, increase its ability to absorb water and nutrients, and foster interactions between microorganisms. In this review, we specifically focused on root hair cells and we highlighted the identification of ROS receptors, important new regulatory hubs that connect ROS production, transport, and signaling in the context of two hormonal pathways (auxin and ethylene) and under low temperature environmental input related to nutrients. As ROS play a crucial role in regulating cell elongation rates, root hairs are rapidly gaining traction as a very valuable single plant cell model for investigating ROS homeostasis and signaling. These promising findings might soon facilitate the development of plants and roots that are more resilient to environmental stressors.
Collapse
Affiliation(s)
- Leonel E Lopez
- Fundación Instituto Leloir and IIBBA-CONICET, Av. Patricias Argentinas 435, Buenos Aires CP C1405BWE, Argentina
| | - Miguel A Ibeas
- Centro de Biotecnología Vegetal (CBV), Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Gabriela Diaz Dominguez
- Fundación Instituto Leloir and IIBBA-CONICET, Av. Patricias Argentinas 435, Buenos Aires CP C1405BWE, Argentina
| | - Jose M Estevez
- Fundación Instituto Leloir and IIBBA-CONICET, Av. Patricias Argentinas 435, Buenos Aires CP C1405BWE, Argentina
- Centro de Biotecnología Vegetal (CBV), Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
- ANID-Millennium Science Initiative Program-Millennium Nucleus for the Development of Super Adaptable Plants (MN-SAP), Santiago, Chile
- ANID-Millennium Science Initiative Program-Millennium Institute for Integrative Biology (iBio), Santiago, Chile
| |
Collapse
|
10
|
Lopez LE, Chuah YS, Encina F, Carignani Sardoy M, Berdion Gabarain V, Mutwil M, Estevez JM. New molecular components that regulate the transcriptional hub in root hairs: coupling environmental signals with endogenous hormones to coordinate growth. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:4171-4179. [PMID: 37875460 DOI: 10.1093/jxb/erad419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 10/23/2023] [Indexed: 10/26/2023]
Abstract
Root hairs have become an important model system for studying plant growth, and in particular how plants modulate their growth in response to cell-intrinsic and environmental stimuli. In this review, we discuss recent advances in our understanding of the molecular mechanisms underlying the growth of Arabidopsis root hairs in the interface between responses to environmental cues (e.g. nutrients such as nitrates and phosphate, and microorganisms) and hormonal stimuli (e.g. auxin). Growth of root hairs is under the control of several transcription factors that are also under strong regulation at different levels. We highlight recent new discoveries along these transcriptional pathways that might have the potential to increase our capacity to enhance nutrient uptake by the roots in the context of abiotic stresses. We use the text-mining capacities of the PlantConnectome database to generate an up-to-date view of root hairs growth within these complex biological contexts.
Collapse
Affiliation(s)
- Leonel E Lopez
- Fundación Instituto Leloir and IIBBA-CONICET. Av. Patricias Argentinas 435, Buenos Aires C1405BWE, Argentina
- ANID-Millennium Science Initiative Program-Millennium Nucleus for the Development of Super Adaptable Plants (MN-SAP), Santiago 8370146, Chile
| | - Yu Song Chuah
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Felipe Encina
- Fundación Instituto Leloir and IIBBA-CONICET. Av. Patricias Argentinas 435, Buenos Aires C1405BWE, Argentina
- ANID-Millennium Science Initiative Program-Millennium Nucleus for the Development of Super Adaptable Plants (MN-SAP), Santiago 8370146, Chile
- ANID-Millennium Science Initiative Program-Millennium Institute for Integrative Biology (iBio), Santiago 8331150, Chile
| | - Mariana Carignani Sardoy
- Fundación Instituto Leloir and IIBBA-CONICET. Av. Patricias Argentinas 435, Buenos Aires C1405BWE, Argentina
- ANID-Millennium Science Initiative Program-Millennium Nucleus for the Development of Super Adaptable Plants (MN-SAP), Santiago 8370146, Chile
| | - Victoria Berdion Gabarain
- Fundación Instituto Leloir and IIBBA-CONICET. Av. Patricias Argentinas 435, Buenos Aires C1405BWE, Argentina
- ANID-Millennium Science Initiative Program-Millennium Nucleus for the Development of Super Adaptable Plants (MN-SAP), Santiago 8370146, Chile
| | - Marek Mutwil
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - José M Estevez
- Fundación Instituto Leloir and IIBBA-CONICET. Av. Patricias Argentinas 435, Buenos Aires C1405BWE, Argentina
- ANID-Millennium Science Initiative Program-Millennium Nucleus for the Development of Super Adaptable Plants (MN-SAP), Santiago 8370146, Chile
- ANID-Millennium Science Initiative Program-Millennium Institute for Integrative Biology (iBio), Santiago 8331150, Chile
- Centro de Biotecnología Vegetal (CBV), Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago 8370146, Chile
| |
Collapse
|
11
|
Pan J, Song J, Sohail H, Sharif R, Yan W, Hu Q, Qi X, Yang X, Xu X, Chen X. RNA-seq-based comparative transcriptome analysis reveals the role of CsPrx73 in waterlogging-triggered adventitious root formation in cucumber. HORTICULTURE RESEARCH 2024; 11:uhae062. [PMID: 38659441 PMCID: PMC11040206 DOI: 10.1093/hr/uhae062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 02/18/2024] [Indexed: 04/26/2024]
Abstract
Abiotic stressors like waterlogging are detrimental to cucumber development and growth. However, comprehension of the highly complex molecular mechanism underlying waterlogging can provide an opportunity to enhance cucumber tolerance under waterlogging stress. We examined the hypocotyl and stage-specific transcriptomes of the waterlogging-tolerant YZ026A and the waterlogging-sensitive YZ106A, which had different adventitious rooting ability under waterlogging. YZ026A performed better under waterlogging stress by altering its antioxidative machinery and demonstrated a greater superoxide ion (O 2-) scavenging ability. KEGG pathway enrichment analysis showed that a high number of differentially expressed genes (DEGs) were enriched in phenylpropanoid biosynthesis. By pairwise comparison and weighted gene co-expression network analysis analysis, 2616 DEGs were obtained which were categorized into 11 gene co-expression modules. Amongst the 11 modules, black was identified as the common module and yielded a novel key regulatory gene, CsPrx73. Transgenic cucumber plants overexpressing CsPrx73 enhance adventitious root (AR) formation under waterlogging conditions and increase reactive oxygen species (ROS) scavenging. Silencing of CsPrx73 expression by virus-induced gene silencing adversely affects AR formation under the waterlogging condition. Our results also indicated that CsERF7-3, a waterlogging-responsive ERF transcription factor, can directly bind to the ATCTA-box motif in the CsPrx73 promoter to initiate its expression. Overexpression of CsERF7-3 enhanced CsPrx73 expression and AR formation. On the contrary, CsERF7-3-silenced plants decreased CsPrx73 expression and rooting ability. In conclusion , our study demonstrates a novel CsERF7-3-CsPrx73 module that allows cucumbers to adapt more efficiently to waterlogging stress by promoting AR production and ROS scavenging.
Collapse
Affiliation(s)
- Jiawei Pan
- Department of Horticulture, School of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Jia Song
- Department of Horticulture, School of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Hamza Sohail
- Department of Horticulture, School of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Rahat Sharif
- Department of Horticulture, School of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Wenjing Yan
- Department of Horticulture, School of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Qiming Hu
- Department of Horticulture, School of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Xiaohua Qi
- Department of Horticulture, School of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Xiaodong Yang
- Department of Horticulture, School of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Xuewen Xu
- Department of Horticulture, School of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, Jiangsu 225009, China
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Institute ofVegetable Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu 210014, China
| | - Xuehao Chen
- Department of Horticulture, School of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, Jiangsu 225009, China
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Institute ofVegetable Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu 210014, China
| |
Collapse
|
12
|
Zeng J, Wang Y, Wu G, Sun Q, He X, Zhang X, Sun X, Zhao Y, Liu W, Xu D, Dai X, Ma W. Comparative Transcriptome Analysis Reveals the Genes and Pathways Related to Wheat Root Hair Length. Int J Mol Sci 2024; 25:2069. [PMID: 38396749 PMCID: PMC10889798 DOI: 10.3390/ijms25042069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/03/2024] [Accepted: 02/04/2024] [Indexed: 02/25/2024] Open
Abstract
Tube-like outgrowths from root epidermal cells, known as root hairs, enhance water and nutrient absorption, facilitate microbial interactions, and contribute to plant anchorage by expanding the root surface area. Genetically regulated and strongly influenced by environmental conditions, longer root hairs generally enhance water and nutrient absorption, correlating with increased stress resistance. Wheat, a globally predominant crop pivotal for human nutrition, necessitates the identification of long root hair genotypes and their regulatory genes to enhance nutrient capture and yield potential. This study focused on 261 wheat samples of diverse genotypes during germination, revealing noticeable disparities in the length of the root hair among the genotypes. Notably, two long root hair genotypes (W106 and W136) and two short root hair genotypes (W90 and W100) were identified. Transcriptome sequencing resulted in the development of 12 root cDNA libraries, unveiling 1180 shared differentially expressed genes (DEGs). Further analyses, including GO function annotation, KEGG enrichment, MapMan metabolic pathway analysis, and protein-protein interaction (PPI) network prediction, underscored the upregulation of root hair length regulatory genes in the long root hair genotypes. These included genes are associated with GA and BA hormone signaling pathways, FRS/FRF and bHLH transcription factors, phenylpropanoid, lignin, lignan secondary metabolic pathways, the peroxidase gene for maintaining ROS steady state, and the ankyrin gene with diverse biological functions. This study contributes valuable insights into modulating the length of wheat root hair and identifies candidate genes for the genetic improvement of wheat root traits.
Collapse
Affiliation(s)
- Jianbin Zeng
- College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China; (J.Z.); (X.Z.); (X.D.)
| | - Yongmei Wang
- College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China; (J.Z.); (X.Z.); (X.D.)
| | - Gang Wu
- College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China; (J.Z.); (X.Z.); (X.D.)
| | - Qingyi Sun
- College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China; (J.Z.); (X.Z.); (X.D.)
| | - Xiaoyan He
- College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China; (J.Z.); (X.Z.); (X.D.)
| | - Xinyi Zhang
- College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China; (J.Z.); (X.Z.); (X.D.)
| | - Xuelian Sun
- College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China; (J.Z.); (X.Z.); (X.D.)
| | - Yan Zhao
- College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China; (J.Z.); (X.Z.); (X.D.)
| | - Wenxing Liu
- College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China; (J.Z.); (X.Z.); (X.D.)
| | - Dengan Xu
- College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China; (J.Z.); (X.Z.); (X.D.)
| | - Xuehuan Dai
- College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China; (J.Z.); (X.Z.); (X.D.)
| | - Wujun Ma
- College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China; (J.Z.); (X.Z.); (X.D.)
- Academy of Dongying Efficient Agricultural Technology and Industry on Saline and Alkaline Land in Collaboration with Qingdao Agricultural University, Dongying 257347, China
| |
Collapse
|
13
|
Berthelier TH, Cabanac SC, Callot C, Bellec A, Mathé C, Jamet E, Dunand C. Evolutionary Analysis of Six Gene Families Part of the Reactive Oxygen Species (ROS) Gene Network in Three Brassicaceae Species. Int J Mol Sci 2024; 25:1938. [PMID: 38339216 PMCID: PMC10856686 DOI: 10.3390/ijms25031938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/30/2024] [Accepted: 02/01/2024] [Indexed: 02/12/2024] Open
Abstract
Climate change is expected to intensify the occurrence of abiotic stress in plants, such as hypoxia and salt stresses, leading to the production of reactive oxygen species (ROS), which need to be effectively managed by various oxido-reductases encoded by the so-called ROS gene network. Here, we studied six oxido-reductases families in three Brassicaceae species, Arabidopsis thaliana as well as Nasturtium officinale and Eutrema salsugineum, which are adapted to hypoxia and salt stress, respectively. Using available and new genomic data, we performed a phylogenomic analysis and compared RNA-seq data to study genomic and transcriptomic adaptations. This comprehensive approach allowed for the gaining of insights into the impact of the adaptation to saline or hypoxia conditions on genome organization (gene gains and losses) and transcriptional regulation. Notably, the comparison of the N. officinale and E. salsugineum genomes to that of A. thaliana highlighted changes in the distribution of ohnologs and homologs, particularly affecting class III peroxidase genes (CIII Prxs). These changes were specific to each gene, to gene families subjected to duplication events and to each species, suggesting distinct evolutionary responses. The analysis of transcriptomic data has allowed for the identification of genes related to stress responses in A. thaliana, and, conversely, to adaptation in N. officinale and E. salsugineum.
Collapse
Affiliation(s)
- Thomas Horst Berthelier
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, Toulouse INP, 31320 Auzeville-Tolosane, France; (T.H.B.); (S.C.C.); (C.M.)
| | - Sébastien Christophe Cabanac
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, Toulouse INP, 31320 Auzeville-Tolosane, France; (T.H.B.); (S.C.C.); (C.M.)
| | - Caroline Callot
- Centre National de Ressources Génomiques Végétales, INRAE, 31320 Auzeville-Tolosane, France; (C.C.); (A.B.)
| | - Arnaud Bellec
- Centre National de Ressources Génomiques Végétales, INRAE, 31320 Auzeville-Tolosane, France; (C.C.); (A.B.)
| | - Catherine Mathé
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, Toulouse INP, 31320 Auzeville-Tolosane, France; (T.H.B.); (S.C.C.); (C.M.)
| | - Elisabeth Jamet
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, Toulouse INP, 31320 Auzeville-Tolosane, France; (T.H.B.); (S.C.C.); (C.M.)
| | - Christophe Dunand
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, Toulouse INP, 31320 Auzeville-Tolosane, France; (T.H.B.); (S.C.C.); (C.M.)
| |
Collapse
|
14
|
Singh T, Bisht N, Ansari MM, Chauhan PS. The hidden harmony: Exploring ROS-phytohormone nexus for shaping plant root architecture in response to environmental cues. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 206:108273. [PMID: 38103339 DOI: 10.1016/j.plaphy.2023.108273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 11/28/2023] [Accepted: 12/07/2023] [Indexed: 12/19/2023]
Abstract
Root system architecture, encompassing lateral roots and root hairs, plays a vital in overall plant growth and stress tolerance. Reactive oxygen species (ROS) and plant hormones intricately regulate root growth and development, serving as signaling molecules that govern processes such as cell proliferation and differentiation. Manipulating the interplay between ROS and hormones has the potential to enhance nutrient absorption, stress tolerance, and agricultural productivity. In this review, we delve into how studying these processes provides insights into how plants respond to environmental changes and optimize growth patterns to better control cellular processes and stress responses in crops. We discuss various factors and complex signaling networks that may exist among ROS and phytohormones during root development. Additionally, the review highlights possible role of reactive nitrogen species (RNS) in ROS-phytohormone interactions and in shaping root system architecture according to environmental cues.
Collapse
Affiliation(s)
- Tanya Singh
- CSIR-National Botanical Research Institute (CSIR-NBRI), Rana Pratap Marg, Lucknow, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Nikita Bisht
- CSIR-National Botanical Research Institute (CSIR-NBRI), Rana Pratap Marg, Lucknow, India
| | - Mohd Mogees Ansari
- CSIR-National Botanical Research Institute (CSIR-NBRI), Rana Pratap Marg, Lucknow, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Puneet Singh Chauhan
- CSIR-National Botanical Research Institute (CSIR-NBRI), Rana Pratap Marg, Lucknow, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India.
| |
Collapse
|
15
|
Rodríguez-García DR, Rondón Guerrero YDC, Ferrero L, Rossi AH, Miglietta EA, Aptekmann AA, Marzol E, Martínez Pacheco J, Carignani M, Berdion Gabarain V, Lopez LE, Díaz Dominguez G, Borassi C, Sánchez-Serrano JJ, Xu L, Nadra AD, Rojo E, Ariel F, Estevez JM. Transcription factor NAC1 activates expression of peptidase-encoding AtCEPs in roots to limit root hair growth. PLANT PHYSIOLOGY 2023; 194:81-93. [PMID: 37801618 DOI: 10.1093/plphys/kiad533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/13/2023] [Accepted: 09/21/2023] [Indexed: 10/08/2023]
Abstract
Plant genomes encode a unique group of papain-type Cysteine EndoPeptidases (CysEPs) containing a KDEL endoplasmic reticulum (ER) retention signal (KDEL-CysEPs or CEPs). CEPs process the cell-wall scaffolding EXTENSIN (EXT) proteins that regulate de novo cell-wall formation and cell expansion. Since CEPs cleave EXTs and EXT-related proteins, acting as cell-wall-weakening agents, they may play a role in cell elongation. The Arabidopsis (Arabidopsis thaliana) genome encodes 3 CEPs (AtCPE1-AtCEP3). Here, we report that the genes encoding these 3 Arabidopsis CEPs are highly expressed in root-hair (RH) cell files. Single mutants have no evident abnormal RH phenotype, but atcep1-3 atcep3-2 and atcep1-3 atcep2-2 double mutants have longer RHs than wild-type (Wt) plants, suggesting that expression of AtCEPs in root trichoblasts restrains polar elongation of the RH. We provide evidence that the transcription factor NAC1 (petunia NAM and Arabidopsis ATAF1, ATAF2, and CUC2) activates AtCEPs expression in roots to limit RH growth. Chromatin immunoprecipitation indicates that NAC1 binds to the promoter of AtCEP1, AtCEP2, and, to a lower extent, AtCEP3 and may directly regulate their expression. Inducible NAC1 overexpression increases AtCEP1 and AtCEP2 transcript levels in roots and leads to reduced RH growth while the loss of function nac1-2 mutation reduces AtCEP1-AtCEP3 gene expression and enhances RH growth. Likewise, expression of a dominant chimeric NAC1-SRDX repressor construct leads to increased RH length. Finally, we show that RH cell walls in the atcep1-3 atcep3-2 double mutant have reduced levels of EXT deposition, suggesting that the defects in RH elongation are linked to alterations in EXT processing and accumulation. Our results support the involvement of AtCEPs in controlling RH polar growth through EXT processing and insolubilization at the cell wall.
Collapse
Affiliation(s)
- Diana R Rodríguez-García
- Fundación Instituto Leloir and IIBBA-CONICET. Av. Patricias Argentinas 435, Buenos Aires C1405BWE, Argentina
| | | | - Lucía Ferrero
- CONICET, Instituto de Agrobiotecnología del Litoral, Universidad Nacional del Litoral, Colectora Ruta Nacional 168 km 0, 3000, Santa Fe, Argentina
| | - Andrés Hugo Rossi
- Fundación Instituto Leloir and IIBBA-CONICET. Av. Patricias Argentinas 435, Buenos Aires C1405BWE, Argentina
| | - Esteban A Miglietta
- Fundación Instituto Leloir and IIBBA-CONICET. Av. Patricias Argentinas 435, Buenos Aires C1405BWE, Argentina
| | - Ariel A Aptekmann
- Departamento de Fisiología, Biología Molecular y Celular, Instituto de Biociencias, Biotecnología y Biología Traslacional (iB3), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires C1428EGA, Argentina
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (IQUIBICEN-CONICET), Ciudad Universitaria, Buenos Aires C1428EGA, Argentina
| | - Eliana Marzol
- Fundación Instituto Leloir and IIBBA-CONICET. Av. Patricias Argentinas 435, Buenos Aires C1405BWE, Argentina
| | - Javier Martínez Pacheco
- Fundación Instituto Leloir and IIBBA-CONICET. Av. Patricias Argentinas 435, Buenos Aires C1405BWE, Argentina
| | - Mariana Carignani
- Fundación Instituto Leloir and IIBBA-CONICET. Av. Patricias Argentinas 435, Buenos Aires C1405BWE, Argentina
| | - Victoria Berdion Gabarain
- Fundación Instituto Leloir and IIBBA-CONICET. Av. Patricias Argentinas 435, Buenos Aires C1405BWE, Argentina
| | - Leonel E Lopez
- Fundación Instituto Leloir and IIBBA-CONICET. Av. Patricias Argentinas 435, Buenos Aires C1405BWE, Argentina
| | - Gabriela Díaz Dominguez
- Fundación Instituto Leloir and IIBBA-CONICET. Av. Patricias Argentinas 435, Buenos Aires C1405BWE, Argentina
| | - Cecilia Borassi
- Fundación Instituto Leloir and IIBBA-CONICET. Av. Patricias Argentinas 435, Buenos Aires C1405BWE, Argentina
| | - José Juan Sánchez-Serrano
- Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Cantoblanco, E-28049 Madrid, Spain
| | - Lin Xu
- National Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Alejandro D Nadra
- Departamento de Fisiología, Biología Molecular y Celular, Instituto de Biociencias, Biotecnología y Biología Traslacional (iB3), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires C1428EGA, Argentina
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (IQUIBICEN-CONICET), Ciudad Universitaria, Buenos Aires C1428EGA, Argentina
| | - Enrique Rojo
- Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Cantoblanco, E-28049 Madrid, Spain
| | - Federico Ariel
- CONICET, Instituto de Agrobiotecnología del Litoral, Universidad Nacional del Litoral, Colectora Ruta Nacional 168 km 0, 3000, Santa Fe, Argentina
| | - José M Estevez
- Fundación Instituto Leloir and IIBBA-CONICET. Av. Patricias Argentinas 435, Buenos Aires C1405BWE, Argentina
- Centro de Biotecnología Vegetal, Facultad de Ciencias de la Vida, Universidad Andrés Bello, 8370146 Santiago, Chile
- ANID-Millennium Institute for Integrative Biology (iBio), 7500000 Santiago, Chile
- ANID-Millennium Nucleus for the Development of Super Adaptable Plants (MN-SAP), 8331150 Santiago, Chile
| |
Collapse
|
16
|
Moon S, Derakhshani B, Gho YS, Kim EJ, Lee SK, Jiang X, Lee C, Jung KH. PRX102 Participates in Root Hairs Tip Growth of Rice. RICE (NEW YORK, N.Y.) 2023; 16:51. [PMID: 37971600 PMCID: PMC10654324 DOI: 10.1186/s12284-023-00668-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 11/09/2023] [Indexed: 11/19/2023]
Abstract
Root hairs are extensions of epidermal cells on the root tips that increase the root contract surface area with the soil. For polar tip growth, newly synthesized proteins and other materials must be incorporated into the tips of root hairs. Here, we report the characterization of PRX102, a root hair preferential endoplasmic reticulum peroxidase. During root hair growth, PRX102 has a polar localization pattern within the tip regions of root hairs but it loses this polarity after growth termination. Moreover, PRX102 participates in root hair outgrowth by regulating dense cytoplasmic streaming toward the tip. This role is distinct from those of other peroxidases playing roles in the root hairs and regulating reactive oxygen species homeostasis. RNA-seq analysis using prx102 root hairs revealed that 87 genes including glutathione S-transferase were downregulated. Our results therefore suggest a new function of peroxidase as a player in the delivery of substances to the tips of growing root hairs.
Collapse
Affiliation(s)
- Sunok Moon
- Graduate School of Green-Bio Science and Crop Biotech Institute, Kyung Hee University, Yongin, 17104, Korea
| | - Behnam Derakhshani
- Graduate School of Green-Bio Science and Crop Biotech Institute, Kyung Hee University, Yongin, 17104, Korea
| | - Yun Shil Gho
- Graduate School of Green-Bio Science and Crop Biotech Institute, Kyung Hee University, Yongin, 17104, Korea
| | - Eui-Jung Kim
- Graduate School of Green-Bio Science and Crop Biotech Institute, Kyung Hee University, Yongin, 17104, Korea
| | - Su Kyoung Lee
- Graduate School of Green-Bio Science and Crop Biotech Institute, Kyung Hee University, Yongin, 17104, Korea
| | - Xu Jiang
- Graduate School of Green-Bio Science and Crop Biotech Institute, Kyung Hee University, Yongin, 17104, Korea
| | - Choonseok Lee
- Graduate School of Green-Bio Science and Crop Biotech Institute, Kyung Hee University, Yongin, 17104, Korea
| | - Ki-Hong Jung
- Graduate School of Green-Bio Science and Crop Biotech Institute, Kyung Hee University, Yongin, 17104, Korea.
| |
Collapse
|
17
|
Pacheco JM, Gabarain VB, Lopez LE, Lehuedé TU, Ocaranza D, Estevez JM. Understanding signaling pathways governing the polar development of root hairs in low-temperature, nutrient-deficient environments. CURRENT OPINION IN PLANT BIOLOGY 2023; 75:102386. [PMID: 37352652 DOI: 10.1016/j.pbi.2023.102386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 05/04/2023] [Accepted: 05/07/2023] [Indexed: 06/25/2023]
Abstract
Plants exposed to freezing and above-freezing low temperatures must employ a variety of strategies to minimize fitness loss. There is a considerable knowledge gap regarding how mild low temperatures (around 10 °C) affect plant growth and developmental processes, even though the majority of the molecular mechanisms that plants use to adapt to extremely low temperatures are well understood. Root hairs (RH) have become a useful model system for studying how plants regulate their growth in response to both cell-intrinsic cues and environmental inputs. Here, we'll focus on recent advances in the molecular mechanisms underpinning Arabidopsis thaliana RH growth at mild low temperatures and how these discoveries may influence our understanding of nutrient sensing mechanisms by the roots. This highlights how intricately linked mechanisms are necessary for plant development to take place under specific circumstances and to produce a coherent response, even at the level of a single RH cell.
Collapse
Affiliation(s)
- Javier Martínez Pacheco
- Fundación Instituto Leloir and IIBBA-CONICET. Av. Patricias Argentinas 435, Buenos Aires C1405BWE, Argentina; ANID - Millennium Science Initiative Program - Millennium Nucleus for the DeveIopment of Super Adaptable Plants (MN-SAP), Santiago 8370146, Chile
| | - Victoria Berdion Gabarain
- Fundación Instituto Leloir and IIBBA-CONICET. Av. Patricias Argentinas 435, Buenos Aires C1405BWE, Argentina; ANID - Millennium Science Initiative Program - Millennium Nucleus for the DeveIopment of Super Adaptable Plants (MN-SAP), Santiago 8370146, Chile
| | - Leonel E Lopez
- Fundación Instituto Leloir and IIBBA-CONICET. Av. Patricias Argentinas 435, Buenos Aires C1405BWE, Argentina; ANID - Millennium Science Initiative Program - Millennium Nucleus for the DeveIopment of Super Adaptable Plants (MN-SAP), Santiago 8370146, Chile
| | - Tomás Urzúa Lehuedé
- ANID - Millennium Science Initiative Program - Millennium Nucleus for the DeveIopment of Super Adaptable Plants (MN-SAP), Santiago 8370146, Chile; ANID - Millennium Science Initiative Program - Millennium Institute for Integrative Biology (iBio), Santiago 8331150, Chile; Centro de Biotecnología Vegetal (CBV), Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago 8370146, Chile
| | - Darío Ocaranza
- ANID - Millennium Science Initiative Program - Millennium Nucleus for the DeveIopment of Super Adaptable Plants (MN-SAP), Santiago 8370146, Chile; Centro de Biotecnología Vegetal (CBV), Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago 8370146, Chile
| | - José M Estevez
- Fundación Instituto Leloir and IIBBA-CONICET. Av. Patricias Argentinas 435, Buenos Aires C1405BWE, Argentina; ANID - Millennium Science Initiative Program - Millennium Nucleus for the DeveIopment of Super Adaptable Plants (MN-SAP), Santiago 8370146, Chile; ANID - Millennium Science Initiative Program - Millennium Institute for Integrative Biology (iBio), Santiago 8331150, Chile; Centro de Biotecnología Vegetal (CBV), Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago 8370146, Chile.
| |
Collapse
|
18
|
Mukherjee S, Corpas FJ. H 2 O 2 , NO, and H 2 S networks during root development and signalling under physiological and challenging environments: Beneficial or toxic? PLANT, CELL & ENVIRONMENT 2023; 46:688-717. [PMID: 36583401 PMCID: PMC10108057 DOI: 10.1111/pce.14531] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 12/25/2022] [Accepted: 12/27/2022] [Indexed: 05/27/2023]
Abstract
Hydrogen peroxide (H2 O2 ) is a reactive oxygen species (ROS) and a key modulator of the development and architecture of the root system under physiological and adverse environmental conditions. Nitric oxide (NO) and hydrogen sulphide (H2 S) also exert myriad functions on plant development and signalling. Accumulating pieces of evidence show that depending upon the dose and mode of applications, NO and H2 S can have synergistic or antagonistic actions in mediating H2 O2 signalling during root development. Thus, H2 O2 -NO-H2 S crosstalk might essentially impart tolerance to elude oxidative stress in roots. Growth and proliferation of root apex involve crucial orchestration of NO and H2 S-mediated ROS signalling which also comprise other components including mitogen-activated protein kinase, cyclins, cyclin-dependent kinases, respiratory burst oxidase homolog (RBOH), and Ca2+ flux. This assessment provides a comprehensive update on the cooperative roles of NO and H2 S in modulating H2 O2 homoeostasis during root development, abiotic stress tolerance, and root-microbe interaction. Furthermore, it also analyses the scopes of some fascinating future investigations associated with strigolactone and karrikins concerning H2 O2 -NO-H2 S crosstalk in plant roots.
Collapse
Affiliation(s)
- Soumya Mukherjee
- Department of Botany, Jangipur CollegeUniversity of KalyaniWest BengalIndia
| | - Francisco J. Corpas
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Stress, Development and Signalling in PlantsEstación Experimental del Zaidín (Spanish National Research Council, CSIC)GranadaSpain
| |
Collapse
|
19
|
Carey S, Zenchyzen B, Deneka AJ, Hall JC. Nectary development in Cleome violacea. FRONTIERS IN PLANT SCIENCE 2023; 13:1085900. [PMID: 36844906 PMCID: PMC9949531 DOI: 10.3389/fpls.2022.1085900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 12/22/2022] [Indexed: 06/18/2023]
Abstract
Nectaries are a promising frontier for plant evo-devo research, and are particularly fascinating given their diversity in form, position, and secretion methods across angiosperms. Emerging model systems permit investigations of the molecular basis for nectary development and nectar secretion across a range of taxa, which addresses fundamental questions about underlying parallelisms and convergence. Herein, we explore nectary development and nectar secretion in the emerging model taxa, Cleome violacea (Cleomaceae), which exhibits a prominent adaxial nectary. First, we characterized nectary anatomy and quantified nectar secretion to establish a foundation for quantitative and functional gene experiments. Next, we leveraged RNA-seq to establish gene expression profiles of nectaries across three key stages of development: pre-anthesis, anthesis, and post-fertilization. We then performed functional studies on five genes that were putatively involved in nectary and nectar formation: CvCRABSCLAW (CvCRC), CvAGAMOUS (CvAG), CvSHATTERPROOF (CvSHP), CvSWEET9, and a highly expressed but uncharacterized transcript. These experiments revealed a high degree of functional convergence to homologues from other core Eudicots, especially Arabidopsis. CvCRC, redundantly with CvAG and CvSHP, are required for nectary initiation. Concordantly, CvSWEET9 is essential for nectar formation and secretion, which indicates that the process is eccrine based in C. violacea. While demonstration of conservation is informative to our understanding of nectary evolution, questions remain. For example, it is unknown which genes are downstream of the developmental initiators CvCRC, CvAG, and CvSHP, or what role the TCP gene family plays in nectary initiation in this family. Further to this, we have initiated a characterization of associations between nectaries, yeast, and bacteria, but more research is required beyond establishing their presence. Cleome violacea is an excellent model for continued research into nectary development because of its conspicuous nectaries, short generation time, and close taxonomic distance to Arabidopsis.
Collapse
|
20
|
Zhang X, Bian A, Li T, Ren L, Li L, Su Y, Zhang Q. ROS and calcium oscillations are required for polarized root hair growth. PLANT SIGNALING & BEHAVIOR 2022; 17:2106410. [PMID: 35938584 PMCID: PMC9359386 DOI: 10.1080/15592324.2022.2106410] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/21/2022] [Accepted: 07/23/2022] [Indexed: 06/15/2023]
Abstract
Root hairs are filamentous extensions from epidermis of plant roots with growth limited to the apical dome. Cell expansion undergoes tightly regulated processes, including the coordination between cell wall loosening and cell wall crosslinking, to form the final shape and size. Tip-focused gradients and oscillations of reactive oxygen species (ROS) together with calcium ions (Ca2+) as indispensable regulated mechanisms control rapid and polarized elongation of root hair cells. ROS homeostasis mediated by plasma membrane-localized NADPH oxidases, known as respiratory burst oxidase homologues (RBOHs), and class III cell wall peroxidases (PRXs), modulates cell wall properties during cell expansion. The expression levels of RBOHC, an NADPH oxidase that produces ROS, and class III PRXs are directly upregulated by ROOT HAIR DEFECTIVE SIX-LIKE 4 (RSL4), encoding a basic-helix-loop-helix (bHLH) transcription factor, to modulate root hair elongation. Cyclic nucleotide-gated channels (CNGCs), as central regulators of Ca2+ oscillations, also regulate root hair extension. Here, we review how the gradients and oscillations of Ca2+ and ROS interact to promote the expansion of root hair cells.
Collapse
Affiliation(s)
- Xinxin Zhang
- College of Life Sciences, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, P.R. China
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, the Chinese Academy of Sciences, Beijing, P.R. China
| | - Ang Bian
- College of Computer Science, Sichuan University, Chengdu, P.R. China
| | - Teng Li
- College of Life Sciences, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, P.R. China
| | - Lifei Ren
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, The Chinese Academy of Sciences, Beijing, P.R. China
| | - Li Li
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing, P.R. China
| | - Yuan Su
- College of Life Science and Technology, Guangxi University, Nanning, P.R. China
| | - Qun Zhang
- College of Life Sciences, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, P.R. China
| |
Collapse
|
21
|
Ahmad N, Ibrahim S, Tian Z, Kuang L, Wang X, Wang H, Dun X. Quantitative trait loci mapping reveals important genomic regions controlling root architecture and shoot biomass under nitrogen, phosphorus, and potassium stress in rapeseed ( Brassica napus L.). FRONTIERS IN PLANT SCIENCE 2022; 13:994666. [PMID: 36172562 PMCID: PMC9511887 DOI: 10.3389/fpls.2022.994666] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 08/15/2022] [Indexed: 06/16/2023]
Abstract
Plants rely on root systems for nutrient uptake from soils. Marker-assisted selection helps breeders to select desirable root traits for effective nutrient uptake. Here, 12 root and biomass traits were investigated at the seedling stage under low nitrogen (LN), low phosphorus (LP), and low potassium (LK) conditions, respectively, in a recombinant inbred line (RIL) population, which was generated from Brassica napus L. Zhongshuang11 and 4D122 with significant differences in root traits and nutrient efficiency. Significant differences for all the investigated traits were observed among RILs, with high heritabilities (0.43-0.74) and high correlations between the different treatments. Quantitative trait loci (QTL) mapping identified 57, 27, and 36 loci, explaining 4.1-10.9, 4.6-10.8, and 4.9-17.4% phenotypic variances under LN, LP, and LK, respectively. Through QTL-meta analysis, these loci were integrated into 18 significant QTL clusters. Four major QTL clusters involved 25 QTLs that could be repeatedly detected and explained more than 10% phenotypic variances, including two NPK-common and two specific QTL clusters (K and NK-specific), indicating their critical role in cooperative nutrients uptake of N, P, and K. Moreover, 264 genes within the four major QTL clusters having high expressions in roots and SNP/InDel variations between two parents were identified as potential candidate genes. Thirty-eight of them have been reported to be associated with root growth and development and/or nutrient stress tolerance. These key loci and candidate genes lay the foundation for deeper dissection of the NPK starvation response mechanisms in B. napus.
Collapse
Affiliation(s)
- Nazir Ahmad
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Ministry of Agriculture, Wuhan, China
| | - Sani Ibrahim
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Ministry of Agriculture, Wuhan, China
| | - Ze Tian
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Ministry of Agriculture, Wuhan, China
| | - Lieqiong Kuang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Ministry of Agriculture, Wuhan, China
| | - Xinfa Wang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Ministry of Agriculture, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Hanzhong Wang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Ministry of Agriculture, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Xiaoling Dun
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Ministry of Agriculture, Wuhan, China
| |
Collapse
|
22
|
Martin RE, Marzol E, Estevez JM, Muday GK. Ethylene signaling increases reactive oxygen species accumulation to drive root hair initiation in Arabidopsis. Development 2022; 149:275731. [PMID: 35713303 DOI: 10.1242/dev.200487] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 05/31/2022] [Indexed: 11/20/2022]
Abstract
Root hair initiation is a highly regulated aspect of root development. The plant hormone ethylene and its precursor, 1-amino-cyclopropane-1-carboxylic acid, induce formation and elongation of root hairs. Using confocal microscopy paired with redox biosensors and dyes, we demonstrated that treatments that elevate ethylene levels lead to increased hydrogen peroxide accumulation in hair cells prior to root hair formation. In the ethylene-insensitive receptor mutant, etr1-3, and the signaling double mutant, ein3eil1, the increase in root hair number or reactive oxygen species (ROS) accumulation after ACC and ethylene treatment was lost. Conversely, etr1-7, a constitutive ethylene signaling receptor mutant, has increased root hair formation and ROS accumulation, similar to ethylene-treated Col-0 seedlings. The caprice and werewolf transcription factor mutants have decreased and elevated ROS levels, respectively, which are correlated with levels of root hair initiation. The rhd2-6 mutant, with a defect in the gene encoding the ROS-synthesizing RESPIRATORY BURST OXIDASE HOMOLOG C (RBOHC), and the prx44-2 mutant, which is defective in a class III peroxidase, showed impaired ethylene-dependent ROS synthesis and root hair formation via EIN3EIL1-dependent transcriptional regulation. Together, these results indicate that ethylene increases ROS accumulation through RBOHC and PRX44 to drive root hair formation.
Collapse
Affiliation(s)
- R Emily Martin
- Departments of Biology and Biochemistry and the Center for Molecular Signaling, Wake Forest University, 1834 Wake Forest Road, Winston-Salem, NC 27109,USA
| | - Eliana Marzol
- Fundación Instituto Leloir and IIBBA-CONICET, Av. Patricias Argentinas 435, Buenos Aires, Argentina, C1405BWE
| | - Jose M Estevez
- Fundación Instituto Leloir and IIBBA-CONICET, Av. Patricias Argentinas 435, Buenos Aires, Argentina, C1405BWE.,Centro de Biotecnología Vegetal, Facultad de Ciencias de la Vida, Universidad Andrés Bello Santiago, Santiago, Chile and ANID - Millennium Science Initiative Program - Millennium Institute for Integrative Biology (iBio) and Millennium Nucleus for the Development of Super Adaptable Plants (MN-SAP), Santiago, Chile, 8370146
| | - Gloria K Muday
- Departments of Biology and Biochemistry and the Center for Molecular Signaling, Wake Forest University, 1834 Wake Forest Road, Winston-Salem, NC 27109,USA
| |
Collapse
|